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Abstract

A reformulation of the bounded mixed complementarity problem is intro-
duced. It is proved that the level sets of the objective function are bounded
and, under reasonable assumptions, stationary points coincide with solutions
of the original variational inequality problem. Therefore, standard minimiza-
tion algorithms applied to the new reformulation must succeed. This result is
applied to the compactification of unbounded mixed complementarity prob-
lems.
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1 Introduction

The mized complementarity problem (MCP) is the finite dimensional variational
inequality problem (VIP) on a generalized n—dimensional box. See [7, 9, 10], among
others. Given F': R" — IR", F = (f1,..., f,) one wants to find = € Q such that

(1) (F(z),z—x) >0 YzeQ,
where
(2) Q={reR" | a<xz<b}

and —oo < a; < b; < oo for all i = 1,...,n. (Throughout this paper, as usually,
—00 < z; must be read —oo < x; and x; < oo must be read x; < 00.) Solving (1) is
equivalent to finding x € €2 such that

(3) filz) >0 if z; = a;
and

The classical nonlinear complementarity problem (NCP) is the particular case of
the MCP where Q@ = {z € IR" | x > 0}. The problem of solving a nonlinear system
of equations F'(x) = 0 is also a mixed complementarity problem with Q = IR".

We say that the MCP is bounded if —oco < a; and b; < oo foralli=1,...,n.

Many times one needs to solve an unbounded MCP, but only solutions belonging
to a smaller set are desired. For example, the original MCP can be a nonlinear
system coming from a real life application where only strictly positive solutions have
physical meaning. In these cases, one is tempted to solve the MCP corresponding
to the smaller set. Unfortunately, the new (smaller) MCP might have solutions on
the new boundary that are not solutions of the original problem. In Section 2 of
this paper we give sufficient conditions under which it can be guaranteed that the
solutions of the smaller MCP are also solutions of the original one.

When the conditions of Section 2 are satisfied, the MCP can be reduced to a
bounded mixed complementarity problem. This fact justifies the analysis of Sec-
tion 3, where the bounded MCP is considered. In this section, we introduce a
smooth reformulation of the bounded MCP. The reformulation of complementarity
and variational inequality problems as optimization problems with simple contraints
(or without constraints at all) has attracted the attention of many researchers in
the last few years.



See [1, 2, 3, 8,12, 13, 14, 16, 17, 19, 20, 21, 22, 23] and many others. Reformula-
tions are equivalent to the original problems in the sense that global minimizers are
solutions of the VIP if the objective function value is null. If, at a global minimizer
of the reformulation, this value is greater than zero, the original problem is not solv-
able. General algorithms for minimization can be used for solving the reformulation.
Many times, these algorithms succeed finding a global minimizer, therefore, many
problems can be solved using reformulations even under difficult conditions related
to the original problem. As the reformulation of the bounded MCP introduced in
[8], the reformulation introduced here uses 2n auxiliary unbounded variables. In
spite of this unboundedness, we will prove that the objective function has bounded
level sets, so that standard minimization algorithms must find, at least, stationary
points. In Section 3 we also prove sufficient conditions under which stationary points
of the minimization problem are solutions of the bounded MCP.

Consequences of the results given in Sections 2 and 3 are analyzed in Section 4.
If the sufficient conditions of both sections hold, the MCP can be reduced to a
bounded MCP, this MCP can be reduced to a minimization problem with bounded
level sets and the stationary points of the optimization problem are solutions of the
MCP. Conclusions of this work are stated in Section 5.

2 Solutions of the MCP in a restricted box

Suppose that we have the mixed complementarity problem (3)-(5) but we only want
solutions belonging to a smaller box Q. C €. The question addressed in this
section is: would it be a good strategy to solve the MCP defined by F' and Qa7
In general, the answer is negative. Take, for example, Q@ = R, F(z) = 1 — x,
Qsmanr = {x € R | x > 0}. One of the solutions of the MCP defined by Qe is
x = 0, which is not a solution of the original MCP.
Let us define
Qsmall — {l‘ c IR" | asmall S T S bsmall},

where for all i =1,...,n,
—00 S a; S afmall < bfmall S bz S 0.

The MCP defined by F' and Q will be called MCP(big) in this section. Analo-
gously, the MCP defined by F' and e, will be called MCP(small). Clearly, any
solution of MCP(big) belonging to e must be a solution of MCP(small). We
are going to prove that, under the following Assumptions 1 and 2, the reciprocal is
also true.



The first assumption concerns the behavior of F' on $2,,,;. We will prove later
that this assumption generalizes the property of monotonicity.

Assumption 1. We assume that, for all x,y € Qgnau,

[fiz) = fi())(@i—y) <OV i=1,...n

implies that
[fi(@) = fily)(zi—y) =0V i=1,...n.

The second assumption says that there exists a solution of the MCP(big) that
belongs to 0. Moreover, the constraints of €)g,,,; that are not constraints of €2
are not active at this solution. A typical case where this situation occurs is when
one wants to compactify the domain €2 adding artificial constraints ||z||. < L and
we know that ||z]|. < L at some physical solution.

Assumption 2. There exists T € Qgmay such that T is a solution of MCP(big) and,
foralli=1,...,n,

(a) If a; < ai™ then Z; > ai™¥;

(b) If b; > bfm“” then z; < bfma”_

In the following two lemmas, we prove that Assumption 1 is satisfied if F' is
monotone or if F'is an affine function and its Jacobian is column-sufficient.

Lemma 1. If F' is monotone on Qgnay, then it satisfies Assumption 1.

Proof. Let us proceed by contradiction. If [fi(z) — fi(y)](x; — y;) < 0 for all
i =1,...,n and there exists j € {1,...,n} such that [f;j(z) — f;(v)](z; —y;) <O
then

(F(z) — F(y),z —y) <0.

So, F'is not monotone. O
Recall that a matrix M € IR™*" is called column-sufficient if
[Mz);z; <0Vi=1,...nonlyif [Mz|;zz=0Vi=1,...n.

A matrix M is called row-sufficient if its transpose M7 is column-sufficient. Finally,
M is called sufficient if it is column-sufficient and row-sufficient.



Lemma 2. If F(z) = Mxz+q and M is column-sufficient, then F satisfies Assump-
tion 1.

Proof. If [fi(x) — fi(y)|(z; —y;) < O foralli=1,...,n, then
Mz —y)]i(z; —y;) <0 Vi=1,...,n.
Since M is column-sufficient this implies that
(M(z —y)|i(z; —y;) =0 Vi=1,...,n.

Therefore, [fi(z) — fi(y)](x; —y;) =0forali=1,...,n. O

The main result of this section is given below. We prove that, under Assump-
tions 1 and 2, all the solutions of MCP(small) are solutions of MCP(big). As a
consequence, if Assumption 1 is satisfied and we find a solution of MCP(small)
which is not a solution of MCP(big), then the hypothesis on the existence of a so-
lution satisfying Assumption 2 must be false.

Theorem 1. Assume that F' satisfies Assumption 1 and T satisfies Assumption 2.
Then, every solution of MCP(small) is a solution of MCP(big).

Proof. Let z* € Qguay be a solution of MCP(small). We are going to prove first
that
(6) [fi(z") — f;(@D)|(af — %) <OVi=1,...,n.

This is obviously true when z; = z;. Let us consider the remaining possibilities.
For all the deductions we will use that both z* and z are solutions of MCP (small):

~. — small * small
(1) z; = @™ and =} > ai™*.

This implies that f;(Z) >0, f;(z*) < 0 and «f — Z; > 0. So, (6) holds.
(2) z; > af™! and a7 = af™,
This implies that f;(z) <0, f;(z*) > 0 and =f — z; < 0. So, (6) holds.

(3) T; € (afmall7bl§mall) and xr c (afmall7bl§mall).

In this case, f;(z*) = f;(Z) = 0. So, (6) holds.

(4) #; = bymell and a7 < byl
This implies that f;(z) <0, f;(z*) > 0 and zf — z; < 0. So, (6) holds.



(5) #; < bymell and af = by,
This implies that f;(z) >0, f;(z*) <0 and zf — z; > 0. So, (6) holds.

Therefore, (6) is proved. So, by Assumption 2,
(7) fi(z") = fi(@)](x} — ;) =0V i=1,...,n.

Now, suppose that z* is not a solution of MCP(big). Since z* is a solution of
MCP (small), there exists j € {1,...,n} such that

(8) x; = a;ma” > aj and f;(z*) >0
or
9) zf = b < bj and f;(z*) < 0.

Suppose that (8) holds. By Assumption 2, since ajm“” > a;, we have that
Z; > a§™". Therefore,

(10) ot —7; < 0.

But z; > a$™* implies that f;(z) < 0. So, f;j(z*) — f;(Z) > 0. By (10), this
contradicts (7).

Analogously, suppose that (9) holds. By Assumption 2, since b5™* < b;, we
have that z; < b5™*". Therefore,

(11) l‘; —X; > 0.
But z; < b¥™ implies that f;(z) > 0. So, fj(z*) — f;(z) < 0. By (11), this

contradicts (7).
It follows that z* is a solution of MCP(big), as we wanted to prove. O

3 Reformulation of the bounded M CP

In this section, we consider the bounded MCP, so —oo < a; < b; < oo for all
1=1,...,n.
It is easy to see that (3)-(5) is equivalent to:

(12) ) —u+v=0,
(13) (x —a,u)y =0, (b—uz,v)=0,
(14) a<z<b, u>0,v>0.
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For an arbitrary p > 0 we define the following optimization problem associated
with (12)—(14):

Minimize || F(x) — u + v||5 + p[{z — a,u)® + (b — z,v)?]

(15) subject to a <x <b, u>0,v>0.

Obviously, if (x,u,v) is a solution of (15) and the objective function value is
zero, then x is a solution of (12)—(14).

As in [2, 3, 13, 14], the optimization problem (15) preserves the same differen-
tiability properties of the original MCP. For example, if F' has at most quadratic
components, (15) consists on the minimization of a quartic with simple bounds.

Let us prove now that the level sets associated to this optimization problem are
bounded. We denote, for all x,u,v € IR",

®(z,u,v) = ||F(x) — u+v|3+ pl{z — a,u)? + (b — x,v)?].

Theorem 2. Assume that F is continuous. Then, for all § > 0 the set S C IR®"
defined by

S={(z,u,v) e R"|a<z<b u>0,v>0, ®(x,u,v) <O}

18 bounded.

Proof. Assume, by contradiction, that an unbounded sequence {(x*, u¥ v*)} C S
exists. Since {z*} is obviously bounded, it follows that, for an adequate subsequence,
there exists i € {1,...,n} such that u¥ — oo or vf — oco.

If u? — oo, by the continuity of F, the form of ®(z,u,v) and the fact that
{®(z*, u*,v*)} is bounded imposes that v¥ — oco. Analogously, v¥ — oo implies
that u? — oo.

Now, since {®(z*, u*, v*)} is bounded, both {(z* — a,u*)?} and {(b — z*, v¥)?}
are bounded. This implies, since 2% — a; >0 < bj — xf forall j = 1,...,n, that
{(«% — a;)ul} and {(b; — 2)vF} are also bounded sequences. But, since v — oo
and uf — oo, it follows that 2% —a; — 0 and b; — 2¥ — 0. So, b; = a;, which is a
contradiction. Therefore, S is bounded, as we wanted to prove. O

From now on, assume that F' has continuous first partial derivatives. The fol-
lowing result says that, under a row-sufficiency assumption on the Jacobian F'(z),
all the stationary points of (15) are solutions of (12)—(14).



Theorem 3. Assume that (z*,u*,v*) is a KKT point of (15) such that F'(z*) is
row-sufficient. Then x* is a solution of the MCP.

Proof. Define
r*=F(z") —u" +v".

Since (z*,u*,v*) is a KKT point of (15), there exist «, &/, 7,~" > 0 such that

(16) 2F (2*)"r* + 2p(a* — a,u*)u* — 2p(b — z*,v")v* —a+a’ =0,
(17) —r* +2p(z* —a,u") (2" —a) —y =0,

(18) r* +2p(b — z*,v*)(b—z*) — 4 =0,

(19) (a,2* —a) =0, (,b—1%)=0,

(20) (v,u) =0, {y,v") =0,

(21) a<z*<b,

(22) a>0,a >0, v>0,+>0.

Premultiplying (16) by r}, we obtain
(23) ¥ [F' (z*) )i + rF (202" — a, u™ul — a;) + 1] (=2p(b — ¥, v*)vf +al) =0
for all i = 1,...,n. But, by (17)-(20) and (22), we have that

i (2p(z" — a, u")ul — ;)

= (2p(@" —a,u") 2] — a;] — ) (2p(x" — a,u")u; — a;)
(24) = 4p*(@" — a,u")?[o] — ailu; + iy

and
ri(=2p{b — z*, v*)v] + )

= (2000 — ", ") — 2]+ ) (~20(0 — 07 + )
(25) = 4p%(b — z*,v")2[b; — z¥]vl + o,
fori=1,...,n. Now, by (23)-(25),

riF (@) )+ 4% (2" — o, ") o] — aiui + v

(26) +4p° (b — ", v*)?[b; — x7]v} + i, = 0



fori=1,...,n. So, by (26), (21) and (22) we have that

(27) ¥ (2*)r*]); <0

fori=1,...,n. Since F'(x*) is row-sufficient, this implies that
riF' (%) r*]; = 0
fori=1,...,n. So, by (26), (27), (21) and (22), we obtain:
(28) (" —a,u™) =0, (b—a",v")=0.
Therefore, by (17) and (18), we have that
rt=—y<0, =920
This implies that r* = 0. Therefore, by (28), we have that ®(z*, u*,v*) = 0. So, z*

is a solution of the MCP. O

Theorem 3 has an independent interest since it shows that bounded mixed com-
plementarity problems can be solved using bound constrained minimization algo-
rithms if the Jacobian matrix is row-sufficient. Since positive-semidefinite matrices
and P-matrices are always row-sufficient, the scope of this result involves many
interesting problems.

4 Consequences for the general (unbounded) MCP

Many times one needs to solve a general MCP but only solutions in a bounded set
(say ||z]lcc < L) have physical meaning. In this case, we define

Qsmall =QnN {.’E e IR" | ||.’I?||OO < L}

and we consider the variational inequality problem on €2,,.,; which, of course, is a
bounded MCP. The reformulation (15) of this bounded MCP has, according to The-
orem 2, bounded level sets. Therefore, any standard box-constraint minimization
algorithm (see [6, 11] and references therein) will find a stationary point. By Theo-
rem 3, if, at this stationary point, F'(x) is row-sufficient, then we have a solution of
the bounded MCP. Moreover, by Theorem 1, if Assumptions 1 and 2 are satisfied,
the stationary point found by the box-constraint solver is a solution of the MCP.
Summing up, the whole process consists on

1. Introducing the artificial bound ||z||» < L;
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2. Solving the reformulation (15) of the resulting bounded MCP.

If a solution such that ||z|| < L of the original MCP exists and F' is monotone
this process will be necessarily successful. The same happens if F' is linear and its
Jacobian is sufficient.

Let us comment here an interesting consequence of this state of facts. Suppose
that we need to solve F(x) = 0, F' is monotone but singular Jacobians and/or
local-nonglobal minimizers of ||F(z)||% are present. Take, for example, F' : IR — IR,
F(z) =23+1ifz <0, F(z) = 1 if x > 0. The usual globalization procedure of min-
imizing ||F(z)||3 (with or without artificial bounds) is dangerous because, besides
the solution z = —1, all the points # > 0 are local minimizers of ||F(x)||3. However,
according to our results, setting artificial bounds (say —10 < x < 10 in the example)
and solving (15) using a standard box-constraint minimizer will necessarily lead to
a solution of F(x) =0 (x = —1 in the example) and the additional stationary points
of ||F(x)||? are not limit points of the numerical scheme at all.

Row-sufficiency and column-sufficiency (Assumption 1) play quite different roles
in the reformulation process. Row-sufficiency guarantees that stationary points of
the reformulation are solutions of the bounded MCP, whereas Assumption 1 le-
gitimates the bounding process. The reformulation of the linear complementarity
problem given in [13] has the property that, under row-sufficiency and feasibility,
stationary points are solutions. However, this reformulation does not have bounded
level sets.

Unfortunately, Theorem 1 does not hold, even in the linear case, if one only
assumes that M is row-sufficient (and not column-sufficient). In fact, define

we[ 58] o [4]

The matrix M is row-sufficient but not column-sufficient. Moreover (0,0) is a so-
lution of the linear complementarity problem (LCP) defined by M and ¢. Taking
L = 2, we have that all the points of the form (¢,2) for ¢ € [2, 2], are solutions of the
MCP defined by F(x) = Mz +q, a =0,b = (L,...,L). But, clearly, these points
are not solutions of the LCP.

5 Final remarks

Up to our knowledge, the reformulation of the MCP presented in this paper is
the only one that satisfies both the bounded-level-set property and the sufficiency

10



condition given by Theorem 3.
In [4] it has been proved that the Fischer-Burmeister reformulation of the bounded
MCP given in [8] (also with 3n variables) satisfies the bounded-level-set property if

(29) < % min {(b; — a;)*,i=1,...,n}.

Moreover, in [4] it was shown that the estimate (29) is sharp, that is, level sets of
the reformulation [8] can be unbounded for larger values of #. Curiously, if, in the
original (unbounded) MCP we have b; —a; = oo for all i = 1,...,n, it is possible to
choose the artificial constraint ||z||oc < L and the initial point in such a way that
the corresponding level set is bounded (see [4]) but this is not possible if b; —a; < oo
for some 1.

Our reformulation is completely smooth, a property from which it is possible to
take algorithmic advantage. For example, if F' is polynomial, the objective function
®(z,u,v) is polynomial too. Other reformulations create objective functions without
second derivatives even if the original F'(z) is linear. The fact that the reformulation
is a box-constrained optimization problem is interesting because we can deal with
that type of problems using algorithms that do not use matrix factorizations at all,
so that large-scale and non-structured problems are solvable.

Bounded-level-set results for reformulations of the nonlinear complementarity
problem have been proved under hypothesis of P—uniformity of F" in [15, 18]. In [5]
a reformulation of the NCP is introduced for which the level sets are bounded when
F'is monotone and a strict feasibility condition holds. Therefore, our results of Sec-
tions 3 and 4 also represent advances with respect to existing NCP-reformulations.

Perhaps the bounded-level-set property is not the weakest condition which guar-
antees that standard minimization algorithms generate bounded sequences. In fact,
to find weaker sufficient condidtions for the bounded-sequence property related to
minimization methods with suitable sufficient-decrease requirements seems to rep-
resent an interesting field of research on general optimization. While an answer to
the above question is not found, the discovery of reformulations with bounded level
sets plays an important role, both from the theoretical and the practical point of
view.
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