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Abstra
t

Due to the non-
ommutative nature of quaternions we introdu
e the 
on
ept of left

and right a
tion for quaternioni
 numbers. This gives the opportunity to manipulate

appropriately the H -�eld. The standard problems arising in the de�nitions of transpose,

determinant and tra
e for quaternioni
 matri
es are over
ome. We investigate the possi-

bility to formulate a new approa
h to Quaternioni
 Group Theory. Our aim is to highlight

the possibility of looking at new quaternioni
 groups by the use of left and right operators

as fundamental step toward a 
lear and 
omplete dis
ussion of Uni�
ation Theories in

Physi
s.

1 Introdu
tion

Complex numbers have played a dual role in Physi
s, �rst as a te
hni
al tool in resolving

di�erential equation (
lassi
al opti
s) or via the theory of analyti
 fun
tions for performing

real integrations, summing series, et
.; se
ondly in a more essential way in the development

of Quantum Me
hani
s and later Field Theory. With quaternions, for the �rst type of

appli
ation, i.e. as a means to simplify 
al
ulations, we 
an quote the original work of

Hamilton [1℄, but this only be
ause of the late development of ve
tor algebra by Gibbs and

Heaviside [2℄. Even Maxwell used quaternions as a tool in his 
al
ulations, e.g. in the

Treatise of Ele
tri
ity and Magnetism [3℄ where we �nd the r-operator expressed by the

three quaternioni
 imaginary units.

Notwithstanding the Hamilton's 
onvi
tion that quaternions would soon play a role 
om-

parable to, if not greater than, that of 
omplex numbers the use of quaternions in Physi
s was

very limited [4℄. Nevertheless, in the last de
ades, we �nd a renewed interest in the appli
ation

of non-
ommutative �elds in Mathemati
s and Physi
s. In Physi
s, we quote quaternioni
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versions of Gauge Theories [5℄-[8℄, Quantum Me
hani
s and Fields [9℄-[14℄, Spe
ial Relativ-

ity [15℄. In Mathemati
s, we �nd appli
ations of quaternions for Tensor Produ
ts [16, 17℄,

Group Representations [18℄.

In this paper we aim to give a new panorami
 review of quaternioni
 groups. We use the

adje
tive \new" sin
e the elements of our matri
es will not be simple quaternions but left

and right operators, originally introdu
ed with the name of \barred operators" [19℄.

In Physi
s, parti
ularly Quantum Me
hani
s, we are a

ustomed to distinguishing be-

tween \states" and \operators". Even when the operators are represented by numeri
al

matri
es, the squared form of operators distinguishes them from the 
olumn stru
ture of

the spinors states. Only for one-
omponent �elds and operators is there potential 
onfu-

sion. In extending Quantum Me
hani
s de�ned over the 
omplex �eld to quaternions it has

almost always been assumed that matrix operators 
ontain elements whi
h are \numbers"

indistinguishable from those of the state ve
tors. This is an unjusti�ed limitation. In fa
t,

(non-
ommutative) hyper-
omplex theories require left/right operators.

This paper is organized as follows: In se
tion 2, we introdu
e the quaternioni
 algebras.

In se
tion 3, we show that the non-
ommutative nature of the quaternioni
 �eld suggests the

use of left/right operators. In se
tion 4, we �nd the appropriate de�nitions of transpose, tra
e

and determinant for quaternioni
 matri
es. Su
h a se
tion 
ontains the new 
lassi�
ation of

quaternioni
 groups. In se
tion 5, we present some appli
ations of left/right operators in

Physi
s. Our 
on
lusions are drawn in the �nal se
tion.

2 Quaternioni
 States

Complex numbers 
an be 
onstru
ted from the real numbers by introdu
ing a quantity i

whose square is �1:


 = r

1

+ ir

2

(r

1;2

2 R) :

Likewise, we 
an 
onstru
t the quaternions from the 
omplex numbers in exa
tly the same

way by introdu
ing another quantity j whose square is �1,

q = 


1

+ j


2

(


1;2

2 C ) ;

and whi
h anti-
ommutes with i

ij = �ji = k :

In introdu
ing the quaternioni
 algebra, let us follow the 
on
eptual approa
h of Hamil-

ton. In 1843, the Irish mathemati
ian attempted to generalize the 
omplex �eld in order to

des
ribe the rotations in the three-dimensional spa
e. He began by looking for numbers of

the form

x+ iy + jz ;

with i

2

= j

2

= �1. Hamilton's hope was to do for three-dimensional spa
e what 
omplex

numbers do for the plane. In
uen
ed by the existen
e of a 
omplex number norm




�


 = (Re 
)

2

+ (Im 
)

2

;

when he looked at its generalization

(x� iy � jz)(x+ iy + jz) = x

2

+ y

2

+ z

2

� (ij + ji)yz ;
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to obtain a real number, he had to adopt the anti-
ommutative law of multipli
ation for

the imaginary units. Nevertheless, with only two imaginary units we have no 
han
e of


onstru
ting a new numeri
al �eld, be
ause assuming

ij = �+ i� + j
 (�; �; 
 2 R) ;

and using the multipli
ation asso
iativity, �i(ij) = �i

2

j = j, we �nd

j = � � i�� ij
 = i�� � � (�+ i� + j
) 
 ;

whi
h implies

� = � = 0 and 


2

= �1 :

Thus, we must introdu
e a third imaginary unit k 6= i; j, with

k = ij = �ji :

The H -�eld is therefore 
hara
terized by three imaginary units i, j, k whi
h satisfy the

following multipli
ation rules

i

2

= j

2

= k

2

= ijk = �1 : (1)

Numbers of the form

q = x

0

+ ix+ jy + kz ( x

0

; x; y; z 2 R ) ; (2)

are 
alled (real) quaternions. They are added, subtra
ted and multiplied a

ording to the

usual laws of arithmeti
, ex
ept for the 
ommutative law of multipli
ation.

Similarly to rotations in a plane that 
an be 
on
isely expressed by 
omplex number, a

rotation about an axis passing through the origin and parallel to a given unitary ve
tor û �

(u

x

; u

y

; u

z

) by an angle � 
an be obtained taking the following quaternioni
 transformation

exp

�

�

2

~

h � ~u

�

~

h � ~r exp

�

�

�

2

~

h � ~u

�

;

where

~

h � (i; j; k) and ~r � (x; y; z) :

In se
tion 5, we shall see how the quaternioni
 number q in Eq. (2), with the identi�
ation

x

0

� 
t, 
an be used to formulate a one-dimensional version of the Lorentz group [15℄. We

obtain the natural generalization of Hamilton's idea


omplex/plane ! pure imaginary quaternions/spa
e ! quaternions/spa
e-time ,


ompleting the uni�
ation of algebra and geometry.

Let us now 
onsider the (full) 
onjugate of q

q

y

= x

0

� ix� jy � kz : (3)

We observe that q

y

q and qq

y

are both equal to the real number

N(q) = x

2

0

+ x

2

+ y

2

+ z

2

;
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whi
h is 
alled the norm of q. When q 6= 0, we 
an de�ne

q

�1

= q

y

=N(q) ;

so quaternions form a zero-division ring.

An important di�eren
e between quaternioni
 and 
omplex numbers is related to the

de�nition of the 
onjugation operation. Whereas with 
omplex numbers we 
an de�ne only

one type of 
onjugation

i! �i ;

working with quaternioni
 numbers we 
an introdu
e di�erent 
onjugation operations. In-

deed, with three imaginary units we have the possibility to de�ne besides the standard


onjugation (3), the six new operations

(i; j; k) ! (�i; +j; +k) ; (+i; �j; +k) ; (+i; +j; �k) ;

(i; j; k) ! (+i; �j; �k) ; (�i; +j; �k) ; (�i; �j; +k) :

These last six 
onjugations 
an be 
on
isely represented by q and q

y

as follows

q ! �iq

y

i ; �jq

y

j ; �kq

y

k ;

q ! �iqi ; �jqj ; �kqk :

It 
ould seem that the only independent 
onjugation be represented by q

y

. Nevertheless, q

y


an also be expressed in terms of q, in fa
t

q

y

= �

1

2

(q + iqi+ jqj + kqk) : (4)

We 
on
lude this se
tion by introdu
ing a 
ompa
t notation to represent quaternioni


states. Let

h

�

�

�

1 ; �

~

h

�

and h

�

�

�

1 ;

~

h

�

(5)

denote the H -�eld generators and

x

�

� ( x

0

; ~x ) and x

�

� (x

0

; �~x ) (6)

be 
ontravariant and 
ovariant real quadrive
tors,

g

��

= (+; �; �; �) :

Quaternioni
 states will be written in terms of (5,6) as follows

q = x

�

h

�

= x

�

h

�

� x

0

+

~

h � ~x ;

and 
onsequently the (full) quaternioni
 
onjugate, q

y

will read

q

y

= x

�

h

�

= x

�

h

�

� x

0

�

~

h � ~x :

From now on, Greek letters will be run from 0 to 3.
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3 Quaternioni
 Left/Right Operators

Due to the non-
ommutative nature of quaternions we must distinguish between q

~

h and

~

hq.

Thus, it is appropriate to 
onsider left and right-a
tions for our imaginary units i, j and k.

Let us de�ne the operators

L

�

�

�

11 ;

~

L

�

2 H

L

;

~

L = (L

i

; L

j

; L

k

) ; (7)

and

R

�

�

�

11 ;

~

R

�

2 H

R

;

~

R = (R

i

; R

j

; R

k

) ; (8)

whi
h a
t on quaternioni
 states in the following way

L

�

: H ! H ; L

�

q = h

�

q 2 H ; (9)

and

R

�

: H ! H ; R

�

q = q h

�

2 H : (10)

The algebra of left/right generators 
an be 
on
isely expressed by

L

2

i

= L

2

j

= L

2

k

= L

i

L

j

L

k

= R

2

i

= R

2

j

= R

2

k

= R

k

R

j

R

i

= �11 ;

and by the 
ommutation relations

[L

i;j;k

; R

i;j;k

℄ = 0 :

In this se
tion we will dis
uss three di�erent types of operators. Operators H -linear,

C -linear, R-linear from the right. For simpli
ity of notation we introdu
e

O

X

: H ! H ;

to represent quaternioni
 operators right-linear on the X-�eld. Operators whi
h a
t only

from the left,

O

H

= a

�

L

�

2 H

L

; a

�

2 R

4

;

are obviously H -linear from the right

L

�

(q�) = (L

�

q) � ; � 2 H ;

and R-linear from the left

L

�

(�q) = � (L

�

q) ; � 2 R :

Let us now 
onsider the sixteen generators

M

��

� L

�


R

�

:

Due to left and right a
tions of the imaginary units i, j, k the 
orresponding operator

O

R

= a

��

M

��

� a

��

L

�


R

�

2 H

L


 H

R

; a

��

2 R

16

;

are restri
ted to be R-linear

M

��

(q�) = (M

��

q) � = � (M

��

q) ; � 2 R :
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Finally, 
onsidering the right a
tion to the only i-
omplex imaginary unit

M

�n

� L

�


R

n

; n = 1; 2 ;

we obtain right C -linear operators

O

C

= a

�n

M

�n

� a

�n

L

�


R

n

2 H

L


 C

R

� H

L


 H

R

; a

�n

2 R

8

;

in fa
t

M

�n

(q�) = (M

�n

q) � ; � 2 C :

The 
lassi�
ation of right H /C /R-linear 
an be summarized by

O

H

� O

C

� O

R

;

note that all these operators are obviously R-linear from the left.

Let us now analyze the produ
t of two right R-linear operators

O

a

R

= a

��

M

��

; O

b

R

= b

��

M

��

;

in terms of left/right quaternioni
 generators is given by

O

a

R

O

b

R

= a

��

b

��

L

�

L

�


R

�

R

�

:

From su
h a relation we 
an immediately obtain the produ
t of right C -linear and R-linear

operators. The full 
onjugation operation for left/right operators is de�ned by a simultaneous


hange in the sign of left/right quaternioni
 imaginary units, i.e.

L

y

�

= L

�

= g

��

L

�

and R

y

�

= R

�

= g

��

R

�

:

Thus,

O

y

R

= a

��

L

y

�


R

y

�

= a

��

L

�


R

�

2 H

L


 H

R

: (11)

For operators produ
t 
onjugations we have

�

O

a

R

O

b

R

�

y

= a

��

b

��

(L

�

L

�


R

�

R

�

)

y

= a

��

b

��

(L

�

L

�

)

y


 (R

�

R

�

)

y

= a

��

b

��

L

y

�

L

y

�


R

y

�

R

y

�

= O

b y

R

O

a y

R

:

In se
tion 4, dealing with quaternioni
 matri
es we shall distinguish between (right) R-

linear quaternioni
 groups,

GL (N; H

L


 H

R

) ;

and C -linear quaternioni
 groups,

GL (N; H

L


 C

R

) :

For a 
lear and 
omplete dis
ussion of standard quaternioni
 groups,

GL (N; H

L

) ;
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the reader is referred to Gilmore's book [20℄. The use of left/right operators give new oppor-

tunities in Quaternioni
 Group Theory. Let us observe as follows: The so-
alled symple
ti



omplex representation of a quaternion (state) q

q = 


1

+ j


2

(


1;2

2 C ) ;

by a 
omplex 
olumn matrix, is

q $

�




1




2

�

: (12)

The operator representation of L

i

, L

j

and L

k


onsistent with the above identi�
ation

L

i

$

�

i 0

0 �i

�

= i�

3

; L

j

$

�

0 �1

1 0

�

= �i�

2

; L

k

$

�

0 �i

�i 0

�

= �i�

1

; (13)

has been known sin
e the dis
overy of quaternions. It permits any quaternioni
 number or

matrix to be translated into a 
omplex matrix, but not ne
essarily vi
e-versa. Eight real num-

bers are required to de�ne the most general 2� 2 
omplex matrix but only four are needed to

de�ne the most general quaternion. In fa
t sin
e every (non-zero) quaternion has an inverse,

only a sub
lass of invertible 2� 2 
omplex matri
es are identi�able with quaternions. C -linear

quaternioni
 operators 
omplete the translation [19℄. The right quaternioni
 imaginary unit

R

i

$

�

i 0

0 i

�

;

adds four additional degrees of freedom, obtained by matrix multipli
ation of the 
orrespond-

ing matri
es,

R

i

; L

i

R

i

; L

j

R

i

; L

k

R

i

;

and so we have a set of rules for translating from any 2� 2 
omplex matri
es to C -linear

operators, O

R

. This opens new possibilities for quaternioni
 numbers, see for example the

one-dimensional version of the Glashow group [7℄. Obviously, this translation does not apply

to odd-dimensional 
omplex matri
es [21℄.

4 Quaternioni
 Groups

Every set of basis ve
tors in V

N

a ve
tor spa
e, 
an be related to every other 
oordinate

system by an N �N non singular matrix. The N �N matrix groups involved in 
hanging

bases in the ve
tor spa
es R

N

, C

N

and H

L

N

are 
alled general linear groups of N �N matri
es

over the reals, 
omplex and quaternions

GL (N;R) ! GL (N; C ) ! GL (N; H

L

)

#

GL (2N; C ) $ GL (N; H

L


 C

R

)

#

GL (4N;R) $ GL (N; H

L


 H

R

) .
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Before dis
ussing the groups GL (N; H

L


 H

R

) and GL (N; H

L


 C

R

), we introdu
e a new def-

inition of transpose for quaternioni
 matri
es whi
h will allow us to over
ome the diÆ
ulties

due to the non-
ommutative nature of the quaternioni
 �eld (our de�nition, applying to

standard quaternions, will be extended to 
omplex and real linear quaternions).

4.1 Quaternioni
 Transpose De�nition

The 
ustomary 
onvention of de�ning the transpose M

t

of the matrix M is

(M

t

)

rs

=M

sr

: (14)

In general, however, for two quaternioni
 matri
es M and N one has

(MN)

t

6= N

t

M

t

;

whereas this statement hold as an equality for 
omplex matri
es. For example, the usual

de�nition (14) implies

�

�

q

1

q

2

�

�

p

1

p

2

��

t

= (q

1

p

1

+ q

2

p

2

)

t

= q

1

p

1

+ q

2

p

2

; (15)

and

�

p

1

p

2

�

t

�

q

1

q

2

�

t

= p

t

1

q

t

1

+ p

t

2

q

t

2

= p

1

q

1

+ p

2

q

2

; (16)

whi
h are equal only if we use a 
ommutative states. How 
an we de�ne orthogonal quater-

nioni
 states and orthogonal groups? By looking at the previous example, we see that the

problem arises in the di�erent position of fa
tors q

1;2

and p

1;2

. The solution is very simple

on
e seen. It is possible to give a quaternioni
 transpose whi
h reverses the order of fa
tors.

We have three (equivalent) possibilities to de�ne q

t

, namely

x

0

� ix

1

+ jx

2

+ kx

3

; x

0

+ ix

1

� jx

2

+ kx

3

; x

0

+ ix

1

+ jx

2

� kx

3

: (17)

We 
hoose

q

t

= x

0

+ ix

1

� jx

2

+ kx

3

; (18)

whi
h goes ba
k to the usual de�nition for 
omplex numbers, 


t

= 
 2 C (1; i). In this way, the

transpose of a produ
t of two quaternions q and p is the produ
t of the transpose quaternions

in reverse order

(qp)

t

= p

t

q

t

:

The proof is straightforward if we re
ognize the following relation between transpose q

t

and


onjugate q

y

,

q

t

= �jq

y

j :

What happens for left/right quaternioni
 operators? Observing that for quaternioni
 states

i

t

= i ; j

t

= �j ; k

t

= k ;

the natural generalization for left/right quaternioni
 operators is

L

t

i

= L

i

; L

t

j

= �L

j

; L

t

k

= L

k

) L

t

�

= �L

j

L

y

�

L

j

;
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and

R

t

i

= R

i

; R

t

j

= �R

j

; R

t

k

= R

k

) R

t

�

= �R

j

R

y

�

R

j

:

One-dimensional R-linear transpose operators read

O

t

R

= a

��

L

t

�


R

t

�

= L

j

R

j

O

y

R

R

j

L

j

2 H

L


 H

R

: (19)

Thus, in the quaternioni
 world the transpose M

t

of the matrix M 2 GL (N; H

L


 H

R

),

de�ned by

(M

t

)

rs

=M

t

sr

2 H

L


 H

R

;


an be written as

M

t

= L

j

R

j

M

y

R

j

L

j

= R

j

L

j

M

y

L

j

R

j

; (20)

where

(M

y

)

rs

=M

y

sr

2 H

L


 H

R

:

With this new de�nition of quaternioni
 transpose, the relation

(MN)

t

= L

j

R

j

(MN)

y

R

j

L

j

= L

j

R

j

N

y

M

y

R

j

L

j

= L

j

R

j

N

y

R

j

L

j

L

j

R

j

M

y

R

j

L

j

= N

t

M

t

also holds for non-
ommutative numbers. Finally, for C -linear operators, Eq. (19) redu
es to

O

t

C

= a

�n

L

t

�


R

n

= �L

j

O

y

C

L

j

: (21)

The fundamental property of reverse ring the order of fa
tors for the transpose of quaternioni


produ
ts is again preserved.

4.2 X-Mappings

In dis
ussing the 
lassi�
ation of the 
lassi
al (matrix) groups, it is ne
essary to introdu
e one

additional 
on
ept: themetri
. Our matrix element areO

X

-operators, and so it is appropriate

to adopting the metri
 fun
tion,M

X

, mapping of a pair of ve
tors into a number �eld X

M

X

: H

N

� H

N

! X ; M

X

(	;�) = (	;�)

X

;

with 	;� 2 H

N

and (	;�)

X

2 X. Let us now re
all the following theorem: The subset of

transformations of basis in V

N

whi
h preserves the mathemati
al stru
ture of a metri
 forms

a subgroup of general linear groups.

bilinear symmetri
 orthogonal

Groups preserving bilinear antisymmetri
 metri
s are 
alled symple
ti


sesquilinear symmetri
 unitary .

The previous theorem is valid for all real and 
omplex metri
-preserving matrix groups. It

is also valid for quaternioni
 groups that preserve sesquilinear metri
s, sin
e two quaternions

obey (q

1

q

2

)

y

= q

y

2

q

y

1

. It is not true for quaternioni
 matri
es and bilinear metri
s, sin
e

two quaternions do not generally 
ommute. Nevertheless, it is still possible to asso
iate

9



subgroups of GL (N; H

L

) with groups that preserve bilinear metri
s. In the literature this is

done in the following way. \Ea
h quaternion in GL (N; H

L

) is repla
ed by the 
orresponding

2� 2 
omplex matrix using the translation rules (13). The subset of matri
es in this 
omplex

2N � 2N matrix representation of GL (N; H

L

) that leaves invariant a bilinear metri
 forms a

group, sin
e the theorem is valid for bilinear metri
s on 
omplex linear ve
tor spa
es. We 
an

asso
iate an N �N quaternion-valued matrix with ea
h 2N � 2N 
omplex-valued matrix in the

resulting groups that preserve bilinear metri
s in the spa
e C

2N�2N

, whi
h is a representation

for the spa
e H

L

N�N

" - Gilmore [20℄.

On
e we write our 
omplex matrix, we 
an trivially obtain the generators of 
omplex

orthogonal groups in a standard manner and then we 
an translate ba
k into quaternioni


language. But this is surely a laborious pro
edure. De�ning an appropriate transpose for

quaternioni
 numbers (18), we 
an over
ome the just-
ited diÆ
ulty. Besides, using the

symple
ti
 representation (12), the most general transformation (on quaternioni
 states) will

be ne
essarily represented by C -linear quaternioni
 operators, O

C

, and for the invariant

metri
 we have to require a \
omplex" proje
tion,M

C

: H � H ! C ,

M

C

(q

t

q) = (q

t

q)

C

= [(


1

� j


�

2

)(


1

+ j


2

)℄

C

= 


2

1

+ 


2

2

:

We wish to emphasize that the introdu
tion of the imaginary unit R

i

in 
omplex linear

quaternioni
 operators

(R

i

)

y

= �R

i

;

ne
essarily implies a 
omplex inner produ
t. The \new" imaginary units R

i

represents an

anti-hermitian operator, and so it must verify

R

(R

i

 )

y

' = �

R

 

y

R

i

'

# #

R

( i)

y

' = �

R

 

y

'i :

The previous relation is true only if we adopt a 
omplex proje
tion

Z

C

�

1� L

i

R

i

2

Z

;

for the inner produ
ts

Z

C

(R

i

 )

y

' = �i

Z

C

 

y

' = �

Z

C

 

y

'i = �

Z

 

y

R

i

' :

Obviously, for R-linear operators

(

~

R)

y

= �

~

R ;

implies real inner produ
ts,

M

R

: H � H ! R :

4.3 One-Dimensional Quaternioni
 Groups

The generators of the unitary and orthogonal groups satisfy the following 
onstraints

Groups : Generators :

Unitary A+A

y

= 0 ,

Orthogonal A+A

t

= 0 .

10



For one-dimensional quaternioni
 groups, we �nd

Groups Generators

U(1; H

L

)

~

L

U(1; H

L


 C

R

)

~

L ; R

i

U(1; H

L


 H

R

)

~

L ;

~

R

O(1; H

L

) L

j

O(1; H

L


 C

R

) L

j

; L

j

R

i

O(1; H

L


 H

R

) L

j

; L

j

R

i

; L

j

R

k

; R

j

; L

i

R

j

; L

k

R

j

At this point, we make a number of observations:

1. - The di�eren
e between orthogonal and unitary groups is manifest for 
omplex linear

quaternioni
 groups be
ause of the di�erent numbers of generators.

2. - Orthogonal and unitary real linear quaternioni
 groups have the same number of

generators.

3. - The real groups U(N

+

; N

�

) and O(N

+

; N

�

) are identi
al (there is no di�eren
e

between bilinear and sesquilinear metri
s in a real ve
tor spa
e) and this suggest a possible

link between U(N; H

L


 H

R

) and O(N; H

L


 H

R

).

4. - For real linear quaternioni
 groups, the invariant metri
 requires a \real" proje
tion

(note that

~

R represent anti-hermitian operators only for real inner produ
ts). Let us show

the \real" invariant metri
 for U(1; H

L


 H

R

) and O(1; H

L


 H

R

),

(x

y

y)

R

= [(x

0

� ix

1

� jx

2

� kx

3

)(y

0

+ iy

1

+ jy

2

+ ky

3

)℄

R

= x

0

y

0

+ x

1

y

1

+ x

2

y

2

+ x

3

y

3

;

(x

t

y)

R

= [(x

0

+ ix

1

� jx

2

+ kx

3

)(y

0

+ iy

1

+ jy

2

+ ky

3

)℄

R

= x

0

y

0

� x

1

y

1

+ x

2

y

2

� x

3

y

3

:

We 
an immediately re
ognize the invariant metri
 of O(4) and O(2; 2). To 
omplete the

analogy between one-dimensional real linear quaternioni
 operators and 4-dimensional real

matri
es, we observe that besides the subgroups related to the y-
onjugation (where the sign

of all three imaginary units is 
hanged) and the t-
onjugation (where only j ! �j), we 
an

de�ne a new subgroup whi
h leaves invariant the following real metri


(x

y

gy)

R

;

where

g = �

1

2

L

�

R

�

= �

1

2

�

11+

~

L �

~

R

�

:

Expli
itly,

(x

y

gy)

R

= [(x

0

� ix

1

� jx

2

� kx

3

)(y

0

� iy

1

� jy

2

� ky

3

)℄

R

= x

0

y

0

� x

1

y

1

� x

2

y

2

� x

3

y

3

:

The new subgroup,

~

O(1; H

L


 H

R

) ; gA+A

y

g = 0 ;

represents the one-dimensional quaternioni
 
ounterpart of the Lorentz group O(1; 3) [15℄.

The 
lassi
al groups whi
h o

upy a 
entral pla
e in group representation theory and have

many appli
ations in various bran
hes of Mathemati
s and Physi
s are the unitary, spe
ial

unitary, orthogonal, and symple
ti
 groups. In order to de�ne spe
ial groups, we must de�ne

an appropriate tra
e for our matri
es. In fa
t, for non-
ommutative numbers the tra
e of the

produ
t of two numbers is not the tra
e of the produ
t with reversed fa
tors. With 
omplex

11



linear quaternions we have the possibility to give a new de�nition of \
omplex" tra
e (Tr)

by

Tr O

a

C

= Tr a

�n

L

�


R

n

= a

00

+ ia

01

: (22)

Su
h a de�nition implies that for any two 
omplex linear quaternioni
 operators O

a

C

and O

b

C

Tr (O

a

C

O

b

C

) = Tr (O

b

C

O

a

C

) :

For real linear quaternions we need to use the standard de�nition of \real" tra
e (tr)

tr O

a

R

= a

00

; (23)

sin
e the previous \
omplex" de�nition (22) gives

Tr (O

a

R

O

b

R

) 6= Tr (O

b

R

O

a

R

) :

For example, for

O

a

R

= R

j

and O

b

R

= R

k

;

we �nd

Tr (O

a

R

O

b

R

) = Tr (R

j

R

k

) = �Tr (R

i

) = �1 ;

T r (O

b

R

O

a

R

) = Tr (R

k

R

j

) = +Tr (R

i

) = +1 :

4.4 N-Dimensional Quaternioni
 Groups

We re
all that the generators of the unitary, spe
ial unitary, orthogonal groups must satisfy

the following 
onditions [22℄

U(N) A+A

y

= 0 ,

SU(N) A+A

y

= 0 , Tr A = 0 ,

O(N) A+A

t

= 0 .

These 
onditions also apply for quaternioni
 groups. For 
omplex symple
ti
 groups we �nd

Sp(2N) JA+A

t

J = 0 ,

where

J =

�

0

N�N

1

N�N

�1

N�N

0

N�N

�

:

Working with quaternioni
 numbers, we 
an 
onstru
t a group preserving a non-singular

antisymmetri
 metri
, for N odd as well as N even. Thus for quaternioni
 symple
ti
 groups

we have

Sp(N) JA+A

t

J = 0 ,

with

J

2N�2N

=

�

0

N�N

1

N�N

�1

N�N

0

N�N

�

; J

(2N+1)�(2N+1)

=

0

�

0

N�N

0

N�1

1

N�N

0

1�N

L

j

0

1�N

�1

N�N

0

N�1

0

N�N

1

A

:

The generators of one-dimensional groups with 
omplex and real linear quaternions are

given in the following table

12



One-dimensional quaternioni
 groups

Groups Generators

U(1; H

L


 C

R

) A

C

+A

C

y

= 0 :

~

L ; R

i

SU(1; H

L


 C

R

) A

C

+A

C

y

= 0, Tr A

C

= 0 :

~

L

O(1; H

L


 C

R

) A

C

+A

C

t

= 0 : L

j

; L

j

R

i

Sp(1; H

L


 C

R

) L

j

A

C

+A

C

t

L

j

= 0 :

~

L ;

~

LR

i

U(1; H

L


 H

R

) A

R

+A

R

y

= 0 :

~

L ;

~

R

O(1; H

L


 H

R

) A

R

+A

R

t

= 0 : L

j

; L

j

R

i

; L

j

R

k

; R

j

; L

i

R

j

; L

k

R

j

~

O(1; H

L


 H

R

) gA

R

+A

R

y

g = 0 :

~

L�

~

R ;

~

L�

~

R

Sp(1; H

L


 H

R

) L

j

A

R

+A

R

t

L

j

= 0 :

~

L ;

~

LR

i

;

~

LR

k

; R

j

We 
on
lude our 
lassi�
ation of quaternioni
 groups giving the general formulas for


ounting the generators of generi
 N -dimensional groups as fun
tion of N .

N-dimensional quaternioni
 groups

U(N; H

L

) $ USp(2N; C ) N(2N + 1)

U(N; H

L


 C

R

) $ U(2N; C ) 4N

2

U(N; H

L


 H

R

) $ O(4N) 2N(4N � 1)

SU(N; H

L

) � U(N; H

L

)

SU(N; H

L


 C

R

) $ SU(2N; C ) 4N

2

� 1

SU(N; H

L


 H

R

) � U(N; H

L


 H

R

)

O(N; H

L

) $ SO

�

(2N; C ) N(2N � 1)

O(N; H

L


 C

R

) $ O(2N; C ) 2N(2N � 1)

O(N; H

L


 H

R

) $ O(2N

+

; 2N

�

) 2N(4N � 1)

~

O(N; H

L


 H

R

) $ O(3N

+

; N

�

) 2N(4N � 1)

Sp(N; H

L

) $ USp(2N; C ) N(2N + 1)

Sp(N; H

L


 C

R

) $ Sp(2N; C ) 2N(2N + 1)

Sp(N; H

L


 H

R

) $ Sp(4N;R) 2N(4N + 1)

5 Physi
al Appli
ations

In the last years the left/right a
tion of the quaternioni
 numbers, expressed by left/right

operators, O

R

, O

C

, O

H

, has been very useful in over
oming diÆ
ulties owing to the non-


ommutativity of quaternions. Among the su

essful appli
ations of left/right operators we

mention the one-dimensional quaternioni
 formulation of Lorentz boosts.

5.1 Spe
ial Relativity

The Lorentz group, O(3; 1), is 
hara
terized by six parameters, three for rotations and

three for boosts. Corresponding to these six parameters there are six generators. The

anti-hermitian generators asso
iated to spatial rotations and the hermitian boost generators

satisfy the following 
ommutation relations

A

x

= [A

y

;A

z

℄ ; A

x

= [B

z

;B

y

℄ ; B

x

= [A

y

;B

z

℄ = [B

y

;A

z

℄ ;

A

y

= [A

z

;A

x

℄ ; A

y

= [B

x

;B

z

℄ ; B

y

= [A

z

;B

x

℄ = [B

z

;A

x

℄ ; (24)

A

z

= [A

x

;A

y

℄ ; A

z

= [B

y

;B

x

℄ ; B

z

= [A

x

;B

y

℄ = [B

x

;A

y

℄ ;

13



The idea of 
ombining left and right imaginary units gives the possibility to obtain a one-

dimensional quaternioni
 representation for boost generators by R-linear quaternioni
 oper-

ators [15℄

Boost generators:

1

2

~

L�

~

R ;

Rotation generators:

1

2

�

~

L�

~

R

�

:

The four real quantities whi
h identify the spa
e-time point (
t; x; y; z) are represented by

the quaternion

q = 
t+ ix+ jy + kz :

The one-dimensional group

~

O(1; H

L


 H

R

) represents the quaternioni
 
ounterpart of the

four-dimensional Lorentz group O(3; 1). In�nitesimal rotations about the x-axis and boosts

(
t; x) are respe
tively given by

~q

r

=

�

1 +

�

x

2

(L

i

�R

i

)

�

q

= 
t+ ix+ j(y � �

x

z) + k(z + �

x

y) ; (25)

~q

b

=

�

1 +

'

x

2

(L

j

R

k

� L

k

R

j

)

�

q

= 
t+ '

x

x+ i(x+ '

x


t) + jy + kz : (26)

In analogy to the 
onne
tion between the rotation group O(3) and the spe
ial unitary

group SU(2), there is a natural 
orresponden
e between the Lorentz group O(3; 1) and the

spe
ial linear group SL(2; C ). The use of left/right quaternioni
 imaginary units gives the

possibility to extend su
h 
onne
tions to \quaternioni
" group,

O(3) � SU(2) $ U(1; H

L

) ,

O(3; 1) � SL(2; C ) $ SL(1; H

L


 C

R

) .

In fa
t, 
ombining left quaternioni
 imaginary units,

~

L, with right \
omplex" imaginary unit,

R

i

, we obtain the following one-dimensional representation for rotation and boost generators

A

x

= L

i

=2 ; A

y

= L

j

=2 ; A

z

= L

k

=2 2 H

L

; (27)

and

B

x

= L

i

R

i

=2 ; B

y

= L

j

R

i

=2 ; B

z

= L

k

R

i

=2 2 H

L


 C

R

: (28)

Now, the four real quantities whi
h identify the spa
e-time point are represented by the

symple
ti
 de
omposition of quaternioni
 spinor states

q = � + j� ; �; � 2 C (1; i) ; (29)

where

q(1 + i)q

y

� 
t+ ix+ jy + kz :

With this identi�
ations, O(3; 1)-transformations on

X =

0

B

B

�


t

x

y

z

1

C

C

A

;
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are equivalent to one-dimensional transformations on quaternioni
 spinors (29). A detailed

dis
ussion is found in ref. [23℄.

New possibilities, 
oming out from the use of C -linear quaternioni
 operators, also appear

in Quantum Me
hani
s and Field Theory, e.g. they allow an appropriate de�nition of the

momentum operator [12℄, quaternioni
 version of standard relativisti
 equations [12, 13℄,

Lagrangian formalism [25℄, ele
troweak model [7℄ and grand uni�
ation theories [8℄.

5.2 Dira
 Equation

In the 
omplex world, the Dira
 equation read indi�erently as

i�

t

 = H or �

t

 i = H :

In the quaternioni
 world there is a 
lear di�eren
e in 
hoosing a left or right position for

our 
omplex imaginary unit i. In fa
t, by requiring norm 
onservation

�

t

Z

d

3

x 

y

 = 0 ;

we �nd that a left position of the imaginary unit i in the quaternioni
 Dira
 equation,

L

i

�

t

 � i�

t

 = H ;

gives

�

t

Z

d

3

x 

y

 =

Z

d

3

x 

y

[H; i℄ ;

in general 6= 0 for quaternioni
 Hamiltonians. A right position of the imaginary unit i,

R

i

�

t

 � �

t

 i = H ;

ensures the norm 
onservation. From 
ovarian
e, by treating time and spa
e in the same

way, we obtain the following \quaternioni
" momentum operator

p

�

$ R

i

�

�

) p

�

 $ R

i

�

�

 � �

�

 i : (30)

Finally, the quaternioni
 Dira
 equation reads

R

i




�

�

�

 � 


�

�

�

 i = m ; [


�

; 


�

℄ = 2g

��

; (31)

with




�

2M

2

(H

L


 C

R

) and  2 H

2

:

Another fundamental ingredient in the formulation of quaternioni
 relativisti
 quantum

me
hani
s is represented by the adoption of a 
omplex geometry [24℄, ne
essary in order to

guarantee that R

i

~

� be an hermitian operator

Z

d

3

x'

y

R

i

~

� =

Z

d

3

x (R

i

~

�')

y

 :

The previous relation implies

Z

d

3

x'

y

~

� i = �i

Z

d

3

x

~

�'

y

 (after integration by parts) = i

Z

d

3

x'

y

~

� :

The di�erent position of the imaginary unit i for
es the use of a 
omplex proje
tion [24℄ for

inner produ
ts

Z

d

3

x !

Z

C

d

3

x : (32)
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5.3 Lagrangian Formalism

The use of the variational prin
iple within quaternioni
 quantum me
hani
s is non-trivial

be
ause of the non 
ommutative nature of quaternions. In this subse
tion, we write the Dira


Lagrangian density 
orresponding to the two-
omponent Dira
 equation. This Lagrangian is


omplex proje
ted as anti
ipated in previous arti
les [25℄. The traditional form for the Dira


Lagrangian density is

L = i

�

 


�

�

�

 �m

�

  : (33)

The position of the imaginary unit i is purely 
onventional in (33) but with a quaternioni


number �eld we must re
ognize that the �

�

operator is more pre
isely part of the �rst

quantized momentum operator R

i

�

�

and that hen
e to ensure L be an hermitian quantity

we must taken a 
omplex proje
tion of the kineti
 term

L

kin

=

�

�

 


�

R

i

�

�

 

�

C

�

�

�

 


�

�

�

 i

�

C

=

�

�

 


�

�

�

 

�

C

i :

The requirement of hermiti
ity however says nothing about the Dira
 mass term in eq. (33).

It is here that appeal to the variational prin
iple must be made. A variation Æ in  
annot

brought to the extreme right be
ause of the imaginary unit i. The only 
onsistent pro
edure

is to generalize the variational rule that says that  and

�

 must be varied independently.

We thus apply independent variations to  (Æ ) and  i (Æ( i)). Similarly for Æ

�

 and Æ(i

�

 ).

Now, to obtain the desired Dira
 equation for  and its adjoint equation for

�

 , we must

modify the mass term into

L

mass

= �m

�

�

  

�

C

:

The �nal result for L is

L =

�

�

 


�

R

i

�

�

 �m

�

  

�

C

: (34)

5.4 Ele
troweak Models

Let us now eaxamine the fermion/quark se
tor of Salam-Weinberg model [26℄. The �rst

family is represented by

�

�

e

�

and

�

u

d

�

:

In the standard representation [7, 12℄

	

L

=

�

�

L

u

L

e

L

d

L

�

; 	

R

=

�

�

R

u

R

e

R

d

R

�

2M

4

(H ) : (35)

The massless fermion ele
troweak Lagrangian

L

fermion

=

�

�

	

L




�

R

i

�

�

	

L

+

�

	

R




�

R

i

�

�

	

R

�

C

; (36)

where




�

2M

4

(C

R

) ;

is global invariant under the quaternioni
 Glashow gauge group [27℄

U(1; H

L

)

L


 U(1; C

R

)

Y

: (37)
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In the 
hiral representation [23℄ �

L=R

, e

L=R

, u

L=R

and d

L=R

are one-dimensional quater-

nioni
 spinors and so 
an be a

ommodate in

	

L

=

�

�

L

u

L

e

L

d

L

�

; 	

R

=

�

�

R

u

R

e

R

d

R

�

2M

2

(H ) : (38)

The Lagrangian for the masseless fermion se
tor

L

fermion

=

�

�

	

L




�

R

i

�

�

	

L

+

�

	

R




�

R

i

�

�

	

R

�

C

; (39)

is now global invariant under the \right 
omplex" gauge group

SU(2; C

R

)

L


 U(1; C

R

)

Y

: (40)

6 Con
lusions

The more ex
iting possibility that quaternioni
 or o
tonioni
 equations will eventually play

a signi�
ant role in Mathemati
s and Physi
s is synonymous, for some physi
ist, with the

advent of a revolution in Physi
s 
omparable to that of Quantum Me
hani
s.

For example, Adler suggested [28℄ that the 
olor degree of freedom postulated in the

Harari-Shupe model [29, 30℄ (where we 
an think of quarks and leptons as 
omposites of

other more fundamental fermions, preons) 
ould be sought in a non-
ommutative extension

of the 
omplex �eld. Surely a stimulating idea. Nevertheless, we think that it would be

very strange if standard Quantum Me
hani
s did not permit a quaternioni
 or o
tonioni


des
ription other than in the trivial sense that 
omplex numbers are 
ontained within the

quaternions or o
tonions.

In the last few years mu
h progress has been a
hieved in manipulating su
h �elds. We

quote the quaternioni
 version of ele
troweak theory [7℄, where the Glashow group is expressed

by the one-dimensional quaternioni
 group U(1; H

L

) 
 U(1; C

R

), quaternioni
 GUTs [8℄ and

Spe
ial Relativity, where the Lorentz group is represented by

~

O(1; H

L


 H

R

). We also re
all

new possibilities related to the use of o
tonions in Quantum Me
hani
s [31℄, in parti
ular

in writing a one-dimensional o
tonioni
 Dira
 equation. The link between o
tonioni
 and

quaternioni
 versions of standard Quantum Physi
s is represented by the use of a 
omplex

geometry [24℄.

In this paper we observed that beyond the study of matrix groups with \simple" quater-

nioni
 elements, O

H

, one 
an 
onsider more general groups with matrix elements of the form

O

R

and O

C

. To the best of our knowledge these more general matrix groups have not been

studied in the literature. We over
ome the problems arising in the de�nitions of transpose,

determinant and tra
e for quaternioni
 matri
es. For o
tonioni
 �elds [32℄ we must admit

a more 
ompli
ated situation, yet our dis
ussion 
an be also proposed for non-asso
iative

numbers.

Finally, we hope that this paper emphasizes the possibility of using hyper-
omplex num-

bers in Mathemati
s and Physi
s and 
ould represent an important step towards a 
omplete

and 
lear dis
ussion on Hyper-
omplex Group and Field Theories.
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Appendix A

We give the translation rules between quaternioni
 left/right R-linear operators and 4� 4 real

matri
es:

L

i

$

0

B

B

�

0 �1 0 0

1 0 0 0

0 0 0 �1

0 0 1 0

1

C

C

A

; L

j

$

0

B

B

�

0 0 �1 0

0 0 0 1

1 0 0 0

0 �1 0 0

1

C

C

A

; L

k

= L

i

L

j

;

R

i

$

0

B

B

�

0 �1 0 0

1 0 0 0

0 0 0 1

0 0 �1 0

1

C

C

A

; R

j

$

0

B

B

�

0 0 �1 0

0 0 0 �1

1 0 0 0

0 1 0 0

1

C

C

A

; R

k

= R

j

R

i

:

From these identi�
ations we 
an obtain the full translation. For example, the matrix


ounterpart of the operator L

j

R

k

is soon a
hieved by

L

j

R

k

$

0

B

B

�

0 0 �1 0

0 0 0 1

1 0 0 0

0 �1 0 0

1

C

C

A

2

6

6

4

0

B

B

�

0 0 �1 0

0 0 0 �1

1 0 0 0

0 1 0 0

1

C

C

A

0

B

B

�

0 �1 0 0

1 0 0 0

0 0 0 1

0 0 �1 0

1

C

C

A

3

7

7

5

=

0

B

B

�

0 0 �1 0

0 0 0 1

1 0 0 0

0 �1 0 0

1

C

C

A

0

B

B

�

0 0 0 �1

0 0 1 0

0 �1 0 0

1 0 0 0

1

C

C

A

=

0

B

B

�

0 0 0 �1

0 0 1 0

0 �1 0 0

1 0 0 0

1

C

C

A

0

B

B

�

0 0 �1 0

0 0 0 1

1 0 0 0

0 �1 0 0

1

C

C

A

=

0

B

B

�

0 1 0 0

1 0 0 0

0 0 0 �1

0 0 �1 0

1

C

C

A

:
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