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Abstra
t

A reformulation of the bounded mixed 
omplementarity problem is intro-
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ed. It is proved that the level sets of the obje
tive fun
tion are bounded

and, under reasonable assumptions, stationary points 
oin
ide with solutions

of the original variational inequality problem. Therefore, standard minimiza-

tion algorithms applied to the new reformulation must su

eed. This result is

applied to the 
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ti�
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1 Introdu
tion

The mixed 
omplementarity problem (MCP) is the �nite dimensional variational

inequality problem (VIP) on a generalized n�dimensional box. See [7, 9, 10℄, among

others. Given F : IR

n

! IR

n

, F = (f

1

; : : : ; f

n

) one wants to �nd x 2 
 su
h that

hF (x); z � xi � 0 8 z 2 
;(1)

where


 = fx 2 IR

n

j a � x � bg(2)

and �1 � a

i

< b

i

� 1 for all i = 1; : : : ; n. (Throughout this paper, as usually,

�1 � x

i

must be read �1 < x

i

and x

i

� 1 must be read x

i

<1.) Solving (1) is

equivalent to �nding x 2 
 su
h that

f

i

(x) � 0 if x

i

= a

i

;(3)

f

i

(x) � 0 if x

i

= b

i

(4)

and

f

i

(x) = 0 if a

i

< x

i

< b

i

:(5)

The 
lassi
al nonlinear 
omplementarity problem (NCP) is the parti
ular 
ase of

the MCP where 
 = fx 2 IR

n

j x � 0g. The problem of solving a nonlinear system

of equations F (x) = 0 is also a mixed 
omplementarity problem with 
 = IR

n

.

We say that the MCP is bounded if �1 < a

i

and b

i

<1 for all i = 1; : : : ; n.

Many times one needs to solve an unbounded MCP, but only solutions belonging

to a smaller set are desired. For example, the original MCP 
an be a nonlinear

system 
oming from a real life appli
ation where only stri
tly positive solutions have

physi
al meaning. In these 
ases, one is tempted to solve the MCP 
orresponding

to the smaller set. Unfortunately, the new (smaller) MCP might have solutions on

the new boundary that are not solutions of the original problem. In Se
tion 2 of

this paper we give suÆ
ient 
onditions under whi
h it 
an be guaranteed that the

solutions of the smaller MCP are also solutions of the original one.

When the 
onditions of Se
tion 2 are satis�ed, the MCP 
an be redu
ed to a

bounded mixed 
omplementarity problem. This fa
t justi�es the analysis of Se
-

tion 3, where the bounded MCP is 
onsidered. In this se
tion, we introdu
e a

smooth reformulation of the bounded MCP. The reformulation of 
omplementarity

and variational inequality problems as optimization problems with simple 
ontraints

(or without 
onstraints at all) has attra
ted the attention of many resear
hers in

the last few years.
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See [1, 2, 3, 8, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23℄ and many others. Reformula-

tions are equivalent to the original problems in the sense that global minimizers are

solutions of the VIP if the obje
tive fun
tion value is null. If, at a global minimizer

of the reformulation, this value is greater than zero, the original problem is not solv-

able. General algorithms for minimization 
an be used for solving the reformulation.

Many times, these algorithms su

eed �nding a global minimizer, therefore, many

problems 
an be solved using reformulations even under diÆ
ult 
onditions related

to the original problem. As the reformulation of the bounded MCP introdu
ed in

[8℄, the reformulation introdu
ed here uses 2n auxiliary unbounded variables. In

spite of this unboundedness, we will prove that the obje
tive fun
tion has bounded

level sets, so that standard minimization algorithms must �nd, at least, stationary

points. In Se
tion 3 we also prove suÆ
ient 
onditions under whi
h stationary points

of the minimization problem are solutions of the bounded MCP.

Consequen
es of the results given in Se
tions 2 and 3 are analyzed in Se
tion 4.

If the suÆ
ient 
onditions of both se
tions hold, the MCP 
an be redu
ed to a

bounded MCP, this MCP 
an be redu
ed to a minimization problem with bounded

level sets and the stationary points of the optimization problem are solutions of the

MCP. Con
lusions of this work are stated in Se
tion 5.

2 Solutions of the MCP in a restri
ted box

Suppose that we have the mixed 
omplementarity problem (3)-(5) but we only want

solutions belonging to a smaller box 


small

� 
. The question addressed in this

se
tion is: would it be a good strategy to solve the MCP de�ned by F and 


small

?

In general, the answer is negative. Take, for example, 
 = IR, F (x) � 1 � x,




small

= fx 2 IR j x � 0g. One of the solutions of the MCP de�ned by 


small

is

x = 0, whi
h is not a solution of the original MCP.

Let us de�ne




small

= fx 2 IR

n

j a

small

� x � b

small

g;

where for all i = 1; : : : ; n,

�1 � a

i

� a

small

i

< b

small

i

� b

i

� 1:

The MCP de�ned by F and 
 will be 
alled MCP(big) in this se
tion. Analo-

gously, the MCP de�ned by F and 


small

will be 
alled MCP(small). Clearly, any

solution of MCP(big) belonging to 


small

must be a solution of MCP(small). We

are going to prove that, under the following Assumptions 1 and 2, the re
ipro
al is

also true.
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The �rst assumption 
on
erns the behavior of F on 


small

. We will prove later

that this assumption generalizes the property of monotoni
ity.

Assumption 1. We assume that, for all x; y 2 


small

,

[f

i

(x)� f

i

(y)℄(x

i

� y

i

) � 0 8 i = 1; : : : n

implies that

[f

i

(x)� f

i

(y)℄(x

i

� y

i

) = 0 8 i = 1; : : : n:

The se
ond assumption says that there exists a solution of the MCP(big) that

belongs to 


small

. Moreover, the 
onstraints of 


small

that are not 
onstraints of 


are not a
tive at this solution. A typi
al 
ase where this situation o

urs is when

one wants to 
ompa
tify the domain 
 adding arti�
ial 
onstraints kxk

1

� L and

we know that kxk

1

< L at some physi
al solution.

Assumption 2. There exists �x 2 


small

su
h that �x is a solution of MCP(big) and,

for all i = 1; : : : ; n,

(a) If a

i

< a

small

i

then �x

i

> a

small

i

;

(b) If b

i

> b

small

i

then �x

i

< b

small

i

.

In the following two lemmas, we prove that Assumption 1 is satis�ed if F is

monotone or if F is an aÆne fun
tion and its Ja
obian is 
olumn-suÆ
ient.

Lemma 1. If F is monotone on 


small

, then it satis�es Assumption 1.

Proof. Let us pro
eed by 
ontradi
tion. If [f

i

(x) � f

i

(y)℄(x

i

� y

i

) � 0 for all

i = 1; : : : ; n and there exists j 2 f1; : : : ; ng su
h that [f

j

(x) � f

j

(y)℄(x

j

� y

j

) < 0

then

hF (x)� F (y); x� yi < 0:

So, F is not monotone. 2

Re
all that a matrix M 2 IR

n�n

is 
alled 
olumn-suÆ
ient if

[Mz℄

i

z

i

� 0 8 i = 1; : : : n only if [Mz℄

i

z

i

= 0 8 i = 1; : : : n:

A matrixM is 
alled row-suÆ
ient if its transpose M

T

is 
olumn-suÆ
ient. Finally,

M is 
alled suÆ
ient if it is 
olumn-suÆ
ient and row-suÆ
ient.
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Lemma 2. If F (x) = Mx+q and M is 
olumn-suÆ
ient, then F satis�es Assump-

tion 1.

Proof. If [f

i

(x)� f

i

(y)℄(x

i

� y

i

) � 0 for all i = 1; : : : ; n, then

[M(x� y)℄

i

(x

i

� y

i

) � 0 8i = 1; : : : ; n:

Sin
e M is 
olumn-suÆ
ient this implies that

[M(x� y)℄

i

(x

i

� y

i

) = 0 8i = 1; : : : ; n:

Therefore, [f

i

(x)� f

i

(y)℄(x

i

� y

i

) = 0 for all i = 1; : : : ; n. 2

The main result of this se
tion is given below. We prove that, under Assump-

tions 1 and 2, all the solutions of MCP(small) are solutions of MCP(big). As a


onsequen
e, if Assumption 1 is satis�ed and we �nd a solution of MCP(small)

whi
h is not a solution of MCP(big), then the hypothesis on the existen
e of a so-

lution satisfying Assumption 2 must be false.

Theorem 1. Assume that F satis�es Assumption 1 and �x satis�es Assumption 2.

Then, every solution of MCP(small) is a solution of MCP(big).

Proof. Let x

�

2 


small

be a solution of MCP(small). We are going to prove �rst

that

[f

i

(x

�

)� f

i

(�x)℄(x

�

i

� �x

i

) � 0 8i = 1; : : : ; n:(6)

This is obviously true when �x

i

= x

�

i

. Let us 
onsider the remaining possibilities.

For all the dedu
tions we will use that both x

�

and �x are solutions of MCP(small):

(1) �x

i

= a

small

i

and x

�

i

> a

small

i

.

This implies that f

i

(�x) � 0, f

i

(x

�

) � 0 and x

�

i

� �x

i

> 0. So, (6) holds.

(2) �x

i

> a

small

i

and x

�

i

= a

small

i

.

This implies that f

i

(�x) � 0, f

i

(x

�

) � 0 and x

�

i

� �x

i

< 0. So, (6) holds.

(3) �x

i

2 (a

small

i

; b

small

i

) and x

�

i

2 (a

small

i

; b

small

i

).

In this 
ase, f

i

(x

�

) = f

i

(�x) = 0. So, (6) holds.

(4) �x

i

= b

small

i

and x

�

i

< b

small

i

.

This implies that f

i

(�x) � 0, f

i

(x

�

) � 0 and x

�

i

� �x

i

< 0. So, (6) holds.
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(5) �x

i

< b

small

i

and x

�

i

= b

small

i

.

This implies that f

i

(�x) � 0, f

i

(x

�

) � 0 and x

�

i

� �x

i

> 0. So, (6) holds.

Therefore, (6) is proved. So, by Assumption 2,

[f

i

(x

�

)� f

i

(�x)℄(x

�

i

� �x

i

) = 0 8 i = 1; : : : ; n:(7)

Now, suppose that x

�

is not a solution of MCP(big). Sin
e x

�

is a solution of

MCP(small), there exists j 2 f1; : : : ; ng su
h that

x

�

j

= a

small

j

> a

j

and f

j

(x

�

) > 0(8)

or

x

�

j

= b

small

j

< b

j

and f

j

(x

�

) < 0:(9)

Suppose that (8) holds. By Assumption 2, sin
e a

small

j

> a

j

, we have that

�x

j

> a

small

j

. Therefore,

x

�

j

� �x

j

< 0:(10)

But �x

j

> a

small

j

implies that f

j

(�x) � 0. So, f

j

(x

�

) � f

j

(�x) > 0. By (10), this


ontradi
ts (7).

Analogously, suppose that (9) holds. By Assumption 2, sin
e b

small

j

< b

j

, we

have that �x

j

< b

small

j

. Therefore,

x

�

j

� �x

j

> 0:(11)

But �x

j

< b

small

j

implies that f

j

(�x) � 0. So, f

j

(x

�

) � f

j

(�x) < 0. By (11), this


ontradi
ts (7).

It follows that x

�

is a solution of MCP(big), as we wanted to prove. 2

3 Reformulation of the bounded MCP

In this se
tion, we 
onsider the bounded MCP, so �1 < a

i

< b

i

< 1 for all

i = 1; : : : ; n.

It is easy to see that (3)-(5) is equivalent to:

F (x)� u+ v = 0;(12)

hx� a; ui = 0; hb� x; vi = 0;(13)

a � x � b; u � 0; v � 0:(14)
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For an arbitrary � > 0 we de�ne the following optimization problem asso
iated

with (12){(14):

Minimize kF (x)� u+ vk

2

2

+ �[hx� a; ui

2

+ hb� x; vi

2

℄

subje
t to a � x � b; u � 0; v � 0:(15)

Obviously, if (x; u; v) is a solution of (15) and the obje
tive fun
tion value is

zero, then x is a solution of (12){(14).

As in [2, 3, 13, 14℄, the optimization problem (15) preserves the same di�eren-

tiability properties of the original MCP. For example, if F has at most quadrati



omponents, (15) 
onsists on the minimization of a quarti
 with simple bounds.

Let us prove now that the level sets asso
iated to this optimization problem are

bounded. We denote, for all x; u; v 2 IR

n

,

�(x; u; v) = kF (x)� u+ vk

2

2

+ �[hx� a; ui

2

+ hb� x; vi

2

℄:

Theorem 2. Assume that F is 
ontinuous. Then, for all � > 0 the set S � IR

3n

de�ned by

S = f(x; u; v) 2 IR

n

j a � x � b; u � 0; v � 0; �(x; u; v) � �g

is bounded.

Proof. Assume, by 
ontradi
tion, that an unbounded sequen
e f(x

k

; u

k

; v

k

)g � S

exists. Sin
e fx

k

g is obviously bounded, it follows that, for an adequate subsequen
e,

there exists i 2 f1; : : : ; ng su
h that u

k

i

!1 or v

k

i

!1.

If u

k

i

! 1, by the 
ontinuity of F , the form of �(x; u; v) and the fa
t that

f�(x

k

; u

k

; v

k

)g is bounded imposes that v

k

i

! 1. Analogously, v

k

i

! 1 implies

that u

k

i

!1.

Now, sin
e f�(x

k

; u

k

; v

k

)g is bounded, both fhx

k

� a; u

k

i

2

g and fhb� x

k

; v

k

i

2

g

are bounded. This implies, sin
e x

k

j

� a

j

� 0 � b

j

� x

k

j

for all j = 1; : : : ; n, that

f(x

k

j

� a

j

)u

k

j

g and f(b

j

� x

k

j

)v

k

j

g are also bounded sequen
es. But, sin
e v

k

i

! 1

and u

k

i

! 1, it follows that x

k

i

� a

i

! 0 and b

i

� x

k

i

! 0. So, b

i

= a

i

, whi
h is a


ontradi
tion. Therefore, S is bounded, as we wanted to prove. 2

From now on, assume that F has 
ontinuous �rst partial derivatives. The fol-

lowing result says that, under a row-suÆ
ien
y assumption on the Ja
obian F

0

(x),

all the stationary points of (15) are solutions of (12){(14).
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Theorem 3. Assume that (x

�

; u

�

; v

�

) is a KKT point of (15) su
h that F

0

(x

�

) is

row-suÆ
ient. Then x

�

is a solution of the MCP.

Proof. De�ne

r

�

= F (x

�

)� u

�

+ v

�

:

Sin
e (x

�

; u

�

; v

�

) is a KKT point of (15), there exist �; �

0

; 
; 


0

� 0 su
h that

2F

0

(x

�

)

T

r

�

+ 2�hx

�

� a; u

�

iu

�

� 2�hb� x

�

; v

�

iv

�

� � + �

0

= 0;(16)

�r

�

+ 2�hx

�

� a; u

�

i(x

�

� a)� 
 = 0;(17)

r

�

+ 2�hb� x

�

; v

�

i(b� x

�

)� 


0

= 0;(18)

h�; x

�

� ai = 0; h�

0

; b� x

�

i = 0;(19)

h
; u

�

i = 0; h


0

; v

�

i = 0;(20)

a � x

�

� b;(21)

� � 0; �

0

� 0; 
 � 0; 


0

� 0:(22)

Premultiplying (16) by r

�

i

, we obtain

r

�

i

[F

0

(x

�

)

T

r

�

℄

i

+ r

�

i

(2�hx

�

� a; u

�

iu

�

i

� �

i

) + r

�

i

(�2�hb� x

�

; v

�

iv

�

i

+ �

0

i

) = 0(23)

for all i = 1; : : : ; n. But, by (17)-(20) and (22), we have that

r

�

i

(2�hx

�

� a; u

�

iu

�

i

� �

i

)

= (2�hx

�

� a; u

�

i[x

�

i

� a

i

℄� 


i

)(2�hx

�

� a; u

�

iu

�

i

� �

i

)

= 4�

2

hx

�

� a; u

�

i

2

[x

�

i

� a

i

℄u

�

i

+ 


i

�

i

(24)

and

r

�

i

(�2�hb� x

�

; v

�

iv

�

i

+ �

0

i

)

= (�2�hb� x

�

; v

�

i[b

i

� x

�

i

℄ + 


0

i

)(�2�hb� x

�

; v

�

iv

�

i

+ �

0

i

)

= 4�

2

hb� x

�

; v

�

i

2

[b

i

� x

�

i

℄v

�

i

+ 


0

i

�

0

i

(25)

for i = 1; : : : ; n. Now, by (23)-(25),

r

�

i

[F

0

(x

�

)

T

r

�

℄

i

+ 4�

2

hx

�

� a; u

�

i

2

[x

�

i

� a

i

℄u

�

i

+ 


i

�

i

+4�

2

hb� x

�

; v

�

i

2

[b

i

� x

�

i

℄v

�

i

+ 


0

i

�

0

i

= 0(26)
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for i = 1; : : : ; n. So, by (26), (21) and (22) we have that

r

�

i

[F

0

(x

�

)

T

r

�

℄

i

� 0(27)

for i = 1; : : : ; n. Sin
e F

0

(x

�

) is row-suÆ
ient, this implies that

r

�

i

[F

0

(x

�

)

T

r

�

℄

i

= 0

for i = 1; : : : ; n. So, by (26), (27), (21) and (22), we obtain:

hx

�

� a; u

�

i = 0; hb� x

�

; v

�

i = 0:(28)

Therefore, by (17) and (18), we have that

r

�

= �
 � 0; r

�

= 


0

� 0

This implies that r

�

= 0. Therefore, by (28), we have that �(x

�

; u

�

; v

�

) = 0. So, x

�

is a solution of the MCP. 2

Theorem 3 has an independent interest sin
e it shows that bounded mixed 
om-

plementarity problems 
an be solved using bound 
onstrained minimization algo-

rithms if the Ja
obian matrix is row-suÆ
ient. Sin
e positive-semide�nite matri
es

and P-matri
es are always row-suÆ
ient, the s
ope of this result involves many

interesting problems.

4 Consequen
es for the general (unbounded)MCP

Many times one needs to solve a general MCP but only solutions in a bounded set

(say kxk

1

� L) have physi
al meaning. In this 
ase, we de�ne




small

= 
 \ fx 2 IR

n

j kxk

1

� Lg

and we 
onsider the variational inequality problem on 


small

whi
h, of 
ourse, is a

bounded MCP. The reformulation (15) of this bounded MCP has, a

ording to The-

orem 2, bounded level sets. Therefore, any standard box-
onstraint minimization

algorithm (see [6, 11℄ and referen
es therein) will �nd a stationary point. By Theo-

rem 3, if, at this stationary point, F

0

(x) is row-suÆ
ient, then we have a solution of

the bounded MCP. Moreover, by Theorem 1, if Assumptions 1 and 2 are satis�ed,

the stationary point found by the box-
onstraint solver is a solution of the MCP.

Summing up, the whole pro
ess 
onsists on

1. Introdu
ing the arti�
ial bound kxk

1

� L;

9



2. Solving the reformulation (15) of the resulting bounded MCP.

If a solution su
h that kxk

1

< L of the original MCP exists and F is monotone

this pro
ess will be ne
essarily su

essful. The same happens if F is linear and its

Ja
obian is suÆ
ient.

Let us 
omment here an interesting 
onsequen
e of this state of fa
ts. Suppose

that we need to solve F (x) = 0, F is monotone but singular Ja
obians and/or

lo
al-nonglobal minimizers of kF (x)k

2

2

are present. Take, for example, F : IR! IR,

F (x) = x

3

+1 if x < 0, F (x) = 1 if x > 0. The usual globalization pro
edure of min-

imizing kF (x)k

2

2

(with or without arti�
ial bounds) is dangerous be
ause, besides

the solution x = �1, all the points x � 0 are lo
al minimizers of kF (x)k

2

2

. However,

a

ording to our results, setting arti�
ial bounds (say �10 � x � 10 in the example)

and solving (15) using a standard box-
onstraint minimizer will ne
essarily lead to

a solution of F (x) = 0 (x = �1 in the example) and the additional stationary points

of kF (x)k

2

2

are not limit points of the numeri
al s
heme at all.

Row-suÆ
ien
y and 
olumn-suÆ
ien
y (Assumption 1) play quite di�erent roles

in the reformulation pro
ess. Row-suÆ
ien
y guarantees that stationary points of

the reformulation are solutions of the bounded MCP, whereas Assumption 1 le-

gitimates the bounding pro
ess. The reformulation of the linear 
omplementarity

problem given in [13℄ has the property that, under row-suÆ
ien
y and feasibility,

stationary points are solutions. However, this reformulation does not have bounded

level sets.

Unfortunately, Theorem 1 does not hold, even in the linear 
ase, if one only

assumes that M is row-suÆ
ient (and not 
olumn-suÆ
ient). In fa
t, de�ne

M =

"

0 0

�3 1

#

; q =

"

0

0

#

The matrix M is row-suÆ
ient but not 
olumn-suÆ
ient. Moreover (0; 0) is a so-

lution of the linear 
omplementarity problem (LCP) de�ned by M and q. Taking

L = 2, we have that all the points of the form (t; 2) for t 2 [

2

3

; 2℄, are solutions of the

MCP de�ned by F (x) = Mx + q, a = 0; b = (L; : : : ; L). But, 
learly, these points

are not solutions of the LCP.

5 Final remarks

Up to our knowledge, the reformulation of the MCP presented in this paper is

the only one that satis�es both the bounded-level-set property and the suÆ
ien
y
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ondition given by Theorem 3.

In [4℄ it has been proved that the Fis
her-Burmeister reformulation of the bounded

MCP given in [8℄ (also with 3n variables) satis�es the bounded-level-set property if

� <

1

2

min f(b

i

� a

i

)

2

; i = 1; : : : ; ng:(29)

Moreover, in [4℄ it was shown that the estimate (29) is sharp, that is, level sets of

the reformulation [8℄ 
an be unbounded for larger values of �. Curiously, if, in the

original (unbounded) MCP we have b

i

� a

i

=1 for all i = 1; : : : ; n, it is possible to


hoose the arti�
ial 
onstraint kxk

1

� L and the initial point in su
h a way that

the 
orresponding level set is bounded (see [4℄) but this is not possible if b

i

�a

i

<1

for some i.

Our reformulation is 
ompletely smooth, a property from whi
h it is possible to

take algorithmi
 advantage. For example, if F is polynomial, the obje
tive fun
tion

�(x; u; v) is polynomial too. Other reformulations 
reate obje
tive fun
tions without

se
ond derivatives even if the original F (x) is linear. The fa
t that the reformulation

is a box-
onstrained optimization problem is interesting be
ause we 
an deal with

that type of problems using algorithms that do not use matrix fa
torizations at all,

so that large-s
ale and non-stru
tured problems are solvable.

Bounded-level-set results for reformulations of the nonlinear 
omplementarity

problem have been proved under hypothesis of P�uniformity of F in [15, 18℄. In [5℄

a reformulation of the NCP is introdu
ed for whi
h the level sets are bounded when

F is monotone and a stri
t feasibility 
ondition holds. Therefore, our results of Se
-

tions 3 and 4 also represent advan
es with respe
t to existing NCP-reformulations.

Perhaps the bounded-level-set property is not the weakest 
ondition whi
h guar-

antees that standard minimization algorithms generate bounded sequen
es. In fa
t,

to �nd weaker suÆ
ient 
ondidtions for the bounded-sequen
e property related to

minimization methods with suitable suÆ
ient-de
rease requirements seems to rep-

resent an interesting �eld of resear
h on general optimization. While an answer to

the above question is not found, the dis
overy of reformulations with bounded level

sets plays an important role, both from the theoreti
al and the pra
ti
al point of

view.
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