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Abstract

Simpson (1949) proposed a measure of diversity for categorical data. On the basis of
a similar measure of variation, Light & Margolin (1971) developed an analysis of variance
(CATANOVA), for one-way tables, suitable for categorical variables. This framework can be
used to compare the variability of the response variable at a single position between and within
groups. We extend these to deal with variation at a number of sites because, in the context
of interest (sequences from the human immunodeficiency virus), a single position yields little
information. Components of variation are derived based on the fact that the sum of squares
of deviations from the mean can be expressed as a function of the squares of the pairwise
differences for all possible pairs. We assume independence among positions and develop a test
statistic for the null hypothesis of homogeneity among groups.

1. Introduction The motivation here is to develop a multivariate analysis of variance for
categorical data when the response variable is not ordered. The focus here is the comparison of
sets of sequences. For example, we are interested in comparing DNA sequences from the human
immunodeficiency virus (HIV) from different geographical areas to see whether the variability is
similar in each. Similarly, when we study several individuals and obtain a set of sequences from
each individual at different time points, our interest lies in estimating the variability between and

within individuals.
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Simpson (1949) proposed a measure of diversity for categorical data in terms of frequencies for
each category. On the basis of a similar measure of variation, Light & Margolin (1971) developed
an analysis of variance (CATANOVA), for one-way tables, suitable for categorical variables. This
framework can be used to compare the variability of the response variable at a single position
between and within groups. We consider a number of sites because, in the context of interest (the
analysis of HIV-1 sequences), a single position yields little information. The basic motivation and
discussions about the model assumptions are in Section 2. Components of variation are derived
from the fact that the sum of squares of deviations from the mean can be expressed as a function
of the squares of the pairwise differences for all possible pairs (Section 3). The sequences are
not considered on an individual basis but only as contributing to the overall variability in the
distribution of the categorical response. We partition the measures of diversity according to the
factors considered (Section 4) assuming independence among positions (Section 5). We develop a
test statistic for the null hypothesis of homogeneity among groups (Sections 6 and 7) and assess its
power (Section 8). Simulations are performed to evaluate the relevance to the asymptotic results

when sample sizes are moderate (Section 9). A brief data analysis follows (Section 10).

2. Basic Motivation Light & Margolin (1971) developed an analysis of variance for
categorical data (CATANOVA) for two-dimensional contingency tables (i.e., one-way tables). They
investigated the properties of the components of variation under a common multinomial model.
Anderson & Landis (1980) extended the CATANOVA procedure to multidimensional contingency
tables involving several factors and a categorical response variable. For the case of comparisons of
DNA sequences, we would have a data set which can be summarized in Table 1.

To understand Anderson & Landis approach, we could say that, making an analogy to the
analysis of variance in experimental design, the groups play the role of blocks and the positions are
treated as a factor. Since we usually have a large number of positions (at least 35 in the aminoacid
level and even bigger in the nucleotide level), we would have a factor with at least 35 levels, which
may be a problem using this approach. Also, the main interest is the difference among groups not

necessarily among the positions.

The interest is in assessing the homogeneity among groups: the null hypothesis is that p.gr =
Pek. where p.g; is the population probability of belonging to category c in group g at position k.
One could argue that this is the classical Pearson’s x? test, but note that the classical Pearson’s
x? statistic for Table 1 is
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with K (G — 1)(C — 1) degrees of freedom. The limiting x*-distribution is a close approximation



only when the cell frequencies n.g’s are all large (at least 5). In analyzing amino-acid sequences,
we know that these conditions are not met. The distribution at a single position usually exhibits
a few polymorphisms with very low frequencies. Just as for Fisher’s exact test, the exact null
distribution is difficult to implement for small values of IV, when G or K is not small. Moreover,
if the number of degrees of freedom of the y2-statistic is large but the noncentrality parameter
is not proportionally so, the resulting test is likely to have less power than some tests directed
towards specific alternatives. Note that the number of degrees of freedom here is usually large:
for instance, comparing two groups of sequences 100 nucleotide long yields 300 degrees of freedom.
For these reasons we need to use another approach to assess homogeneity among groups.

Note that the two approaches discussed above (Anderson & Landis and Pearsons x?) all assume
independence among groups, sequences and positions, which leads to a product multinomial model.

One can argue that genetic types of individuals in a population are not generally independent
because they may be related due to their shared ancestry. In the specific case of HIV, assuming that
the individuals are epidemiologically independent may not be such a strong assumption, because
of the rapid evolution of HIV (Hahn et al., 1985; 1986; Coffin, 1986; Seillier-Moiseiwitsch et al.,
1994; Mansky & Temin, 1995).

Another issue is the fact that we do not have any information about the underlying structure
that reviews any possible ordering of the categories or the positions. On the other hand, these
positions should be stochastically interrelated. For this reason the classical logistic model may not
work out here without some further information that relate to possible underlying structure for
the categories and positions.

An important point is the problem of known dependence among positions in DNA sequences.
If we assume independence among groups and individuals (sequences), but nonindependence among
positions, we no longer have a product multinomial model and any model we choose will have too
many parameters to be estimated (taking into account all the possible correlations between posi-
tions), requiring a very large data set. In the binary case, we may use the Bahadur representation
model (Bahadur, 1961) or the model suggested by Liang, Zeger & Qaqish (1992) with only pairwise
dependence, but we still have K + (%) parameters in the model. Ideally the ratio between the
number of sequences (individuals) and the number of parameters in the models to should be at

w and in practice

least 5. Therefore, the number of sequences should be at least 5 times
this is almost impossible. Since we do not have any information about the structure of these se-
quences, we may reduce this model assuming that the correlation between positions is the same

for all positions. Under these circustances we may have feasible models with K + 1 parameters.

When we have polychotomous response the model proposed by Liang, Zeger & Qagish (1992)
have too many parameters (for C categories, KC + C? (12{ )) and we will need to reduce the number



of paramenters by, for example, assuming equal correlation structure between all the positions.

These situations we will pursue in a near future.

As a first step, we would like to test the difference between and within the groups, using
a measure of diversity for categorical response assuming independence among positions. Note
that, if K is large and the dependence between the positions is not small, the distribution may
degenerate to lower dimension ones. This means that, given some of the positions, the others
may be conditionally redundant, but we do not know this information. So, we shall assume that
the degree of dependence becomes small and small as K becomes larger. This also allows us to
use an exchangeable model for large K with small intraclass dependence pattern. Our proposed
measure here is averaging over K. Therefore, a large K may have a smoothing effect. Hence, this
assumption of small dependence and independence would not be so divergent.

3. Variation in Categorical Data For categorical data, the mean is an ill-defined con-
cept. Therefore, measures of variation, such as the variance, which are meaningful for continuous
variables, no longer apply. Gini (1912) found an alternative way of characteryzing variation and

developed a measure of variation for categorical data.

Let X1, Xo, ..., Xn denote measurements of /V independent experimental units. The variance
of X may be expressed as E¢(X1, X,), where ¢(a,b) = £(a — b)* (Hoeffding, 1948). In a similar

fashion, the sum of squares is
) ] NN 1
(2.1) §S = Y (Xi=X)P=gud Y (i-X) =5 Y &
i=1 i=1 j=1 1<i<N
where X = YN | X;/N and d;; = X; — X;.
In the present context, each X; falls into one of C' possible categories. Define d(X;, X;) = d;;

as

(2.2)

~_ J 1if X; and X name different categories
Y 0 if X; and X; name the same category.

Definition 1

The variation for categorical responses Xi,..., Xy is
| NN | NN
2 ..
23) v L =gy L2
j=11i=1 j=11i=1
where d;; is defined in (2.2). [ |

As each response assumes one and only one of the C' possible categories, the data is summarized
by the vector @ = (n1,...,n¢) where n; is the number of responses in the ith category (i =



1,...,C), so that Zle n; = N. Then the variation in the responses is defined as

_ 1 N < n; 2
24 DN:ﬁZ’“”F?{l_Z(N) }
i#] 2

i=

If p1,...,pc stand for the probabilities of X belonging to these C' categories, the Simpson Index
of ecological diversity (Simpson, 1949) is defined as

C
(25) Is(p)=1-pp=1-)Y 1}
i=1

and its corresponding sample counterpart is

c
(2.6) Is(p)=1-p'P=1-> §,
i=1
where p; =n;/N,i=1,...,C relate to the sample proportion. Therefore, we have
N -
Dy = 315(1))

The definitions (2.4) and (2.5) are motivated by two properties.

1. The variation of N categorical responses is minimized if and only if they all belong to the
same category, ie., p; =1, Vi=1,...,C.

2. The variation of N responses is maximized when the responses are distributed among the

available categories as evenly as possible, i.e., p; =1/C, Vi=1,...,C.

4. Partitioning the Measures of Diversity Let X! = (X}, X},...,X%) be
a random vector representing sequence i of group g. Suppose i = 1,...,N, k = 1,..., K and
g=1,...,G. So, X} represents position k of sequence i of group g. X}, is a categorical variable
assuming C' (unordered) categories. For instance, if comparisons are made at the nucleotide level,
zf, € {A, C, T, G} and there are 4 categories.

First, assume there is only one position for each sequence. We summarize the data in Table
2.

Now d;; is defined as
1if X7 £ X7
=93 0if x9 £ X0
0if Xj # X7 .



The total number of responses is
G c c aq
NG=Yn,=Yon =Y Yo,
g=1 c=1 c=1g=1

where n., is the number of responses in category c for group g and N = n., = Zle N¢g is the
number of responses for group g, which here is simply the number of sequences in each group. The
Total Simpson Index (TSI) is

c ‘
Te. \ 2
3.1 TSI =1-—
o ()
The dispersion within group ¢ (i.e., within {z{,23,...,2%}) is
C i N2

3.2 1-— -4
(3:2) Z (n-g>

c=1

Therefore, the within-group Simpson Index (WSI) is found by averaging (3.2) over all g’s:

(3.3) WSI=%§{1—§(7::Z> }_1_Gzz(ncg)

g=1 c=1 g=1c=1

The between-group Simpson Index (BSI) is

(3.4) BSI:TSI—WSIzGZZC:(an) Z(;GY

g=1 c=1 c=1

Now, assume there are K positions along each sequence. We have X! = (X{, X%,..., X))
and X9 = (X{,XJ,...,X%)". The data are summarized in Table 1.

The total number of responses is

NGK:in.g ch —Zn..k—iiincgk

g=1 k=1 c=1g=1 k=1

The variation within the gth group at the kth position is

C Neak 2 C Neak 9
cg _ cg
1—2(—%) =1-> (%)

c=1 c=1

since n.gr = N. The variation within the gth group is
€ /n 2 C n 9
1_ cg- —1_ ( cg- )
¥ () - oSG

c=1 c=1




since n.y. = NK. The measures of dispersions are

1 & € n 9 ¢ n 2
(3.5) WSI=@Z{1—Z(A;}]§) }Zl_Gg(N;cfk)

g=1 =1
C n 2
(3.6) TSI—I—Z(NC;K) :
c=1
C Meg. \2 C
(3.7) and BSI:TSI—WSI:G;;(NGK) ;(NGK)

5. The Probabilistic Model Assuming that responses in different groups are indepen-

dent, for each group and each position, the responses (nigx, n2gk, - - -, Ncgr) follow a multinomial
distribution:
N c
Pr{nlgk;n2gk,-..,nc’gk} = < > H(pcgk)”cgk,
Nigk ---NCgk o1

Whererzlpcgkzl,pcgk>0,c:1,...,C,k:l,...,Kandg:l,...,G

E(ncgk) = Npcgk Var(ncgk) = Npcgk(]- - pcgk)

and Cov(ne, g k> Meagaks) = —ONDeigi k1 Peagaks Where

5= 1 ifglzggandklzkg
] 0 otherwise

negr denotes number of responses in category c at position k for group g and
Degk the probability of being at category c at position k for group g.

If we assume that the positions are independent, the model is

C
> II Pegh) <o
- NCgk o—1

K

G G K
LTI Prttmss o oness} = 1L,
g=1 k=1 9=1k=1

Nigk -

_ .-
Then Vy = (nig1 ... nogi Nig2 ... Noge -+ Nigk -.- Nogk)' 18 a CK x 1 vector

and V=(V;Vy... Vi) is a GCK x 1 vector.

(4.1) EV)=p=Np,=N({pi1 ... pc11 - P1GK - - - pCGK)'



Let & denote the direct-sum operation. Then
Cov(V) = X=NX°
(4.2) = NEn®Xp® 00X k0T @ Do @ & Xgk)
where Xy, is a C' x C' matrix of the form
(4.3) Xk = Dy — MogrHogr

with Dy being a C'x C' diagonal matrix with elements p1gg, ..., pogr and pggp = (Pigk --- Pcgk)'-

6. Moments of Diversity Measures

Let ® denote the Kronecker product and
(5.1) T- ' (Uxeolo)= ——1°
‘ T (NGK)2 K¢ T (NGK)?
where Uk is a KG x KG matrix of 1’s, I is the C x C identity matrix and T® = (NGK)?T
is a CKG x CKG matrix, having KG x KG partitions with each partition being C' x C identity

matrix. Let M be a G x G diagonal matrix with diagonal elements Gn? (= G(NK)? here), i.e.,

M = G(NK)’Ig. Then M~ = mlg.
G 1
2 =[(M* Io] = ——](I Ic]= ———-W°
(5.2) %% [( ®UK)® C’] (NGK)2[(G®UK)® cl G(NK)2W
Then
(5.3) TSI = 1-V'TV
(5.4) WSI = 1-V'WV
Therefore,
(5.5) BSI =TSI-WSI =V'(-T + W)V = VBV
where
B = —T+W—_71(U 1 )+L[(I ® Ugk) ® I¢]
- T (NGEK)2 TR TY T (NGK)z e T TR e
(5.6) S C I ®U)—1U ®I Z#W
‘ T O(NGK)? |\ TR T g TRG) T T G(NK)?
Since E(V'TV) = trace(TX) + u'Tp ,
E(TSI) = 1-—trace(TX)—pu'Tp
1 1 G K
_ _ 2 _ 2
= 1= %ex t NeKy ; Lz_:l ;pcg’“ Np“']



E(WSI) = 1-trace(WX)—pu'Wp

= 1-+— 1 NGK2ZZ[ZPW’G Npcg]

c=1g=1

G_1 G K
and E(BSI) = L= NGK2Z[ZZp§gk Npc..]

c=1 Lg=1 k=1

- W LY L

c=1g=1

Define the population variation within the gth group at the kth position as

C
(5.7) Is(pg) = 1= Y Do
c=1
Hy : pegr, = per, for all g implies that

Is(pi) = Is(Pox) = - = Is(Par) = Is(Pk)

i.e., within-group variation at the kth position is the same over all the groups and this implies that

(5.8) 1o 1=l Par lI= - || Pa
where p,, = (P1gk P2gk --- Pogk)' is @ C x 1 vector representing the probabilities of belonging to
categories ¢ =1,...,C in group ¢ and position k.

If one is interested in the hypothesis stated in (5.8), the hypothesis of homogeneity among the
groups (Pegk = Pek) is not necessarily true. Here, we consider Hg : pegr = Pek-

C K
1 1 . ‘
(5:9) Eo(TSI) = 1- 5o+ woms O lZpik - NGpi.]
c=1 Lk=1
1 1 G[&E
c=1 Lk=1
G-1 1 “
(5.11) Eo(BSI) = ok 1T & ;kleck]

Since V follows a multinomial distribution, from (4.1) and (4.2), asymptotically,

(5.12) N(VNp,,2°)

Vo
VN



where ¥° =3, 60X @ 0 Xq, Yy =X 1 & Xpd--® Xk, g=1,...,G and Xy is given
by (4.3). Under H,, for any g =1,...,G,

(513) Egk :EOk: and 29 :23:201@202@"'@20[(
where X, is the C' x C' matrix
(5.14) Yor = Di — pop ok

with Dy, being a C' x C diagonal matrix with elements pig, ..., por and pg, = (P1g --- Pck)'-

Therefore, under Hy,

(5.15) Y =NX°=NX;=N(Ig ® X%

Now,

(5.16) Cov(BSI,WSI) = Cov(BSI,TSI)— Var(BSI)
(5.17) Cov(TSI,WSI) = Var(TSI)— Cov(T'SI,BSI)

7. The Test Statistic Note that BSI can be written as

G C 2
. NEVG
6.1 BSI = VBV = fleg- _ Ne :

g=1c=1

Let Ocgr = nege — Npek = Negk — Eo(negr). Then

Also, under Ho, @ = (0111 ... Ocg1 ... Ocgk)' is asymptotically

7]
(6.2) N ~ N(0,X7)
where X7 is as in (5.15). So,
BSI = Oy Oe- NEKVG ’ =0'BO = #O'BOO
NEVG  (NGKP GINKP

Hence, under Hy, BST is asymptotically

CGK

(6.3) BSI~ > X (xd);,

i=1

10



where (X%)i’s are independent x2-random variables with 1 degree of freedom and {\;,i = 1,...,CGK}
is the set of characteristic roots of

1

((IG ®Ugk) — lUKG> ® IC] (Ig @ X7)

1
NGK? G

by (5.6) and (5.15).
Looking at X, it is easy to see that its rank is at most (C' — 1), because of the restriction

that ZcC:1 per = 1. In fact, the rank of each Xy is (C' — 1), since any of its (C'— 1) columns are
1
linearly independent. Therefore, the rank of X7 is K(C' — 1). Further, 7B°23 isaG@xG

partition matrix with elements the ¥¢;’s matrices premultiplied by some constants (G —1 or —1).

In order to get the characteristic roots of B° X we need to solve the equation

NGK?
1 <o i
Since {pck, ¢ = 1,...,C} is unknown and need to be estimated, so are {\jy, i = 1,...,C — 1}.

Determining the characteristic roots of a multinomial covariance matrix is not straightforward.
Roy et al. (1960) studied this problem without actually presenting the closed-form expression for
the roots. The characteristic equation for each k is

c 9 c
(6.5) {hZ(%)}Hm—A):o

c=1 c=1

It is easy to see that A = 0 is a root, but identifying the other roots must proceed numerically.

Now,
TSI = 1-V'TV
Since NTX} is not idempotent, the distribution of VTV is not X?rank(T),/,L’T/,L)' Under Hy,
however,
1 c 1 c K
VTV = —— L e — f..+ NG e
(NGK)? ;" (NGK)2 ;[ * ];p d
L &
— / 2 !
(6.6) = 0T0+ﬁ;pc,+A0

where A = (A* A* ... A*) isa CGK x 1 vector and A* is a 1 x CK vector of the form

2
T NGK?

*

(1o ---pc-p1 ---DC- oo D1 ... DC)

11



Lemma 1
0'TO and A’0 are not independent.

Proof:
1
0'To = W@'TOB and A’'0 are independent if and only if
1
! i i —
A'NX 7(NGK)2 T 0 (Searle, 1971).
#A'ZOTO
N(GK)? 0
1
G
= W(A*Eg(UK ® Io) A*ES(UK ®Ic) ... A*Ez;(UK ® 1))

Let a = (pl. - pc.)’. Recall X3 = Y01 ...0 Yok

2
A*Za(UK ® IC) = m(a’zm a'Xg ... a'EoK)(UK ® Ic)
For each k, from (5.14)
c c c
a’'Yor = [pir(pr. — > De-ber) P2k(P2. = D pe-Per) --- pok(Do. — Y Peper)]
c=1 c=1 c=1

and the first element of the vector A* X5 (Ug ® I¢) is

9 (&) K
m (p% - ch- ZPlchk) #0
k=1

c=1

Hence, 'TO and A'0 are not independent.

Now,
KCG
0'TO~ > X (xi), . A'6 ~N(0,NA'ZA)
i=1
and
KCG

VTV ~ Y X (i), +N(0,NA'ZFA) + 6,

i=1

12



1

where {\;, i =1,...,CGK} is the set of characteristic roots of NTX{ = 7N(GK)2TOES and
1 &
(6.7) 01 = 2 sz = p/Tp under Hy
c=1
As for

WSI = 1-V'WV ,

under Hy
1 G cC
1 S 2
VWV = OIRE ;gng from (3.5)
G cC , G.C
_ 2
- NK2ZZ€ NGK2ZQC Pe- + GK2ZZPC'
g=1 g=1c=1
(6.8) = OWO+A'0+6 from (6.7)
Again
1 CGK
! =— °V ~ N(0,NA' XA
VWV G(NK)VWV ;/\ xi), + N(o, OA) + 6
where {\;, i =1,...,CGK} is the set of characteristic roots of NWX§ = NC:}lK2 W°eX5.
Let
_ G-1 1 em e,
b1 = Ey(BSI) =1 |1- Ezzpck]
c=1 k=1
1 1 C K
= E(TS)=1- ——=+—+> 2 — NGp?
I e 3| SERLH
1 1 C[X
= R I 2 A7, 2
B = Eo(WSI)=1 NK+NK2;L;M Np?

from (5.11), (5.9) and (5.10). The variances are calculated using the following theorem.

Theorem 1 (Searle, 1971)
When X is N(u, X), the rth cumulant of X'AX is

K.(X'AX) =2""'(r — )![tr(AX)" +rp’ A(ZA)" " ]

13



Since v ~ N(VNp,, X°) and N N(0, X°),

VN VN
(6.9) Var(BSI) = Var(V'BV) = Var(8'B) = 2trace(BN X°)?
(6.10) Var(T'SI) = Var(V'TV) = 2trace(TNX°)? + ANu, TNX°TNp,
(6.11) Var(WSI) = Var(V'WV) = 2trace( WNX°)? + ANu,WNX*WNpu,
and under H,
1 2 2
- _ 2
(612) Varo(BSI) = 2trace<mB°28> = mtrace(BOES)
2 . 4
(6.13) Varg(T'SI) = thce(TQES)2 + WNLTOESTOMO
2 4
(6.14) Varog(WSI) = Wtrace(wwg)? + Wugwwgwmo

Let

TN71 = BSI — 01, TN72 =TSI — 92, TN73 =WSI — 03

Note that

KCG

) 3 N (), = 0V

since {\; i =1,..., KC} is the set of characteristic roots of {7z (Ux ®Ic) ¥ and X5 = O(1).

(ii) A'@ = O,(N~Y/?) since A'8 ~ N(0,NA'SZA) and A = O(N 1)

C
1 ;
(iii) 6; = e Zpﬁ =0(1) .
c=1
Then,
ITns = 1-V'TV -6,
¢]
= 1- (Op(Nl) +0,(NT) 4 o Zpi)
c=1
1 &
c=1

14



Similarly,
Tnz=1-V'WV — 63 =0,(N/?)
and

BSI=V'BV =0'BO =0,(N™)

BSI BSI BSI Tns]™"
N(=—")=N(-—"22)=N[Z2Z) 1 :
<WSI> (TN,3+03> < 03 ) { - 03 ]

= N (52) +on = n (B2) o,

Then

Fy

0, 63
since Ty 3 = O,(N~1/?), % = 0,(N~Y/?), N(BSI) = 0,(1) and
3
93_1——ch+0 =65 +0(N)

By (6.3), asymptotically

CGK

NBSI 1
(6.15) F = e Z A (X)),

where {); : 1,..., KGCY} is the set of characteristic roots of
cally

1
NCR? ———B°X}. Under Hy, asymptoti-

C K
i) = =G R E

Varo(Fi) = N2 {Varo(BSI)] _ 2trace(B°X5)?

(63)° (GE?63)°

Since pe’s are unknown, one can only get estimates for the A;’s, i.e., the characteristic roots of
X5. To derive the distribution of F}, estimate {p.}, then get the characteristic roots of X based
on those estimates.

Alternatively, since the terms on the R.H.S. of (6.15) are i.i.d. x?’s, if

&()") — 0, we can apply the C.L.T. for CGK large,
CGK 2
Zz 1 )‘
(6.16) K? <F1 - Nz—1> ~ N(0,0%)
3

15



,  2trace(B°X§)?
where 0 = W

Using a similar approach, Light & Margolin (1971) developed an analysis of variance for cat-
egorical data (CATANOVA) and these two appraches are equivalent. Extending the CATANOVA
approach for several positions, the sum of squares are

G
_ NGK 1 » _ NGK
c
_ NGK 1 »  NGK
(6.18) TSS_T—2NGK; 2 = TSI,
1 < NGK
_ 2 2 | _
(6.19) and  BSS = -0 (G;;ng ;n> 5 BSI .
In this setup a test statistic is
N BSS/(G -1) BSI/(G-1) (NGK — Q)
Fy = = F

~ WSS/(NGK —G) _ WSI/(NGK -1) _ N(G-1)

8. Power of the Test Let us now consider an alternative hypothesis, i.e.,

1
Degk = \/—N')/cgk + Dk

Thus, v.gr = 0 yields the null hypothesis Hg : pegr = per. The interest here is in the case where
Yegk 7 0. Then,

1
gcgk = Necgk — N <\/—N769k +pck>

Ocg. = Neg. — \/N%g. — Npe. , B..=n.. — \/N'yc.. — NGpe.

and

BSI = V'BV=
g
2
Ocg. + Np.. + \/N%g. B @... + NGp.. + \/N%..)NK\/C_}'
NKVG (NGK)?

< Z Neg. _nc..NK\/a ’
— NGVG  (NGK)?

1c=1

16



2

_ ZZ 069' _0c--\/a Yeg- 70~~\/§
NKvVG NKG? KNG KG>V/N

g=1c=1
~ i [ by  0.NKVG\
g=1 c=1 NK\/G (NGK)Z
N 2i2 Ocq. B 0. NKVG Yeg- %..\/6
S o \NKVG (NGK)? KVNG KG*VN
2
+ ii Yeg- 76--\/6
== \KVNG  KG*VN

= 0'BO+ (A —Ay)0+ N3 (A, — Ay) (A — Ay)

where B is as in (5.6), @ = (f111 ... Ocg1 -.- Ocek)', A1 and A, are CGK x 1 vectors of the

form

2 .
AT, = (g --- Yog- Vig- -+ VCgo -+ Vig- --- Vog.) foreachg=1,....G
2 .
A= (Y1 oo YO VLo oo YO e VLo e YO)
(7]
Recall that TN N(0,%°) and 0'BO ~ 377" \; (x3), with A;’s being the characteristic roots
of NCR? B°X°, where
(7.1) =X ® B X kDY DD Yak)

and X, is as in (4.3). Now, let A = N3/2A; and A = N3/2A,. Then
N(A1— A»)'0 ~N(0,(A] — A7)’ X°(A] — A3))

Lemma 2
0'BO and A} 6 are not independent.

Proof:
0'BO and A0 are independent if and only if A]NX°B = 0.

2 1

, 1
2 1
= W(Aﬁzl Afgxg) [((Ig®UK) — aUKG) ® 1o
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Let af, = (714 ... Ycy) be a 1 x C vector and AT, = (af, ... aj,). Aj, ¥, can be written as
A;ng = (ang‘gl 319292 ang‘gK) for eachg:l,...,G

Now,

algzlk = lpwk Yig- — 2769 pcgk -.- PCgk 709 2769 Degke ]

foreach g=1,...,G and k =1,..., K. The first element of A NX°B is

C
W (Zpllk '711 - Z’Ycl pclk Zzplgk 719 Z’ch-pcgk)> 7& 0
c=1

c=1 glkl

Since 'BO and A}0 are not independent, 8'B6 and (A; — A»)'6 are also not independent.
So, the distribution of V'BV is not the convolution of a linear combination of xy2-random variables
and a normal distribution.

Let A =A; — A,, then
oo 1 . oo 1 A 1 A
V'BV = (BY/?0 + 5B*l/ZA)'(Bl/chv + 5B*l/ZA) + ZA’(4N21 -BHA

1
~ GNK?

VNX ~N (\/NNB, NF)

and let X = (BY/?0 + 1B~'/?A), I (B°)'/22°[(B°)'/?]" and p = 1B'/?A. Then,

Let P be an orthogonal matrix (i.e., P'P = I) such that PI'P' = A, where A is a diagonal matrix,
and

Y=PX=X=PY

Then,
Y ~ N(PIJ/Ba A)
and
G
(7.2) X'X=YPPY =YY~ \(30),
i=1

where \;’s are the diagonal elements of A, §; = ¢ a; is the ith row of the vector %PB_1/2A,

2
s
i
which is a linear combination of the ~.4’s.
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1 .
Let ¢ be the constant ZA'(4NZI —B ')A Then,

N(X'X +¢)

(7.3) Pr(Fy > u) =Pr < 52

> u) =Pi(NX'X > 65u — Nc)

Note that Nc = O(1) since B! = O(N?) and A’A = O(N~?). As the noncentrality parameter
d; increases, the distribution of each of the noncentral y?-random variables shifts to the right,
therefore the probability in (7.3) goes to 1 and the power of the test converges to 1.

9. Simulations In order to look at the suitability of the asymptotic distributions, we

generated N sequences, with K positions each, in G groups and computed the test statistic F}
a

and the standardized Fy (i.e, K | F} — —i /o). We performed 500 simulations (i.e., the above
as

procedure was repeated 500 times). In Table 3 the data were generated using the same probability
across positions, i.e., p.r = pe, while in Table 4, different probabilities were used across positions.

The tables show the number below and above some quantiles of the standard normal distribution.

10. Data Analysis The data set consists of two groups (subtype B and not B) with 46
sequences each. The nucleotide sequences are all from independent individuals. There are therefore
four categories. After aligning the sequences and discarding the positions with no change, we end
up with 155 positions.

Looking at the simulations results we see that our data set is not large enough for the asymp-
totic results to apply. So, we call upon resampling techniques, such as the bootstrap. Here is a
summary of the procedure:

1. Estimate p.; from the data, i.e., pp = ”1’“;# and compute the statistic Fj.

2. Generate N = 46 sequences, with K = 155 positions each, in each of G = 2 groups, using
pck-
3. Recompute the test statistic F} from the generated data and store it.

4. Repeat steps 2 and 3 1,000 times.

#F{s > Fobs

The p-value is th
e p-value is then 1000

The results are

WSI =0.7005 TSI =0.7007 BSI =0.0002 and Fjobs=0.011
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The percentiles of the bootstrap distribution are given in Table 5 and the observed p-value

is less than 1/1001. This means that relative to the within-clade variation, there is significant

variability between the two clades.
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Table 1: Contingency Table (K positions)

Group Position 1 2 C Total
1 1 ny11 n211 noil ni =N
1 2 n112 n212 ncoi2 naz =N
1 K NiI1K  N21K noixk | nax =N
Total ni1. n21. ncoi. ni. = NK
2 1 ny21 N221 ng21 noy =N
2 2 n122 n222 ne22 n.e2 = N
2 K N2k N22K neex | nox =N
Total n12. 1n22. ngca. nN.o. = NK
G 1 niGr  N2G1 neagl ngr =N
G 2 nig2  N2G2 noge n.gy =N
G K NIGK M2GK ncgx | n.ax =N
Total nig. naq. noag. ng = NK
TOTAL ny.. No.. ne.. n..=NGK

Table 2: Summary of the Data (one position)

Group
Sequence | 1 2 3 G
s i a3} oy
w3 a3 @3 o
TN TN TN o
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Table 3: Results of Simulations for Diversity Measures (p.x = p.)

Percentiles of the Std. Normal Dist.

N K GJ|1 25 5 10 90 95 975 99

20 10 2 |0 0 0 0 52 36 27 16**
20 10 5 | 0% 1% 2% 20%* 48 30 21*  16**
20 50 2 |0 O 0 0 59 49 3&8* 27
50 10 2 |0 07 0 0** 67 43** 28 19**
50 10 5 |0 0 4** 33 51 34 237 13*
50 50 2 |0 07 0 07 59 41 32%* 27
100 10 2 |0* O 07 0 52 38 30** 24**
100 10 5 | 0* 1** 5 26> 63 38 26** 11*
100 10 10| 0* 4 11 40 42 30 14 10*
100 50 2 | 0* O o0 0 49 36* 21* 16**
100 50 5 |0 O™ 3** 23** 56 32 18  12*
200 10 5 |0 0 9 30 48 32 24 18+
200 10 10| 1 3 14 40 52 31 17 7

* between 2SD and 3SD or —2SD and —3SD.
*% greater than 3SD or smaller than —3SD.
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Table 4: Results of Simulations for Diversity Measures (pcx 7 pe)

Percentiles of the Std. Normal Dist.
N K G| 1 25 5 10 90 95 975 99
20 10 2|0 O 0 0™ 59 36 23 16**
20 10 5 |0 O™ 4 24 54 37 22 13
20 50 2 |0 O™ 0 0™ 63 39% 29* 20**
50 10 2 |0 0™ 0 0™ 60 36* 28 19**
50 10 5 |0 17 6 43 51 33 17 10
50 50 2 |0 O 07 0 53 377 24* 14**
100 10 2 |0* O 0O 0 53 42 31** 21*
100 10 5 | 0 1** 10 27 41 28 19 12*
100 10 10| 1 3 13* 49 53 30 18 7
100 50 2 | 0* O 0 0 46 28 22 1T
100 50 5 | O* 1** 9* 28** 57 35* 22 10*
200 10 5 |0 1** 8&* 34* 54 30 18  12*
200 10 10| 1 8 17 40 54 30 17 9

* between 25D and 3SD or —2SD and —3SD.
** greater than 3SD or smaller than —3SD.

Table 5: Percentiles of the Bootstrap Dist. for Diversity Measures

90% 9%5% | 97.5% | 99% | 99.5% | 99.9%
0.0015 | 0.0020 | 0.0023 | 0.0027 | 0.0030 | 0.0040
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