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Abstrat

A standard proedure in nonparametri regression is to estimate the re-

gression urve by using a linear ombination of B-splines. In this ontext, the

oeÆients of the expansion, the number of knots and the knots' positions are

unknown. The proedure to obtain the estimate of the regression urve is the

reversible jump MCMC (Green, 1995).

1 Introdution

Sine the pioneer work of Craven and Wahba (1979) using splines, several methods

for nonparametri regression were suggested. Reently, Luo and Wahba (1997) and
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Dias (1999) proposed more adpative methods to obtain good estimates of the regres-

sion urves. Under the Bayesian sheme, Denilson, Mallik and Smith (1998) suggest

seleting regression models by using reversible jump MCMC (Green, 1995). Di�er-

ent from other methods this work shows a more general approah by also onsidering

prior information on the knots positions and the oeÆients of the expansions.
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2 Bayesian Approah

The Bayesian approah is to let � be the posterior density of the parameters
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and the priors,

1. K � Poisson(�) (trunated) where the possible values of K is 1; : : : ; k

max

suh that k

max

< n to avoid interpolation.
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By applying reversible jump MCMC (Green, 1995) we have four moves. The

�rst move is the move of the vetor of oeÆients �. Choose randomly, �
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The orrespondent aeptane probability for this move is:
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The seond move is on the knots positions. Choose at random t
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The third movement is the birth of a knot. For this, hoose t
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For this partiular hoie of basis funtions eah knot is assoiate to a single

orrespondent basis funtion. Take � = ( ; �), then  
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Following Green (1995), the aeptane probability for the birth of a knot is,

� = minf1; (likelihood)� (prior ratio)� (proposal ratio)� (Jaobian)g:
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Sine eah knot is assoiated to a single basis funtion the likelihood ratio beomes,
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Simlilarly to the birth of a knot the fourth move takes in onsideration to remove

a single knot. Then new knot sequene is t

0

1

= t

1

; : : : ; t

0

j�1

= t

j�1

; t

0

j

= t

j+1

; t

0

j+1

=

t

j+2

; : : : ; t

0

k�1

= t

k

, and the aeptane probability is built aordingly to the third

movement.
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Figure 2.1: The last one hundred urve estimates
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Figure 2.2: The last one hundred urve estimates
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Figure 2.3: The last one hundred urve estimates
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Figure 2.4: The last one hundred urve estimates
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