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Abstrat

We onsider the boundary value problem for the stationary Navier-

Stokes equations desribing an inhomogeneous inompressible uid in

a two dimensional bounded domain. We show the existene of weak

solution with presribed boundary values for the density in L

1

. The

solution is obtained as a weak limit of smooth solutions with H�older

ontinuous density. We also show the existene of a `trae' for the

density.
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1 Introdution

In this work we are onerned with the motion of an inhomogeneous sta-

tionary inompressible uid in a bounded domain 
 of R

2

(see [1℄, p. 34),

�
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possibly with holes, i.e. 
 is bounded and simply onneted or multion-

neted. We assume that the boundary � of 
 is smooth, so we an write

� = [

n

i=0

�

i

, where �

i

are smooth simple losed urves. The density of mass,

veloity, pressure, visosity (onstant) and the density of an external fore

are denoted, respetively, by �, v = (v

1

; v

2

), p, � and f = (f

1

; f

2

). Let 

i

de-

note the part of �

i

where the uid is inoming, i.e. 

i

def

= fx 2 �

i

; v �n < 0g,

where n denotes the outward unit normal of �. We assume that 

i

is on-

neted, possibly empty. Then we formulate the following boundary value

problem for Navier-Stokes equations:

8

>

<

>

:

�(v � r)v +rp = ��v + �f

div(v) = 0; div(�v) = 0

)

in 


vj� = v

0

; �j

i

= �

i

; i = 0; 1; � � � ; n:

(1)

The quantities v

0

and �

i

live in the spaes L

2

(�) and L

1

(

i

), respetively,

with v

0

satisfying

Z

�

i

v

0

� nds = 0; i = 0; 1; � � � ; n: (2)

The fore density f is assumed to lie in L

2

(
).

N.N. Frolov [2℄ proved the existene (and regularity) of solution of (1)

with smooth density if v

0

2 C

1

(
) and �

i

2 C

�

(
) (� > 0). It is interesting

to obtain solution with disontinuous density, sine we think this an model a

uid with density strati�ation (see [3℄) and from the mathematial point of

view it is important to understand the several solutions (1) have. In this work

we prove the existene of solution of (1) with �

i

2 L

1

(
) and v

0

2 L

2

(
).

In fat, we prove that sequenes of Frolov's solutions have a limit whih is

still a solution of (1). More preisely, by introduing a stream funtion  

suh that

v = r

?

 

def

= (�

� 

�x

2

;

� 

�x

1

)

( x = (x

1

; x

2

) will denote a generi point in 
), the problem (1) in the ase

of smooth solution (�;v) turns into (see [2℄)

(

��

2

 = �div(!( )(r

?

 � r)r ) + div(�f

?

) in 
;

 j� =  

0

j�;

� 

�n

j� =

� 

0

�n

j�;

(3)

where f

?

= (�f

2

; f

1

), n is the unit outward vetor of �, � = n

?

is a unit
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tangent vetor of �,  

0

is an appropriate funtion de�ned in 
 satisfying

� 

0

��

j� = �v

0

� n and

� 

0

�n

j� = v

0

� �; (4)

and ! is a salar funtion of one variable suh that

!( 

0

j

i

) = �

i

; i = 0; � � � ; n: (5)

It is possible to onstrut  

0

suh that the intervals Im( 

0

j

i

) do not overlap

eah other. Indeed, hoose onstants 

i

, i = 0; 1; � � � ; n, appropriately and

de�ne

 

0

(x)

def

= �

Z

x

x

i

v

0

� nds+ 

i

(6)

for x 2 �

i

where x

i

is an arbitrary point of �

i

[2℄. The reason why the images

Im( 

0

j

i

) are intervals of the real line is that  

0

j

i

is a inreasing funtion,

sine (� 

0

=��)j

i

= (�v

0

� n)j

i

> 0. In what follows, frequently we are

going to identify 

i

with Im( 

0

j

i

).

Frolov's solution requires ! to be a H�older ontinuous funtion. We take

a sequene of smooth solutions of (3),  

�

, �

�

= !

�

( 

�

), � > 0, where !

�

on-

verges as � goes to zero to some irregular funtion, say, a Heaviside funtion,

and try to pass to the limit as � goes to zero. We enlighten this idea with

the following simpleminded example.

Example 1 (Constant veloity). If v is onstant, say v = (1; 0) for sim-

pliity, then the system (1) beomes

rp = �f; �

x

1

= 0; (7)

so � is an arbitrary funtion of x

2

. Now we are interested in a limit proess of

(7). The stream funtion in this ase is  = x

2

, up to an additive onstant.

Let's onsider the following `evolution' of (7).

 

�

= x

2

; �

�

= !

�

( 

�

) = !

�

(x

2

);

where !

�

onverges (weakly) to some Heaviside funtion H, say H = �

1

�

(�1;0)

+

�

2

�

(0;1)

for some given onstants �

1

and �

2

. Then  

�

=  = x

2

(onstant

with respet to �) onverges to  and �

�

onverges weakly to the desontinuous

funtion

�(x

1

; x

2

) =

(

�

1

if x

2

< 0

�

2

if x

2

> 0:

It is lear that the pair (�;  ) is a weak solution of (1).
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Sine we deal with nonsmooth density solution, some new issues that not

appear in [2℄ must be onsidered here. For instane, our density � lives in

L

1

only, so we need to prove the existene of trae of � on the boundary



def

= [

n

i=0



i

in some sense and that it equals to the boundary data �

i

; f.

De�nition 1 and Proposition 1 below. The weak formulation of (1) in terms

of the stream funtion  , see (3), onsidered in [2℄, in whih � = !( ),

annot be realized here beause this will ause lak of sense when  takes

values in sets of null measures where � has jumps. Thus our formulation of

weak solution (1) will be ahieved just by integrating by parts the equations

in (1) against solenoidal test funtions.

The method we use to obtain the main estimates to prove Theorem 1

below appears in [4℄ and is also used in [2℄.

Besides this introdution, this paper ontains two more setions. In se-

tion 2 we give the weak formulation for (1) and prove that the weak solution

� of div(�v) = 0 (see De�nition 1) attains its boundary value in mean in the

weak-� sense (see Proposition 1). We note that this is a regularity result type

for �. In setion 3 we state and prove our main result, that is, the existene

of a weak solution (�;v) of the problem (1) in L

1

(
)�H

1

(
).

Notations: Throughout this paper we �x the following notations:

� : �


W

k;p

(
) : The Sobolev spae of order k modelled in L

p

(
)

H

k

(
) : W

k;2

(
)

H

k

0

(
) : The spae of funtions in H

k

(
) whose derivatives up to

order k � 1 have null trae in �

j � j : Lebesgue measure

2 Weak solutions

We start this setion with the de�nition of weak solution of the boundary

value problem for the equation div(�v) = 0.

De�nition 1 Given v 2 H

1

(
) with div(v) = 0, we say that � 2 L

1

(
) is

a weak solution of

(

div(�v) = 0 in 


�j

i

= �

i

2 L

1

(

i

); i = 0; 1; � � � ; n

(8)
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if

Z




�v � r�dx =

Z



i

�

i

(v

0

� n)�ds; (9)

for all � 2 C

1

(
) suh that �j(�=

i

) = 0, i = 0; 1; � � � ; n, where v

0

def

= vj�.

Next we prove that a weak solution of the boundary value problem for the

equation (25), aordingly with the above de�nition, attains the boundary

values �

i

2 L

1

(

i

) in mean in the weak-� topology of L

1

(

i

). More preisely,

we have the following result:

Proposition 1 If � satis�es the above De�nition then

lim

t!0�

1

t

Z

t

0

�(�; �)d� = �

i

;

in the weak-� topology of L

1

(

i

), i = 0; 1; � � � ; n, for any parametrization

(s; t) of a tubular neighborhood of 

i

, where s parametrizes 

i

and t inreases

in the diretion of n. Preisely, we mean that if h(s; t) = 

i

(s) + tn(

i

(s)) is

a loal difeomorphism, where s belongs to some interval I and �1 � t � 1

then

lim

t!0�

Z

I

�

1

t

Z

t

0

�(h(s; �))d�

�

'(s)ds =

Z

I

�

i

(h(s; 0))'(s)ds; (10)

for any ' 2 L

1

(I).

Proof: 1. An straightforward omputation shows that

Z

A

�v � r

x

�dx =

Z

0

t

Z

I

�v �

 

(r

(s;�)

�)[

�(x

1

; x

2

)

�(s; t)

℄

�1

j

�(x

1

; x

2

)

�(s; t)

j

!

dsd�;

where A

def

= fh(s; �); s 2 I; � 2 (t; 0℄g, x = (x

1

; x

2

),

�(x

1

;x

2

)

�(s;t)

is the Jaobian

matrix of the map h and in the right hand side, � � �(s; t) � �(h(s; t)) and

v � v(s; t) � v(h(s; t)). Notie that

[

�(x

1

; x

2

)

�(s; t)

℄

�1

j

�(x

1

; x

2

)

�(s; t)

j =

"

�x

2

�t

�

�x

1

�t

�

�x

2

�s

�x

1

�s

#

:

Then from (9), with test funtions of type � = '(s) (�), we have

Z

0

t

Z

I

�(v

1

�x

2

�t

� v

2

�x

1

�t

)'

0

(s) (�)dsd�

+

Z

0

t

Z

I

�(v

2

�x

1

�s

� v

1

�x

2

�s

)'(s) 

0

(�)dsd�

=

Z



i

�

i

(v

0

� n)' ds:

(11)
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Now taking  (�) a smooth aproximation of the funtion

1

t

(t � �)�

(t;0℄

and

letting t! 0� we get

lim

t!0�

1

t

Z

t

0

Z

I

�(v �N)'(s)dsd� =

Z

I

�

0

(v

0

�N

0

)'(s)ds; (12)

for all ' 2 C

1

(I), where

N � N(s; t) = (�

�x

2

�s

;

�x

1

�s

)

is a normal vetor to the urve 

i;t

= Im( h(�; t) ), and N

0

def

= N(s; 0).

2. In this step we want to show that we an substitute v � N in (12) by

v

0

�N

0

, i.e.

lim

t!0�

1

t

Z

t

0

Z

I

�(v

0

�N

0

)'(s)dsd� =

Z

I

�

0

(v

0

�N

0

)'(s)ds: (13)

Then we write

1

t

Z

t

0

Z

I

�(v

0

�N

0

)(s)'(s)dsd�

=

1

t

Z

t

0

Z

I

�(v �N)(s; t)'(s)dsd�

+

1

t

Z

t

0

Z

I

�[(v

0

�N

0

)(s)� (v �N)(s; t)℄'(s)dsd�

� I + II

and show that II goes to zero as t! 0�. Indeed,

jIIj � jj�jj

1

jj'jj

1

Z

0

t

Z

I

j

�

��

(v �N)(s; �)jdsd�

t!0�

�! 0;

where we have used the following inequality

Z

0

t

jf(s; �)jd� � jtj

Z

0

t

jf(s; �)jd�

for f = v

0

�N

0

� v �N.

3. Now, sine v

0

2 L

2

, it easy to extend (13) for all ' 2 L

2

(I). Besides, by

hypothesis, v

0

�N

0

> 0 on I so we an write I = [

1

k=1

I

k

, where I

k

def

= fs 2

I;v

0

�N

0

> 1=kg. Then taking ' in (13) to be the funtion

'

k

def

= '

1

v

0

�N

0

�

I

k

;
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we get

lim

t!0�

1

t

Z

t

0

Z

I

k

�(s; �)'dsd� =

Z

I

k

�

0

(s)'ds;

for all k = 1; 2; � � � and any ' 2 L

2

(I). Let L to be a measurable subset

of I. Given an arbitrary � > 0, there exists a k suh that jL=L

k

j < �,

L

k

def

= I\ I

k

, beause fI

k

g is an inreasing sequene of measurable subsets of

I whose unioun is I. Then we have

j

1

t

Z

0

t

Z

L

�(s; �)dsd� �

Z

L

�

0

(s)dsj

� j

1

t

Z

0

t

Z

L

k

�(s; �)dsd� �

Z

L

k

�

0

(s)dsj

+(jj�jj

1

+ jj�

0

jj

1

)jL

k

=Lj;

so

lim

t!0�

1

t

Z

0

t

Z

L

�(s; �)dsd� =

Z

L

�

0

(s)ds

for all measurable subset L of I and this is enough to show the weak-� on-

vergene (10).

Remark 1 It is possible to show that the weak-� limit (10) ours without

the mean in t. In fat, for any representative � of � it turns out that the

weak-� limit of �(�; t) exists as t ! 0� and is equal to �

0

. To show this we

�rst notie that from (11) we have that the funtion

f

'

(t)

def

=

Z

I

�(v �N)(s; t)'(s)ds

is a BV funtion, i.e. a funtion of Bounded Variation, sine from (11) we

have that

j

Z

f

'

(t) 

0

(t)dtj � onst:jj jj

1

for any  2 C

1

. Then there exists the limit l

'

def

= lim

t!0�

f

'

(t). Seond, we

show that this limit is equal to

R

I

�

0

(s)'(s)ds by taking in (11) a sequene

of funtion  onverging to �

(

� 1; t

0

) and suh that the sequene of its

derivatives onverges to minus the delta Dira funtion entered at t

0

, for

any Lebesgue point t

0

< 0 of f

'

. Then let t

0

! 0�.

We end this setion with the weak formulations of (1) and (3). Below,

repeated indies mean summation from 1 to 2.
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De�nition 2 A pair (�;v) 2 L

1

(
)�H

1

(
) is said to be a weak solution of

problem (1) if div(v) = 0 in H

1

(
), (�;v) satis�es (9), v = u+a where a =

(a

1

; a

2

) is an appropriate extension of v

0

spei�ed below and u = (u

1

; u

2

) 2

H

1

0

(
), and (�;u) satis�es the integral equations

�

Z




r(u

j

+ a

j

) � r�

j

dx �

Z




�(u

j

+ a

j

)(u+ a) �

��

�x

j

dx

=

Z




�f ��dx;

(14)

for all � = (�

1

;�

2

) 2 C

1

0

(
;R

2

) suh that div (�) = 0. Cf. [4℄ and [2℄.

Remark 2 (Extension of v

0

): Let  

0

be a funtion in H

2

(
) satisfying

the boundary onditions (4),(6), e.g. we an take  

0

as the solution of the

biharmoni equation in 
 with the boundary onditions (4),(6). We take the

extension a of v

0

as follows (f. [4, pp. 27, 120℄ and [2℄): a � a

Æ

= r

?

( 

0

�)

in 
, � � �

Æ

, 0 < Æ � 1, where �

Æ

is a smooth funtion (a twie di�erentiable

uto� funtion) suh that �

Æ

= 1 near � and zero at all points of 
 with

distane from � bigger than Æ; besides,

j�

Æ

(x)j � ; jr�

Æ

(x)j � =Æ; (15)

where  is a onstant independent of x and Æ. The equations (4) are equivalent

to

(r

?

 

0

)j� = v

0

: (16)

Remark 3 For smooth solutions, we write u = r

?

' where ' 2 H

2

0

(
),

and � = !( ), where ! was introdued in (3). Besides, the solenoidal test

funtions � an be written as r

?

� for � 2 C

1

0

(
). Then De�nition 2 turns

into the following De�nition for weak solution of (3).

De�nition 3 A funtion  2 H

2

(
) is said to be a weak solution of problem

(3) if  = ' +  

0;Æ

where  

0;Æ

=  

0

�

Æ

and ' 2 H

2

0

(
), and ' satis�es the

integral equation

�

Z




�('+  

0;Æ

)��dx

�

Z




!('+  

0;Æ

)(r

?

'+r

?

 

0;Æ

)

j

(r

?

'+r

?

 

0;Æ

) �

�(r

?

�)

�x

j

dx

=

Z




!('+  

0;Æ

)f � r

?

�dx;

(17)

for all � 2 C

1

0

(
)
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3 The main results

The goal of this setion is to prove the following result:

Theorem 1 If �

i

2 L

1

(

i

), i = 0; 1; � � � ; n and v

0

2 L

2

(
) then the problem

(1 ) has a weak solution (�;v) in L

1

(
)�H

1

(
).

To prove this result we will use

Theorem 2 If a sequene f(�

�

;v

�

)g of solutions of (1) onverges to (�;v)

in (L

1

(
);weak� �)� (H

1

(
);weak) then (�;v) is also a solution of (1).

Theorem 2 is essentially a orollary of

Proposition 2 The operator

(�;v) 7�!

�

�x

j

(�v

j

v) (18)

is sequenially ontinuous from (L

1

(
);weak � �) � (H

1

(
);weak) into

(H

�1

(
);weak� �).

We will prove �rst this Proposition, then we will prove Theorems 2 and 1.

Proof of Proposition 2: First we notie that the map (18) is well de�ned,

i.e.

�

�x

j

(�v

j

v) 2 H

�1

(
) for any (�;v) 2 L

1

(
) � H

1

(
). Indeed, for any

� 2 H

1

0

(
) we have

jh

�

�x

j

(�v

j

v);�ij

def

= j �

Z




�v

j

v �

��

�x

j

dxj

� jj�jj

L

1

jjvjj

2

L

4

jj�jj

H

1

0

� jj�jj

L

1

jjvjj

2

H

1

jj�jj

H

1

0

;

where  is the onstant of the Sobolev imbeddingH

1

(
)! L

4

(
). It remains

to prove that if f(�

k

;v

k

)g, k = 1; 2; � � �, is any sequene in L

1

(
) �H

1

(
)

suh that �

k

onverges to � in (L

1

(
);weak � �) and v

k

onverges to v in

(H

1

(
);weak) then there exists a subsequene k

1

< k

2

< � � � suh that

lim

i!1

Z




�

k

i

v

k

i

j

v

k

i

�

��

�x

j

dx =

Z




�v

j

v �

��

�x

j

dx: (19)
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(This is intuitive, sine, beause of the imbedding H

1

(
) ! L

4

(
) being

ompat, the left hand side of the above equation is a weak-strong-strong

triple.) We write

Z




�

k

i

v

k

i

j

v

k

i

�

��

�x

j

dx�

Z




�v

j

v �

��

�x

j

dx � I + II + III;

where I

def

=

Z




(�

k

i

� �)v

j

v �

��

�x

j

dx, II

def

=

Z




�

k

i

(v

k

i

j

� v

j

)v �

��

�x

j

dx and III

def

=

Z




�

k

i

v

k

i

j

(v

k

i

� v) �

��

�x

j

dx, and we show that lim

i!1

I; II; III = 0. Indeed,

I = h�

k

i

� �; v

j

v �

��

�x

j

dxi

and v

j

v �

��

�x

j

2 L

1

(
), so lim

i!1

I = 0, sine �

k

onverges to � in

(L

1

(
);weak� �);

jIIj � sup

k

fjj�

k

jj

L

1

gjjv

k

i

j

� v

j

jj

L

4

jjvjj

L

4

jj

��

�x

j

jj

L

2

and jjv

k

i

j

� v

j

jj

L

4

i!1

�! 0 for some subsequene k

1

< k

2

< � � � beause of the

ompat imbedding H

1

(
)! L

4

(
), so lim

i!1

II = 0; analogously,

jIIIj � sup

k

fjj�

k

jj

L

1

gjjvjj

L

4

jjv

k

i

� vjj

L

4

jj�jj

H

1

goes to zero as i goes to 1.

Proof of Theorem 2: We need to hek all the equations in De�nition 2.

Regarding equation (14), the nonlinear term is dealt by Proposition 2 and the

linear terms do not o�er great diÆult to deal with. The equation div(v) = 0

inH

1

(
), i.e.

Z




v�r�dx = 0 for all � 2 C

1

0

(
), is straightforward to verify.

The remainder equation (9) an also be easily veri�ed as follows:

Z




�

�

v

�

� r�dx�

Z




�v � r�dx

� h(�

�

� �) ; v � r�i+

Z




�

�

(v

�

� v) � r�dx

� I + II;

I goes to zero beause v � r� 2 L

1

(
) and II goes to zero passing to some

subsequene beause of the ompat imbedding H

1

(
)! L

2

(
).
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Remark 4 Theorem 2 also holds if we onsider boundary onditions depend-

ing on �, �

�

i

, v

�

0

, suh that �

�

i

onverges to �

i

in weak-� topology of L

1

(

i

)

for i = 0; 1; � � � ; n and v

�

0

onverges to v

0

weakly in L

2

(
).

Proof of Theorem 1: Let f 

�

0

g and f�

�

i

g, � > 0, be sequenes of smooth

funtions suh that f 

�

0

g onverges to  

0

in H

2

(
), where  

0

is de�ned in

Remark 2, and f�

�

i

g onverges to �

i

in the weak-� topology of L

1

(

i

) for

i = 0; 1; � � � ; n, as � goes to zero. Let f!

�

g, � > 0, be a bounded sequene

in L

1

(R) of H�older ontinuous funtions suh that !

�

( 

�

0

j

i

) = �

�

i

, i =

0; 1; � � � ; n. Let also  

�

be a smooth solution of (3) with !

�

in plae of

! and  

�

0

in plae of  

0

. Then, we are going to show that the sequene

f(�

�

;v

�

)g

def

= f(!

�

( 

�

);r

?

 

�

)g has a subsequene that onverges to a weak

solution (�;v) of (1) in (L

1

(
);weak � �)� (H

1

(
);weak).

We �rst notie that sine !

�

is uniformly bounded in L

1

(R), so it is �

�

.

The rest of the proof onsists in proving that fr

?

 

�

g is a bounded sequene

in H

2

(
), so fv

�

g = fr

?

 

�

g is a bounded sequene in H

1

(
). That will be

enough to proof Theorem 1 by Banah-Alaouglu's theorem and Theorem 2.

To estimate fv

�

g we use the tehnique in [4℄ and used in [2℄. The plan is

to take � = '

�

(=  

�

�  

�

0;Æ

) in (17), but there is a diÆulty, that is to deal

with the term

Z




u

�

j

r

?

 

�

0;Æ

�

�u

�

�x

j

dx; u

�

def

= r

?

'

�

; u = (u

1

; u

2

);

beause this is a quadrati term in u

�

. Here it omes the subtle idea in [4℄

of using the arbitrariness of 0 < Æ � 1 in (17). Let us take � = '

�;�

def

=

'

�

+  

�

0;Æ

�  

�

0;�

in (17) where 0 < � � Æ. We remark that '

�;�

is in fat a

solution of (17 ) when we replae  

�

0;Æ

by  

�

0;�

. Notie also that this � 2 H

2

0

(
)

for all 0 < � � Æ, so it is allowed to use it in (17). Then we get

�jj'

�;�

jj

2

2

= ��

Z




� 

�

0;�

�'

�;�

dx �

Z




�

�

v

�

j

(r

?

 

�

0;�

) �

�

�x

j

(r

?

'

�;�

)dx

�

Z




�

�

f � (r

?

'

�;�

) dx;

(20)

where jj � jj

2

stands for the norm jj� � jj

L

2

(
)

in H

2

0

(
) and we used that

Z




�

�

v

�

j

w �

�

�x

j

wdx = 0; w = r

?

'

�;�

;
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sine div(�

�

v

�

) = 0. Indeed,

Z




�

�

v

�

j

w �

�w

�x

j

dx =

1

2

Z




�

�

v

�

j

�

�x

j

jwj

2

dx

1

2

Z




(�

�

v

�

) � r(jwj

2

)dx = �

1

2

Z




(div(�

�

v

�

))jwj

2

dx = 0:

Let N

�;�

def

= jj'

�;�

jj

2

. From (20) and H�older inequalities we obtain

�N

2

�;�

� �jj 

�

0;�

jj

2

N

�;�

+ 

1

�

jjf jj

L

2

+ jj 

�

0;�

jj

2

W

1;4

�

N

�;�

+

1

Z




j(r

?

'

�;�

)

j

(r

?

 

�

0;�

) �

�

�x

j

(r

?

'

�;�

)jdx

� KN

�;�

+ jj!jj

L

1

I

�;�

;

(21)

where 

1

is a onstant that bounds jj�

�

jj

L

1

, K

def

= �jj 

�

0;�

jj

2

+ 

1

(jjf jj

L

2

+

jj 

�

0;�

jj

2

W

1;4

) and I

�;�

is the integral ouring in (21). Notie that

jj 

�

0;�

jj

W

1;4

� 

1

jj 

�

0;�

jj

H

2

= jj 

�

0

�

�

jj

H

2

� (�); (22)

where 

1

is the onstant of the Sobolev imbedding H

2

(
) ! W

1;4

(
) and

(�) is a onstant independent of �. Regarding I

�;�

, de�ning




�

def

= fx 2 
 ; dist(x;�) < �g

and using (15) we have the following estimate:

I

�;�

�



�

Z




�

j(r

?

'

�;�

)

j

 

�

0

j j

�

�x

j

(r

?

'

�;�

)j dx

+

Z




�

j(r

?

'

�;�

)

j

j jr

?

 

�

0

j j

�

�x

j

(r

?

'

�;�

)j dx

�



1

�

jjr

?

'

�;�

jj

L

2

(


�

)

jjr

?

'

�;�

jj

H

1

(


�

)

+jjr

?

'

�;�

jj

L

4

(


�

)

jj 

�

0

jj

W

1;4

(


�

)

jjr

?

'

�;�

jj

H

1

(


�

)

;

(23)

where 

1

is a onstants that bounds jj 

�

0

jj

L

1

� onst.jj 

�

0

jj

H

2

. Now, let us

suppose that f'

�

g � f'

�;Æ

g is not a bounded sequene in H

2

0

(
). Then there

exists a subsequene f'

�

k

g suh that N

k

def

= jj'

�

k

jj

2

goes to in�nity as k !1.

However,

z

k

def

=

u

�

k

N

k

; u

�

k

def

= r

?

'

�

k

is a bounded sequene in H

1

0

(
), then is preompat in L

4

(
). Thus, up

to passing to some subsequene, there exists a z 2 H

1

0

(
) suh that fz

k

g
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onverges to z: weakly in H

1

0

(
) and strongly in L

4

(
). We laim that the

same holds for

z

k;�

def

=

u

�

k

;�

N

k;�

; u

�

k

;�

def

= r

?

'

�

k

;�

;

i.e. fz

k;�

g also onverges to z (independent of �) as k !1: weakly in H

1

0

(
)

and strongly in L

4

(
). Proof:

jjz

k;�

� z

k

jj

H

1

= jj(

u

�

k

N

k;�

�

u

�

k

N

k

) +

r

?

( 

�

k

0;Æ

� 

�

k

0;�

)

N

k;�

jj

H

1

� j

1

N

k;�

�

1

N

k

j jju

�

k

jj

H

1

+

1

N

k;�

jj 

�

k

0;Æ

�  

�

k

0;�

jj

H

2

=

jN

k;�

�N

k

j

N

k;�

jjz

k

jj

H

1

+

1

N

k;�

jj 

�

k

0;Æ

�  

�

k

0;�

jj

H

2

and

jN

k;�

�N

k

j = j jj'

�

k

;�

jj

2

� jj'

�

k

jj

2

j

� jj'

�

k

;�

� '

�

k

jj

2

= jj 

�

k

0;�

�  

�

k

Æ

jj

2

= jj 

�

k

0

(�

�

� �

Æ

)jj

2

� (�; Æ);

where (�; Æ) is a onstant independent of �. Besides, lim

k!1

N

k;�

= lim

k!1

N

k

=

1. Thus fz

�

k

;�

� z

k

g onverges strongly in H

1

0

(
) to zero as k !1.

Next, �x � for a while in (21), divide (21) by N

2

�

k

;�

and let k goes to

in�nity. Then, using (22), (23) and the above laim, we obtain

� � 

2



1

�

jjzjj

L

2

(


�

)

+ 

2

jjzjj

L

4

(


�

)

jj 

0

jj

W

1;4

(


�

)

; (24)

where 

2

is a onstant that bounds 

1

jjz

�

k

;�

jj

H

1

. Now, by a Poinar�e type

inequality, we have that

1

�

jjzjj

L

2

(


�

)

� 

3

jjzjj

H

1

(


�

)

;

where 

3

is a onstant independent of �. Then we get a ontradition by

letting � goes to zero in (24).

We �nish this paper with the following remark.

Remark 5 For smooth solution, the equation

div(�v) = 0 (25)

is equivalent to r� �v = 0, sine the uid is inompressible (div(v) = 0), so �

is onstant along the integral urves of v. For nonsmooth �, the equation (25)
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is seen in the weak sense and we an easily hek the following by Green's

theorem: If v is ontinuous and � has a jump along a urve S and is smooth

on both sides of S then

Z

S

�[�℄v � ds = 0;

for all test funtion �, where [�℄ is the jump of � along S, so

[�℄(v � n) = 0

(shok ondition)

(26)

where n is a unit normal to S. (The �rst equation in (1) yields a shok

ondition for the pressure p; see x1 in [5℄.) Sine [�℄ 6= 0, the shok ondition

(26) implies that v is tangent to S, so S is in fat a integral urve of v. In

onlusion, jumps on � an only our on integral urves of v. With respet

to the question whether � is onstant along integral urves of v, we should

mention that this is true even for irregular divergent free vetor �elds v,

i.e. v 2 H

1

(
) with div(v) = 0, treated by DiPerna{Lions in [6℄ (see also

[7℄). Aordingly, the only solution of the initial value problem for transport

equation

(

u

t

� v � r

x

u = 0 in R� 


u(�; 0) = �

(27)

in the spae L

1

(R;L

1

(
)) is given by u(x; t) = �(X(x; t)), where X 2

C(R;L

1

(
)) is the ux of v, whih satis�es X(x; �) 2 C

1

(
) and

(

�X(x;t)

�t

= v(X(x; t))

X(x; 0) = x

(28)

for a.e. x 2 
 [6, 7℄. Now, our solution � of (25) is obviously a stationary

solution of (27), so �(X(x; t)) � �(x) for a.e. x 2 
, by uniqueness. We

remark that although � lives only in L

1

(
) the omposition �ÆX(�; t) makes

sense for all t beause X(�; t) is Lebesgue measure invariant for all t, sine

div(v) = 0 [6, 7℄. Now, for regular vetor �elds, say v 2 W

1;p

(
) with p > 2,

one an show that there is a neighborhood U in 
 of eah 

i

suh that all

x 2 U has a bakward exit time of 
, i.e. there exists a t

x

< 0 suh that

X(x;�t

x

) 2 � and X(x;�t) 2 
 if t

x

< t � 0 [8℄. Then the boundary datum

�

i

is ahieved along the integral urves of v, i.e.

lim

t!t

x

+

�(X(x;�t)) = �

i

(X(x;�t

x

)) (29)
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for all x 2 U . We do not know if trajetories of irregular vetor �elds have an

exit time. Another open question, as far as we know, is if a smooth boundary

datum v

0

, say v

0

2 C

1

, with �

i

2 L

1

, yields a smooth (or ontinuous)

veloity v.
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