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Abstrat

Due to the non-ommutative nature of quaternions we introdue the onept of left

and right ation for quaternioni numbers. This gives the opportunity to manipulate

appropriately the H -�eld. The standard problems arising in the de�nitions of transpose,

determinant and trae for quaternioni matries are overome. We investigate the possi-

bility to formulate a new approah to Quaternioni Group Theory. Our aim is to highlight

the possibility of looking at new quaternioni groups by the use of left and right operators

as fundamental step toward a lear and omplete disussion of Uni�ation Theories in

Physis.

1 Introdution

Complex numbers have played a dual role in Physis, �rst as a tehnial tool in resolving

di�erential equation (lassial optis) or via the theory of analyti funtions for performing

real integrations, summing series, et.; seondly in a more essential way in the development

of Quantum Mehanis and later Field Theory. With quaternions, for the �rst type of

appliation, i.e. as a means to simplify alulations, we an quote the original work of

Hamilton [1℄, but this only beause of the late development of vetor algebra by Gibbs and

Heaviside [2℄. Even Maxwell used quaternions as a tool in his alulations, e.g. in the

Treatise of Eletriity and Magnetism [3℄ where we �nd the r-operator expressed by the

three quaternioni imaginary units.

Notwithstanding the Hamilton's onvition that quaternions would soon play a role om-

parable to, if not greater than, that of omplex numbers the use of quaternions in Physis was

very limited [4℄. Nevertheless, in the last deades, we �nd a renewed interest in the appliation

of non-ommutative �elds in Mathematis and Physis. In Physis, we quote quaternioni
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versions of Gauge Theories [5℄-[8℄, Quantum Mehanis and Fields [9℄-[14℄, Speial Relativ-

ity [15℄. In Mathematis, we �nd appliations of quaternions for Tensor Produts [16, 17℄,

Group Representations [18℄.

In this paper we aim to give a new panorami review of quaternioni groups. We use the

adjetive \new" sine the elements of our matries will not be simple quaternions but left

and right operators, originally introdued with the name of \barred operators" [19℄.

In Physis, partiularly Quantum Mehanis, we are austomed to distinguishing be-

tween \states" and \operators". Even when the operators are represented by numerial

matries, the squared form of operators distinguishes them from the olumn struture of

the spinors states. Only for one-omponent �elds and operators is there potential onfu-

sion. In extending Quantum Mehanis de�ned over the omplex �eld to quaternions it has

almost always been assumed that matrix operators ontain elements whih are \numbers"

indistinguishable from those of the state vetors. This is an unjusti�ed limitation. In fat,

(non-ommutative) hyper-omplex theories require left/right operators.

This paper is organized as follows: In setion 2, we introdue the quaternioni algebras.

In setion 3, we show that the non-ommutative nature of the quaternioni �eld suggests the

use of left/right operators. In setion 4, we �nd the appropriate de�nitions of transpose, trae

and determinant for quaternioni matries. Suh a setion ontains the new lassi�ation of

quaternioni groups. In setion 5, we present some appliations of left/right operators in

Physis. Our onlusions are drawn in the �nal setion.

2 Quaternioni States

Complex numbers an be onstruted from the real numbers by introduing a quantity i

whose square is �1:

 = r

1

+ ir

2

(r

1;2

2 R) :

Likewise, we an onstrut the quaternions from the omplex numbers in exatly the same

way by introduing another quantity j whose square is �1,

q = 

1

+ j

2

(

1;2

2 C ) ;

and whih anti-ommutes with i

ij = �ji = k :

In introduing the quaternioni algebra, let us follow the oneptual approah of Hamil-

ton. In 1843, the Irish mathematiian attempted to generalize the omplex �eld in order to

desribe the rotations in the three-dimensional spae. He began by looking for numbers of

the form

x+ iy + jz ;

with i

2

= j

2

= �1. Hamilton's hope was to do for three-dimensional spae what omplex

numbers do for the plane. Inuened by the existene of a omplex number norm



�

 = (Re )

2

+ (Im )

2

;

when he looked at its generalization

(x� iy � jz)(x+ iy + jz) = x

2

+ y

2

+ z

2

� (ij + ji)yz ;
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to obtain a real number, he had to adopt the anti-ommutative law of multipliation for

the imaginary units. Nevertheless, with only two imaginary units we have no hane of

onstruting a new numerial �eld, beause assuming

ij = �+ i� + j (�; �;  2 R) ;

and using the multipliation assoiativity, �i(ij) = �i

2

j = j, we �nd

j = � � i�� ij = i�� � � (�+ i� + j)  ;

whih implies

� = � = 0 and 

2

= �1 :

Thus, we must introdue a third imaginary unit k 6= i; j, with

k = ij = �ji :

The H -�eld is therefore haraterized by three imaginary units i, j, k whih satisfy the

following multipliation rules

i

2

= j

2

= k

2

= ijk = �1 : (1)

Numbers of the form

q = x

0

+ ix+ jy + kz ( x

0

; x; y; z 2 R ) ; (2)

are alled (real) quaternions. They are added, subtrated and multiplied aording to the

usual laws of arithmeti, exept for the ommutative law of multipliation.

Similarly to rotations in a plane that an be onisely expressed by omplex number, a

rotation about an axis passing through the origin and parallel to a given unitary vetor û �

(u

x

; u

y

; u

z

) by an angle � an be obtained taking the following quaternioni transformation

exp

�

�

2

~

h � ~u

�

~

h � ~r exp

�

�

�

2

~

h � ~u

�

;

where

~

h � (i; j; k) and ~r � (x; y; z) :

In setion 5, we shall see how the quaternioni number q in Eq. (2), with the identi�ation

x

0

� t, an be used to formulate a one-dimensional version of the Lorentz group [15℄. We

obtain the natural generalization of Hamilton's idea

omplex/plane ! pure imaginary quaternions/spae ! quaternions/spae-time ,

ompleting the uni�ation of algebra and geometry.

Let us now onsider the (full) onjugate of q

q

y

= x

0

� ix� jy � kz : (3)

We observe that q

y

q and qq

y

are both equal to the real number

N(q) = x

2

0

+ x

2

+ y

2

+ z

2

;
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whih is alled the norm of q. When q 6= 0, we an de�ne

q

�1

= q

y

=N(q) ;

so quaternions form a zero-division ring.

An important di�erene between quaternioni and omplex numbers is related to the

de�nition of the onjugation operation. Whereas with omplex numbers we an de�ne only

one type of onjugation

i! �i ;

working with quaternioni numbers we an introdue di�erent onjugation operations. In-

deed, with three imaginary units we have the possibility to de�ne besides the standard

onjugation (3), the six new operations

(i; j; k) ! (�i; +j; +k) ; (+i; �j; +k) ; (+i; +j; �k) ;

(i; j; k) ! (+i; �j; �k) ; (�i; +j; �k) ; (�i; �j; +k) :

These last six onjugations an be onisely represented by q and q

y

as follows

q ! �iq

y

i ; �jq

y

j ; �kq

y

k ;

q ! �iqi ; �jqj ; �kqk :

It ould seem that the only independent onjugation be represented by q

y

. Nevertheless, q

y

an also be expressed in terms of q, in fat

q

y

= �

1

2

(q + iqi+ jqj + kqk) : (4)

We onlude this setion by introduing a ompat notation to represent quaternioni

states. Let

h

�

�

�

1 ; �

~

h

�

and h

�

�

�

1 ;

~

h

�

(5)

denote the H -�eld generators and

x

�

� ( x

0

; ~x ) and x

�

� (x

0

; �~x ) (6)

be ontravariant and ovariant real quadrivetors,

g

��

= (+; �; �; �) :

Quaternioni states will be written in terms of (5,6) as follows

q = x

�

h

�

= x

�

h

�

� x

0

+

~

h � ~x ;

and onsequently the (full) quaternioni onjugate, q

y

will read

q

y

= x

�

h

�

= x

�

h

�

� x

0

�

~

h � ~x :

From now on, Greek letters will be run from 0 to 3.
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3 Quaternioni Left/Right Operators

Due to the non-ommutative nature of quaternions we must distinguish between q

~

h and

~

hq.

Thus, it is appropriate to onsider left and right-ations for our imaginary units i, j and k.

Let us de�ne the operators

L

�

�

�

11 ;

~

L

�

2 H

L

;

~

L = (L

i

; L

j

; L

k

) ; (7)

and

R

�

�

�

11 ;

~

R

�

2 H

R

;

~

R = (R

i

; R

j

; R

k

) ; (8)

whih at on quaternioni states in the following way

L

�

: H ! H ; L

�

q = h

�

q 2 H ; (9)

and

R

�

: H ! H ; R

�

q = q h

�

2 H : (10)

The algebra of left/right generators an be onisely expressed by

L

2

i

= L

2

j

= L

2

k

= L

i

L

j

L

k

= R

2

i

= R

2

j

= R

2

k

= R

k

R

j

R

i

= �11 ;

and by the ommutation relations

[L

i;j;k

; R

i;j;k

℄ = 0 :

In this setion we will disuss three di�erent types of operators. Operators H -linear,

C -linear, R-linear from the right. For simpliity of notation we introdue

O

X

: H ! H ;

to represent quaternioni operators right-linear on the X-�eld. Operators whih at only

from the left,

O

H

= a

�

L

�

2 H

L

; a

�

2 R

4

;

are obviously H -linear from the right

L

�

(q�) = (L

�

q) � ; � 2 H ;

and R-linear from the left

L

�

(�q) = � (L

�

q) ; � 2 R :

Let us now onsider the sixteen generators

M

��

� L

�


R

�

:

Due to left and right ations of the imaginary units i, j, k the orresponding operator

O

R

= a

��

M

��

� a

��

L

�


R

�

2 H

L


 H

R

; a

��

2 R

16

;

are restrited to be R-linear

M

��

(q�) = (M

��

q) � = � (M

��

q) ; � 2 R :
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Finally, onsidering the right ation to the only i-omplex imaginary unit

M

�n

� L

�


R

n

; n = 1; 2 ;

we obtain right C -linear operators

O

C

= a

�n

M

�n

� a

�n

L

�


R

n

2 H

L


 C

R

� H

L


 H

R

; a

�n

2 R

8

;

in fat

M

�n

(q�) = (M

�n

q) � ; � 2 C :

The lassi�ation of right H /C /R-linear an be summarized by

O

H

� O

C

� O

R

;

note that all these operators are obviously R-linear from the left.

Let us now analyze the produt of two right R-linear operators

O

a

R

= a

��

M

��

; O

b

R

= b

��

M

��

;

in terms of left/right quaternioni generators is given by

O

a

R

O

b

R

= a

��

b

��

L

�

L

�


R

�

R

�

:

From suh a relation we an immediately obtain the produt of right C -linear and R-linear

operators. The full onjugation operation for left/right operators is de�ned by a simultaneous

hange in the sign of left/right quaternioni imaginary units, i.e.

L

y

�

= L

�

= g

��

L

�

and R

y

�

= R

�

= g

��

R

�

:

Thus,

O

y

R

= a

��

L

y

�


R

y

�

= a

��

L

�


R

�

2 H

L


 H

R

: (11)

For operators produt onjugations we have

�

O

a

R

O

b

R

�

y

= a

��

b

��

(L

�

L

�


R

�

R

�

)

y

= a

��

b

��

(L

�

L

�

)

y


 (R

�

R

�

)

y

= a

��

b

��

L

y

�

L

y

�


R

y

�

R

y

�

= O

b y

R

O

a y

R

:

In setion 4, dealing with quaternioni matries we shall distinguish between (right) R-

linear quaternioni groups,

GL (N; H

L


 H

R

) ;

and C -linear quaternioni groups,

GL (N; H

L


 C

R

) :

For a lear and omplete disussion of standard quaternioni groups,

GL (N; H

L

) ;
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the reader is referred to Gilmore's book [20℄. The use of left/right operators give new oppor-

tunities in Quaternioni Group Theory. Let us observe as follows: The so-alled sympleti

omplex representation of a quaternion (state) q

q = 

1

+ j

2

(

1;2

2 C ) ;

by a omplex olumn matrix, is

q $

�



1



2

�

: (12)

The operator representation of L

i

, L

j

and L

k

onsistent with the above identi�ation

L

i

$

�

i 0

0 �i

�

= i�

3

; L

j

$

�

0 �1

1 0

�

= �i�

2

; L

k

$

�

0 �i

�i 0

�

= �i�

1

; (13)

has been known sine the disovery of quaternions. It permits any quaternioni number or

matrix to be translated into a omplex matrix, but not neessarily vie-versa. Eight real num-

bers are required to de�ne the most general 2� 2 omplex matrix but only four are needed to

de�ne the most general quaternion. In fat sine every (non-zero) quaternion has an inverse,

only a sublass of invertible 2� 2 omplex matries are identi�able with quaternions. C -linear

quaternioni operators omplete the translation [19℄. The right quaternioni imaginary unit

R

i

$

�

i 0

0 i

�

;

adds four additional degrees of freedom, obtained by matrix multipliation of the orrespond-

ing matries,

R

i

; L

i

R

i

; L

j

R

i

; L

k

R

i

;

and so we have a set of rules for translating from any 2� 2 omplex matries to C -linear

operators, O

R

. This opens new possibilities for quaternioni numbers, see for example the

one-dimensional version of the Glashow group [7℄. Obviously, this translation does not apply

to odd-dimensional omplex matries [21℄.

4 Quaternioni Groups

Every set of basis vetors in V

N

a vetor spae, an be related to every other oordinate

system by an N �N non singular matrix. The N �N matrix groups involved in hanging

bases in the vetor spaes R

N

, C

N

and H

L

N

are alled general linear groups of N �N matries

over the reals, omplex and quaternions

GL (N;R) ! GL (N; C ) ! GL (N; H

L

)

#

GL (2N; C ) $ GL (N; H

L


 C

R

)

#

GL (4N;R) $ GL (N; H

L


 H

R

) .
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Before disussing the groups GL (N; H

L


 H

R

) and GL (N; H

L


 C

R

), we introdue a new def-

inition of transpose for quaternioni matries whih will allow us to overome the diÆulties

due to the non-ommutative nature of the quaternioni �eld (our de�nition, applying to

standard quaternions, will be extended to omplex and real linear quaternions).

4.1 Quaternioni Transpose De�nition

The ustomary onvention of de�ning the transpose M

t

of the matrix M is

(M

t

)

rs

=M

sr

: (14)

In general, however, for two quaternioni matries M and N one has

(MN)

t

6= N

t

M

t

;

whereas this statement hold as an equality for omplex matries. For example, the usual

de�nition (14) implies

�

�

q

1

q

2

�

�

p

1

p

2

��

t

= (q

1

p

1

+ q

2

p

2

)

t

= q

1

p

1

+ q

2

p

2

; (15)

and

�

p

1

p

2

�

t

�

q

1

q

2

�

t

= p

t

1

q

t

1

+ p

t

2

q

t

2

= p

1

q

1

+ p

2

q

2

; (16)

whih are equal only if we use a ommutative states. How an we de�ne orthogonal quater-

nioni states and orthogonal groups? By looking at the previous example, we see that the

problem arises in the di�erent position of fators q

1;2

and p

1;2

. The solution is very simple

one seen. It is possible to give a quaternioni transpose whih reverses the order of fators.

We have three (equivalent) possibilities to de�ne q

t

, namely

x

0

� ix

1

+ jx

2

+ kx

3

; x

0

+ ix

1

� jx

2

+ kx

3

; x

0

+ ix

1

+ jx

2

� kx

3

: (17)

We hoose

q

t

= x

0

+ ix

1

� jx

2

+ kx

3

; (18)

whih goes bak to the usual de�nition for omplex numbers, 

t

=  2 C (1; i). In this way, the

transpose of a produt of two quaternions q and p is the produt of the transpose quaternions

in reverse order

(qp)

t

= p

t

q

t

:

The proof is straightforward if we reognize the following relation between transpose q

t

and

onjugate q

y

,

q

t

= �jq

y

j :

What happens for left/right quaternioni operators? Observing that for quaternioni states

i

t

= i ; j

t

= �j ; k

t

= k ;

the natural generalization for left/right quaternioni operators is

L

t

i

= L

i

; L

t

j

= �L

j

; L

t

k

= L

k

) L

t

�

= �L

j

L

y

�

L

j

;
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and

R

t

i

= R

i

; R

t

j

= �R

j

; R

t

k

= R

k

) R

t

�

= �R

j

R

y

�

R

j

:

One-dimensional R-linear transpose operators read

O

t

R

= a

��

L

t

�


R

t

�

= L

j

R

j

O

y

R

R

j

L

j

2 H

L


 H

R

: (19)

Thus, in the quaternioni world the transpose M

t

of the matrix M 2 GL (N; H

L


 H

R

),

de�ned by

(M

t

)

rs

=M

t

sr

2 H

L


 H

R

;

an be written as

M

t

= L

j

R

j

M

y

R

j

L

j

= R

j

L

j

M

y

L

j

R

j

; (20)

where

(M

y

)

rs

=M

y

sr

2 H

L


 H

R

:

With this new de�nition of quaternioni transpose, the relation

(MN)

t

= L

j

R

j

(MN)

y

R

j

L

j

= L

j

R

j

N

y

M

y

R

j

L

j

= L

j

R

j

N

y

R

j

L

j

L

j

R

j

M

y

R

j

L

j

= N

t

M

t

also holds for non-ommutative numbers. Finally, for C -linear operators, Eq. (19) redues to

O

t

C

= a

�n

L

t

�


R

n

= �L

j

O

y

C

L

j

: (21)

The fundamental property of reverse ring the order of fators for the transpose of quaternioni

produts is again preserved.

4.2 X-Mappings

In disussing the lassi�ation of the lassial (matrix) groups, it is neessary to introdue one

additional onept: themetri. Our matrix element areO

X

-operators, and so it is appropriate

to adopting the metri funtion,M

X

, mapping of a pair of vetors into a number �eld X

M

X

: H

N

� H

N

! X ; M

X

(	;�) = (	;�)

X

;

with 	;� 2 H

N

and (	;�)

X

2 X. Let us now reall the following theorem: The subset of

transformations of basis in V

N

whih preserves the mathematial struture of a metri forms

a subgroup of general linear groups.

bilinear symmetri orthogonal

Groups preserving bilinear antisymmetri metris are alled sympleti

sesquilinear symmetri unitary .

The previous theorem is valid for all real and omplex metri-preserving matrix groups. It

is also valid for quaternioni groups that preserve sesquilinear metris, sine two quaternions

obey (q

1

q

2

)

y

= q

y

2

q

y

1

. It is not true for quaternioni matries and bilinear metris, sine

two quaternions do not generally ommute. Nevertheless, it is still possible to assoiate

9



subgroups of GL (N; H

L

) with groups that preserve bilinear metris. In the literature this is

done in the following way. \Eah quaternion in GL (N; H

L

) is replaed by the orresponding

2� 2 omplex matrix using the translation rules (13). The subset of matries in this omplex

2N � 2N matrix representation of GL (N; H

L

) that leaves invariant a bilinear metri forms a

group, sine the theorem is valid for bilinear metris on omplex linear vetor spaes. We an

assoiate an N �N quaternion-valued matrix with eah 2N � 2N omplex-valued matrix in the

resulting groups that preserve bilinear metris in the spae C

2N�2N

, whih is a representation

for the spae H

L

N�N

" - Gilmore [20℄.

One we write our omplex matrix, we an trivially obtain the generators of omplex

orthogonal groups in a standard manner and then we an translate bak into quaternioni

language. But this is surely a laborious proedure. De�ning an appropriate transpose for

quaternioni numbers (18), we an overome the just-ited diÆulty. Besides, using the

sympleti representation (12), the most general transformation (on quaternioni states) will

be neessarily represented by C -linear quaternioni operators, O

C

, and for the invariant

metri we have to require a \omplex" projetion,M

C

: H � H ! C ,

M

C

(q

t

q) = (q

t

q)

C

= [(

1

� j

�

2

)(

1

+ j

2

)℄

C

= 

2

1

+ 

2

2

:

We wish to emphasize that the introdution of the imaginary unit R

i

in omplex linear

quaternioni operators

(R

i

)

y

= �R

i

;

neessarily implies a omplex inner produt. The \new" imaginary units R

i

represents an

anti-hermitian operator, and so it must verify

R

(R

i

 )

y

' = �

R

 

y

R

i

'

# #

R

( i)

y

' = �

R

 

y

'i :

The previous relation is true only if we adopt a omplex projetion

Z

C

�

1� L

i

R

i

2

Z

;

for the inner produts

Z

C

(R

i

 )

y

' = �i

Z

C

 

y

' = �

Z

C

 

y

'i = �

Z

 

y

R

i

' :

Obviously, for R-linear operators

(

~

R)

y

= �

~

R ;

implies real inner produts,

M

R

: H � H ! R :

4.3 One-Dimensional Quaternioni Groups

The generators of the unitary and orthogonal groups satisfy the following onstraints

Groups : Generators :

Unitary A+A

y

= 0 ,

Orthogonal A+A

t

= 0 .

10



For one-dimensional quaternioni groups, we �nd

Groups Generators

U(1; H

L

)

~

L

U(1; H

L


 C

R

)

~

L ; R

i

U(1; H

L


 H

R

)

~

L ;

~

R

O(1; H

L

) L

j

O(1; H

L


 C

R

) L

j

; L

j

R

i

O(1; H

L


 H

R

) L

j

; L

j

R

i

; L

j

R

k

; R

j

; L

i

R

j

; L

k

R

j

At this point, we make a number of observations:

1. - The di�erene between orthogonal and unitary groups is manifest for omplex linear

quaternioni groups beause of the di�erent numbers of generators.

2. - Orthogonal and unitary real linear quaternioni groups have the same number of

generators.

3. - The real groups U(N

+

; N

�

) and O(N

+

; N

�

) are idential (there is no di�erene

between bilinear and sesquilinear metris in a real vetor spae) and this suggest a possible

link between U(N; H

L


 H

R

) and O(N; H

L


 H

R

).

4. - For real linear quaternioni groups, the invariant metri requires a \real" projetion

(note that

~

R represent anti-hermitian operators only for real inner produts). Let us show

the \real" invariant metri for U(1; H

L


 H

R

) and O(1; H

L


 H

R

),

(x

y

y)

R

= [(x

0

� ix

1

� jx

2

� kx

3

)(y

0

+ iy

1

+ jy

2

+ ky

3

)℄

R

= x

0

y

0

+ x

1

y

1

+ x

2

y

2

+ x

3

y

3

;

(x

t

y)

R

= [(x

0

+ ix

1

� jx

2

+ kx

3

)(y

0

+ iy

1

+ jy

2

+ ky

3

)℄

R

= x

0

y

0

� x

1

y

1

+ x

2

y

2

� x

3

y

3

:

We an immediately reognize the invariant metri of O(4) and O(2; 2). To omplete the

analogy between one-dimensional real linear quaternioni operators and 4-dimensional real

matries, we observe that besides the subgroups related to the y-onjugation (where the sign

of all three imaginary units is hanged) and the t-onjugation (where only j ! �j), we an

de�ne a new subgroup whih leaves invariant the following real metri

(x

y

gy)

R

;

where

g = �

1

2

L

�

R

�

= �

1

2

�

11+

~

L �

~

R

�

:

Expliitly,

(x

y

gy)

R

= [(x

0

� ix

1

� jx

2

� kx

3

)(y

0

� iy

1

� jy

2

� ky

3

)℄

R

= x

0

y

0

� x

1

y

1

� x

2

y

2

� x

3

y

3

:

The new subgroup,

~

O(1; H

L


 H

R

) ; gA+A

y

g = 0 ;

represents the one-dimensional quaternioni ounterpart of the Lorentz group O(1; 3) [15℄.

The lassial groups whih oupy a entral plae in group representation theory and have

many appliations in various branhes of Mathematis and Physis are the unitary, speial

unitary, orthogonal, and sympleti groups. In order to de�ne speial groups, we must de�ne

an appropriate trae for our matries. In fat, for non-ommutative numbers the trae of the

produt of two numbers is not the trae of the produt with reversed fators. With omplex

11



linear quaternions we have the possibility to give a new de�nition of \omplex" trae (Tr)

by

Tr O

a

C

= Tr a

�n

L

�


R

n

= a

00

+ ia

01

: (22)

Suh a de�nition implies that for any two omplex linear quaternioni operators O

a

C

and O

b

C

Tr (O

a

C

O

b

C

) = Tr (O

b

C

O

a

C

) :

For real linear quaternions we need to use the standard de�nition of \real" trae (tr)

tr O

a

R

= a

00

; (23)

sine the previous \omplex" de�nition (22) gives

Tr (O

a

R

O

b

R

) 6= Tr (O

b

R

O

a

R

) :

For example, for

O

a

R

= R

j

and O

b

R

= R

k

;

we �nd

Tr (O

a

R

O

b

R

) = Tr (R

j

R

k

) = �Tr (R

i

) = �1 ;

T r (O

b

R

O

a

R

) = Tr (R

k

R

j

) = +Tr (R

i

) = +1 :

4.4 N-Dimensional Quaternioni Groups

We reall that the generators of the unitary, speial unitary, orthogonal groups must satisfy

the following onditions [22℄

U(N) A+A

y

= 0 ,

SU(N) A+A

y

= 0 , Tr A = 0 ,

O(N) A+A

t

= 0 .

These onditions also apply for quaternioni groups. For omplex sympleti groups we �nd

Sp(2N) JA+A

t

J = 0 ,

where

J =

�

0

N�N

1

N�N

�1

N�N

0

N�N

�

:

Working with quaternioni numbers, we an onstrut a group preserving a non-singular

antisymmetri metri, for N odd as well as N even. Thus for quaternioni sympleti groups

we have

Sp(N) JA+A

t

J = 0 ,

with

J

2N�2N

=

�

0

N�N

1

N�N

�1

N�N

0

N�N

�

; J

(2N+1)�(2N+1)

=

0

�

0

N�N

0

N�1

1

N�N

0

1�N

L

j

0

1�N

�1

N�N

0

N�1

0

N�N

1

A

:

The generators of one-dimensional groups with omplex and real linear quaternions are

given in the following table

12



One-dimensional quaternioni groups

Groups Generators

U(1; H

L


 C

R

) A

C

+A

C

y

= 0 :

~

L ; R

i

SU(1; H

L


 C

R

) A

C

+A

C

y

= 0, Tr A

C

= 0 :

~

L

O(1; H

L


 C

R

) A

C

+A

C

t

= 0 : L

j

; L

j

R

i

Sp(1; H

L


 C

R

) L

j

A

C

+A

C

t

L

j

= 0 :

~

L ;

~

LR

i

U(1; H

L


 H

R

) A

R

+A

R

y

= 0 :

~

L ;

~

R

O(1; H

L


 H

R

) A

R

+A

R

t

= 0 : L

j

; L

j

R

i

; L

j

R

k

; R

j

; L

i

R

j

; L

k

R

j

~

O(1; H

L


 H

R

) gA

R

+A

R

y

g = 0 :

~

L�

~

R ;

~

L�

~

R

Sp(1; H

L


 H

R

) L

j

A

R

+A

R

t

L

j

= 0 :

~

L ;

~

LR

i

;

~

LR

k

; R

j

We onlude our lassi�ation of quaternioni groups giving the general formulas for

ounting the generators of generi N -dimensional groups as funtion of N .

N-dimensional quaternioni groups

U(N; H

L

) $ USp(2N; C ) N(2N + 1)

U(N; H

L


 C

R

) $ U(2N; C ) 4N

2

U(N; H

L


 H

R

) $ O(4N) 2N(4N � 1)

SU(N; H

L

) � U(N; H

L

)

SU(N; H

L


 C

R

) $ SU(2N; C ) 4N

2

� 1

SU(N; H

L


 H

R

) � U(N; H

L


 H

R

)

O(N; H

L

) $ SO

�

(2N; C ) N(2N � 1)

O(N; H

L


 C

R

) $ O(2N; C ) 2N(2N � 1)

O(N; H

L


 H

R

) $ O(2N

+

; 2N

�

) 2N(4N � 1)

~

O(N; H

L


 H

R

) $ O(3N

+

; N

�

) 2N(4N � 1)

Sp(N; H

L

) $ USp(2N; C ) N(2N + 1)

Sp(N; H

L


 C

R

) $ Sp(2N; C ) 2N(2N + 1)

Sp(N; H

L


 H

R

) $ Sp(4N;R) 2N(4N + 1)

5 Physial Appliations

In the last years the left/right ation of the quaternioni numbers, expressed by left/right

operators, O

R

, O

C

, O

H

, has been very useful in overoming diÆulties owing to the non-

ommutativity of quaternions. Among the suessful appliations of left/right operators we

mention the one-dimensional quaternioni formulation of Lorentz boosts.

5.1 Speial Relativity

The Lorentz group, O(3; 1), is haraterized by six parameters, three for rotations and

three for boosts. Corresponding to these six parameters there are six generators. The

anti-hermitian generators assoiated to spatial rotations and the hermitian boost generators

satisfy the following ommutation relations

A

x

= [A

y

;A

z

℄ ; A

x

= [B

z

;B

y

℄ ; B

x

= [A

y

;B

z

℄ = [B

y

;A

z

℄ ;

A

y

= [A

z

;A

x

℄ ; A

y

= [B

x

;B

z

℄ ; B

y

= [A

z

;B

x

℄ = [B

z

;A

x

℄ ; (24)

A

z

= [A

x

;A

y

℄ ; A

z

= [B

y

;B

x

℄ ; B

z

= [A

x

;B

y

℄ = [B

x

;A

y

℄ ;

13



The idea of ombining left and right imaginary units gives the possibility to obtain a one-

dimensional quaternioni representation for boost generators by R-linear quaternioni oper-

ators [15℄

Boost generators:

1

2

~

L�

~

R ;

Rotation generators:

1

2

�

~

L�

~

R

�

:

The four real quantities whih identify the spae-time point (t; x; y; z) are represented by

the quaternion

q = t+ ix+ jy + kz :

The one-dimensional group

~

O(1; H

L


 H

R

) represents the quaternioni ounterpart of the

four-dimensional Lorentz group O(3; 1). In�nitesimal rotations about the x-axis and boosts

(t; x) are respetively given by

~q

r

=

�

1 +

�

x

2

(L

i

�R

i

)

�

q

= t+ ix+ j(y � �

x

z) + k(z + �

x

y) ; (25)

~q

b

=

�

1 +

'

x

2

(L

j

R

k

� L

k

R

j

)

�

q

= t+ '

x

x+ i(x+ '

x

t) + jy + kz : (26)

In analogy to the onnetion between the rotation group O(3) and the speial unitary

group SU(2), there is a natural orrespondene between the Lorentz group O(3; 1) and the

speial linear group SL(2; C ). The use of left/right quaternioni imaginary units gives the

possibility to extend suh onnetions to \quaternioni" group,

O(3) � SU(2) $ U(1; H

L

) ,

O(3; 1) � SL(2; C ) $ SL(1; H

L


 C

R

) .

In fat, ombining left quaternioni imaginary units,

~

L, with right \omplex" imaginary unit,

R

i

, we obtain the following one-dimensional representation for rotation and boost generators

A

x

= L

i

=2 ; A

y

= L

j

=2 ; A

z

= L

k

=2 2 H

L

; (27)

and

B

x

= L

i

R

i

=2 ; B

y

= L

j

R

i

=2 ; B

z

= L

k

R

i

=2 2 H

L


 C

R

: (28)

Now, the four real quantities whih identify the spae-time point are represented by the

sympleti deomposition of quaternioni spinor states

q = � + j� ; �; � 2 C (1; i) ; (29)

where

q(1 + i)q

y

� t+ ix+ jy + kz :

With this identi�ations, O(3; 1)-transformations on

X =

0

B

B

�

t

x

y

z

1

C

C

A

;

14



are equivalent to one-dimensional transformations on quaternioni spinors (29). A detailed

disussion is found in ref. [23℄.

New possibilities, oming out from the use of C -linear quaternioni operators, also appear

in Quantum Mehanis and Field Theory, e.g. they allow an appropriate de�nition of the

momentum operator [12℄, quaternioni version of standard relativisti equations [12, 13℄,

Lagrangian formalism [25℄, eletroweak model [7℄ and grand uni�ation theories [8℄.

5.2 Dira Equation

In the omplex world, the Dira equation read indi�erently as

i�

t

 = H or �

t

 i = H :

In the quaternioni world there is a lear di�erene in hoosing a left or right position for

our omplex imaginary unit i. In fat, by requiring norm onservation

�

t

Z

d

3

x 

y

 = 0 ;

we �nd that a left position of the imaginary unit i in the quaternioni Dira equation,

L

i

�

t

 � i�

t

 = H ;

gives

�

t

Z

d

3

x 

y

 =

Z

d

3

x 

y

[H; i℄ ;

in general 6= 0 for quaternioni Hamiltonians. A right position of the imaginary unit i,

R

i

�

t

 � �

t

 i = H ;

ensures the norm onservation. From ovariane, by treating time and spae in the same

way, we obtain the following \quaternioni" momentum operator

p

�

$ R

i

�

�

) p

�

 $ R

i

�

�

 � �

�

 i : (30)

Finally, the quaternioni Dira equation reads

R

i



�

�

�

 � 

�

�

�

 i = m ; [

�

; 

�

℄ = 2g

��

; (31)

with



�

2M

2

(H

L


 C

R

) and  2 H

2

:

Another fundamental ingredient in the formulation of quaternioni relativisti quantum

mehanis is represented by the adoption of a omplex geometry [24℄, neessary in order to

guarantee that R

i

~

� be an hermitian operator

Z

d

3

x'

y

R

i

~

� =

Z

d

3

x (R

i

~

�')

y

 :

The previous relation implies

Z

d

3

x'

y

~

� i = �i

Z

d

3

x

~

�'

y

 (after integration by parts) = i

Z

d

3

x'

y

~

� :

The di�erent position of the imaginary unit i fores the use of a omplex projetion [24℄ for

inner produts

Z

d

3

x !

Z

C

d

3

x : (32)
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5.3 Lagrangian Formalism

The use of the variational priniple within quaternioni quantum mehanis is non-trivial

beause of the non ommutative nature of quaternions. In this subsetion, we write the Dira

Lagrangian density orresponding to the two-omponent Dira equation. This Lagrangian is

omplex projeted as antiipated in previous artiles [25℄. The traditional form for the Dira

Lagrangian density is

L = i

�

 

�

�

�

 �m

�

  : (33)

The position of the imaginary unit i is purely onventional in (33) but with a quaternioni

number �eld we must reognize that the �

�

operator is more preisely part of the �rst

quantized momentum operator R

i

�

�

and that hene to ensure L be an hermitian quantity

we must taken a omplex projetion of the kineti term

L

kin

=

�

�

 

�

R

i

�

�

 

�

C

�

�

�

 

�

�

�

 i

�

C

=

�

�

 

�

�

�

 

�

C

i :

The requirement of hermitiity however says nothing about the Dira mass term in eq. (33).

It is here that appeal to the variational priniple must be made. A variation Æ in  annot

brought to the extreme right beause of the imaginary unit i. The only onsistent proedure

is to generalize the variational rule that says that  and

�

 must be varied independently.

We thus apply independent variations to  (Æ ) and  i (Æ( i)). Similarly for Æ

�

 and Æ(i

�

 ).

Now, to obtain the desired Dira equation for  and its adjoint equation for

�

 , we must

modify the mass term into

L

mass

= �m

�

�

  

�

C

:

The �nal result for L is

L =

�

�

 

�

R

i

�

�

 �m

�

  

�

C

: (34)

5.4 Eletroweak Models

Let us now eaxamine the fermion/quark setor of Salam-Weinberg model [26℄. The �rst

family is represented by

�

�

e

�

and

�

u

d

�

:

In the standard representation [7, 12℄

	

L

=

�

�

L

u

L

e

L

d

L

�

; 	

R

=

�

�

R

u

R

e

R

d

R

�

2M

4

(H ) : (35)

The massless fermion eletroweak Lagrangian

L

fermion

=

�

�

	

L



�

R

i

�

�

	

L

+

�

	

R



�

R

i

�

�

	

R

�

C

; (36)

where



�

2M

4

(C

R

) ;

is global invariant under the quaternioni Glashow gauge group [27℄

U(1; H

L

)

L


 U(1; C

R

)

Y

: (37)
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In the hiral representation [23℄ �

L=R

, e

L=R

, u

L=R

and d

L=R

are one-dimensional quater-

nioni spinors and so an be aommodate in

	

L

=

�

�

L

u

L

e

L

d

L

�

; 	

R

=

�

�

R

u

R

e

R

d

R

�

2M

2

(H ) : (38)

The Lagrangian for the masseless fermion setor

L

fermion

=

�

�

	

L



�

R

i

�

�

	

L

+

�

	

R



�

R

i

�

�

	

R

�

C

; (39)

is now global invariant under the \right omplex" gauge group

SU(2; C

R

)

L


 U(1; C

R

)

Y

: (40)

6 Conlusions

The more exiting possibility that quaternioni or otonioni equations will eventually play

a signi�ant role in Mathematis and Physis is synonymous, for some physiist, with the

advent of a revolution in Physis omparable to that of Quantum Mehanis.

For example, Adler suggested [28℄ that the olor degree of freedom postulated in the

Harari-Shupe model [29, 30℄ (where we an think of quarks and leptons as omposites of

other more fundamental fermions, preons) ould be sought in a non-ommutative extension

of the omplex �eld. Surely a stimulating idea. Nevertheless, we think that it would be

very strange if standard Quantum Mehanis did not permit a quaternioni or otonioni

desription other than in the trivial sense that omplex numbers are ontained within the

quaternions or otonions.

In the last few years muh progress has been ahieved in manipulating suh �elds. We

quote the quaternioni version of eletroweak theory [7℄, where the Glashow group is expressed

by the one-dimensional quaternioni group U(1; H

L

) 
 U(1; C

R

), quaternioni GUTs [8℄ and

Speial Relativity, where the Lorentz group is represented by

~

O(1; H

L


 H

R

). We also reall

new possibilities related to the use of otonions in Quantum Mehanis [31℄, in partiular

in writing a one-dimensional otonioni Dira equation. The link between otonioni and

quaternioni versions of standard Quantum Physis is represented by the use of a omplex

geometry [24℄.

In this paper we observed that beyond the study of matrix groups with \simple" quater-

nioni elements, O

H

, one an onsider more general groups with matrix elements of the form

O

R

and O

C

. To the best of our knowledge these more general matrix groups have not been

studied in the literature. We overome the problems arising in the de�nitions of transpose,

determinant and trae for quaternioni matries. For otonioni �elds [32℄ we must admit

a more ompliated situation, yet our disussion an be also proposed for non-assoiative

numbers.

Finally, we hope that this paper emphasizes the possibility of using hyper-omplex num-

bers in Mathematis and Physis and ould represent an important step towards a omplete

and lear disussion on Hyper-omplex Group and Field Theories.
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Appendix A

We give the translation rules between quaternioni left/right R-linear operators and 4� 4 real

matries:

L

i

$

0

B

B

�

0 �1 0 0

1 0 0 0

0 0 0 �1

0 0 1 0

1

C

C

A

; L

j

$

0

B

B

�

0 0 �1 0

0 0 0 1

1 0 0 0

0 �1 0 0

1

C

C

A

; L

k

= L

i

L

j

;

R

i

$

0

B

B

�

0 �1 0 0

1 0 0 0

0 0 0 1

0 0 �1 0

1

C

C

A

; R

j

$

0

B

B

�

0 0 �1 0

0 0 0 �1

1 0 0 0

0 1 0 0

1

C

C

A

; R

k

= R

j

R

i

:

From these identi�ations we an obtain the full translation. For example, the matrix

ounterpart of the operator L

j

R

k

is soon ahieved by

L

j

R

k

$

0

B

B

�

0 0 �1 0

0 0 0 1

1 0 0 0

0 �1 0 0

1

C

C

A

2

6

6

4

0

B

B

�

0 0 �1 0

0 0 0 �1

1 0 0 0

0 1 0 0

1

C

C

A

0

B

B

�

0 �1 0 0

1 0 0 0

0 0 0 1

0 0 �1 0

1

C

C

A

3

7

7

5

=

0

B

B

�

0 0 �1 0

0 0 0 1

1 0 0 0

0 �1 0 0

1

C

C

A

0

B

B

�

0 0 0 �1

0 0 1 0

0 �1 0 0

1 0 0 0

1

C

C

A

=

0

B

B

�

0 0 0 �1

0 0 1 0

0 �1 0 0

1 0 0 0

1

C

C

A

0

B

B

�

0 0 �1 0

0 0 0 1

1 0 0 0

0 �1 0 0

1

C

C

A

=

0

B

B

�

0 1 0 0

1 0 0 0

0 0 0 �1

0 0 �1 0

1

C

C

A

:
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