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Abstra
t

We 
onsider the boundary value problem for the stationary Navier-

Stokes equations des
ribing an inhomogeneous in
ompressible 
uid in

a two dimensional bounded domain. We show the existen
e of weak

solution with pres
ribed boundary values for the density in L

1

. The

solution is obtained as a weak limit of smooth solutions with H�older


ontinuous density. We also show the existen
e of a `tra
e' for the

density.
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1 Introdu
tion

In this work we are 
on
erned with the motion of an inhomogeneous sta-

tionary in
ompressible 
uid in a bounded domain 
 of R

2

(see [1℄, p. 34),

�
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possibly with holes, i.e. 
 is bounded and simply 
onne
ted or multi
on-

ne
ted. We assume that the boundary � of 
 is smooth, so we 
an write

� = [

n

i=0

�

i

, where �

i

are smooth simple 
losed 
urves. The density of mass,

velo
ity, pressure, vis
osity (
onstant) and the density of an external for
e

are denoted, respe
tively, by �, v = (v

1

; v

2

), p, � and f = (f

1

; f

2

). Let 


i

de-

note the part of �

i

where the 
uid is in
oming, i.e. 


i

def

= fx 2 �

i

; v �n < 0g,

where n denotes the outward unit normal of �. We assume that 


i

is 
on-

ne
ted, possibly empty. Then we formulate the following boundary value

problem for Navier-Stokes equations:

8

>

<

>

:

�(v � r)v +rp = ��v + �f

div(v) = 0; div(�v) = 0

)

in 


vj� = v

0

; �j


i

= �

i

; i = 0; 1; � � � ; n:

(1)

The quantities v

0

and �

i

live in the spa
es L

2

(�) and L

1

(


i

), respe
tively,

with v

0

satisfying

Z

�

i

v

0

� nds = 0; i = 0; 1; � � � ; n: (2)

The for
e density f is assumed to lie in L

2

(
).

N.N. Frolov [2℄ proved the existen
e (and regularity) of solution of (1)

with smooth density if v

0

2 C

1

(
) and �

i

2 C

�

(
) (� > 0). It is interesting

to obtain solution with dis
ontinuous density, sin
e we think this 
an model a


uid with density strati�
ation (see [3℄) and from the mathemati
al point of

view it is important to understand the several solutions (1) have. In this work

we prove the existen
e of solution of (1) with �

i

2 L

1

(
) and v

0

2 L

2

(
).

In fa
t, we prove that sequen
es of Frolov's solutions have a limit whi
h is

still a solution of (1). More pre
isely, by introdu
ing a stream fun
tion  

su
h that

v = r

?

 

def

= (�

� 

�x

2

;

� 

�x

1

)

( x = (x

1

; x

2

) will denote a generi
 point in 
), the problem (1) in the 
ase

of smooth solution (�;v) turns into (see [2℄)

(

��

2

 = �div(!( )(r

?

 � r)r ) + div(�f

?

) in 
;

 j� =  

0

j�;

� 

�n

j� =

� 

0

�n

j�;

(3)

where f

?

= (�f

2

; f

1

), n is the unit outward ve
tor of �, � = n

?

is a unit
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tangent ve
tor of �,  

0

is an appropriate fun
tion de�ned in 
 satisfying

� 

0

��

j� = �v

0

� n and

� 

0

�n

j� = v

0

� �; (4)

and ! is a s
alar fun
tion of one variable su
h that

!( 

0

j


i

) = �

i

; i = 0; � � � ; n: (5)

It is possible to 
onstru
t  

0

su
h that the intervals Im( 

0

j


i

) do not overlap

ea
h other. Indeed, 
hoose 
onstants 


i

, i = 0; 1; � � � ; n, appropriately and

de�ne

 

0

(x)

def

= �

Z

x

x

i

v

0

� nds+ 


i

(6)

for x 2 �

i

where x

i

is an arbitrary point of �

i

[2℄. The reason why the images

Im( 

0

j


i

) are intervals of the real line is that  

0

j


i

is a in
reasing fun
tion,

sin
e (� 

0

=��)j


i

= (�v

0

� n)j


i

> 0. In what follows, frequently we are

going to identify 


i

with Im( 

0

j


i

).

Frolov's solution requires ! to be a H�older 
ontinuous fun
tion. We take

a sequen
e of smooth solutions of (3),  

�

, �

�

= !

�

( 

�

), � > 0, where !

�


on-

verges as � goes to zero to some irregular fun
tion, say, a Heaviside fun
tion,

and try to pass to the limit as � goes to zero. We enlighten this idea with

the following simpleminded example.

Example 1 (Constant velo
ity). If v is 
onstant, say v = (1; 0) for sim-

pli
ity, then the system (1) be
omes

rp = �f; �

x

1

= 0; (7)

so � is an arbitrary fun
tion of x

2

. Now we are interested in a limit pro
ess of

(7). The stream fun
tion in this 
ase is  = x

2

, up to an additive 
onstant.

Let's 
onsider the following `evolution' of (7).

 

�

= x

2

; �

�

= !

�

( 

�

) = !

�

(x

2

);

where !

�


onverges (weakly) to some Heaviside fun
tion H, say H = �

1

�

(�1;0)

+

�

2

�

(0;1)

for some given 
onstants �

1

and �

2

. Then  

�

=  = x

2

(
onstant

with respe
t to �) 
onverges to  and �

�


onverges weakly to the des
ontinuous

fun
tion

�(x

1

; x

2

) =

(

�

1

if x

2

< 0

�

2

if x

2

> 0:

It is 
lear that the pair (�;  ) is a weak solution of (1).
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Sin
e we deal with nonsmooth density solution, some new issues that not

appear in [2℄ must be 
onsidered here. For instan
e, our density � lives in

L

1

only, so we need to prove the existen
e of tra
e of � on the boundary




def

= [

n

i=0




i

in some sense and that it equals to the boundary data �

i

; 
f.

De�nition 1 and Proposition 1 below. The weak formulation of (1) in terms

of the stream fun
tion  , see (3), 
onsidered in [2℄, in whi
h � = !( ),


annot be realized here be
ause this will 
ause la
k of sense when  takes

values in sets of null measures where � has jumps. Thus our formulation of

weak solution (1) will be a
hieved just by integrating by parts the equations

in (1) against solenoidal test fun
tions.

The method we use to obtain the main estimates to prove Theorem 1

below appears in [4℄ and is also used in [2℄.

Besides this introdu
tion, this paper 
ontains two more se
tions. In se
-

tion 2 we give the weak formulation for (1) and prove that the weak solution

� of div(�v) = 0 (see De�nition 1) attains its boundary value in mean in the

weak-� sense (see Proposition 1). We note that this is a regularity result type

for �. In se
tion 3 we state and prove our main result, that is, the existen
e

of a weak solution (�;v) of the problem (1) in L

1

(
)�H

1

(
).

Notations: Throughout this paper we �x the following notations:

� : �


W

k;p

(
) : The Sobolev spa
e of order k modelled in L

p

(
)

H

k

(
) : W

k;2

(
)

H

k

0

(
) : The spa
e of fun
tions in H

k

(
) whose derivatives up to

order k � 1 have null tra
e in �

j � j : Lebesgue measure

2 Weak solutions

We start this se
tion with the de�nition of weak solution of the boundary

value problem for the equation div(�v) = 0.

De�nition 1 Given v 2 H

1

(
) with div(v) = 0, we say that � 2 L

1

(
) is

a weak solution of

(

div(�v) = 0 in 


�j


i

= �

i

2 L

1

(


i

); i = 0; 1; � � � ; n

(8)
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if

Z




�v � r�dx =

Z




i

�

i

(v

0

� n)�ds; (9)

for all � 2 C

1

(
) su
h that �j(�=


i

) = 0, i = 0; 1; � � � ; n, where v

0

def

= vj�.

Next we prove that a weak solution of the boundary value problem for the

equation (25), a

ordingly with the above de�nition, attains the boundary

values �

i

2 L

1

(


i

) in mean in the weak-� topology of L

1

(


i

). More pre
isely,

we have the following result:

Proposition 1 If � satis�es the above De�nition then

lim

t!0�

1

t

Z

t

0

�(�; �)d� = �

i

;

in the weak-� topology of L

1

(


i

), i = 0; 1; � � � ; n, for any parametrization

(s; t) of a tubular neighborhood of 


i

, where s parametrizes 


i

and t in
reases

in the dire
tion of n. Pre
isely, we mean that if h(s; t) = 


i

(s) + tn(


i

(s)) is

a lo
al difeomorphism, where s belongs to some interval I and �1 � t � 1

then

lim

t!0�

Z

I

�

1

t

Z

t

0

�(h(s; �))d�

�

'(s)ds =

Z

I

�

i

(h(s; 0))'(s)ds; (10)

for any ' 2 L

1

(I).

Proof: 1. An straightforward 
omputation shows that

Z

A

�v � r

x

�dx =

Z

0

t

Z

I

�v �

 

(r

(s;�)

�)[

�(x

1

; x

2

)

�(s; t)

℄

�1

j

�(x

1

; x

2

)

�(s; t)

j

!

dsd�;

where A

def

= fh(s; �); s 2 I; � 2 (t; 0℄g, x = (x

1

; x

2

),

�(x

1

;x

2

)

�(s;t)

is the Ja
obian

matrix of the map h and in the right hand side, � � �(s; t) � �(h(s; t)) and

v � v(s; t) � v(h(s; t)). Noti
e that

[

�(x

1

; x

2

)

�(s; t)

℄

�1

j

�(x

1

; x

2

)

�(s; t)

j =

"

�x

2

�t

�

�x

1

�t

�

�x

2

�s

�x

1

�s

#

:

Then from (9), with test fun
tions of type � = '(s) (�), we have

Z

0

t

Z

I

�(v

1

�x

2

�t

� v

2

�x

1

�t

)'

0

(s) (�)dsd�

+

Z

0

t

Z

I

�(v

2

�x

1

�s

� v

1

�x

2

�s

)'(s) 

0

(�)dsd�

=

Z




i

�

i

(v

0

� n)' ds:

(11)
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Now taking  (�) a smooth aproximation of the fun
tion

1

t

(t � �)�

(t;0℄

and

letting t! 0� we get

lim

t!0�

1

t

Z

t

0

Z

I

�(v �N)'(s)dsd� =

Z

I

�

0

(v

0

�N

0

)'(s)ds; (12)

for all ' 2 C

1

(I), where

N � N(s; t) = (�

�x

2

�s

;

�x

1

�s

)

is a normal ve
tor to the 
urve 


i;t

= Im( h(�; t) ), and N

0

def

= N(s; 0).

2. In this step we want to show that we 
an substitute v � N in (12) by

v

0

�N

0

, i.e.

lim

t!0�

1

t

Z

t

0

Z

I

�(v

0

�N

0

)'(s)dsd� =

Z

I

�

0

(v

0

�N

0

)'(s)ds: (13)

Then we write

1

t

Z

t

0

Z

I

�(v

0

�N

0

)(s)'(s)dsd�

=

1

t

Z

t

0

Z

I

�(v �N)(s; t)'(s)dsd�

+

1

t

Z

t

0

Z

I

�[(v

0

�N

0

)(s)� (v �N)(s; t)℄'(s)dsd�

� I + II

and show that II goes to zero as t! 0�. Indeed,

jIIj � jj�jj

1

jj'jj

1

Z

0

t

Z

I

j

�

��

(v �N)(s; �)jdsd�

t!0�

�! 0;

where we have used the following inequality

Z

0

t

jf(s; �)jd� � jtj

Z

0

t

jf(s; �)jd�

for f = v

0

�N

0

� v �N.

3. Now, sin
e v

0

2 L

2

, it easy to extend (13) for all ' 2 L

2

(I). Besides, by

hypothesis, v

0

�N

0

> 0 on I so we 
an write I = [

1

k=1

I

k

, where I

k

def

= fs 2

I;v

0

�N

0

> 1=kg. Then taking ' in (13) to be the fun
tion

'

k

def

= '

1

v

0

�N

0

�

I

k

;
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we get

lim

t!0�

1

t

Z

t

0

Z

I

k

�(s; �)'dsd� =

Z

I

k

�

0

(s)'ds;

for all k = 1; 2; � � � and any ' 2 L

2

(I). Let L to be a measurable subset

of I. Given an arbitrary � > 0, there exists a k su
h that jL=L

k

j < �,

L

k

def

= I\ I

k

, be
ause fI

k

g is an in
reasing sequen
e of measurable subsets of

I whose unioun is I. Then we have

j

1

t

Z

0

t

Z

L

�(s; �)dsd� �

Z

L

�

0

(s)dsj

� j

1

t

Z

0

t

Z

L

k

�(s; �)dsd� �

Z

L

k

�

0

(s)dsj

+(jj�jj

1

+ jj�

0

jj

1

)jL

k

=Lj;

so

lim

t!0�

1

t

Z

0

t

Z

L

�(s; �)dsd� =

Z

L

�

0

(s)ds

for all measurable subset L of I and this is enough to show the weak-� 
on-

vergen
e (10).

Remark 1 It is possible to show that the weak-� limit (10) o

urs without

the mean in t. In fa
t, for any representative � of � it turns out that the

weak-� limit of �(�; t) exists as t ! 0� and is equal to �

0

. To show this we

�rst noti
e that from (11) we have that the fun
tion

f

'

(t)

def

=

Z

I

�(v �N)(s; t)'(s)ds

is a BV fun
tion, i.e. a fun
tion of Bounded Variation, sin
e from (11) we

have that

j

Z

f

'

(t) 

0

(t)dtj � 
onst:jj jj

1

for any  2 C

1

. Then there exists the limit l

'

def

= lim

t!0�

f

'

(t). Se
ond, we

show that this limit is equal to

R

I

�

0

(s)'(s)ds by taking in (11) a sequen
e

of fun
tion  
onverging to �

(

� 1; t

0

) and su
h that the sequen
e of its

derivatives 
onverges to minus the delta Dira
 fun
tion 
entered at t

0

, for

any Lebesgue point t

0

< 0 of f

'

. Then let t

0

! 0�.

We end this se
tion with the weak formulations of (1) and (3). Below,

repeated indi
es mean summation from 1 to 2.
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De�nition 2 A pair (�;v) 2 L

1

(
)�H

1

(
) is said to be a weak solution of

problem (1) if div(v) = 0 in H

1

(
), (�;v) satis�es (9), v = u+a where a =

(a

1

; a

2

) is an appropriate extension of v

0

spe
i�ed below and u = (u

1

; u

2

) 2

H

1

0

(
), and (�;u) satis�es the integral equations

�

Z




r(u

j

+ a

j

) � r�

j

dx �

Z




�(u

j

+ a

j

)(u+ a) �

��

�x

j

dx

=

Z




�f ��dx;

(14)

for all � = (�

1

;�

2

) 2 C

1

0

(
;R

2

) su
h that div (�) = 0. Cf. [4℄ and [2℄.

Remark 2 (Extension of v

0

): Let  

0

be a fun
tion in H

2

(
) satisfying

the boundary 
onditions (4),(6), e.g. we 
an take  

0

as the solution of the

biharmoni
 equation in 
 with the boundary 
onditions (4),(6). We take the

extension a of v

0

as follows (
f. [4, pp. 27, 120℄ and [2℄): a � a

Æ

= r

?

( 

0

�)

in 
, � � �

Æ

, 0 < Æ � 1, where �

Æ

is a smooth fun
tion (a twi
e di�erentiable


uto� fun
tion) su
h that �

Æ

= 1 near � and zero at all points of 
 with

distan
e from � bigger than Æ; besides,

j�

Æ

(x)j � 
; jr�

Æ

(x)j � 
=Æ; (15)

where 
 is a 
onstant independent of x and Æ. The equations (4) are equivalent

to

(r

?

 

0

)j� = v

0

: (16)

Remark 3 For smooth solutions, we write u = r

?

' where ' 2 H

2

0

(
),

and � = !( ), where ! was introdu
ed in (3). Besides, the solenoidal test

fun
tions � 
an be written as r

?

� for � 2 C

1

0

(
). Then De�nition 2 turns

into the following De�nition for weak solution of (3).

De�nition 3 A fun
tion  2 H

2

(
) is said to be a weak solution of problem

(3) if  = ' +  

0;Æ

where  

0;Æ

=  

0

�

Æ

and ' 2 H

2

0

(
), and ' satis�es the

integral equation

�

Z




�('+  

0;Æ

)��dx

�

Z




!('+  

0;Æ

)(r

?

'+r

?

 

0;Æ

)

j

(r

?

'+r

?

 

0;Æ

) �

�(r

?

�)

�x

j

dx

=

Z




!('+  

0;Æ

)f � r

?

�dx;

(17)

for all � 2 C

1

0

(
)
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3 The main results

The goal of this se
tion is to prove the following result:

Theorem 1 If �

i

2 L

1

(


i

), i = 0; 1; � � � ; n and v

0

2 L

2

(
) then the problem

(1 ) has a weak solution (�;v) in L

1

(
)�H

1

(
).

To prove this result we will use

Theorem 2 If a sequen
e f(�

�

;v

�

)g of solutions of (1) 
onverges to (�;v)

in (L

1

(
);weak� �)� (H

1

(
);weak) then (�;v) is also a solution of (1).

Theorem 2 is essentially a 
orollary of

Proposition 2 The operator

(�;v) 7�!

�

�x

j

(�v

j

v) (18)

is sequen
ially 
ontinuous from (L

1

(
);weak � �) � (H

1

(
);weak) into

(H

�1

(
);weak� �).

We will prove �rst this Proposition, then we will prove Theorems 2 and 1.

Proof of Proposition 2: First we noti
e that the map (18) is well de�ned,

i.e.

�

�x

j

(�v

j

v) 2 H

�1

(
) for any (�;v) 2 L

1

(
) � H

1

(
). Indeed, for any

� 2 H

1

0

(
) we have

jh

�

�x

j

(�v

j

v);�ij

def

= j �

Z




�v

j

v �

��

�x

j

dxj

� jj�jj

L

1

jjvjj

2

L

4

jj�jj

H

1

0

� 
jj�jj

L

1

jjvjj

2

H

1

jj�jj

H

1

0

;

where 
 is the 
onstant of the Sobolev imbeddingH

1

(
)! L

4

(
). It remains

to prove that if f(�

k

;v

k

)g, k = 1; 2; � � �, is any sequen
e in L

1

(
) �H

1

(
)

su
h that �

k


onverges to � in (L

1

(
);weak � �) and v

k


onverges to v in

(H

1

(
);weak) then there exists a subsequen
e k

1

< k

2

< � � � su
h that

lim

i!1

Z




�

k

i

v

k

i

j

v

k

i

�

��

�x

j

dx =

Z




�v

j

v �

��

�x

j

dx: (19)
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(This is intuitive, sin
e, be
ause of the imbedding H

1

(
) ! L

4

(
) being


ompa
t, the left hand side of the above equation is a weak-strong-strong

triple.) We write

Z




�

k

i

v

k

i

j

v

k

i

�

��

�x

j

dx�

Z




�v

j

v �

��

�x

j

dx � I + II + III;

where I

def

=

Z




(�

k

i

� �)v

j

v �

��

�x

j

dx, II

def

=

Z




�

k

i

(v

k

i

j

� v

j

)v �

��

�x

j

dx and III

def

=

Z




�

k

i

v

k

i

j

(v

k

i

� v) �

��

�x

j

dx, and we show that lim

i!1

I; II; III = 0. Indeed,

I = h�

k

i

� �; v

j

v �

��

�x

j

dxi

and v

j

v �

��

�x

j

2 L

1

(
), so lim

i!1

I = 0, sin
e �

k


onverges to � in

(L

1

(
);weak� �);

jIIj � sup

k

fjj�

k

jj

L

1

gjjv

k

i

j

� v

j

jj

L

4

jjvjj

L

4

jj

��

�x

j

jj

L

2

and jjv

k

i

j

� v

j

jj

L

4

i!1

�! 0 for some subsequen
e k

1

< k

2

< � � � be
ause of the


ompa
t imbedding H

1

(
)! L

4

(
), so lim

i!1

II = 0; analogously,

jIIIj � sup

k

fjj�

k

jj

L

1

gjjvjj

L

4

jjv

k

i

� vjj

L

4

jj�jj

H

1

goes to zero as i goes to 1.

Proof of Theorem 2: We need to 
he
k all the equations in De�nition 2.

Regarding equation (14), the nonlinear term is dealt by Proposition 2 and the

linear terms do not o�er great diÆ
ult to deal with. The equation div(v) = 0

inH

1

(
), i.e.

Z




v�r�dx = 0 for all � 2 C

1

0

(
), is straightforward to verify.

The remainder equation (9) 
an also be easily veri�ed as follows:

Z




�

�

v

�

� r�dx�

Z




�v � r�dx

� h(�

�

� �) ; v � r�i+

Z




�

�

(v

�

� v) � r�dx

� I + II;

I goes to zero be
ause v � r� 2 L

1

(
) and II goes to zero passing to some

subsequen
e be
ause of the 
ompa
t imbedding H

1

(
)! L

2

(
).



Stationary Navier-Stokes with Dis
ontinuous Density 11

Remark 4 Theorem 2 also holds if we 
onsider boundary 
onditions depend-

ing on �, �

�

i

, v

�

0

, su
h that �

�

i


onverges to �

i

in weak-� topology of L

1

(


i

)

for i = 0; 1; � � � ; n and v

�

0


onverges to v

0

weakly in L

2

(
).

Proof of Theorem 1: Let f 

�

0

g and f�

�

i

g, � > 0, be sequen
es of smooth

fun
tions su
h that f 

�

0

g 
onverges to  

0

in H

2

(
), where  

0

is de�ned in

Remark 2, and f�

�

i

g 
onverges to �

i

in the weak-� topology of L

1

(


i

) for

i = 0; 1; � � � ; n, as � goes to zero. Let f!

�

g, � > 0, be a bounded sequen
e

in L

1

(R) of H�older 
ontinuous fun
tions su
h that !

�

( 

�

0

j


i

) = �

�

i

, i =

0; 1; � � � ; n. Let also  

�

be a smooth solution of (3) with !

�

in pla
e of

! and  

�

0

in pla
e of  

0

. Then, we are going to show that the sequen
e

f(�

�

;v

�

)g

def

= f(!

�

( 

�

);r

?

 

�

)g has a subsequen
e that 
onverges to a weak

solution (�;v) of (1) in (L

1

(
);weak � �)� (H

1

(
);weak).

We �rst noti
e that sin
e !

�

is uniformly bounded in L

1

(R), so it is �

�

.

The rest of the proof 
onsists in proving that fr

?

 

�

g is a bounded sequen
e

in H

2

(
), so fv

�

g = fr

?

 

�

g is a bounded sequen
e in H

1

(
). That will be

enough to proof Theorem 1 by Bana
h-Alaouglu's theorem and Theorem 2.

To estimate fv

�

g we use the te
hnique in [4℄ and used in [2℄. The plan is

to take � = '

�

(=  

�

�  

�

0;Æ

) in (17), but there is a diÆ
ulty, that is to deal

with the term

Z




u

�

j

r

?

 

�

0;Æ

�

�u

�

�x

j

dx; u

�

def

= r

?

'

�

; u = (u

1

; u

2

);

be
ause this is a quadrati
 term in u

�

. Here it 
omes the subtle idea in [4℄

of using the arbitrariness of 0 < Æ � 1 in (17). Let us take � = '

�;�

def

=

'

�

+  

�

0;Æ

�  

�

0;�

in (17) where 0 < � � Æ. We remark that '

�;�

is in fa
t a

solution of (17 ) when we repla
e  

�

0;Æ

by  

�

0;�

. Noti
e also that this � 2 H

2

0

(
)

for all 0 < � � Æ, so it is allowed to use it in (17). Then we get

�jj'

�;�

jj

2

2

= ��

Z




� 

�

0;�

�'

�;�

dx �

Z




�

�

v

�

j

(r

?

 

�

0;�

) �

�

�x

j

(r

?

'

�;�

)dx

�

Z




�

�

f � (r

?

'

�;�

) dx;

(20)

where jj � jj

2

stands for the norm jj� � jj

L

2

(
)

in H

2

0

(
) and we used that

Z




�

�

v

�

j

w �

�

�x

j

wdx = 0; w = r

?

'

�;�

;
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sin
e div(�

�

v

�

) = 0. Indeed,

Z




�

�

v

�

j

w �

�w

�x

j

dx =

1

2

Z




�

�

v

�

j

�

�x

j

jwj

2

dx

1

2

Z




(�

�

v

�

) � r(jwj

2

)dx = �

1

2

Z




(div(�

�

v

�

))jwj

2

dx = 0:

Let N

�;�

def

= jj'

�;�

jj

2

. From (20) and H�older inequalities we obtain

�N

2

�;�

� �jj 

�

0;�

jj

2

N

�;�

+ 


1

�

jjf jj

L

2

+ jj 

�

0;�

jj

2

W

1;4

�

N

�;�

+


1

Z




j(r

?

'

�;�

)

j

(r

?

 

�

0;�

) �

�

�x

j

(r

?

'

�;�

)jdx

� KN

�;�

+ jj!jj

L

1

I

�;�

;

(21)

where 


1

is a 
onstant that bounds jj�

�

jj

L

1

, K

def

= �jj 

�

0;�

jj

2

+ 


1

(jjf jj

L

2

+

jj 

�

0;�

jj

2

W

1;4

) and I

�;�

is the integral o

uring in (21). Noti
e that

jj 

�

0;�

jj

W

1;4

� 


1

jj 

�

0;�

jj

H

2

= jj 

�

0

�

�

jj

H

2

� 
(�); (22)

where 


1

is the 
onstant of the Sobolev imbedding H

2

(
) ! W

1;4

(
) and


(�) is a 
onstant independent of �. Regarding I

�;�

, de�ning




�

def

= fx 2 
 ; dist(x;�) < �g

and using (15) we have the following estimate:

I

�;�

�




�

Z




�

j(r

?

'

�;�

)

j

 

�

0

j j

�

�x

j

(r

?

'

�;�

)j dx

+


Z




�

j(r

?

'

�;�

)

j

j jr

?

 

�

0

j j

�

�x

j

(r

?

'

�;�

)j dx

�




1

�

jjr

?

'

�;�

jj

L

2

(


�

)

jjr

?

'

�;�

jj

H

1

(


�

)

+
jjr

?

'

�;�

jj

L

4

(


�

)

jj 

�

0

jj

W

1;4

(


�

)

jjr

?

'

�;�

jj

H

1

(


�

)

;

(23)

where 


1

is a 
onstants that bounds 
jj 

�

0

jj

L

1

� 
onst.jj 

�

0

jj

H

2

. Now, let us

suppose that f'

�

g � f'

�;Æ

g is not a bounded sequen
e in H

2

0

(
). Then there

exists a subsequen
e f'

�

k

g su
h that N

k

def

= jj'

�

k

jj

2

goes to in�nity as k !1.

However,

z

k

def

=

u

�

k

N

k

; u

�

k

def

= r

?

'

�

k

is a bounded sequen
e in H

1

0

(
), then is pre
ompa
t in L

4

(
). Thus, up

to passing to some subsequen
e, there exists a z 2 H

1

0

(
) su
h that fz

k

g
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onverges to z: weakly in H

1

0

(
) and strongly in L

4

(
). We 
laim that the

same holds for

z

k;�

def

=

u

�

k

;�

N

k;�

; u

�

k

;�

def

= r

?

'

�

k

;�

;

i.e. fz

k;�

g also 
onverges to z (independent of �) as k !1: weakly in H

1

0

(
)

and strongly in L

4

(
). Proof:

jjz

k;�

� z

k

jj

H

1

= jj(

u

�

k

N

k;�

�

u

�

k

N

k

) +

r

?

( 

�

k

0;Æ

� 

�

k

0;�

)

N

k;�

jj

H

1

� j

1

N

k;�

�

1

N

k

j jju

�

k

jj

H

1

+

1

N

k;�

jj 

�

k

0;Æ

�  

�

k

0;�

jj

H

2

=

jN

k;�

�N

k

j

N

k;�

jjz

k

jj

H

1

+

1

N

k;�

jj 

�

k

0;Æ

�  

�

k

0;�

jj

H

2

and

jN

k;�

�N

k

j = j jj'

�

k

;�

jj

2

� jj'

�

k

jj

2

j

� jj'

�

k

;�

� '

�

k

jj

2

= jj 

�

k

0;�

�  

�

k

Æ

jj

2

= jj 

�

k

0

(�

�

� �

Æ

)jj

2

� 
(�; Æ);

where 
(�; Æ) is a 
onstant independent of �. Besides, lim

k!1

N

k;�

= lim

k!1

N

k

=

1. Thus fz

�

k

;�

� z

k

g 
onverges strongly in H

1

0

(
) to zero as k !1.

Next, �x � for a while in (21), divide (21) by N

2

�

k

;�

and let k goes to

in�nity. Then, using (22), (23) and the above 
laim, we obtain

� � 


2




1

�

jjzjj

L

2

(


�

)

+ 


2


jjzjj

L

4

(


�

)

jj 

0

jj

W

1;4

(


�

)

; (24)

where 


2

is a 
onstant that bounds 


1

jjz

�

k

;�

jj

H

1

. Now, by a Poin
ar�e type

inequality, we have that

1

�

jjzjj

L

2

(


�

)

� 


3

jjzjj

H

1

(


�

)

;

where 


3

is a 
onstant independent of �. Then we get a 
ontradi
tion by

letting � goes to zero in (24).

We �nish this paper with the following remark.

Remark 5 For smooth solution, the equation

div(�v) = 0 (25)

is equivalent to r� �v = 0, sin
e the 
uid is in
ompressible (div(v) = 0), so �

is 
onstant along the integral 
urves of v. For nonsmooth �, the equation (25)
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is seen in the weak sense and we 
an easily 
he
k the following by Green's

theorem: If v is 
ontinuous and � has a jump along a 
urve S and is smooth

on both sides of S then

Z

S

�[�℄v � ds = 0;

for all test fun
tion �, where [�℄ is the jump of � along S, so

[�℄(v � n) = 0

(sho
k 
ondition)

(26)

where n is a unit normal to S. (The �rst equation in (1) yields a sho
k


ondition for the pressure p; see x1 in [5℄.) Sin
e [�℄ 6= 0, the sho
k 
ondition

(26) implies that v is tangent to S, so S is in fa
t a integral 
urve of v. In


on
lusion, jumps on � 
an only o

ur on integral 
urves of v. With respe
t

to the question whether � is 
onstant along integral 
urves of v, we should

mention that this is true even for irregular divergent free ve
tor �elds v,

i.e. v 2 H

1

(
) with div(v) = 0, treated by DiPerna{Lions in [6℄ (see also

[7℄). A

ordingly, the only solution of the initial value problem for transport

equation

(

u

t

� v � r

x

u = 0 in R� 


u(�; 0) = �

(27)

in the spa
e L

1

(R;L

1

(
)) is given by u(x; t) = �(X(x; t)), where X 2

C(R;L

1

(
)) is the 
ux of v, whi
h satis�es X(x; �) 2 C

1

(
) and

(

�X(x;t)

�t

= v(X(x; t))

X(x; 0) = x

(28)

for a.e. x 2 
 [6, 7℄. Now, our solution � of (25) is obviously a stationary

solution of (27), so �(X(x; t)) � �(x) for a.e. x 2 
, by uniqueness. We

remark that although � lives only in L

1

(
) the 
omposition �ÆX(�; t) makes

sense for all t be
ause X(�; t) is Lebesgue measure invariant for all t, sin
e

div(v) = 0 [6, 7℄. Now, for regular ve
tor �elds, say v 2 W

1;p

(
) with p > 2,

one 
an show that there is a neighborhood U in 
 of ea
h 


i

su
h that all

x 2 U has a ba
kward exit time of 
, i.e. there exists a t

x

< 0 su
h that

X(x;�t

x

) 2 � and X(x;�t) 2 
 if t

x

< t � 0 [8℄. Then the boundary datum

�

i

is a
hieved along the integral 
urves of v, i.e.

lim

t!t

x

+

�(X(x;�t)) = �

i

(X(x;�t

x

)) (29)
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for all x 2 U . We do not know if traje
tories of irregular ve
tor �elds have an

exit time. Another open question, as far as we know, is if a smooth boundary

datum v

0

, say v

0

2 C

1

, with �

i

2 L

1

, yields a smooth (or 
ontinuous)

velo
ity v.

A
knowledgment: I thank M.R. Medar for introdu
ing me the problem

(1) and a
quainting me with the referen
es [2℄, [8℄ and [1℄. I would like also

to thank M.C. Lopes, H.N. Lopes and J.L. Boldrini for the dis
ussions and

suggestions on this work.

Referen
es

[1℄ P.L. Lions, Mathemati
al Topi
s in Fluid Me
hani
s, Clarendon Press-

Oxford (1996).

[2℄ N. N. Frolov, Solvability of a boundary problem of motion of an inho-

mogeneous 
uid, Mat. Zametki, 53(06) (1993) 130-140.

[3℄ J. Pedlosky, Geophysi
al Fluid Dynami
s, Springer-Verlag (1984).

[4℄ O. A. Ladyzhenskaya, The Mathemati
al Theory of Vis
ous In
ompress-

ible Flow, Gordon and Brea
h (1969).

[5℄ D. Ho�, Global solutions of the Navier-Stokes equations for multidimen-

sional 
ompressible 
ow with dis
ontinuous initial data, J. Di�. Eq., 119

(1995).

[6℄ R. J. DiPerna and P.L. Lions, Ordinary di�erential equations, transport

theory and Sobolev spa
es, Invent. Math. 98 (1989) 511-547.

[7℄ R. J. DiPerna and P.L. Lions, Equations di�erentielles ordinaires et

equations de transport ave
 des 
oeÆ
ients irreguliers, E
ole Poly-

te
hnique (Fran
e){Centre de Mathematiques, S�eminaire 1988-1989,

�

Equations aux D�eriv�ees Partielles, Expos�e no. XIV.

[8℄ N. N. Frolov, Boundary value problem des
ribing the motion of an in-

homogeneus 
uid, Siberian Mathemati
al Journal, 37 (1996) 376-393.


