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Abstract

We consider the boundary value problem for the stationary Navier-
Stokes equations describing an inhomogeneous incompressible fluid in
a two dimensional bounded domain. We show the existence of weak
solution with prescribed boundary values for the density in L*°. The
solution is obtained as a weak limit of smooth solutions with Holder
continuous density. We also show the existence of a ‘trace’ for the
density.
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1 Introduction

In this work we are concerned with the motion of an inhomogeneous sta-
tionary incompressible fluid in a bounded domain Q of R? (see [1], p. 34),
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possibly with holes, i.e. 2 is bounded and simply connected or multicon-
nected. We assume that the boundary I' of € is smooth, so we can write
I'=U? ,[';, where I'; are smooth simple closed curves. The density of mass,
velocity, pressure, viscosity (constant) and the density of an external force
are denoted, respectively, by p, v = (v1,v2), p, v and £ = (f1, f2). Let 7; de-
note the part of ['; where the fluid is incoming, i.e. ; o {z €l;; v-n<0},
where n denotes the outward unit normal of I'. We assume that ; is con-
nected, possibly empty. Then we formulate the following boundary value
problem for Navier-Stokes equations:

div(v) =0, div(pv) =0
V|F:V0, p|%:pl7 i:0717"'7n'

p(v-V)v+Vp = vAv+pf } w0 0

The quantities vy and p; live in the spaces L?(T") and L*(v;), respectively,
with vq satisfying

/ vo-nds =0, i=01,---n 2)
I

The force density f is assumed to lie in L*(Q).

N.N. Frolov [2] proved the existence (and regularity) of solution of (1)
with smooth density if vo € C'(Q) and p; € C*(Q) (a > 0). It is interesting
to obtain solution with discontinuous density, since we think this can model a
fluid with density stratification (see [3]) and from the mathematical point of
view it is important to understand the several solutions (1) have. In this work
we prove the existence of solution of (1) with p; € L*®(Q2) and v, € L*().
In fact, we prove that sequences of Frolov’s solutions have a limit which is
still a solution of (1). More precisely, by introducing a stream function

such that o o
— i 2 2
M 77b ( 81‘2 ’ 81‘1 )
(2 = (1, 13) will denote a generic point in €2), the problem (1) in the case
of smooth solution (p, v) turns into (see [2])

{ vA%) = —div(w(¥) (VY - V)VY) +div(pft) in Q, 3)
77/)|F:77/)0|F7 %“—‘:%“—‘7

where £+ = (—f5, f1), n is the unit outward vector of I', 7 = nt is a unit
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tangent vector of I', ¢y is an appropriate function defined in €2 satisfying

Iy

o
2 = —vy - d —=|I'=vy,- 4
5, | Vorn and — | Vo - T, (4)
and w is a scalar function of one variable such that
It is possible to construct ¢ such that the intervals Im( 1y|7y; ) do not overlap
each other. Indeed, choose constants ¢;, ¢ = 0,1,---,n, appropriately and
define "
o(z) ¥ —/ vo - nds +¢; (6)

Z;

for x € I'; where z; is an arbitrary point of ['; [2]. The reason why the images
Im(1)y|v; ) are intervals of the real line is that ¢|y; is a increasing function,
since (0vo/07)|v: = (—vo - n)|y; > 0. In what follows, frequently we are
going to identify ~; with Im( ¢g|v; ).

Frolov’s solution requires w to be a Holder continuous function. We take
a sequence of smooth solutions of (3), ¥¢, p* = w(¢°), € > 0, where w® con-
verges as € goes to zero to some irregular function, say, a Heaviside function,
and try to pass to the limit as € goes to zero. We enlighten this idea with
the following simpleminded example.

Example 1 (Constant velocity). If v is constant, say v = (1,0) for sim-
plicity, then the system (1) becomes

Vo =pf, pe =0, (7)

so p is an arbitrary function of xo. Now we are interested in a limit process of
(7). The stream function in this case is 1) = xa, up to an additive constant.
Let’s consider the following ‘evolution’ of (7).

V=, P =w(Y) = w(22),
where w® converges (weakly) to some Heaviside function H, say H = p1X(—s0,0)+
P2X(0,00) for some given constants py and py. Then ¢ = ¢ = xy (constant
with respect to €) converges to 1 and p¢ converges weakly to the descontinuous
function

_ p1 if w3 <0
p(l‘l,xZ) - { P2 Zfl‘Q > 0.

It is clear that the pair (p,) is a weak solution of (1).
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Since we deal with nonsmooth density solution, some new issues that not
appear in [2] must be considered here. For instance, our density p lives in

L only, so we need to prove the existence of trace of p on the boundary

0 def Uiy in some sense and that it equals to the boundary data p;; cf.

Definition 1 and Proposition 1 below. The weak formulation of (1) in terms
of the stream function v, see (3), considered in [2], in which p = w(¥),
cannot be realized here because this will cause lack of sense when v takes
values in sets of null measures where p has jumps. Thus our formulation of
weak solution (1) will be achieved just by integrating by parts the equations
in (1) against solenoidal test functions.

The method we use to obtain the main estimates to prove Theorem 1
below appears in [4] and is also used in [2].

Besides this introduction, this paper contains two more sections. In sec-
tion 2 we give the weak formulation for (1) and prove that the weak solution
p of div(pv) = 0 (see Definition 1) attains its boundary value in mean in the
weak-* sense (see Proposition 1). We note that this is a regularity result type
for p. In section 3 we state and prove our main result, that is, the existence
of a weak solution (p, v) of the problem (1) in L>(Q) x H(Q).

Notations: Throughout this paper we fix the following notations:

r. o0Q
Q) :  The Sobolev space of order £ modelled in L?({2)
HE(Q) : WEA(Q)

Q) : The space of functions in H*(Q2) whose derivatives up to
order £ — 1 have null trace in I'
|-| : Lebesgue measure

2 Weak solutions

We start this section with the definition of weak solution of the boundary
value problem for the equation div(pv) = 0.

Definition 1 Given v € H'(Q) with div(v) = 0, we say that p € L®(Q) is
a weak solution of

(8)

{ div(pv) =0 in Q
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if
/ pv - Vodx = / pi(vo - n)Pds, 9)
Q Vi

for all ® € CY(Q) such that ¢|(I'/v;) = 0,i=0,1,---,n, where vo & v|I.

Next we prove that a weak solution of the boundary value problem for the
equation (25), accordingly with the above definition, attains the boundary
values p; € L*(;) in mean in the weak-x topology of L*(y;). More precisely,
we have the following result:

Proposition 1 If p satisfies the above Definition then
.1t
tLHg{ ) p(+, T)dT = p;,

in the weak-x topology of L*(v;), i = 0,1,--+,n, for any parametrization
(s,t) of a tubular neighborhood of ~y;, where s parametrizes y; and t increases
in the direction of n. Precisely, we mean that if h(s,t) = vi(s) +tn(y(s)) is
a local difeomorphism, where s belongs to some interval I and —1 €< t < 1

then
tim [ (5 [ othts,mdr) e(s)ds = [ phis. 0)p(s)ds,  (10)

for any ¢ € L*(I).

Proof: 1. An straightforward computation shows that

/APV-V:C@dx:/tO/IpV' ((V(s,ﬂ )l (8:121,:16)2)] ' (?l’f;)I) dsdr,

where A ¥ {h(s,7);s € LT € (t,0]}, x = (x1, 22), 85;(18,;:)2) is the Jacobian

matrix of the map h and in the right hand side, p = p(s,t) = p(h(s,t)) and
v = v(s,t) = v(h(s,t)). Notice that

[8(1‘171‘2)] | (x17x2)| — l 88;15; _(;Zaitl ] .
8(8,t) 8( ) 852 3_51

Then from (9), with test functions of type ® = ¢(s)1(7), we have

/ /1 (0152 — v ) ¢ (s)¥(r)dsdr
—|—/ /I 02%—1) axz)(p(s)w/(T)deT (11)
pz(VO )QOQ/JCZS

i
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Now taking ¢(7) a smooth aproximation of the function (¢t — 7)x (0 and
letting t — 0— we get

lim t/ /p v-N)g dsdT—/pO vo - No)p(s)ds, (12)

t—0—
for all o € C*(I), where

Oxy Ox
N= N(S,t) = (_8—827 8—81)

is a normal vector to the curve v;, = Im(h(-,t)), and Ny o N(s,0).

2. In this step we want to show that we can substitute v - N in (12) by
Vo NO; i.e.

HO* t/ / vo - No)y deT—/pg vo - Np)p(s)ds. (13)
Then we write
//I vo - No)(s)p(s)dsdr
= / /I v - N)(s,t)p(s)dsdr

i //1 vo - No)(s) — (v- N)(s,1)](s)dsdr
= I1+11

and show that /1 goes to zero as t — 0—. Indeed,

0
11 < lpllslleleo | [ 180 N)(s.7) dsdr

2
o

where we have used the following inequality

0 0
[ 15t oldr <t [ 1 (s, 7)ldr
t t
for f =vy-Ny—v-N.

3. Now, since vy € L?, it easy to extend (13) for all p € L*(I). Besides, by
hypothesis, v - Ny > 0 on I so we can write I = U2, I, where I def {s €
I;vo - No > 1/k}. Then taking ¢ in (13) to be the function

def 1
Pk (pVo'No

XTIy »
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we get

1ot
Jm = [ pls.r)edsdr = [ m(s)eds,

for all kK = 1,2,--- and any ¢ € L*(I). Let L to be a measurable subset
of I. Given an arbitrary € > 0, there exists a k such that |L/L;| < e,

def . . .
Li, = 1IN I, because {I;} is an increasing sequence of measurable subsets of
I whose unioun is I. Then we have

|// STdeT—/pO( )ds|
< |// STdeT—/ o(s)ds|

+(Ilolloo + 170l ) L/ L1,

.10
tl_l)ron_g/t /Lp(s,T)dsdT—/Lpo(s)ds

for all measurable subset L of I and this is enough to show the weak-x con-
vergence (10). H

SO

Remark 1 It is possible to show that the weak-+ limit (10) occurs without
the mean in t. In fact, for any representative p of p it turns out that the
weak-x limit of p(-,t) exists as t — 0— and is equal to py. To show this we
first notice that from (11) we have that the function

£ [ oy N) (s, )p(s)ds

is a BV function, i.e. a function of Bounded Variation, since from (11) we
have that

| [ £t (t)dt] < const. ||«

for any o € C*. Then there exists the limit I, L Jimy o fo(t). Second, we
show that this limit is equal to [7po(s)p(s)ds by taking in (11) a sequence
of function 1) converging to x( — 00,ty) and such that the sequence of its
deriwatives converges to minus the delta Dirac function centered at ty, for
any Lebesgue point ty < 0 of f,. Then let tg — 0—.

We end this section with the weak formulations of (1) and (3). Below,
repeated indices mean summation from 1 to 2.
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Definition 2 A pair (p,v) € L®(Q) x HY(Q) is said to be a weak solution of
problem (1) if div(v) =0 in H (), (p,v) satisfies (9), v.=u+a where a =
(a1,a9) is an appropriate extension of vy specified below and u = (uy, uy) €
H}(Q), and (p,u) satisfies the integral equations

I//QV(Uj + a;) - V®,dx —/ p(uj +aj)(u+a) - 22dx

Ox;j (14)
= [ pf - ®dx,
Q

for all ® = (®,, ®y) € C°(% R?) such that div(®) = 0. Cf. [4] and [2].

Remark 2 (Extension of vy): Let 1)y be a function in H%({2) satisfying
the boundary conditions (4),(6), e.g. we can take )y as the solution of the
biharmonic equation in © with the boundary conditions (4),(6). We take the
extension a of vy as follows (cf. [4, pp. 27, 120] and [2]): a = a; = V*(¢)y()
in Q, ( =¢;, 0 <0< 1, where (5 is a smooth function (a twice differentiable
cutoff function) such that (; = 1 near I' and zero at all points of  with
distance from I' bigger than J; besides,

G <e [VG(@)] < /s, (15)

where ¢ is a constant independent of x and §. The equations (4) are equivalent
to
(VE1o)|T = . (16)

Remark 3 For smooth solutions, we write u = V4t where ¢ € HZ(Q),
and p = w(v), where w was introduced in (3). Besides, the solenoidal test
functions ® can be written as V0 for 6 € C°(QQ). Then Definition 2 turns
into the following Definition for weak solution of (3).

Definition 3 A function ¢ € H*(Q) is said to be a weak solution of problem
(3) if ¥ = ¢ + o5 where o5 = (s and ¢ € HE(Q), and ¢ satisfies the

integral equation
v / Alp -+ ths) Ada
—/Qw(w + P0,5) (Ve + Vg 5) i (VEe + Vi) -
= /Qw(go + o 5)f - V4E0dz,

for all 0 € C§°(Q)

o(V40)
al'j

de  (17)
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3 The main results
The goal of this section is to prove the following result:

Theorem 1 If p; € L™(v;), i =0,1,--+,n and vy € L*(2) then the problem
(1 ) has a weak solution (p,v) in LOO(Q) x H'(Q).

To prove this result we will use

Theorem 2 If a sequence {(p*,v¢)} of solutions of (1) converges to (p, V)
n (L>(2), weak — x) x (H*(2), weak) then (p,v) is also a solution of (1).

Theorem 2 is essentially a corollary of

Proposition 2 The operator

0

(p,v) — az; (pv;v) (18)

is sequencially continuous from (L°°(Q), weak — %) x (HY(Q), weak) into
(H7Y(Q), weak — *).

We will prove first this Proposition, then we will prove Theorems 2 and 1.

Proof of Proposition 2: First we notice that the map (18) is well defined,
ie. (pv] v) € HY(Q) for any (p,v) € L*(Q) x H'(Q). Indeed, for any
®c Hl(Q) we have

def
G (oov). @) | = [ pov- S2de]

< lpllzoe 1174111 |1y
< cllplle=[v[IE 1@l

where ¢ is the constant of the Sobolev imbedding H'(Q) — L*(2). It remains
to prove that if {(p*,v¥)}, k = 1,2, is any sequence in L>(Q) x H*(Q)
such that p* converges to p in (L>(€2), weak — x) and v* converges to v in
(H'(£2), weak) then there exists a subsequence k; < ky < --- such that

lim [ pY vkvZ —d:r /pv] -d. (19)

1—ooJ O
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(This is intuitive, since, because of the imbedding H'(Q2) — L*(Q) being
compact, the left hand side of the above equation is a weak-strong-strong
triple.) We write

_ 0P 0P
/ pkivf’vki-—d:r—/ pv;v e —dx =1+ 11+ 111,
Q 0w Q 0w

where T 4 /
Q

/ p’“ivf" (vF —v) - 224y, and we show that lim; o 1, 11,111 = 0. Indeed,
Q0 J

(pFi — p)vjv - gT‘I;dx, 7 /kai (v;Cz — )V - gT‘I;dx and 177 %

P
I =" —puvv —d
(= g
and wv;v - % € LYQ), so lim; ,oo/ = 0, since p* converges to p in
J
(L*°(Q2), weak — x);
oP
k ki
(1] < sup{[[p™[ = Hlvy* = vj||L4||V||L4||8—ijIL2
and ||vfl — 0|4 2% 0 for some subsequence k; < ko < --- because of the

compact imbedding H'(Q) — L*(Q), so lim;_,, IT = 0; analogously,

[IIT] < Sgp{lIp'“IILoo}IIVIIMIIV'“ = V||| @]

goes to zero as ¢ goes to co.

Proof of Theorem 2: We need to check all the equations in Definition 2.
Regarding equation (14), the nonlinear term is dealt by Proposition 2 and the
linear terms do not offer great difficult to deal with. The equation div(v) = 0

in H'(Q), i.e. / v-V&dz = 0 for all ® € C§°(Q), is straightforward to verify.
Q

The remainder equation (9) can also be easily verified as follows:
/ pve - Vodx — / pv - Vodx
Q Q

(=) v VO + [ (v - ) VOda
=1+1I;

I goes to zero because v - V® € L'(Q) and IT goes to zero passing to some
subsequence because of the compact imbedding H'(Q2) — L*(Q2). W
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Remark 4 Theorem 2 also holds if we consider boundary conditions depend-
ing on €, pS, v§, such that p5 converges to p; in weak-x topology of L (~;)
fori=0,1,---,n and v§ converges to vy weakly in L*().

Proof of Theorem 1: Let {¢§} and {pt}, € > 0, be sequences of smooth
functions such that {¢§} converges to ¢y in H?(f2), where 1)y is defined in
Remark 2, and {p$} converges to p; in the weak-* topology of L*(~;) for

i =0,1,---,n, as € goes to zero. Let {w}, ¢ > 0, be a bounded sequence
in L*(R) of Hélder continuous functions such that w®(¢§|y;) = pS, @ =
0,1,---,n. Let also ¢ be a smooth solution of (3) with w® in place of

w and ©§ in place of 1y. Then, we are going to show that the sequence

{(p°,v)} & {(w(¥9), VEy)} has a subsequence that converges to a weak
solution (p,v) of (1) in (L*®(£2), weak — ) x (H(£2), weak).

We first notice that since w® is uniformly bounded in L>*(R), so it is p°.
The rest of the proof consists in proving that {V+¢*¢} is a bounded sequence
in H?(2), so {v’} = {V+¢°} is a bounded sequence in H*(2). That will be
enough to proof Theorem 1 by Banach-Alaouglu’s theorem and Theorem 2.

To estimate {v‘} we use the technique in [4] and used in [2]. The plan is
to take 0 = ¢ (= ¢° — 1§ 5) in (17), but there is a difficulty, that is to deal
with the term

ou
ex7L, €
/QujV Q/JO"S. ox;

J

€

def 1
e U € J—
de, u®=V—¢ u=(uy,us),

because this is a quadratic term in u. Here it comes the subtle idea in [4]

of using the arbitrariness of 0 < § < 1 in (17). Let us take 0 = @7 o

@+ 5 s — 5, in (17) where 0 < n < 0. We remark that ¢“7 is in fact a
solution of (17 ) when we replace § 5 by 1 ,. Notice also that this § € Hg(Q)
for all 0 < n < 9, so it is allowed to use it in (17). Then we get

lgllg = —v [ A, Ap e — [ pus(VEg,) - o (Vs )
[ pE (V) da,
Q
where || - ||2 stands for the norm [|A - ||z in HF(Q2) and we used that

0
/ pusw - —wdr =0, w= V4o,
Q 0w
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since div(pv®) = 0. Indeed,
/ PIUSW - g%‘;d:r = %/prv;:a%j|w|2d:r
L (o) V(iwP)de = ~1 [ (div(pv)wlde = 0.

Let N, def || e

|2. From (20) and Holder inequalities we obtain

YN, < V][0 2 Ne + o (1E]]2 + 1106, 12 10) Ny
tow [ (VEEM; (1, - 2 (Ve lde (21)
= KN, + ||lw||L=]ey,

where ¢y, is a constant that bounds ||p||, K & v[|[Y6,1l2 + coo([IE]lz2 +

146,41 [31.4) and I, is the integral occuring in (21). Notice that

16,0l lwia < ealltnylluz = [[oGl a2 < c(n), (22)

where ¢; is the constant of the Sobolev imbedding H?*(2) — WH*(Q2) and
c¢(n) is a constant independent of e. Regarding I ,, defining

Q, € {z e Q; dist(z,T) < n}

and using (15) we have the following estimate:

C
lon < = [ (T4 8 (Vo) d

n

Lopemny. Loel |0 L, en
—Cl—c/ﬂn|(v ")l V=95l |3xj(v ") | dx 23)
||V, 170"

IN

|11 (52,
+c| Vo ey 1§ lwra,) IV a1y,

where ¢; is a constants that bounds c¢||¢)§||L~ < const.||t§||z2. Now, let us
suppose that {¢¢} = {p°} is not a bounded sequence in HZ(2). Then there
exists a subsequence {p%} such that Ny, 2 ||¢||» goes to infinity as k — oco.
However,
k def uk e def oL ¢
z" = — u“* = Vop*
N’ ¥
is a bounded sequence in H{(Q), then is precompact in L*(2). Thus, up
to passing to some subsequence, there exists a z € H}(2) such that {z*}
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converges to z: weakly in H;(Q2) and strongly in L*(Q2). We claim that the

same holds for _—
k,n def u-" er,n def €x,T)
27! = —— u’ = Vol

i.e. {z""} also converges to z (independent of ) as k — oco: weakly in HZ(€2)
and strongly in L*(Q2). Proof:

VL (eks =gk

||Z 777—Zk||H1—||( o ]\;:)_FTHHI
<y — % ||u€k||Hl+Nk |40 %,nHH2
N —
=‘—"—||zk|| L 0 — el
and
[Nk — Nel =[]z = [0 ]]2 | )
< ™" — o lo = |15l — L5t
= |

96" (G = Go)ll2 < e, 9),

where ¢(, §) is a constant independent of e. Besides, limy_,oo Ny, = limy_, o N =
0o. Thus {z%" — z*} converges strongly in HZ () to zero as k — oo.m

Next, fix n for a while in (21), divide (21) by NZ , and let k& goes to
infinity. Then, using (22), (23) and the above claim, we obtain

C
v < C2g1 2] |22, + c2¢l|2]| e, |1Yollwraq,), (24)

where ¢y is a constant that bounds cu||z%"||z:. Now, by a Poincaré type
inequality, we have that

1
p 2] |20, < esll2]| a1,

where c¢3 is a constant independent of 1. Then we get a contradiction by
letting 7 goes to zero in (24). B

We finish this paper with the following remark.
Remark 5 For smooth solution, the equation
div(pv) =0 (25)

is equivalent to Vp-v = 0, since the fluid is incompressible (div(v) = 0), so p
is constant along the integral curves of v. For nonsmooth p, the equation (25)
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is seen in the weak sense and we can easily check the following by Green’s
theorem: If v is continuous and p has a jump along a curve § and is smooth
on both sides of S then

/SCI)[p]v ~ds =0,

for all test function ®, where [p| is the jump of p along S, so

[pl(v-m) =0
(shpock condition) (26)

where n is a unit normal to S. (The first equation in (1) yields a shock
condition for the pressure p; see §1 in [5].) Since [p] # 0, the shock condition
(26) implies that v is tangent to S, so S is in fact a integral curve of v. In
conclusion, jumps on p can only occur on integral curves of v. With respect
to the question whether p is constant along integral curves of v, we should
mention that this is true even for irregular divergent free vector fields v,
ie. v.e H'Y(Q) with div(v) = 0, treated by DiPerna—Lions in [6] (see also
[7]). Accordingly, the only solution of the initial value problem for transport
equation
uy—v-Vyu=0 in Rx

{ u(-,0)=p (27)
in the space L®(R;LY(2)) is given by u(z,t) = p(X(z,t)), where X €
C(R; L*(€2)) is the flux of v, which satisfies X (z,-) € C*(2) and

(28)

for a.e. x € Q [6, 7). Now, our solution p of (25) is obviously a stationary
solution of (27), so p(X(z,t)) = p(z) for a.e. x € Q, by uniqueness. We
remark that although p lives only in L*(€2) the composition po X (-, t) makes
sense for all ¢ because X (-, t) is Lebesgue measure invariant for all ¢, since
div(v) =0 [6, 7]. Now, for regular vector fields, say v € W?(Q) with p > 2,
one can show that there is a neighborhood U in Q of each ~; such that all
x € U has a backward exit time of €2, i.e. there exists a £, < 0 such that
X(z,—t,) € I'and X (x,—t) € Qift, <t <0 [8]. Then the boundary datum
pi is achieved along the integral curves of v, i.e.

lim p(X(z,~t)) = pi(X(z, 1)) (29)

t—te+
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for all x € U. We do not know if trajectories of irregular vector fields have an
exit time. Another open question, as far as we know, is if a smooth boundary
datum vy, say vo € C*®, with p; € L™, yields a smooth (or continuous)
velocity v.
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