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1 Introdution

The mixed omplementarity problem (MCP) is the �nite dimensional variational

inequality problem (VIP) on a generalized n�dimensional box. See [7, 9, 10℄, among

others. Given F : IR

n

! IR

n

, F = (f

1

; : : : ; f

n

) one wants to �nd x 2 
 suh that

hF (x); z � xi � 0 8 z 2 
;(1)

where


 = fx 2 IR

n

j a � x � bg(2)

and �1 � a

i

< b

i

� 1 for all i = 1; : : : ; n. (Throughout this paper, as usually,

�1 � x

i

must be read �1 < x

i

and x

i

� 1 must be read x

i

<1.) Solving (1) is

equivalent to �nding x 2 
 suh that

f

i

(x) � 0 if x

i

= a

i

;(3)

f

i

(x) � 0 if x

i

= b

i

(4)

and

f

i

(x) = 0 if a

i

< x

i

< b

i

:(5)

The lassial nonlinear omplementarity problem (NCP) is the partiular ase of

the MCP where 
 = fx 2 IR

n

j x � 0g. The problem of solving a nonlinear system

of equations F (x) = 0 is also a mixed omplementarity problem with 
 = IR

n

.

We say that the MCP is bounded if �1 < a

i

and b

i

<1 for all i = 1; : : : ; n.

Many times one needs to solve an unbounded MCP, but only solutions belonging

to a smaller set are desired. For example, the original MCP an be a nonlinear

system oming from a real life appliation where only stritly positive solutions have

physial meaning. In these ases, one is tempted to solve the MCP orresponding

to the smaller set. Unfortunately, the new (smaller) MCP might have solutions on

the new boundary that are not solutions of the original problem. In Setion 2 of

this paper we give suÆient onditions under whih it an be guaranteed that the

solutions of the smaller MCP are also solutions of the original one.

When the onditions of Setion 2 are satis�ed, the MCP an be redued to a

bounded mixed omplementarity problem. This fat justi�es the analysis of Se-

tion 3, where the bounded MCP is onsidered. In this setion, we introdue a

smooth reformulation of the bounded MCP. The reformulation of omplementarity

and variational inequality problems as optimization problems with simple ontraints

(or without onstraints at all) has attrated the attention of many researhers in

the last few years.
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See [1, 2, 3, 8, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23℄ and many others. Reformula-

tions are equivalent to the original problems in the sense that global minimizers are

solutions of the VIP if the objetive funtion value is null. If, at a global minimizer

of the reformulation, this value is greater than zero, the original problem is not solv-

able. General algorithms for minimization an be used for solving the reformulation.

Many times, these algorithms sueed �nding a global minimizer, therefore, many

problems an be solved using reformulations even under diÆult onditions related

to the original problem. As the reformulation of the bounded MCP introdued in

[8℄, the reformulation introdued here uses 2n auxiliary unbounded variables. In

spite of this unboundedness, we will prove that the objetive funtion has bounded

level sets, so that standard minimization algorithms must �nd, at least, stationary

points. In Setion 3 we also prove suÆient onditions under whih stationary points

of the minimization problem are solutions of the bounded MCP.

Consequenes of the results given in Setions 2 and 3 are analyzed in Setion 4.

If the suÆient onditions of both setions hold, the MCP an be redued to a

bounded MCP, this MCP an be redued to a minimization problem with bounded

level sets and the stationary points of the optimization problem are solutions of the

MCP. Conlusions of this work are stated in Setion 5.

2 Solutions of the MCP in a restrited box

Suppose that we have the mixed omplementarity problem (3)-(5) but we only want

solutions belonging to a smaller box 


small

� 
. The question addressed in this

setion is: would it be a good strategy to solve the MCP de�ned by F and 


small

?

In general, the answer is negative. Take, for example, 
 = IR, F (x) � 1 � x,




small

= fx 2 IR j x � 0g. One of the solutions of the MCP de�ned by 


small

is

x = 0, whih is not a solution of the original MCP.

Let us de�ne




small

= fx 2 IR

n

j a

small

� x � b

small

g;

where for all i = 1; : : : ; n,

�1 � a

i

� a

small

i

< b

small

i

� b

i

� 1:

The MCP de�ned by F and 
 will be alled MCP(big) in this setion. Analo-

gously, the MCP de�ned by F and 


small

will be alled MCP(small). Clearly, any

solution of MCP(big) belonging to 


small

must be a solution of MCP(small). We

are going to prove that, under the following Assumptions 1 and 2, the reiproal is

also true.
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The �rst assumption onerns the behavior of F on 


small

. We will prove later

that this assumption generalizes the property of monotoniity.

Assumption 1. We assume that, for all x; y 2 


small

,

[f

i

(x)� f

i

(y)℄(x

i

� y

i

) � 0 8 i = 1; : : : n

implies that

[f

i

(x)� f

i

(y)℄(x

i

� y

i

) = 0 8 i = 1; : : : n:

The seond assumption says that there exists a solution of the MCP(big) that

belongs to 


small

. Moreover, the onstraints of 


small

that are not onstraints of 


are not ative at this solution. A typial ase where this situation ours is when

one wants to ompatify the domain 
 adding arti�ial onstraints kxk

1

� L and

we know that kxk

1

< L at some physial solution.

Assumption 2. There exists �x 2 


small

suh that �x is a solution of MCP(big) and,

for all i = 1; : : : ; n,

(a) If a

i

< a

small

i

then �x

i

> a

small

i

;

(b) If b

i

> b

small

i

then �x

i

< b

small

i

.

In the following two lemmas, we prove that Assumption 1 is satis�ed if F is

monotone or if F is an aÆne funtion and its Jaobian is olumn-suÆient.

Lemma 1. If F is monotone on 


small

, then it satis�es Assumption 1.

Proof. Let us proeed by ontradition. If [f

i

(x) � f

i

(y)℄(x

i

� y

i

) � 0 for all

i = 1; : : : ; n and there exists j 2 f1; : : : ; ng suh that [f

j

(x) � f

j

(y)℄(x

j

� y

j

) < 0

then

hF (x)� F (y); x� yi < 0:

So, F is not monotone. 2

Reall that a matrix M 2 IR

n�n

is alled olumn-suÆient if

[Mz℄

i

z

i

� 0 8 i = 1; : : : n only if [Mz℄

i

z

i

= 0 8 i = 1; : : : n:

A matrixM is alled row-suÆient if its transpose M

T

is olumn-suÆient. Finally,

M is alled suÆient if it is olumn-suÆient and row-suÆient.
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Lemma 2. If F (x) = Mx+q and M is olumn-suÆient, then F satis�es Assump-

tion 1.

Proof. If [f

i

(x)� f

i

(y)℄(x

i

� y

i

) � 0 for all i = 1; : : : ; n, then

[M(x� y)℄

i

(x

i

� y

i

) � 0 8i = 1; : : : ; n:

Sine M is olumn-suÆient this implies that

[M(x� y)℄

i

(x

i

� y

i

) = 0 8i = 1; : : : ; n:

Therefore, [f

i

(x)� f

i

(y)℄(x

i

� y

i

) = 0 for all i = 1; : : : ; n. 2

The main result of this setion is given below. We prove that, under Assump-

tions 1 and 2, all the solutions of MCP(small) are solutions of MCP(big). As a

onsequene, if Assumption 1 is satis�ed and we �nd a solution of MCP(small)

whih is not a solution of MCP(big), then the hypothesis on the existene of a so-

lution satisfying Assumption 2 must be false.

Theorem 1. Assume that F satis�es Assumption 1 and �x satis�es Assumption 2.

Then, every solution of MCP(small) is a solution of MCP(big).

Proof. Let x

�

2 


small

be a solution of MCP(small). We are going to prove �rst

that

[f

i

(x

�

)� f

i

(�x)℄(x

�

i

� �x

i

) � 0 8i = 1; : : : ; n:(6)

This is obviously true when �x

i

= x

�

i

. Let us onsider the remaining possibilities.

For all the dedutions we will use that both x

�

and �x are solutions of MCP(small):

(1) �x

i

= a

small

i

and x

�

i

> a

small

i

.

This implies that f

i

(�x) � 0, f

i

(x

�

) � 0 and x

�

i

� �x

i

> 0. So, (6) holds.

(2) �x

i

> a

small

i

and x

�

i

= a

small

i

.

This implies that f

i

(�x) � 0, f

i

(x

�

) � 0 and x

�

i

� �x

i

< 0. So, (6) holds.

(3) �x

i

2 (a

small

i

; b

small

i

) and x

�

i

2 (a

small

i

; b

small

i

).

In this ase, f

i

(x

�

) = f

i

(�x) = 0. So, (6) holds.

(4) �x

i

= b

small

i

and x

�

i

< b

small

i

.

This implies that f

i

(�x) � 0, f

i

(x

�

) � 0 and x

�

i

� �x

i

< 0. So, (6) holds.
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(5) �x

i

< b

small

i

and x

�

i

= b

small

i

.

This implies that f

i

(�x) � 0, f

i

(x

�

) � 0 and x

�

i

� �x

i

> 0. So, (6) holds.

Therefore, (6) is proved. So, by Assumption 2,

[f

i

(x

�

)� f

i

(�x)℄(x

�

i

� �x

i

) = 0 8 i = 1; : : : ; n:(7)

Now, suppose that x

�

is not a solution of MCP(big). Sine x

�

is a solution of

MCP(small), there exists j 2 f1; : : : ; ng suh that

x

�

j

= a

small

j

> a

j

and f

j

(x

�

) > 0(8)

or

x

�

j

= b

small

j

< b

j

and f

j

(x

�

) < 0:(9)

Suppose that (8) holds. By Assumption 2, sine a

small

j

> a

j

, we have that

�x

j

> a

small

j

. Therefore,

x

�

j

� �x

j

< 0:(10)

But �x

j

> a

small

j

implies that f

j

(�x) � 0. So, f

j

(x

�

) � f

j

(�x) > 0. By (10), this

ontradits (7).

Analogously, suppose that (9) holds. By Assumption 2, sine b

small

j

< b

j

, we

have that �x

j

< b

small

j

. Therefore,

x

�

j

� �x

j

> 0:(11)

But �x

j

< b

small

j

implies that f

j

(�x) � 0. So, f

j

(x

�

) � f

j

(�x) < 0. By (11), this

ontradits (7).

It follows that x

�

is a solution of MCP(big), as we wanted to prove. 2

3 Reformulation of the bounded MCP

In this setion, we onsider the bounded MCP, so �1 < a

i

< b

i

< 1 for all

i = 1; : : : ; n.

It is easy to see that (3)-(5) is equivalent to:

F (x)� u+ v = 0;(12)

hx� a; ui = 0; hb� x; vi = 0;(13)

a � x � b; u � 0; v � 0:(14)
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For an arbitrary � > 0 we de�ne the following optimization problem assoiated

with (12){(14):

Minimize kF (x)� u+ vk

2

2

+ �[hx� a; ui

2

+ hb� x; vi

2

℄

subjet to a � x � b; u � 0; v � 0:(15)

Obviously, if (x; u; v) is a solution of (15) and the objetive funtion value is

zero, then x is a solution of (12){(14).

As in [2, 3, 13, 14℄, the optimization problem (15) preserves the same di�eren-

tiability properties of the original MCP. For example, if F has at most quadrati

omponents, (15) onsists on the minimization of a quarti with simple bounds.

Let us prove now that the level sets assoiated to this optimization problem are

bounded. We denote, for all x; u; v 2 IR

n

,

�(x; u; v) = kF (x)� u+ vk

2

2

+ �[hx� a; ui

2

+ hb� x; vi

2

℄:

Theorem 2. Assume that F is ontinuous. Then, for all � > 0 the set S � IR

3n

de�ned by

S = f(x; u; v) 2 IR

n

j a � x � b; u � 0; v � 0; �(x; u; v) � �g

is bounded.

Proof. Assume, by ontradition, that an unbounded sequene f(x

k

; u

k

; v

k

)g � S

exists. Sine fx

k

g is obviously bounded, it follows that, for an adequate subsequene,

there exists i 2 f1; : : : ; ng suh that u

k

i

!1 or v

k

i

!1.

If u

k

i

! 1, by the ontinuity of F , the form of �(x; u; v) and the fat that

f�(x

k

; u

k

; v

k

)g is bounded imposes that v

k

i

! 1. Analogously, v

k

i

! 1 implies

that u

k

i

!1.

Now, sine f�(x

k

; u

k

; v

k

)g is bounded, both fhx

k

� a; u

k

i

2

g and fhb� x

k

; v

k

i

2

g

are bounded. This implies, sine x

k

j

� a

j

� 0 � b

j

� x

k

j

for all j = 1; : : : ; n, that

f(x

k

j

� a

j

)u

k

j

g and f(b

j

� x

k

j

)v

k

j

g are also bounded sequenes. But, sine v

k

i

! 1

and u

k

i

! 1, it follows that x

k

i

� a

i

! 0 and b

i

� x

k

i

! 0. So, b

i

= a

i

, whih is a

ontradition. Therefore, S is bounded, as we wanted to prove. 2

From now on, assume that F has ontinuous �rst partial derivatives. The fol-

lowing result says that, under a row-suÆieny assumption on the Jaobian F

0

(x),

all the stationary points of (15) are solutions of (12){(14).
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Theorem 3. Assume that (x

�

; u

�

; v

�

) is a KKT point of (15) suh that F

0

(x

�

) is

row-suÆient. Then x

�

is a solution of the MCP.

Proof. De�ne

r

�

= F (x

�

)� u

�

+ v

�

:

Sine (x

�

; u

�

; v

�

) is a KKT point of (15), there exist �; �

0

; ; 

0

� 0 suh that

2F

0

(x

�

)

T

r

�

+ 2�hx

�

� a; u

�

iu

�

� 2�hb� x

�

; v

�

iv

�

� � + �

0

= 0;(16)

�r

�

+ 2�hx

�

� a; u

�

i(x

�

� a)�  = 0;(17)

r

�

+ 2�hb� x

�

; v

�

i(b� x

�

)� 

0

= 0;(18)

h�; x

�

� ai = 0; h�

0

; b� x

�

i = 0;(19)

h; u

�

i = 0; h

0

; v

�

i = 0;(20)

a � x

�

� b;(21)

� � 0; �

0

� 0;  � 0; 

0

� 0:(22)

Premultiplying (16) by r

�

i

, we obtain

r

�

i

[F

0

(x

�

)

T

r

�

℄

i

+ r

�

i

(2�hx

�

� a; u

�

iu

�

i

� �

i

) + r

�

i

(�2�hb� x

�

; v

�

iv

�

i

+ �

0

i

) = 0(23)

for all i = 1; : : : ; n. But, by (17)-(20) and (22), we have that

r

�

i

(2�hx

�

� a; u

�

iu

�

i

� �

i

)

= (2�hx

�

� a; u

�

i[x

�

i

� a

i

℄� 

i

)(2�hx

�

� a; u

�

iu

�

i

� �

i

)

= 4�

2

hx

�

� a; u

�

i

2

[x

�

i

� a

i

℄u

�

i

+ 

i

�

i

(24)

and

r

�

i

(�2�hb� x

�

; v

�

iv

�

i

+ �

0

i

)

= (�2�hb� x

�

; v

�

i[b

i

� x

�

i

℄ + 

0

i

)(�2�hb� x

�

; v

�

iv

�

i

+ �

0

i

)

= 4�

2

hb� x

�

; v

�

i

2

[b

i

� x

�

i

℄v

�

i

+ 

0

i

�

0

i

(25)

for i = 1; : : : ; n. Now, by (23)-(25),

r

�

i

[F

0

(x

�

)

T

r

�

℄

i

+ 4�

2

hx

�

� a; u

�

i

2

[x

�

i

� a

i

℄u

�

i

+ 

i

�

i

+4�

2

hb� x

�

; v

�

i

2

[b

i

� x

�

i

℄v

�

i

+ 

0

i

�

0

i

= 0(26)
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for i = 1; : : : ; n. So, by (26), (21) and (22) we have that

r

�

i

[F

0

(x

�

)

T

r

�

℄

i

� 0(27)

for i = 1; : : : ; n. Sine F

0

(x

�

) is row-suÆient, this implies that

r

�

i

[F

0

(x

�

)

T

r

�

℄

i

= 0

for i = 1; : : : ; n. So, by (26), (27), (21) and (22), we obtain:

hx

�

� a; u

�

i = 0; hb� x

�

; v

�

i = 0:(28)

Therefore, by (17) and (18), we have that

r

�

= � � 0; r

�

= 

0

� 0

This implies that r

�

= 0. Therefore, by (28), we have that �(x

�

; u

�

; v

�

) = 0. So, x

�

is a solution of the MCP. 2

Theorem 3 has an independent interest sine it shows that bounded mixed om-

plementarity problems an be solved using bound onstrained minimization algo-

rithms if the Jaobian matrix is row-suÆient. Sine positive-semide�nite matries

and P-matries are always row-suÆient, the sope of this result involves many

interesting problems.

4 Consequenes for the general (unbounded)MCP

Many times one needs to solve a general MCP but only solutions in a bounded set

(say kxk

1

� L) have physial meaning. In this ase, we de�ne




small

= 
 \ fx 2 IR

n

j kxk

1

� Lg

and we onsider the variational inequality problem on 


small

whih, of ourse, is a

bounded MCP. The reformulation (15) of this bounded MCP has, aording to The-

orem 2, bounded level sets. Therefore, any standard box-onstraint minimization

algorithm (see [6, 11℄ and referenes therein) will �nd a stationary point. By Theo-

rem 3, if, at this stationary point, F

0

(x) is row-suÆient, then we have a solution of

the bounded MCP. Moreover, by Theorem 1, if Assumptions 1 and 2 are satis�ed,

the stationary point found by the box-onstraint solver is a solution of the MCP.

Summing up, the whole proess onsists on

1. Introduing the arti�ial bound kxk

1

� L;

9



2. Solving the reformulation (15) of the resulting bounded MCP.

If a solution suh that kxk

1

< L of the original MCP exists and F is monotone

this proess will be neessarily suessful. The same happens if F is linear and its

Jaobian is suÆient.

Let us omment here an interesting onsequene of this state of fats. Suppose

that we need to solve F (x) = 0, F is monotone but singular Jaobians and/or

loal-nonglobal minimizers of kF (x)k

2

2

are present. Take, for example, F : IR! IR,

F (x) = x

3

+1 if x < 0, F (x) = 1 if x > 0. The usual globalization proedure of min-

imizing kF (x)k

2

2

(with or without arti�ial bounds) is dangerous beause, besides

the solution x = �1, all the points x � 0 are loal minimizers of kF (x)k

2

2

. However,

aording to our results, setting arti�ial bounds (say �10 � x � 10 in the example)

and solving (15) using a standard box-onstraint minimizer will neessarily lead to

a solution of F (x) = 0 (x = �1 in the example) and the additional stationary points

of kF (x)k

2

2

are not limit points of the numerial sheme at all.

Row-suÆieny and olumn-suÆieny (Assumption 1) play quite di�erent roles

in the reformulation proess. Row-suÆieny guarantees that stationary points of

the reformulation are solutions of the bounded MCP, whereas Assumption 1 le-

gitimates the bounding proess. The reformulation of the linear omplementarity

problem given in [13℄ has the property that, under row-suÆieny and feasibility,

stationary points are solutions. However, this reformulation does not have bounded

level sets.

Unfortunately, Theorem 1 does not hold, even in the linear ase, if one only

assumes that M is row-suÆient (and not olumn-suÆient). In fat, de�ne

M =

"

0 0

�3 1

#

; q =

"

0

0

#

The matrix M is row-suÆient but not olumn-suÆient. Moreover (0; 0) is a so-

lution of the linear omplementarity problem (LCP) de�ned by M and q. Taking

L = 2, we have that all the points of the form (t; 2) for t 2 [

2

3

; 2℄, are solutions of the

MCP de�ned by F (x) = Mx + q, a = 0; b = (L; : : : ; L). But, learly, these points

are not solutions of the LCP.

5 Final remarks

Up to our knowledge, the reformulation of the MCP presented in this paper is

the only one that satis�es both the bounded-level-set property and the suÆieny
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ondition given by Theorem 3.

In [4℄ it has been proved that the Fisher-Burmeister reformulation of the bounded

MCP given in [8℄ (also with 3n variables) satis�es the bounded-level-set property if

� <

1

2

min f(b

i

� a

i

)

2

; i = 1; : : : ; ng:(29)

Moreover, in [4℄ it was shown that the estimate (29) is sharp, that is, level sets of

the reformulation [8℄ an be unbounded for larger values of �. Curiously, if, in the

original (unbounded) MCP we have b

i

� a

i

=1 for all i = 1; : : : ; n, it is possible to

hoose the arti�ial onstraint kxk

1

� L and the initial point in suh a way that

the orresponding level set is bounded (see [4℄) but this is not possible if b

i

�a

i

<1

for some i.

Our reformulation is ompletely smooth, a property from whih it is possible to

take algorithmi advantage. For example, if F is polynomial, the objetive funtion

�(x; u; v) is polynomial too. Other reformulations reate objetive funtions without

seond derivatives even if the original F (x) is linear. The fat that the reformulation

is a box-onstrained optimization problem is interesting beause we an deal with

that type of problems using algorithms that do not use matrix fatorizations at all,

so that large-sale and non-strutured problems are solvable.

Bounded-level-set results for reformulations of the nonlinear omplementarity

problem have been proved under hypothesis of P�uniformity of F in [15, 18℄. In [5℄

a reformulation of the NCP is introdued for whih the level sets are bounded when

F is monotone and a strit feasibility ondition holds. Therefore, our results of Se-

tions 3 and 4 also represent advanes with respet to existing NCP-reformulations.

Perhaps the bounded-level-set property is not the weakest ondition whih guar-

antees that standard minimization algorithms generate bounded sequenes. In fat,

to �nd weaker suÆient ondidtions for the bounded-sequene property related to

minimization methods with suitable suÆient-derease requirements seems to rep-

resent an interesting �eld of researh on general optimization. While an answer to

the above question is not found, the disovery of reformulations with bounded level

sets plays an important role, both from the theoretial and the pratial point of

view.
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