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Abstract

A standard procedure in nonparametric regression is to estimate the re-
gression curve by using a linear combination of B-splines. In this context, the
coefficients of the expansion, the number of knots and the knots’ positions are
unknown. The procedure to obtain the estimate of the regression curve is the

reversible jump MCMC (Green, 1995).

1 Introduction

Since the pioneer work of Craven and Wahba (1979) using splines, several methods

for nonparametric regression were suggested. Recently, Luo and Wahba (1997) and



Dias (1999) proposed more adpative methods to obtain good estimates of the regres-
sion curves. Under the Bayesian scheme, Denilson, Mallick and Smith (1998) suggest
selecting regression models by using reversible jump MCMC (Green, 1995). Differ-
ent from other methods this work shows a more general approach by also considering
prior information on the knots positions and the coefficients of the expansions.

Suppose we have the following regression model,
yi= flx;)+e i=1,...,n.

where ¢;’s are uncorrelated with a N(0,0?). Moreover, assume that the paramet-
ric form of the regression curve f is unknown. An attempt to solve this prob-
lem a nonparametric regression model is suggested by supposing that f(z;) =
Zj-il B;Bj(x;,t), where the B;’s are the splines basis functions with a knot sequence

t = (t1,...,t). In particular the basis functions used here is,
k
Bj(x,t) = Bjo+ Bjat + B2t B st + Z Bz —t;)%,
i=1

with (z)3 = max(0,2?*). Hence the problem becomes to estimate the vectors 3, t,

the dimension space K and o.

2 Bayesian Approach

The Bayesian approach is to let @ be the posterior density of the parameters
(B,t, K,0?) given the vector y = (yy,...,¥,), that is:
m(B,t, K,0%) o< 1,(B,t, K,0%)p(B,t, K, 0%),
where is the likelihood 1,(53,t, K,0%) = [[;_, f(vi|8,t, K,0?). Let’s assume that
p(B.t, K, o) = p(BIK, t)p(t|k)p(K)p(c?)
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and the priors,

1. K ~ Poisson(\) (truncated) where the possible values of K is 1,..., knas

such that k,,,, < n to avoid interpolation.

2. (t|K) the order statistics of k& points from U(x (1), 2(n)) With z(; the i-th order

statistics.

3. (B]t, K) ~ Nk(fBo, %)
4. 072 ~ Gammala, b)

By applying reversible jump MCMC (Green, 1995) we have four moves. The
first move is the move of the vector of coefficients 3. Choose randomly, 5; among
Bi,. .., B and let i = 3; + N(0,c?).

The correspondent acceptance probability for this move is:

mm{@wﬁtKﬂﬁmMﬂKJMUWWUQMUQ1}
ly(B,t, K, o?)p(B| K, t)p(t|k)p(K)p(o?) ’

The second move is on the knots positions. Choose at random ¢; among ?y, ..., t.

Define t; = 0 and #;, = 1. Then choose t; ~ U(t;_1,t;41).

Then acceptance probability is,

mmyﬂ&tKﬂammK#mwmeme)l}
ly(B,t, K, 0?)p(B|K, t)p(t|k)p(K)p(o?) ’

The third movement is the birth of a knot. For this, choose t* for the proposed
new knot position uniformly distributed on [t1,¢,]. This must lie with probability 1
within an existing interval, say, (¢;,¢;41). The new set of knots is given by:

tll :tl,...,t;- :tj,t;-+1 :t*,t;-+2:tj+1,...,t2;+l :tk



For this particular choice of basis functions each knot is associate to a single

correspondent basis function. Take 8 = (v, 3), then ¢j = 1, j = 0,...,3 and
Bi = Bla"')ﬁ}' = Bja ;’+1 = 5*75]"4»2 = Bj+17"'7ﬂllc+1 = 5]4; with 5* chosen from

N(foj,05). Observe that this transformation is one-to-one and its Jacobian is 1.

Following Green (1995), the acceptance probability for the birth of a knot is,
a = min{1, (likelihood) x (prior ratio) x (proposal ratio) x (Jacobian)}.

The proposal ratio is,

(1/(k+1)) X d41
(1/L) x by x ¢2—+% exp(f* — Boj)?/2073"

with by = Cmin{l, 2} dyy = Cmin{l, 285} and L is the range of the

independent variable . Choose C' as large as possible subject to by + dx; < 0.9 for
all k =1,..., kpap- This choice of C is to ensure that byp(k) = diy1p(k + 1). The

prior ratio is given by,

p(6", ", k+1) _ p(B7lk + Dp(t*|k + Dp(k +1)

p(B,t, k) p(BIk)p(t|k)p(k) ’

with

p(Blk+1) E \Nk/2/k 4 1\1/2
o - ) )
(k+1)% &4

= X exp{— 2 Z(ﬁ;‘ — ﬁoj)z

Jj=1

k2 o
= g (5 - )

j=1
and
p(t |k + 1)p(k + 1) A

p(t[k)p(k) (k+1)*



Since each knot is associated to a single basis function the likelihood ratio becomes,

lrg, = exp{z B*B(x;, ")}
=1

1=

Simlilarly to the birth of a knot the fourth move takes in consideration to remove
a single knot. Then new knot sequence is t} = ty,...,t; | = t; 1, t; =t/ 1, =
tit2,...,t;_, = tg, and the acceptance probability is built accordingly to the third

movement.
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Figure 2.1: The last one hundred curve estimates



Average of the last 100 curves
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Figure 2.2: The last one hundred curve estimates



The last 100 curves
y=exp(3*x)
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Figure 2.3: The last one hundred curve estimates



Average of the last 100 curves
y=exp(3*x)
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Figure 2.4: The last one hundred curve estimates
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