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Abstract

Simpson (1949) proposed a measure of diversity for categorical data. On the basis of

a similar measure of variation, Light & Margolin (1971) developed an analysis of variance

(CATANOVA), for one-way tables, suitable for categorical variables. This framework can be

used to compare the variability of the response variable at a single position between and within

groups. We extend these to deal with variation at a number of sites because, in the context

of interest (sequences from the human immunode�ciency virus), a single position yields little

information. Components of variation are derived based on the fact that the sum of squares

of deviations from the mean can be expressed as a function of the squares of the pairwise

di�erences for all possible pairs. We assume independence among positions and develop a test

statistic for the null hypothesis of homogeneity among groups.

1. Introduction The motivation here is to develop a multivariate analysis of variance for

categorical data when the response variable is not ordered. The focus here is the comparison of

sets of sequences. For example, we are interested in comparing DNA sequences from the human

immunode�ciency virus (HIV) from di�erent geographical areas to see whether the variability is

similar in each. Similarly, when we study several individuals and obtain a set of sequences from

each individual at di�erent time points, our interest lies in estimating the variability between and

within individuals.
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Simpson (1949) proposed a measure of diversity for categorical data in terms of frequencies for

each category. On the basis of a similar measure of variation, Light & Margolin (1971) developed

an analysis of variance (CATANOVA), for one-way tables, suitable for categorical variables. This

framework can be used to compare the variability of the response variable at a single position

between and within groups. We consider a number of sites because, in the context of interest (the

analysis of HIV-1 sequences), a single position yields little information. The basic motivation and

discussions about the model assumptions are in Section 2. Components of variation are derived

from the fact that the sum of squares of deviations from the mean can be expressed as a function

of the squares of the pairwise di�erences for all possible pairs (Section 3). The sequences are

not considered on an individual basis but only as contributing to the overall variability in the

distribution of the categorical response. We partition the measures of diversity according to the

factors considered (Section 4) assuming independence among positions (Section 5). We develop a

test statistic for the null hypothesis of homogeneity among groups (Sections 6 and 7) and assess its

power (Section 8). Simulations are performed to evaluate the relevance to the asymptotic results

when sample sizes are moderate (Section 9). A brief data analysis follows (Section 10).

2. Basic Motivation Light & Margolin (1971) developed an analysis of variance for

categorical data (CATANOVA) for two-dimensional contingency tables (i.e., one-way tables). They

investigated the properties of the components of variation under a common multinomial model.

Anderson & Landis (1980) extended the CATANOVA procedure to multidimensional contingency

tables involving several factors and a categorical response variable. For the case of comparisons of

DNA sequences, we would have a data set which can be summarized in Table 1.

To understand Anderson & Landis approach, we could say that, making an analogy to the

analysis of variance in experimental design, the groups play the role of blocks and the positions are

treated as a factor. Since we usually have a large number of positions (at least 35 in the aminoacid

level and even bigger in the nucleotide level), we would have a factor with at least 35 levels, which

may be a problem using this approach. Also, the main interest is the di�erence among groups not

necessarily among the positions.

The interest is in assessing the homogeneity among groups: the null hypothesis is that p

cgk

=

p

ck

where p

cgk

is the population probability of belonging to category c in group g at position k.

One could argue that this is the classical Pearson's �

2

test, but note that the classical Pearson's

�

2

statistic for Table 1 is

�

2

P

=

G

X

g=1

C

X

c=1

K

X

k=1

G

�

n

cgk

�

n

c�k

G

�

2

Nn

c�k

with K(G � 1)(C � 1) degrees of freedom. The limiting �

2

-distribution is a close approximation
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only when the cell frequencies n

cgk

's are all large (at least 5). In analyzing amino-acid sequences,

we know that these conditions are not met. The distribution at a single position usually exhibits

a few polymorphisms with very low frequencies. Just as for Fisher's exact test, the exact null

distribution is di�cult to implement for small values of N , when G or K is not small. Moreover,

if the number of degrees of freedom of the �

2

-statistic is large but the noncentrality parameter

is not proportionally so, the resulting test is likely to have less power than some tests directed

towards speci�c alternatives. Note that the number of degrees of freedom here is usually large:

for instance, comparing two groups of sequences 100 nucleotide long yields 300 degrees of freedom.

For these reasons we need to use another approach to assess homogeneity among groups.

Note that the two approaches discussed above (Anderson & Landis and Pearsons �

2

) all assume

independence among groups, sequences and positions, which leads to a product multinomial model.

One can argue that genetic types of individuals in a population are not generally independent

because they may be related due to their shared ancestry. In the speci�c case of HIV, assuming that

the individuals are epidemiologically independent may not be such a strong assumption, because

of the rapid evolution of HIV (Hahn et al., 1985; 1986; Co�n, 1986; Seillier-Moiseiwitsch et al.,

1994; Mansky & Temin, 1995).

Another issue is the fact that we do not have any information about the underlying structure

that reviews any possible ordering of the categories or the positions. On the other hand, these

positions should be stochastically interrelated. For this reason the classical logistic model may not

work out here without some further information that relate to possible underlying structure for

the categories and positions.

An important point is the problem of known dependence among positions in DNA sequences.

If we assume independence among groups and individuals (sequences), but nonindependence among

positions, we no longer have a product multinomial model and any model we choose will have too

many parameters to be estimated (taking into account all the possible correlations between posi-

tions), requiring a very large data set. In the binary case, we may use the Bahadur representation

model (Bahadur, 1961) or the model suggested by Liang, Zeger & Qaqish (1992) with only pairwise

dependence, but we still have K +

�

K

2

�

parameters in the model. Ideally the ratio between the

number of sequences (individuals) and the number of parameters in the models to should be at

least 5. Therefore, the number of sequences should be at least 5 times

K(K+1))

2

and in practice

this is almost impossible. Since we do not have any information about the structure of these se-

quences, we may reduce this model assuming that the correlation between positions is the same

for all positions. Under these circustances we may have feasible models with K + 1 parameters.

When we have polychotomous response the model proposed by Liang, Zeger & Qaqish (1992)

have too many parameters (for C categories, KC+C

2

�

K

2

�

) and we will need to reduce the number
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of paramenters by, for example, assuming equal correlation structure between all the positions.

These situations we will pursue in a near future.

As a �rst step, we would like to test the di�erence between and within the groups, using

a measure of diversity for categorical response assuming independence among positions. Note

that, if K is large and the dependence between the positions is not small, the distribution may

degenerate to lower dimension ones. This means that, given some of the positions, the others

may be conditionally redundant, but we do not know this information. So, we shall assume that

the degree of dependence becomes small and small as K becomes larger. This also allows us to

use an exchangeable model for large K with small intraclass dependence pattern. Our proposed

measure here is averaging over K. Therefore, a large K may have a smoothing e�ect. Hence, this

assumption of small dependence and independence would not be so divergent.

3. Variation in Categorical Data For categorical data, the mean is an ill-de�ned con-

cept. Therefore, measures of variation, such as the variance, which are meaningful for continuous

variables, no longer apply. Gini (1912) found an alternative way of characteryzing variation and

developed a measure of variation for categorical data.

Let X

1

; X

2

; : : : ; X

N

denote measurements of N independent experimental units. The variance

of X may be expressed as E�(X

1

; X

2

), where �(a; b) =

1

2

(a � b)

2

(Hoe�ding, 1948). In a similar

fashion, the sum of squares is

SS =

N

X

i=1

(X

i

�

�

X)

2

=

1

2N

N

X

i=1

N

X

j=1

(X

i

�X

j

)

2

=

1

N

X

1�i�N

d

2

ij

(2.1)

where

�

X =

P

N

i=1

X

i

=N and d

ij

= X

i

�X

j

.

In the present context, each X

i

falls into one of C possible categories. De�ne d(X

i

; X

j

) = d

ij

as

d

ij

=

(

1 if X

i

and X

j

name di�erent categories

0 if X

i

and X

j

name the same category.

(2.2)

De�nition 1

The variation for categorical responses X

1

; : : : ; X

N

is

1

2N

N

X

j=1

N

X

i=1

d

2

ij

=

1

2N

N

X

j=1

N

X

i=1

d

ij

(2.3)

where d

ij

is de�ned in (2.2).

As each response assumes one and only one of the C possible categories, the data is summarized

by the vector � = (n

1

; : : : ; n

C

) where n

i

is the number of responses in the ith category (i =
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1; : : : ; C), so that

P

C

i=1

n

i

= N . Then the variation in the responses is de�ned as

D

N

�

1

2N

X

i 6=j

n

i

n

j

=

N

2

(

1�

C

X

i=1

�

n

i

N

�

2

)

:(2.4)

If p

1

; : : : ; p

C

stand for the probabilities of X belonging to these C categories, the Simpson Index

of ecological diversity (Simpson, 1949) is de�ned as

I

S

(p) � 1� p

0

p = 1�

C

X

i=1

p

2

i

(2.5)

and its corresponding sample counterpart is

^

I

S

(p) = 1�
^
p

0

^
p = 1�

C

X

i=1

p̂

2

i

;(2.6)

where p̂

i

= n

i

=N , i = 1; : : : ; C relate to the sample proportion. Therefore, we have

D

N

=

N

2

^

I

S

(p)

The de�nitions (2.4) and (2.5) are motivated by two properties.

1. The variation of N categorical responses is minimized if and only if they all belong to the

same category, i.e., p

i

= 1; 8 i = 1; : : : ; C.

2. The variation of N responses is maximized when the responses are distributed among the

available categories as evenly as possible, i.e., p

i

= 1=C; 8 i = 1; : : : ; C.

4. Partitioning the Measures of Diversity Let X

g

i

= (X

g

i1

; X

g

i2

; : : : ; X

g

iK

)

0

be

a random vector representing sequence i of group g. Suppose i = 1; : : : ; N , k = 1; : : : ;K and

g = 1; : : : ; G. So, X

g

ik

represents position k of sequence i of group g. X

g

ik

is a categorical variable

assuming C (unordered) categories. For instance, if comparisons are made at the nucleotide level,

x

g

ik

2 fA; C; T; Gg and there are 4 categories.

First, assume there is only one position for each sequence. We summarize the data in Table

2.

Now d

ij

is de�ned as

d

ij

=

(

1 if X

g

i

6= X

g

j

0 if X

g

i

6= X

g

j

.
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The total number of responses is

NG =

G

X

g=1

n

�g

=

C

X

c=1

n

c�

=

C

X

c=1

G

X

g=1

n

cg

where n

cg

is the number of responses in category c for group g and N = n

�g

=

P

C

c=1

n

cg

is the

number of responses for group g, which here is simply the number of sequences in each group. The

Total Simpson Index (TSI) is

TSI = 1�

C

X

c=1

�

n

c�

NG

�

2

(3.1)

The dispersion within group g (i.e., within fx

g

1

; x

g

2

; : : : ; x

g

N

g) is

1�

C

X

c=1

�

n

cg

n

�g

�

2

(3.2)

Therefore, the within-group Simpson Index (WSI) is found by averaging (3.2) over all g's:

WSI =

1

G

G

X

g=1

(

1�

C

X

c=1

�

n

cg

n

�g

�

2

)

= 1�G

G

X

g=1

C

X

c=1

�

n

cg

NG

�

2

(3.3)

The between-group Simpson Index (BSI) is

BSI = TSI �WSI = G

G

X

g=1

C

X

c=1

�

n

cg

NG

�

2

�

C

X

c=1

�

n

c�

NG

�

2

(3.4)

Now, assume there are K positions along each sequence. We have X

g

i

= (X

g

i1

; X

g

i2

; : : : ; X

g

iK

)

0

and X

g

= (X

g

1

;X

g

2

; : : : ;X

g

N

)

0

. The data are summarized in Table 1.

The total number of responses is

NGK =

G

X

g=1

n

�g�

=

C

X

c=1

n

c��

=

K

X

k=1

n

��k

=

C

X

c=1

G

X

g=1

K

X

k=1

n

cgk

The variation within the gth group at the kth position is

1�

C

X

c=1

�

n

cgk

n

�gk

�

2

= 1�

C

X

c=1

�

n

cgk

N

�

2

;

since n

�gk

= N . The variation within the gth group is

1�

C

X

c=1

�

n

cg�

n

�g�

�

2

= 1�

C

X

c=1

�

n

cg�

NK

�

2
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since n

�g�

= NK. The measures of dispersions are

WSI =

1

G

G

X

g=1

(

1�

C

X

c=1

�

n

cg�

NK

�

2

)

= 1�G

C

X

c=1

�

n

cg�

NGK

�

2

(3.5)

TSI = 1�

C

X

c=1

�

n

c��

NGK

�

2

;(3.6)

and BSI = TSI �WSI = G

G

X

g=1

C

X

c=1

�

n

cg�

NGK

�

2

�

C

X

c=1

�

n

c��

NGK

�

2

:(3.7)

5. The Probabilistic Model Assuming that responses in di�erent groups are indepen-

dent, for each group and each position, the responses (n

1gk

; n

2gk

; : : : ; n

Cgk

) follow a multinomial

distribution:

Prfn

1gk

; n

2gk

; : : : ; n

Cgk

g =

�

N

n

1gk

: : : n

Cgk

�

C

Y

c=1

(p

cgk

)

n

cgk

;

where

P

C

c=1

p

cgk

= 1, p

cgk

> 0, c = 1; : : : ; C, k = 1; : : : ;K and g = 1; : : : ; G

E(n

cgk

) = Np

cgk

Var(n

cgk

) = Np

cgk

(1� p

cgk

)

and Cov(n

c

1

g

1

k

1

; n

c

2

g

2

k

2

) = ��Np

c

1

g

1

k

1

p

c

2

g

2

k

2

where

� =

(

1 if g

1

= g

2

and k

1

= k

2

0 otherwise

n

cgk

denotes number of responses in category c at position k for group g and

p

cgk

the probability of being at category c at position k for group g.

If we assume that the positions are independent, the model is

G

Y

g=1

K

Y

k=1

Prf(n

1gk

; n

2gk

; : : : ; n

Cgk

)g =

G

Y

g=1

K

Y

k=1

�

N

n

1gk

: : : n

Cgk

�

C

Y

c=1

(p

cgk

)

n

cgk

Then V

g

� (n

1g1

: : : n

Cg1

n

1g2

: : : n

Cg2

: : : n

1gK

: : : n

CgK

)

0

is a CK � 1 vector

and V � (V

1

V

2

: : : V

G

)

0

is a GCK � 1 vector.

E(V) � � � N�

�

= N(p

111

: : : p

C11

: : : p

1GK

: : : p

CGK

)

0

(4.1)
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Let � denote the direct-sum operation. Then

Cov(V) � � � N�

�

= N(�

11

��

12

� � � � ��

1K

��

21

� � � � ��

2K

� � � � ��

GK

)(4.2)

where �

gk

is a C � C matrix of the form

�

gk

= D

gk

� �

�gk

�

0

�gk

(4.3)

withD

gk

being a C�C diagonal matrix with elements p

1gk

; : : : ; p

Cgk

and �

�gk

= (p

1gk

: : : p

Cgk

)

0

.

6. Moments of Diversity Measures

Let 
 denote the Kronecker product and

T =

1

(NGK)

2

(U

KG


 I

C

) =

1

(NGK)

2

T

�

(5.1)

where U

KG

is a KG �KG matrix of 1's, I

C

is the C � C identity matrix and T

�

� (NGK)

2

T

is a CKG� CKG matrix, having KG�KG partitions with each partition being C � C identity

matrix. Let M be a G � G diagonal matrix with diagonal elements Gn

2

�g�

(= G(NK)

2

here), i.e.,

M = G(NK)

2

I

G

. Then M

�1

=

1

G(NK)

2

I

G

.

W �

��

M

�1


U

K

�


 I

C

�

�

G

(NGK)

2

[(I

G


U

K

)
 I

C

] �

1

G(NK)

2

W

�

(5.2)

Then

TSI = 1�V

0

TV(5.3)

WSI = 1�V

0

WV(5.4)

Therefore,

BSI = TSI �WSI = V

0

(�T+W)V = V

0

BV(5.5)

where

B = �T+W =

�1

(NGK)

2

(U

KG


 I

C

) +

G

(NGK)

2

[(I

G


U

K

)
 I

C

]

=

G

(NGK)

2

��

I

G


U

K

)�

1

G

U

KG

�


 I

C

�

�

1

G(NK)

2

B

�

(5.6)

Since E(V

0

TV) = trace(T�) + �

0

T� ;

E(TSI) = 1� trace(T�)� �

0

T�

= 1�

1

NGK

+

1

N(GK)

2

C

X

c=1

"

G

X

g=1

K

X

k=1

p

2

cgk

�Np

2

c��

#
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E(WSI) = 1� trace(W�)� �

0

W�

= 1�

1

NK

+

1

NGK

2

C

X

c=1

G

X

g=1

"

K

X

k=1

p

2

cgk

�Np

2

cg�

#

and E(BSI) =

G� 1

NGK

+

1

N(GK)

2

C

X

c=1

"

G

X

g=1

K

X

k=1

p

2

cgk

�Np

2

c��

#

�

1

NGK

2

C

X

c=1

G

X

g=1

"

K

X

k=1

p

2

cgk

�Np

2

cg�

#

De�ne the population variation within the gth group at the kth position as

I

S

(p

gk

) = 1�

C

X

c=1

p

2

cgk

(5.7)

H

0

: p

cgk

= p

ck

for all g implies that

I

S

(p

1k

) = I

S

(p

2k

) = � � � = I

S

(p

Gk

) = I

S

(p

k

) ;

i.e., within-group variation at the kth position is the same over all the groups and this implies that

jj p

1k

jj=jj p

2k

jj= � � � jj p

Gk

jj(5.8)

where p

gk

= (p

1gk

p

2gk

: : : p

Cgk

)

0

is a C � 1 vector representing the probabilities of belonging to

categories c = 1; : : : ; C in group g and position k.

If one is interested in the hypothesis stated in (5.8), the hypothesis of homogeneity among the

groups (p

cgk

= p

ck

) is not necessarily true. Here, we consider H

0

: p

cgk

= p

ck

.

E

0

(TSI) = 1�

1

NGK

+

1

NGK

2

C

X

c=1

"

K

X

k=1

p

2

ck

�NGp

2

c�

#

(5.9)

E

0

(WSI) = 1�

1

NK

+

1

NK

2

C

X

c=1

"

K

X

k=1

p

2

ck

�Np

2

c�

#

(5.10)

E

0

(BSI) =

G� 1

NGK

"

1�

1

K

C

X

c=1

K

X

k=1

p

2

ck

#

(5.11)

Since V follows a multinomial distribution, from (4.1) and (4.2), asymptotically,

V

p

N

d

�! N(

p

N�

�

;�

�

)(5.12)
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where �

�

= �

1

��

2

� � � � ��

G

, �

g

= �

g1

��

g2

� � � � ��

gK

; g = 1; : : : ; G and �

gk

is given

by (4.3). Under H

o

, for any g = 1; : : : ; G,

�

gk

= �

0k

and �

g

= �

?

0

= �

01

��

02

� � � � ��

0K

(5.13)

where �

0k

is the C � C matrix

�

0k

= D

k

� �

�k

�

0

�k

(5.14)

with D

k

being a C � C diagonal matrix with elements p

1k

; : : : ; p

Ck

and �

�k

= (p

1k

: : : p

Ck

)

0

.

Therefore, under H

0

,

� = N�

�

= N�

�

0

= N(I

G


�

?

0

)(5.15)

Now,

Cov(BSI;WSI) = Cov(BSI; TSI)�Var(BSI)(5.16)

Cov(TSI;WSI) = Var(TSI)� Cov(TSI;BSI)(5.17)

7. The Test Statistic Note that BSI can be written as

BSI = V

0

BV =

G

X

g=1

C

X

c=1

"

n

cg�

NK

p

G

�

n

c��

NK

p

G

(NGK)

2

#

2

(6.1)

Let �

cgk

= n

cgk

�Np

ck

= n

cgk

� E

0

(n

cgk

). Then

�

c��

=

G

X

g=1

K

X

k=1

�

cgk

= n

c��

�NG

K

X

k=1

p

ck

Also, under H

0

, � = (�

111

: : : �

Cg1

: : : �

CGK

)

0

is asymptotically

�

p

N

� N(0;�

�

0

)(6.2)

where �

�

0

is as in (5.15). So,

BSI =

�

�

cg�

NK

p

G

�

�

c��

(NGK)

2

NK

p

G

�

2

= �

0

B� =

1

G(NK)

2

�

0

B

�

�

Hence, under H

0

, BSI is asymptotically

BSI �

CGK

X

i=1

�

i

�

�

2

1

�

i

;(6.3)
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where

�

�

2

1

�

i

's are independent �

2

-random variables with 1 degree of freedom and f�

i

; i = 1; : : : ; CGKg

is the set of characteristic roots of

NB�

�

0

=

1

NGK

2

B

�

�

�

0

=

1

NGK

2

��

(I

G


U

K

)�

1

G

U

KG

�


 I

C

�

(I

G


�

?

0

)

by (5.6) and (5.15).

Looking at �

0k

, it is easy to see that its rank is at most (C � 1), because of the restriction

that

P

C

c=1

p

ck

= 1. In fact, the rank of each �

0k

is (C � 1), since any of its (C � 1) columns are

linearly independent. Therefore, the rank of �

?

0

is K(C � 1). Further,

1

NGK

2

B

�

�

�

0

is a G �G

partition matrix with elements the �

0k

's matrices premultiplied by some constants (G� 1 or �1).

In order to get the characteristic roots of

1

NGK

2

B

�

�

�

0

we need to solve the equation

�

�

�

�

1

NGK

2

B

�

�

�

0

� �I

CKG

�

�

�

�

= 0(6.4)

Since fp

ck

; c = 1; : : : ; Cg is unknown and need to be estimated, so are f�

ik

; i = 1; : : : ; C � 1g.

Determining the characteristic roots of a multinomial covariance matrix is not straightforward.

Roy et al. (1960) studied this problem without actually presenting the closed-form expression for

the roots. The characteristic equation for each k is

(

1�

C

X

c=1

�

p

2

ck

p

ck

� �

�

)

C

Y

c=1

(p

ck

� �) = 0(6.5)

It is easy to see that � = 0 is a root, but identifying the other roots must proceed numerically.

Now,

TSI = 1�V

0

TV

Since NT�

�

0

is not idempotent, the distribution of V

0

TV is not �

2

(rank(T );�

0

T�)

. Under H

0

,

however,

V

0

TV =

1

(NGK)

2

C

X

c=1

n

2

c��

=

1

(NGK)

2

C

X

c=1

[�

c��

+NG

K

X

k=1

p

ck

]

2

= �

0

T� +

1

K

2

C

X

c=1

p

2

c�

+A

0

�(6.6)

where A = (A

?

A

?

: : : A

?

)

0

is a CGK � 1 vector and A

?

is a 1� CK vector of the form

A

?

=

2

NGK

2

(p

1�

: : : p

C�

p

1�

: : : p

C�

: : : p

1�

: : : p

C�

)

11



Lemma 1

�

0

T� and A

0

� are not independent.

Proof:

�

0

T� =

1

(NGK)

2

�

0

T

�

� and A

0

� are independent if and only if

A

0

N�

�

0

1

(NGK)

2

T

�

= 0 (Searle, 1971).

1

N(GK)

2

A

0

�

�

0

T

�

=

1

N(GK)

2

(A

?

A

?

: : : A

?

)(I

G


�

?

0

)(U

KG


 I

C

)

=

G

N(GK)

2

(A

?

�

?

0

(U

K


 I

C

) A

?

�

?

0

(U

K


 I

C

) : : : A

?

�

?

0

(U

K


 I

C

))

Let a = (p

1�

: : : p

C�

)

0

. Recall �

?

0

= �

01

� : : :��

0K

A

?

�

?

0

(U

K


 I

C

) =

2

NGK

2

(a

0

�

01

a

0

�

02

: : : a

0

�

0K

)(U

K


 I

C

)

For each k, from (5.14)

a

0

�

0k

= [p

1k

(p

1�

�

C

X

c=1

p

c�

p

ck

) p

2k

(p

2�

�

C

X

c=1

p

c�

p

ck

) : : : p

Ck

(p

C�

�

C

X

c=1

p

c�

p

ck

)]

and the �rst element of the vector A

?

�

?

0

(U

K


 I

C

) is

2

NGK

2

 

p

2

1�

�

C

X

c=1

p

c�

K

X

k=1

p

1k

p

ck

!

6= 0

Hence, �

0

T� and A

0

� are not independent.

Now,

�

0

T� �

KCG

X

i=1

�

i

�

�

2

1

�

i

; A

0

� � N(0; NA

0

�

�

0

A)

and

V

0

TV �

KCG

X

i=1

�

i

�

�

2

1

�

i

+N(0; NA

0

�

�

0

A) + �

1

12



where f�

i

; i = 1; : : : ; CGKg is the set of characteristic roots of NT�

�

0

=

1

N(GK)

2

T

�

�

�

0

and

�

1

=

1

K

2

C

X

c=1

p

2

c�

= �

0

T� under H

0

(6.7)

As for

WSI = 1�V

0

WV ;

under H

0

V

0

WV =

1

G(NK)

2

G

X

g=1

C

X

c=1

n

2

cg�

from (3.5)

=

1

G(NK)

2

G

X

g=1

C

X

c=1

�

2

cg�

+

2

NGK

2

C

X

c=1

�

c��

p

c�

+

1

GK

2

G

X

g=1

C

X

c=1

p

2

c�

= �

0

W� +A

0

� + �

1

from (6.7)(6.8)

Again,

V

0

WV =

1

G(NK)

2

V

0

W

�

V �

CGK

X

i=1

�

i

�

�

2

1

�

i

+N(0; NA

0

�

�

0

A) + �

1

where f�

i

; i = 1; : : : ; CGKg is the set of characteristic roots of NW�

�

0

=

1

NGK

2

W

�

�

�

0

.

Let

�

1

� E

0

(BSI) =

G� 1

NGK

"

1�

1

K

C

X

c=1

K

X

k=1

p

2

ck

#

�

2

� E

0

(TSI) = 1�

1

NGK

+

1

NGK

2

C

X

c=1

"

K

X

k=1

p

2

ck

�NGp

2

c�

#

�

3

� E

0

(WSI) = 1�

1

NK

+

1

NK

2

C

X

c=1

"

K

X

k=1

p

2

ck

�N p

2

c�

#

from (5.11), (5.9) and (5.10). The variances are calculated using the following theorem.

Theorem 1 (Searle, 1971)

When X is N(�;�), the rth cumulant of X

0

AX is

K

r

(X

0

AX) = 2

r�1

(r � 1)![tr(A�)

r

+ r�

0

A(�A)

r�1

�]
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Since

V

p

N

� N(

p

N�

�

;�

�

) and

�

p

N

� N(0;�

�

),

Var(BSI) = Var(V

0

BV) = Var(�

0

B�) = 2 trace(BN�

�

)

2

(6.9)

Var(TSI) = Var(V

0

TV) = 2 trace(TN�

�

)

2

+ 4N�

0

�

TN�

�

TN�

�

(6.10)

Var(WSI) = Var(V

0

WV) = 2 trace(WN�

�

)

2

+ 4N�

0

�

WN�

�

WN�

�

(6.11)

and under H

0

Var

0

(BSI) = 2 trace

�

1

NGK

2

B

�

�

�

0

�

2

=

2

(NGK

2

)

2

trace(B

�

�

�

0

)

2

(6.12)

Var

0

(TSI) =

2

N

2

(GK)

4

trace(T

�

�

�

0

)

2

+

4

N(GK)

4

�

0

�

T

�

�

�

0

T

�

�

�

(6.13)

Var

0

(WSI) =

2

(NG)

2

K

4

trace(W

�

�

�

0

)

2

+

4

NG

2

K

4

�

0

�

W

�

�

�

0

W

�

�

�

(6.14)

Let

T

N;1

� BSI � �

1

; T

N;2

� TSI � �

2

; T

N;3

�WSI � �

3

Note that

(i)

KCG

X

i=1

�

i

�

�

2

G

�

i

= O

p

(N

�1

)

since f�

i

: i = 1; : : : ;KCg is the set of characteristic roots of

1

N(GK)

2

(U

K


I

C

)�

?

0

and �

?

0

= O(1).

(ii) A

0

� = O

p

(N

�1=2

) since A

0

� � N(0; NA

0

�

�

0

A) and A = O(N

�1

)

(iii) �

1

=

1

K

2

C

X

c=1

p

2

c�

= O(1) :

Then,

T

N;2

= 1�V

0

TV� �

2

= 1�

 

O

p

(N

�1

) +O

p

(N

�1=2

) +

1

K

2

C

X

c=1

p

2

c�

!

�

 

1 +O(N

�1

)�

1

K

2

C

X

c=1

p

2

c�

!

= O

p

(N

�1=2

)
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Similarly,

T

N;3

= 1�V

0

WV� �

3

= O

p

(N

�1=2

)

and

BSI = V

0

BV = �

0

B� = O

p

(N

�1

)

Then

F

1

� N

�

BSI

WSI

�

= N

�

BSI

T

N;3

+ �

3

�

= N

�

BSI

�

3

��

1 +

T

N;3

�

3

�

�1

= N

�

BSI

�

3

�

+O

p

(N

�1=2

) = N

�

BSI

�

�

3

�

+O

p

(N

�1=2

)

since T

N;3

= O

p

(N

�1=2

),

N(BSI)T

N;3

�

2

3

= O

p

(N

�1=2

), N(BSI) = O

p

(1) and

�

3

= 1�

1

K

2

C

X

c=1

p

2

c�

+O(N

�1

) = �

�

3

+O(N

�1

)

By (6.3), asymptotically

F

1

= N

BSI

�

�

3

�

1

�

�

3

CGK

X

i=1

�

i

�

�

2

1

�

i

(6.15)

where f�

i

: 1; : : : ;KGCg is the set of characteristic roots of

1

NGK

2

B

�

�

?

0

. Under H

0

, asymptoti-

cally

E

0

(F

1

) =

N�

1

�

�

3

=

(G� 1)

GK�

�

3

"

1�

1

K

C

X

c=1

K

X

k=1

p

2

ck

#

Var

0

(F

1

) = N

2

�

Var

0

(BSI)

(�

�

3

)

2

�

=

2trace(B

�

�

�

0

)

2

(GK

2

�

�

3

)

2

Since p

ck

's are unknown, one can only get estimates for the �

i

's, i.e., the characteristic roots of

�

�

0

. To derive the distribution of F

1

, estimate fp

ck

g, then get the characteristic roots of �

�

0

based

on those estimates.

Alternatively, since the terms on the R.H.S. of (6.15) are i.i.d. �

2

1

's, if

max(�

i

)

q

P

CGK

i=1

�

2

i

! 0, we can apply the C.L.T. for CGK large,

K

2

�

F

1

�N

�

1

�

�

3

�

� N(0; �

2

)(6.16)
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where �

2

=

2 trace(B

�

�

�

0

)

2

(G�

�

3

)

2

.

Using a similar approach, Light & Margolin (1971) developed an analysis of variance for cat-

egorical data (CATANOVA) and these two appraches are equivalent. Extending the CATANOVA

approach for several positions, the sum of squares are

WSS =

NGK

2

�

1

2NK

G

X

g=1

C

X

c=1

n

2

cg�

=

NGK

2

WSI ;(6.17)

TSS =

NGK

2

�

1

2NGK

C

X

c=1

n

2

c��

=

NGK

2

TSI ;(6.18)

and BSS =

1

2NGK

 

G

G

X

g=1

C

X

c=1

n

2

cg�

�

C

X

c=1

n

2

c��

!

=

NGK

2

BSI :(6.19)

In this setup a test statistic is

F

?

1

=

BSS=(G� 1)

WSS=(NGK �G)

=

BSI=(G� 1)

WSI=(NGK � 1)

=

(NGK �G)

N(G� 1)

F

1

8. Power of the Test Let us now consider an alternative hypothesis, i.e.,

p

cgk

=

1

p

N



cgk

+ p

ck

:

Thus, 

cgk

= 0 yields the null hypothesis H

0

: p

cgk

= p

ck

. The interest here is in the case where



cgk

6= 0. Then,

�

cgk

= n

cgk

�N

�

1

p

N



cgk

+ p

ck

�

�

cg�

= n

cg�

�

p

N

cg�

�Np

c�

; �

c��

= n

c��

�

p

N

c��

�NGp

c�

and

BSI = V

0

BV =

G

X

g=1

C

X

c=1

"

n

cg�

NG

p

G

�

n

c��

NK

p

G

(NGK)

2

#

2

=

G

X

g=1

C

X

c=1

"

�

cg�

+Np

c�

+

p

N

cg�

NK

p

G

�

(�

c��

+NGp

c�

+

p

N

c��

)NK

p

G

(NGK)

2

#

2
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=

G

X

g=1

C

X

c=1

"

�

cg�

NK

p

G

�

�

c��

p

G

NKG

2

+



cg�

K

p

NG

�



c��

p

G

KG

2

p

N

#

2

=

G

X

g=1

C

X

c=1

 

�

cg�

NK

p

G

�

�

c��

NK

p

G

(NGK)

2

!

2

+ 2

G

X

g=1

C

X

c=1

 

�

cg�

NK

p

G

�

�

c��

NK

p

G

(NGK)

2

! 



cg�

K

p

NG

�



c��

p

G

KG

2

p

N

!

+

G

X

g=1

C

X

c=1

 



cg�

K

p

NG

�



c��

p

G

KG

2

p

N

!

2

= �

0

B� + (A

1

�A

2

)

0

� +N

2

(A

1

�A

2

)

0

(A

1

�A

2

)

where B is as in (5.6), � = (�

111

: : : �

Cg1

: : : �

CGK

)

0

, A

1

and A

2

are CGK � 1 vectors of the

form

A

1

�

2

K

2

GN

3=2

(A

?

11

: : : A

?

1G

) with

A

?

1g

= (

1g�

: : : 

Cg�



1g�

: : : 

Cg�

: : : 

1g�

: : : 

Cg�

) for each g = 1; : : : ; G

A

2

�

2

(KG)

2

N

3=2

(A

?

2

: : : A

?

2

) with

A

?

2

= (

1��

: : : 

C��



1��

: : : 

C��

: : : 

1��

: : : 

C��

)

Recall that

�

p

N

� N(0;�

�

) and �

0

B� �

P

CGK

i=1

�

i

�

�

2

1

�

i

, with �

i

's being the characteristic roots

of

1

NGK

2

B

�

�

�

, where

�

�

= (�

11

��

12

� � � � ��

1K

��

21

� � � � ��

GK

)(7.1)

and �

gk

is as in (4.3). Now, let A

�

1

= N

3=2

A

1

and A

�

2

= N

3=2

A

2

. Then

N(A

1

�A

2

)

0

� � N(0; (A

�

1

�A

�

2

)

0

�

�

(A

�

1

�A

�

2

))

Lemma 2

�

0

B� and A

0

1

� are not independent.

Proof:

�

0

B� and A

0

1

� are independent if and only if A

0

1

N�

�

B = 0.

A

0

1

N�

�

B =

2

K

2

GN

3=2

(A

?

11

: : : A

?

1G

)

1

NGK

2

�

�

��

(I

G


U

K

)�

1

G

U

KG

�


 I

C

�

=

2

K

3

G

2

N

5=2

(A

?

11

�

1

: : : A

?

1G

�

G

)

��

(I

G


U

K

)�

1

G

U

KG

�


 I

C

�
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Let a

?

1g

= (

1g�

: : : 

Cg�

) be a 1� C vector and A

?

1g

= (a

?

1g

: : : a

?

1g

). A

?

1g

�

g

can be written as

A

?

1g

�

g

= (a

1g

�

g1

a

1g

�

g2

: : : a

1g

�

gK

) for each g = 1; : : : ; G

Now,

a

1g

�

1k

=

"

p

1gk

(

1g�

�

C

X

c=1



cg�

p

cgk

) : : : p

Cgk

(

Cg�

�

C

X

c=1



cg�

p

cgk

)

#

for each g = 1; : : : ; G and k = 1; : : : ;K. The �rst element of A

0

1

N�

�

B is

2

K

3

G

2

N

5=2

 

K

X

k=1

p

11k

(

11�

�

C

X

c=1



c1�

p

c1k

)�

1

G

G

X

g=1

K

X

k=1

p

1gk

(

1g�

�

C

X

c=1



cg�

p

cgk

)

!

6= 0

Since �

0

B� and A

0

1

� are not independent, �

0

B� and (A

1

�A

2

)

0

� are also not independent.

So, the distribution of V

0

BV is not the convolution of a linear combination of �

2

-random variables

and a normal distribution.

Let A = A

1

�A

2

, then

V

0

BV = (B

1=2

� +

1

2

B

�1=2

A)

0

(B

1=2

� +

1

2

B

�1=2

A) +

1

4

A

0

(4N

2

I�B

�1

)A

and let X = (B

1=2

� +

1

2

B

�1=2

A), � =

1

GNK

2

(B

�

)

1=2

�

�

[(B

�

)

1=2

]

0

and �

B

=

1

2

B

1=2

A. Then,

p

NX � N

�

p

N�

B

; N�

�

Let P be an orthogonal matrix (i.e., P

0

P = I) such that P�P

0

= �, where � is a diagonal matrix,

and

Y = PX) X = P

0

Y

Then,

Y � N(P�

B

;�)

and

X

0

X = Y

0

PP

0

Y = Y

0

Y �

G

X

i=1

�

i

�

�

2

1

(�

i

)

�

i

(7.2)

where �

i

's are the diagonal elements of �, �

i

=

a

2

i

�

i

, a

i

is the ith row of the vector

1

2

PB

�1=2

A,

which is a linear combination of the 

cgk

's.
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Let c be the constant

1

4

A

0

(4N

2

I�B

�1

)A. Then,

Pr(F

1

� u) = Pr

�

N(X

0

X+ c)

�

�

3

� u

�

= Pr

�

NX

0

X � �

�

3

u�Nc

�

(7.3)

Note that Nc = O(1) since B

�1

= O(N

2

) and A

0

A = O(N

�3

). As the noncentrality parameter

�

i

increases, the distribution of each of the noncentral �

2

-random variables shifts to the right,

therefore the probability in (7.3) goes to 1 and the power of the test converges to 1.

9. Simulations In order to look at the suitability of the asymptotic distributions, we

generated N sequences, with K positions each, in G groups and computed the test statistic F

?

1

and the standardized F

?

1

(i.e, K

�

F

?

1

�

a

1

a

?

2

�

=�

?

). We performed 500 simulations (i.e., the above

procedure was repeated 500 times). In Table 3 the data were generated using the same probability

across positions, i.e., p

ck

= p

c

, while in Table 4, di�erent probabilities were used across positions.

The tables show the number below and above some quantiles of the standard normal distribution.

10. Data Analysis The data set consists of two groups (subtype B and not B) with 46

sequences each. The nucleotide sequences are all from independent individuals. There are therefore

four categories. After aligning the sequences and discarding the positions with no change, we end

up with 155 positions.

Looking at the simulations results we see that our data set is not large enough for the asymp-

totic results to apply. So, we call upon resampling techniques, such as the bootstrap. Here is a

summary of the procedure:

1. Estimate p

ck

from the data, i.e., p̂

ck

=

n

c1k

+n

c2k

2N

and compute the statistic F

1

.

2. Generate N = 46 sequences, with K = 155 positions each, in each of G = 2 groups, using

p̂

ck

.

3. Recompute the test statistic F

1

from the generated data and store it.

4. Repeat steps 2 and 3 1,000 times.

The p-value is then

#F

0

1

s � F

1

obs

1000

.

The results are

WSI = 0:7005 TSI = 0:7007 BSI = 0:0002 and F

1

obs = 0:011
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The percentiles of the bootstrap distribution are given in Table 5 and the observed p-value

is less than 1=1001. This means that relative to the within-clade variation, there is signi�cant

variability between the two clades.
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Table 1: Contingency Table (K positions)

Group Position 1 2 : : : C Total

1 1 n

111

n

211

: : : n

C11

n

�11

= N

1 2 n

112

n

212

: : : n

C12

n

�12

= N

.

.

.

.

.

.

.

.

.

.

.

. : : :

.

.

.

.

.

.

1 K n

11K

n

21K

: : : n

C1K

n

�1K

= N

Total n

11�

n

21�

: : : n

C1�

n

�1�

= NK

2 1 n

121

n

221

: : : n

C21

n

�21

= N

2 2 n

122

n

222

: : : n

C22

n

�22

= N

.

.

.

.

.

.

.

.

.

.

.

. : : :

.

.

.

.

.

.

2 K n

12K

n

22K

: : : n

C2K

n

�2K

= N

Total n

12�

n

22�

: : : n

C2�

n

�2�

= NK

: : : : : : : : : : : : : : : : : : : : :

G 1 n

1G1

n

2G1

: : : n

CG1

n

�G1

= N

G 2 n

1G2

n

2G2

: : : n

CG2

n

�G2

= N

.

.

.

.

.

.

.

.

.

.

.

. : : :

.

.

.

.

.

.

G K n

1GK

n

2GK

: : : n

CGK

n

�GK

= N

Total n

1G�

n

2G�

: : : n

CG�

n

�G�

= NK

TOTAL n

1��

n

2��

: : : n

C��

n

���

= NGK

Table 2: Summary of the Data (one position)

Group

Sequence 1 2 3 : : : G

1 x

1

1

x

2

1

x

3

1

: : : x

G

1

2 x

1

2

x

2

2

x

3

2

: : : x

G

2

3 x

1

3

x

2

3

x

3

3

: : : x

G

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

N x

1

N

x

2

N

x

3

N

: : : x

G

N
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Table 3: Results of Simulations for Diversity Measures (p

ck

= p

c

)

Percentiles of the Std. Normal Dist.

N K G 1 2.5 5 10 90 95 97.5 99

20 10 2 0

?

0

??

0

??

0

??

52 36

?

27

??

16

??

20 10 5 0

?

1

??

2

??

20

??

48 30 21

?

16

??

20 50 2 0

?

0

??

0

??

0

??

59 49

??

38

??

27

??

50 10 2 0

?

0

??

0

??

0

??

67

?

43

??

28

??

19

??

50 10 5 0

?

0

??

4

??

33

?

51 34 23

??

13

??

50 50 2 0

?

0

??

0

??

0

??

59 41

??

32

??

27

??

100 10 2 0

?

0

??

0

??

0

??

52 38

?

30

??

24

??

100 10 5 0

?

1

??

5

??

26

??

63 38

?

26

??

11

?

100 10 10 0

?

4

?

11

?

40 42 30 14 10

?

100 50 2 0

?

0

??

0

??

0

??

49 36

?

21

?

16

??

100 50 5 0

?

0

??

3

??

23

??

56 32 18 12

??

200 10 5 0

?

0

??

9

??

30

?

48 32 24

??

18

??

200 10 10 1 3

?

14

?

40 52 31 17 7

? between 2SD and 3SD or �2SD and �3SD.

?? greater than 3SD or smaller than �3SD.
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Table 4: Results of Simulations for Diversity Measures (p

ck

6= p

c

)

Percentiles of the Std. Normal Dist.

N K G 1 2.5 5 10 90 95 97.5 99

20 10 2 0

?

0

??

0

??

0

??

59 36

?

23

??

16

??

20 10 5 0

?

0

??

4

??

24

??

54 37

?

22

?

13

??

20 50 2 0

?

0

??

0

??

0

??

63 39

?

29

??

20

??

50 10 2 0

?

0

??

0

??

0

??

60 36

?

28

??

19

??

50 10 5 0

?

1

??

6

??

43 51 33 17 10

50 50 2 0

?

0

??

0

??

0

??

53 37

?

24

??

14

??

100 10 2 0

?

0

??

0

??

0

??

53 42

??

31

??

21

??

100 10 5 0

?

1

??

10

??

27

??

41 28 19 12

??

100 10 10 1 3 13

?

49 53 30 18 7

100 50 2 0

?

0

??

0

??

0

??

46 28 22

?

17

??

100 50 5 0

?

1

??

9

??

28

??

57 35

?

22

?

10

?

200 10 5 0

?

1

??

8

??

34

?

54 30 18 12

??

200 10 10 1 8 17 40 54 30 17 9

? between 2SD and 3SD or �2SD and �3SD.

?? greater than 3SD or smaller than �3SD.

Table 5: Percentiles of the Bootstrap Dist. for Diversity Measures

90% 95% 97.5% 99% 99.5% 99.9%

0.0015 0.0020 0.0023 0.0027 0.0030 0.0040
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