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Abstract

In modelling the mutational process in DNA sequences of the human immunode�ciency

virus (HIV) one cannot assume independence among positions along the sequences. Sites are

analyzed, at the nucleotide or amino-acid level, by comparing each sequence to the consensus

sequence. The state at each site is regarded as a binary event (i.e., there is a mutation or

not). Two families of models are considered. Each sequence can be thought of as a degenerate

lattice, then autologistic models are applicable. The probability of mutation at a speci�c

site, given all others, has an exponential form with, as predictor, a function of neighboring

sites. Since there is no closed form for the likelihood function, a Markov-chain Monte-Carlo

procedure is called upon. The second model is based on the Bahadur representation for the

joint distribution of dichotomous responses and assumes only pairwise dependence among

sites. Parameter estimation is performed via the maximum likelihood method.
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1 Introduction

Our primary interest is in modelling whether there is a mutation or not at each site. We

compare each sequence to the consensus sequence and look for di�erences. The response is thus

binary and two alternative models are formulated: an autologistic model (Section 2), and a Bahadur

representation for the joint distribution of Bernoulli trials (Section 3). We assume only pairwise

dependence among sites. Parameter estimation is discussed in each case and a data analysis is

developed in Section .

2 The Autologistic Model

The autologistic model was introduced by Besag (1972, 1974, 1975) and is widely suited to

spatial binary data (Cressie, 1993). This parametric family can handle situations involving both

spatial correlation and dependence on covariates. Applications include modelling the distribution

of plant species in terms of climate variables like temperature and rainfall (Hu�er & Wu, 1995a),

the e�ect of soil variables on disease incidence in plants (Gumpertz & Graham, 1995) and network

autocorrelation data (Smith, Calloway & Morrisey, 1995). It is important to point out that in

these papers the whole data set consists of a single lattice, but in our case we have a number of

independent lattices (i.e., sequences).

Let

y(i) =

(

0 if there is no mutation at site i

1 if there is a mutation at site i

Construct 1� n vectors, where n is the total number of sites along a sequence:

y = (y(1) : : : y(n)) and 0 = (0 0 : : : 0):

The model formulation requires that we de�ne the concept of neighborhood and introduce the

positivity condition.

De�nition 1

A site j is a neighbor of site i if the conditional distribution of Y (i), given all other site values,

depends functionally on y(j), for j 6= i. Also de�ne

N

i

= fj : j is a neighbor of ig(2.1)

to be the neighborhood of site i.
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Positivity Condition

Let Y be a discrete variable associated with n sites. De�ne � = fy : Pr(y) > 0g and �

i

= fy(i) :

Pr(y(i)) > 0g; i = 1; : : : ; n. Then the positivity condition is satis�ed if � = �

1

� : : : � �

n

. For a

continuous variable, the same de�nition applies except that Pr(�) is replaced by f(�).

This condition states that the support of the joint distribution is the cartesian product of the

supports for the marginal distributions. It implies that considering the elements fy(i) : i; : : : ; ng

jointly does not rule out combinations allowed in the set fy(1)g � fy(2)g � : : : � fy(n)g. For in-

stance, this condition is invalidated for an infectious disease model. Because of the one-way nature

of infection, the following situation is not allowed: y(i) = 1 when fy(j) = 0; j 2 N

i

g, i.e., y(i) is

a�ected when all the neighbors of i are not a�ected.

Without loss of generality, assume that 0 can occur at each site. Let

Q(y) = logfPr(y)=Pr(0)g; y 2 �;(2.2)

where � is the support of the distribution of Y. Then the knowledge of Q(:) is equivalent to the

knowledge of Pr(:), because

Pr(y) = exp(Q(y))=

X

y2�

exp(Q(y))

in the case of discrete y's. A similar formula, with integrals replacing summations, applies for

continuous y's.

Proposition 1 (Cressie, 1993)

The function Q satis�es the following two properties:

i.

Pr(y(i) j fy(j) : j 6= ig)

Pr(0(i) j fy(j) : j 6= ig)

=

Pr(y)

Pr(y

i

)

= exp(Q(y)�Q(y

i

))(2.3)

where 0(i) denotes the event Y (i) = 0 and y

i

� (y(1); : : : ; y(i� 1); 0; y(i+ 1); : : : ; y(n))

ii. Q can be expanded uniquely on � as

Q(y) =

X

1�i�n

y(i)G

i

(y(i)) +

X

1�i<j�n

y(i) y(j)G

ij

(y(i); y(j))

+

X

1�i<j<k�n

y(i) y(j) y(k)G

ijk

(y(i); y(j); y(k)) + : : :

+y(1) : : : y(n)G

1:::n

(y(1); : : : ; y(n)); y 2 �:(2.4)
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Note that although the expansion (2.4) is unique, the function fG

ij:::

g are not uniquely speci�ed.

By de�ning G

ij:::

(y(i); y(j); : : :) � 0 whenever one of the arguments is 0, uniqueness is obtained.

Example (Liang, Zeger & Qaqish, 1992)

The representation of Q(:) in (2.4) has been used to represent the probability distribution for

a vector x of binary responses in a saturated log-linear model:

Pr(x) = expfu

0

+

n

X

j=1

u

j

x

j

+

X

j<k

u

jk

x

j

x

k

+ : : :+ u

12:::n

x

1

: : : x

n

g(2.5)

where there are 2

n

�1 parameters u = (u

1

; : : : ; u

n

; u

11

; u

12

; : : : ; u

n�1;n

; : : : ; u

12:::n

)

0

. These have

straightforward interpretations in terms of conditional probabilities. For example,

u

j

= logitfPr(x

j

= 1 j x

k

= 0; k 6= j)g; j = 1; : : : ; n;

u

jk

= logOR(x

j

; x

k

j x

l

= 0; l 6= j; k); j < k = 1; : : : ; n;

and

u

123

= logOR(x

1

; x

2

j x

3

= 1; x

l

= 0; l > 3)� logOR(x

1

; x

2

j x

3

= 0; x

l

= 0; l > 3)(2.6)

where

OR(v; w) =

Pr(v = w = 1)Pr(v = w = 0)

Pr(v = 1; w = 0)Pr(v = 0; w = 1)

The implication of properties (i) and (ii) is that the expansion (2.4) for Q(y) is actually made

up of conditional probabilities. For instance,

y(i)G

i

(y(i)) = log

�

Pr(y(i) j f0(j) : j 6= ig)

Pr(0(i) j f0(j) : j 6= ig)

�

y(i) y(j)G

ij

(y(i); y(j))

= log

�

Pr(y(i) j y(j); f0(l) : l 6= i; jg)

Pr(0(i) j y(j); f0(l) : l 6= i; jg

�

Pr(0(i) j f0(l) : l 6= ig)

Pr(y(i) j f0(l) : l 6= ig

�

From (2.2), the joint probability distribution of y, Pr(y), is proportional to exp(Q(y)). Finding

the proportionality constant as a function of the parameters enables us to write down the full

likelihood and to obtain the maximum likelihood estimates of the parameters. Unfortunately, this

is not always possible. Further, there is a powerful theorem regarding the form the function Q

must take so that the conditional expressions combine consistently into a proper joint distribution.

We must �rst de�ne a clique.
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De�nition 2

A clique is a set of sites that consists either of a single site or of sites that are all neighbors of each

other.

Theorem 1 (Hammersley-Cli�ord, 1971)

Suppose that Y is distributed according to a Markov random �eld on � that satis�es the positivity

condition. Then, the negpotential function Q(�) given by (2.4) must satisfy the property that if sites

i; j; : : : ; n do not form a clique, then G

ij:::n

(�) = 0, where cliques are de�ned by the neighborhood

structure fN

i

: i = 1; : : : ; ng.

Assuming only pairwise dependence between sites,

Q(y) =

X

1�i�n

y(i)G

i

(y(i)) +

X

1�i<j�n

y(i) y(j)G

ij

(y(i); y(j))(2.7)

Since y(i) is either 1 or 0, the only values for the functions G needed in (2.7) are G

i

(1) � �

i

and

G

ij

(1; 1) � 

ij

. Thus,

Q(y) =

n

X

i=1

�

i

y(i) +

X

1�i<j�n



ij

y(i) y(j) = logfPr(y)=Pr(0)g(2.8)

where 

ij

= 0 unless sites i and j are neighbors. Then,

Q(y)�Q(y

i

) = �

i

y(i) +

n

X

j=1



ij

y(i) y(j)

where 

ij

= 

ji

and, to maintain identi�ability of the parameters, 

ii

= 0. Therefore, from (2.3),

Pr(y(i) j fy(j) : j 6= ig)

Pr(0(i) j fy(j) : j 6= ig)

= expf�

i

y(i) +

n

X

j=1



ij

y(i)y(j)g

Because y(i) = 0 or 1,

Pr(0(i) j fy(j) : j 6= ig) =

1

1 + exp(�

i

+

P

n

j=1



ij

y(j))

and

P (y(i) j fy(j) : j 6= ig) =

exp(�

i

y(i) +

P

n

j=1



ij

y(i) y(j))

1 + exp(�

i

+

P

n

j=1



ij

y(j))

(2.9)

Even with just pairwise dependence this formulation may involve too many parameters for data sets

of moderate size and we need to reduce the number of parameters by imposing some constraints.

For instance,
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� For the �'s,

1. �

i

's all di�erent;

2. �

i

= �; 8i;

3. a di�erent �

i

for each speci�c amino acid (or nucleotide) in the consensus sequence.

� For the 's,

1. 's all di�erent;

2. 

ij

= 0 if j i� j j> d, where d is some chosen threshold;

3. 

ij

= �

ji�jj

;

4. equal 

ij

for each pair of speci�c amino acids (or nucleotide) in the consensus sequence;

5. 

ij

= ; 8 i; j.

2.1 Estimation Procedure

Suppose the data consist of m independent sequences with n sites. In fact, we have y

k

(i),

where i = 1; : : : ; n and k = 1; : : : ;m. Then, y(i) is a m� 1 vector.

We can get approximate estimates by using the pseudolikelihood function L

P

(Besag, 1975),

i.e. the product of the conditional probabilities, which speci�es the model assuming independence

among sites.

L

P

(�;y(1); : : : ;y(n)) =

n

Y

i=1

Pr(y(i) j fy(j) : j 6= ig;�)

where � = (�

1

; : : : ; �

n

; 

1 2

; : : : ; 

n�1n

)

0

is the parameter vector. Since the sequences are indepen-

dent, we can write

L

P

(�;y(1); : : : ;y(n)) =

m

Y

k=1

n

Y

i=1

Pr(y

k

(i) j fy

k

(j) : j 6= ig)

=

m

Y

k=1

n

Y

i=1

(

exp[�

i

y

k

(i) +

P

n

j=1



ik

y

k

(i) y

k

(j)]

1 + exp[�

i

+

P

n

j=1



ij

y

k

(j)]

)

(2.10)

The maximum pseudolikelihood estimate (MPLE) is the value of � which maximizes L

P

, i.e.,

(2.10). The MPLE is consistent and asymptotically normal (Comets, 1992; Comets & Gidas,

1992). It has some disadvantages: its e�ciency is unknown and expected to be inferior to that of

the maximum likelihood estimate (MLE). Also, there is no direct way of obtaining standard errors

for the estimates.
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In order to calculate the MLE we need to proceed by Markov-chain Monte-Carlo simulation as

proposed by Geyer & Thompson (1992). We can write the joint distribution of y = (y(1); : : : ;y(n))

as

Prfy(1); : : : ;y(n);�g = C(�)F (y(1); : : : ;y(n);�):

where F is an explicitly computable function and C(�) = Prf0(1); : : : ;0(n);�g. For the autolo-

gistic model,

F = exp

8

<

:

m

X

k=1

n

X

i=1

�

i

y

k

(i) +

m

X

k=1

X

1�i<j�n



ij

y

k

(i) y

k

(j)

9

=

;

(2.11)

Fix some speci�c value of �, �

0

say. Suppose we can generate a random vector (Y

0

(1); : : : ;Y

0

(n))

from the distribution with � = �

0

. The random variable

F (Y

0

(1); : : : ;Y

0

(n);�)

F (Y

0

(1); : : : ;Y

0

(n);�

0

)

has mean

X

y

0

(1);:::;y

0

(n)

F (y

0

(1); : : : ;y

0

(n);�)

F (y

0

(1); : : : ;y

0

(n);�

0

)

C(�

0

)F (y

0

(1); : : : ;y

0

(n);�

0

)

= C(�

0

)

X

y

0

(1);:::;y

0

(n)

F (y

0

(1); : : : ;y

0

(n);�)

=

C(�

0

)

C(�)

; since

X

y

0

(1);:::;y

0

(n)

C(�)F (y

0

(1); : : : ;y

0

(n);�) = 1:

Then, suppose we have a (not necessarily independent) set of random vectors (Y

(r)

(1); : : : ;Y

(r)

(n)); r =

1; 2; : : : ; R, each drawn from the distribution C(�

0

)F (: ;�

0

) for some �xed �

0

. Denote the obser-

vations by (Y(1); : : : ;Y(n)). The function

H(�) =

1

R

R

X

r=1

F (Y

(r)

(1); : : : ;Y

(r)

(n);�)

F (Y

(r)

(1); : : : ;Y

(r)

(n);�

0

)

�

F (Y(1); : : : ;Y(n);�

0

)

F (Y(1); : : : ;Y(n);�)

(2.12)

is an unbiased estimator of the likelihood ratio of �

0

to �,

C(�

0

)F (Y(1) : : : ;Y(n);�

0

)

C(�)F (Y(1); : : : ;Y(n);�)

since

E[H(�)] =

1

R

F (Y(1); : : : ;Y(n);�

0

)

F (Y(1); : : : ;Y(n);�)

R

X

r=1

E

"

F (Y

(r)

(1); : : : ;Y

(r)

(n);�)

F (Y

(r)

(1); : : : ;Y

(r)

(n);�

0

)

#

=

C(�

0

)F (Y(1); : : : ;Y(n);�

0

)

C(�)F (Y(1); : : : ;Y(n);�)
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To obtain the MLE of �, use equation (2.12), based on a single simulated sequence, and minimize

it with respect to � (Geyer & Thompson, 1992).

Here is a summary of the procedure:

1. Choose a model, as in equation (2.9).

2. Use the MPLE to generate an initial point estimate (�

0

) for the unknown parameter vector.

3. Use Gibbs sampling or the Metropolis algorithm to generate a simulated sequence of random

vectors from the distribution with parameter vector �

0

. Discard an initial warm-up sample,

then generate random vectors Y

(1)

; Y

(2)

: : :. Select R vectors (R should be at least 1000) by

sampling every k (50, say) because of the dependence between successive vectors.

4. Use equation (2.12) to de�ne H(�), the simulated likelihood ratio of �

0

to �.

5. Using numerical optimization, maximize the function �logH(�) to obtain the MLE

^

�, and

use the equivalent form of the observed information matrix to evaluate standard errors for

these estimates.

Alternatively in (3), instead of sampling every k, R samplers can be initiated at di�erent values,

discarding an initial warm-up at each.

The Gibbs Sampler algorithm (Geman & Geman, 1984; Gelfand & Smith, 1990) and the

Metropolis algorithm (Metropolis et al., 1953) are special cases of the Hastings algorithm (Hastings,

1970; Peskun, 1973). An explanation of how these algorithms work and of the di�erences between

them follows.

Hastings' Algorithm

Suppose we want to generate a discrete or continuous random variable (scalar or vector) Y which

takes values in a space � with density �(t). We assume that �(:) is completely speci�ed up to a

normalizing constant. We also select a Markov transition kernel q(s; t); s; t 2 � , which is used to

generate trial values of Y . In the discrete case, the interpretation is that if the current values of Y

is s, the next trial value is t with probability q(s; t). The choice of q(:; :) is almost arbitrary and

the performance of the algorithm may vary according to this choice. The algorithm follows.

Step 0: Take an arbitrary starting value Y = t

0

and set i = 0.

Step 1: Given Y = t

i

= s, choose a new trial value according to the probability distribution

q(s; t), s; t 2 � , where � = f0; 1g and

q(s; t) = Pr(Y

1

= t j Y

0

= t

0

= s)
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is an arbitrary Markov kernel (generating an irreducible and aperiodic chain).

Step 2: Calculate

�(s; t) = min

�

�(t) q(t; s)

�(s) q(s; t)

; 1

�

;

where �(t) is a distribution speci�ed up to a normalizing constant. Here �(:) = F (:;�

0

), where F

is given by (2.11).

Step 3: Generate a random variable

U =

(

1 with probability �(s; t)

0 with probability 1� �(s; t)

Step 4: If U = 1, move to t, i.e., t

i+1

= t. Otherwise t

i+1

= t

i

.

Step 5: Set i := i+ 1.

Metropolis' Algorithm

q is taken to be a symmetric random walk, i.e., q(s; t) = q(t; s). Then, in step 2:

�(s; t) = min

�

�(t)

�(s)

; 1

�

The Gibbs Sampler Algorithm

For the Gibbs Sampler, each of the updating steps corresponds to generating a new value from a

particular conditional distribution, i.e., we always accept the new value. Then, in step 2: �(s; t) =

1. In our speci�c case, we are generating m independent sequences of length n and the Gibbs

sampler proceeds as follows:

Step 0: Take arbitrary starting values, say (y

1

; y

2

; : : : ; y

n

). De�ne y

(0)

j

= y

j

; j = 1; : : : ; n. Let

i = 0.

Step 1: Given the current values of y

(i)

1

; y

(i)

2

; : : : ; y

(i)

n

, generate a new pseudo-random value from

the conditional distribution of Y

1

given Y

j

= y

(i)

j

; j = 2; : : : ; n, and call it y

(i+1)

1

. This probability

distribution is given in equation (2.9), i.e.,

P (y(i) j fy(j) : j 6= ig) =

exp(�

i

y(i) +

P

n

j=1



ij

y(i) y(j))

1 + exp(�

i

+

P

n

j=1



ij

y(j))

Step 2: Given the current values of y

(i+1)

1

; y

(i)

3

; : : : ; y

(i)

n

, generate a pseudo-random value from

the conditional distribution of Y

2

given Y

1

= y

(i+1)

1

; Y

(i)

j

; j = 3; : : : ; n, and call it y

(i+1)

2

.

Continue updating one component at a time until...
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Step n: Given the current values of y

(i+1)

1

; y

(i+1)

2

; : : : ; y

(i+1)

n�1

, generate a pseudo-random value

from the conditional distribution of Y

n

given Y

j

= y

(i+1)

j

; j = 1; : : : ; n� 1, and call it y

(i+1)

n

.

Step n+1: Set i := i+ 1 and return to Step 1.

A single cycle through steps 1 to n+1 completes one iteration of the algorithm. We will discard an

initial warm-up sample, then generate R random vectors by sampling the chain every k cycles.

3 Model based on the Bahadur Representation

Let y

k

= (y

k

(1) : : : y

k

(n)) be the 1 � n vector representing the binary responses for the n sites

along sequence k, i.e., whether there is a mutation or not at each site along the sequence. Since

each y

k

(i) (i = 1; : : : ; n) assumes the value 1 or 0, the random variable Y

k

(i) is a Bernoulli trial

with parameter �

i

= PrfY

k

(i) = 1g. Then, E[Y

k

(i)] = �

i

and Var[Y

k

(i)] = �

i

(1� �

i

).

Let

Z

k

(i) =

Y

k

(i)� �

i

p

�

i

(1� �

i

)

and

r

ij

= E[Z

k

(i)Z

k

(j)]; r

ijl

= E[Z

k

(i)Z

k

(j)Z

k

(l)]; : : : ; r

1 2 ::: n

= E[Z

k

(1)Z

k

(2) : : : Z

k

(n)]

So, r

ij

are second-order correlations, r

ijl

third-order correlations, and so on. Hence, there are

�

n

2

�

+

�

n

3

�

+ : : :+

�

n

n

�

= 2

n

� n � 1 correlation parameters.

Denote by P

[1]k

the joint distribution of y

k

(i)'s when they are independent, i.e.,

P

[1]k

(y

k

(1); : : : ; y

k

(n)) =

n

Y

i=1

�

y

k

(i)

i

(1� �

i

)

1�y

k

(i)

(3.1)

Let P(y

k

) be the distribution of Y

k

, where Y

k

= (Y

k

(1) : : : Y

k

(n)) is a 1� n vector denoting the

response random vector for the k-th sequence.

Proposition (Bahadur, 1961)

For every y

k

= (y

k

(1); : : : ; y

k

(n)),

P(y

k

) = P

[1]k

(y

k

) f(y

k

);(3.2)

where

f(y

k

) = 1 +

X

i<j

r

ij

z

k

(i) z

k

(j) + : : :+ r

1 2 ::: n

z

k

(1) z

k

(2) : : : z

k

(n)(3.3)
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If we assume pairwise dependence only, the distribution of Y

k

is

P(y

k

) = P

[1]k

(y

k

) [1 +

X

i<j

r

ij

z

k

(i) z

k

(j)]

=

n

Y

i=1

�

y

k

(i)

i

(1� �

i

)

1�y

k

(i)

[1 +

X

i<j

r

ij

z

k

(i) z

k

(j)]

=

n

Y

i=1

�

y

k

(i)

i

(1� �

i

)

1�y

k

(i)

�

2

4

1 +

X

i<j

r

ij

 

y

k

(i)� �

i

p

�

i

(1� �

i

)

! 

y

k

(j)� �

j

p

�

j

(1� �

j

)

!

3

5

(3.4)

3.1 Estimation Procedure

Let � = (�

1

; : : : ; �

n

; r

12

; : : : ; r

1n

; r

23

; : : : ; r

2n

; : : : ; r

n�1n

)

0

. An estimate of � can be obtained by

maximum likelihood. The likelihood function for sequence k is given by (3.4). For m independent

sequences, the likelihood function is

L(�;y

1

;y

2

; : : : ;y

m

)

=

m

Y

k=1

n

Y

i=1

�

y

k

(i)

i

(1� �

i

)

1�y

k

(i)

�

2

4

1 +

X

i<j

r

ij

 

y

k

(i)� �

i

p

�

i

(1� �

i

)

! 

y

k

(j)� �

j

p

�

j

(1� �

j

)

!

3

5

(3.5)

4 Data Analysis

As an example, we consider a set of HIV-1 sequences from LaRosa et al. (1990) and Myers

et al. (1993) which span the V3 loop of the envelope gene. The data consist of 87 sequences

with 35 amino acids each. They are all from the B clade (North America, Western Europe, Brazil

and Thailand). Within the V3 loop are found determinants for T-cell-adaptation and macrophage

tropism (the wild-type phenotype). These strains (T-cell adapted and macrophage tropic) are

subject to di�erent selection pressures and therefore linkage patterns within the V3 loop are most

likely to di�er as well.
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4.1 The Autologistic Model

Recall from Section 2 that y(i) = 0 or 1,

Pr(0(i) j fy(j) : j 2 N

i

g) =

1

1 + exp

0

@

�

i

+

X

j2N

i



ij

y(j)

1

A

and

P (y(i) j fy(j) : j 2 N

i

g) =

exp

0

@

�

i

y(i) +

X

j2N

i



ij

y(i) y(j)

1

A

1 + exp

0

@

�

i

+

X

j2N

i



ij

y(j)

1

A

(4.1)

where N

i

= fj : j is a neighbor of ig is the neighborhood of site i.

Since the data set is of moderate size and this model involves too many parameters, we reduce

the number of parameters by imposing some restrictions.

Model 1

� The neighborhood is de�ned as the immediate positions, i.e, the neighborhood of site i is i� 1

and i+ 1. At the two extremities of the sequences, the neighborhood is only the next one for the

left extremity and only the previous one for the right extremity, i.e., the neighborhood of site 1 is

site 2 and the neighborhood of site n is n� 1.

� �

i

= �; 8i

� 

ij

= ; 8 i; j.

The model is then,

P (y(i) j fy(j) : 0 <j i� j j� 1g) =

exp

0

@

�y(i) +

X

j2N

i

 y(i) y(j)

1

A

1 + exp

0

@

�+

X

j2N

i

 y(j)

1

A

(4.2)

The maximum pseudo-likelihood estimates (MPLE) and the simulated maximum likelihood

estimates (SMLE) are shown in Table 2. We used the Metropolis algorithm to obtain the MCMC

maximum-likelihood estimates: 1000 samplers were generated with di�erent initial values, discard-

ing an initial warm-up of 500 iterations in each.
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To verify if we reached convergence after a burn-in of 500, we considered the �rst 100 samplers

and compared at each of the 33 positions the empirical probabilities with the probabilities under

model (4.2).

For each position we computed the statistic Z

Z

i

=

p̂

i

� p

i

p

p

i

(1� p

i

)=m

; i = 1; : : : ; 33

where,

p

i

= P (y(i) j fy(j) : 0 <j i� j j� 1g) =

exp

0

@

~�y(i) +

X

j2N

i

~ y(i) y(j)

1

A

1 + exp

0

@

~�+

X

j2N

i

~ y(j)

1

A

;

~� and ~ are the MPLE of � and , respectively, and p̂

i

is the empirical distribution computed from

the �rst 100 samplers.

For each position we compute 4 probabilities:

P (y(i) = 0 j y(i� 1) = 0; y(i+ 1) = 0) ; P (y(i) = 0 j y(i� 1) = 0; y(i+ 1) = 1)

P (y(i) = 0 j y(i� 1) = 1; y(i+ 1) = 0) and P (y(i) = 0 j y(i� 1) = 1; y(i+ 1) = 1)

For the empirical distribution we have,

p̂

i1

=

(#y(i) = 0; y(i� 1) = 0; y(i+ 1) = 0)

(#y(i� 1) = 0; y(i+ 1) = 0)

;

p̂

i2

=

(#y(i) = 0; y(i� 1) = 0; y(i+ 1) = 1)

(#y(i)� 1 = 0; y(i+ 1) = 1)

;

p̂

i3

=

(#y(i) = 0; y(i� 1) = 1; y(i+ 1) = 0)

(#y(i� 1) = 1; y(i+ 1) = 0)

and

p̂

i1

=

(#y(i) = 0; y(i� 1) = 1; y(i+ 1) = 1)

(#y(i� 1) = 1; y(i+ 1) = 1)

We only looked at 33 positions, because the �rst and last positions remain constant. So, we then

have 4� 33 statistics to compute and the results in Table 1 show that only 6 out of 132 (4%) of

those statistics have a signi�cant result. Hence, if we adopt a level of signi�cance of 5%, a burn-in

of 500 is satisfactory.

For this model,

log

�

P (y(i) = 1 j y(i� 1) = 0; y(i+ 1) = 0)

1� P (y(i) = 1 j y(i� 1) = 0; y(i+ 1) = 0)

�

= �
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Table 1: Convergence Results

Positions

Statistic 2 3 4 5 6 7 8 9 10 11 12

Z

i1

1.41 0.06 0.88 0.30 1.89 -1.44 0.05 0.98 -0.42 -1.15 1.65

Z

i2

-0.36 -0.87 1.62 -1.29 0.82 -0.38 -1.65 1.25 0.59 -1.03 -0.27

Z

i3

0.65 -0.83 -0.62 -0.35 1.37 -1.19 0.03 -0.63 0.08 0.78 -0.82

Z

i4

-0.80 -1.47 -0.55 2.62

?

0.54 -0.88 0.07 -0.50 1.34 -0.78 0.77

Statistic 13 14 15 16 17 18 19 20 21 22 23

Z

i1

0.65 -0.27 0.71 0.14 2.45

?

-0.89 0.83 -0.83 1.06 -0.43 0.55

Z

i2

-0.89 0.44 -0.10 -1.59 1.03 -0.25 0.12 0.12 -0.32 0.09 -1.54

Z

i3

0.56 -1.77 0.61 -0.50 0.06 0.47 -1.13 0.83 0.47 -0.80 -0.33

Z

i4

-0.95 -0.67 0.04 0.26 0.54 -2.34

?

0.96 -0.64 -0.40 -1.57 -0.40

Statistic 24 25 26 27 28 29 30 31 32 33 34

Z

i1

0.92 -2.01

?

-0.55 1.01 -0.17 0.89 0.10 -1.55 -0.17 -2.26

?

-0.69

Z

i2

1.52 -0.22 -0.57 1.32 0.09 -0.10 0.99 0.79 0.82 -1.72 0.88

Z

i3

-0.74 0.21 0.47 0.37 0.07 0.85 0.20 0.27 -1.17 1.27 0.02

Z

i4

-0.28 -0.76 -1.19 -0.24 -0.25 0.27 -1.02 -1.20 3.91

?

1.22 -1.43

? j Z

i

j> 1:96 .

Table 2: Model 1

MPLE SMLE

� -1.7117 -1.7117

 0.7813 0.8204
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Hence, � is the log-odds of mutation at a certain site when there is no mutation in its neighborhood.

If � is negative, the probability of mutation at site i is less than the probability of no mutation

at that site, given no mutation at its neighborhood. Since we are assuming that �

i

= �, the

probability of no mutation is 5:53 (exp(1:71)) times higher than the probability of mutation given

that there is no mutation in the neighborhood. When there is mutation in the neighborhood of

site i, the log odds of mutation is a function of both � and . So, when there is mutation in the

neighborhood of site i, if  is large and positive the log-odds of mutation at this site increases, and

if  is negative the log-odds of mutation at this site decreases.

Model 2

� The neighborhood is de�ned as in model 1.

� �

i

= �; 8i

� 

ij

= �

ji�jj

.

The model is then,

P (y(i) j fy(j) : 0 <j i� j j� 1g) =

exp(� y(i) +

P

n

j=1

�

ji�jj

y(i) y(j))

1 + exp(� +

P

n

j=1

�

ji�jj

y(j))

(4.3)

Table 3: Model 2

MPLE SMLE

� -0.0582 -0.0582

 1.5715 1.5715

� 0.4679 0.4679

There is no di�erence between the pseudolikelihood estimates and the simulated maximum-

likelihood estimates, indicating that the dependency among neighboring positions is weak. Again

we are assuming that �

i

= � and the probability of no mutation is 1:05 (exp(0:06)) times higher

than the probability of mutation given that there is no mutation in the neighborhood. When there

is mutation in the neighborhood of site i, the log odds of mutation is a function of �, , � and

the distance between sites i and j (since � has power j i� j j). So, when there is mutation in the

neighborhood of site i, the log-odds of mutation at this site increases, since  and � are positive.

4.2 Model based on the Bahadur Representation

From Section 2.3, y

k

= (y

k

(1); : : : ; y

k

(n)) is a n� 1 vector representing the binary responses

for the n sites along sequence k, i.e, whether there is a mutation from the consensus or not at each

15



site along the sequence. Here, we consider k = 87 sequences and n = 35 sites.

Probabilistic model

P(y

k

) =

n

Y

i=1

�

y

k

(i)

i

(1� �

i

)

1�y

k

(i)

�

2

4

1 +

X

i<j

r

ij

 

y

k

(i)� �

i

p

�

i

(1� �

i

)

! 

y

k

(j)� �

j

p

�

j

(1� �

j

)

!

3

5

(4.4)

The number of parameters to be estimated in the above model is too big (35 +

�

35

2

�

) compared

with the number of observations (87) in the data set. Therefore, we cannot work with this general

model. To get reliable estimates we need to reduce the parameter space. First, let r

ij

= 0 if

j i � j j� 1 and �

i

= �; 8i. Then, for illustration purposes, let us discard all positions with less

than 20% of mutation and still consider r

ij

= 0 if j i � j j� 1. In this case we have 12 positions

and 23 (12+11) parameters. The 12 positions we are now dealing with are: 9, 10, 11, 13, 14, 19,

20, 22, 23, 24, 25 and 32. The results are shown in Tables 4 and 5.

Table 4: Bahadur Representation Model (35 positions)

Parameter � r

1;2

r

2;3

r

3;4

r

4;5

r

5;6

r

6;7

r

7;8

r

8;9

MLE 0.24 0.57 0.47 0.75 0.48 0.65 0.32 0.40 -0.02

Parameter r

9;10

r

10;11

r

11;12

r

12;13

r

13;14

r

14;15

r

15;16

r

16;17

r

17;18

MLE 0.11 0.14 -0.11 -0.05 0.25 0.01 0.53 0.70 0.46

Parameter r

18;19

r

19;20

r

20;21

r

21;22

r

22;23

r

23;24

r

24;25

r

25;26

r

26;27

MLE -0.07 0.36 -0.21 0.13 0.11 0.31 0.26 -0.20 0.22

Parameter r

27;28

r

28;29

r

29;30

r

30;31

r

31;32

r

32;33

r

33;34

r

34;35

MLE -0.01 0.49 0.00 0.49 -0.11 -0.26 0.42 0.47

Comparing the results of Tables 4 and 5, we see that the assumption of equal probability

of mutation for all positions (model 1) is not tenable. For instance, in Table 5, the estimated

probability of mutation at position 14 is 0.18 while at position 13 it is 0.73, despite the fact that

r

13;14

is 0.77, indicating high correlation between these adjacent sites. A negative estimate of r

ij

means that the mutation rate at position i is lower than at position j.
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Table 5: Bahadur Representation Model (12 positions)

Parameter �

9

�

10

�

11

�

13

�

14

�

19

�

20

�

22

�

23

MLE 0.30 0.35 0.53 0.73 0.18 0.27 0.55 0.40 0.26

Parameter �

24

�

25

�

32

r

9;10

r

10;11

r

11;13

r

13;14

r

14;19

r

19;20

MLE 0.58 0.73 0.30 -0.15 0.16 -0.16 0.77 0.49 0.30

Parameter r

20;22

r

22;23

r

23;24

r

24;25

r

25;32

MLE -0.22 0.09 0.31 -0.27 0.14

5 Concluding Summary

The autologistic model formulated in Section 2 is able to handle situations involving spatial

binary data and dependence on covariates. One problem is that the estimation procedure is not

straightforward and computer-intesnsive MCMC procedures are needed. Also, the general model

formulation involves too many parameters and when applied to data sets of moderate size, we need

to reduce the number of parameters by imposing restrictions. For the data set we use, the number

of sequences is small compared to the number of positions, and we end up with a very simple

model because of the restrictions we impose on the parameter space. For instance, we assume

equal mutation rate and equal correlation structure over all positions, which may not be true in

reality.

The model based on the Bahadur representation (Section 3) can also handle dependent binary

data, but the inclusion of dependent covariates is not as easy as in the autologistic model. An ad-

vantage of this model is that the likelihood function has a closed form and the parameter estimates

are obtained by the maximum-likelihood approach using numerical optimization methods, such as

the Newton-Raphson procedure. Again, we have to reduce the parameter space when applying

this model to our data set, because the sample size (the number of independent sequences) is small

compared to the number of positions. Ideally, the ratio between the number of sequences and the

number of positions should be at least 5. When we discard all positions with frequency of mutation

less than 20%, we see that the mutation rate varies a lot from one position to the other, con�rming

the fact that the assumption of equal mutation rate over all positions does not hold.
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