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Abstrat

Analogous to the orrespondene between unitary quaternions, U(1; H

L

), and rotation

group, O(3), there is a orrespondene between speial linear quaternions, SL(1; H

L


C

R

),

and Lorentz group, O(3; 1). The transformation laws of quaternioni one-dimensional

spinors allow a quaternioni derivation of Dira equation. The quaternioni hiral rep-

resentation for gamma-matries plays a fundamental role in quaternioni eletroweak

models.

1 Introdution

We disuss a one-dimensional quaternioni version of the omplex group SL(2; C ). The trans-

formation properties of quaternioni spinors under suh a group give the possibility to write

a quaternioni Dira equation for two-dimensional spinors  , whih, in the ase of massless

partiles, deouples into two one-dimensional equations, quaternioni ounterpart of Weyl

equations. This new approah to quaternioni Dira equation supplies a quaternioni hiral

representation for gamma-matries whih plays a fundamental role in quaternioni gauge

models for eletroweak interations [1, 2℄.

Two ingredients are neessary to formulate quaternioni versions of the group SL(2; C ),

Dira andWeyl equations: The introdution of right C -linear operators [3, 4℄ and the adoption

of a omplex geometry [5℄, namely omplex projetion for inner produts [6℄.

The paper is strutured as follows: In the following setion, we introdue the quater-

nioni �eld [7℄, H , and develop the relevant material onerning the orrespondene between

unitary quaternions and spatial rotations [8℄. Setion 3 provides a detailed exposition of

the quaternioni Lorentz group [9℄ and ontains a brief disussion on left/right operators.

Setion 4 is intended to motivate our study of quaternioni Lorentz spinors. In suh a se-

tion, we formulate the quaternioni Dira equation in the hiral representation. In setion
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5, we present a brief disussion on the quaternioni Dira-Rotelli equation [10℄. There, we

justify the adoption of a omplex geometry and summarize the main motivations of using

the quaternioni hiral representation to formulate an eletroweak theory.

2 Unitary Quaternioni Group and Spatial Rotations

Spatial rotations an be represented by

e

V = RV ;

where the vetor olumn

e

V =

0

�

~x

~y

~z

1

A

;

de�nes the rotated vetor and R denotes an orthogonal 3� 3 real matrix

RR

t

= 11 :

In terms of in�nitesimal generators, the previous equation reads

A = �A

t

: (1)

The rotation group, O(3), is a non-abelian Lie group, haraterized by three parameters.

Corresponding to these three parameters there are three anti-hermitian generators de�ned

by Eq. (1). Expliitly,

A

x

=

0

�

0 0 0

0 0 �1

0 1 0

1

A

; A

y

=

0

�

0 0 1

0 0 0

�1 0 0

1

A

; A

z

=

0

�

0 �1 0

1 0 0

0 0 0

1

A

:

Suh generators satisfy the following ommutation relations

A

x

= [A

y

;A

z

℄ ; A

y

= [A

z

;A

x

℄ ; A

z

= [A

x

;A

y

℄ : (2)

It is possible to represent spatial rotations by quaternions? Whih is the quaternioni

ounterpart of SU(2)? Can quaternions do for the spae what omplex do for the plane? Be-

fore to answering to suh questions, let us reall some algebrai properties of the quaternioni

�eld, H .

A quaternion an be de�ned by four real entries or by two omplex quantities, sympleti

deomposition [11, 12℄,

q = a

0

+ ia

1

+ ja

2

+ ka

3

= � + j� ; a

0;1;2;3

2 R ; �; � 2 C (1; i) ; (3)

and three, assoiative but non ommutative, imaginary quaternioni units i, j, k whih satisfy

i

2

= j

2

= k

2

= ijk = �1 : (4)

The full onjugate, denoted by q

y

, is given by

q

y

= a

0

� ia

1

� ja

2

� ka

3

= �

�

� j� :
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Let us now introdue the quaternioni group U(1; H

L

), haraterized by unitary operators

uu

y

= u

y

u = 1 u 2 H

L

:

A generi element of U(1; H

L

) is

u = exp [(i�

x

+ j�

y

+ k�

z

) =2℄ : (5)

What means H

L

? Working with quaternions, we must admit left and right ation for imagi-

nary units, and so the most general transformation on quaternioni states will be represented

by operators 2 H

L


 H

R

. In this setion we shall use only left operators and so it is not ne-

essary to use di�erent notations to di�erentiate left and right quaternioni imaginary units.

This will beome neessary in the next setion, where the motivations in using left/right

operators appear lear.

One-dimensional quaternioni spinors transform under U(1; H

L

),

q ! u q : (6)

Using quaternioni spinors, we an onstrut the anti-hermitian quaternioni state qiq

y

qi! u qi ; q

y

! q

y

u

y

; qiq

y

! u qiq

y

u

y

: (7)

One identi�ed the anti-hermitian quaternion qiq

y

with the three spatial oordinates

qiq

y

� ix+ jy + kz ) x � j�j

2

� j�j

2

; y � iz � 2i��

�

; (8)

we an prove that an O(3)-transformation on

V =

0

�

x

y

z

1

A

;

is equivalent to a U(1; H

L

)-transformation on the quaternioni spinor

q = � + j� :

The u-transformation (5) is haraterized by three real parameters, just like the number of

real parameters in spatial rotations. Let us �nd the expliit relation between these two sets

of parameters. In taking the quaternioni spinor transformation

~

� + j~� = exp [(i�

x

+ j�

y

+ k�

z

) =2℄ (� + j�) = [A+ jB℄ (� + j�) ;

we obtain

~x = j

~

�j

2

� j~�j

2

= (jAj

2

� jBj

2

)x� i (AB �A

�

B

�

) y + (AB +A

�

B

�

) z ;

~y � i~z = 2i~�

~

�

�

= A

� 2

(y � iz) +B

2

(y + iz) + 2iA

�

B x : (9)

Setting u = e

i

2

�

x

, from Eqs. (9) we have

~x = x ; ~y�i~z = e

�i�

x

(y�iz) ) ~x = x ; ~y = y os �

x

�z sin �

x

; ~z = y sin �

x

+z os �

x

;
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whih represents a rotation about the x-axis through an angle �

x

. Hene, we gain the following

identi�ation

e

i

2

�

x

$

0

�

1 0 0

0 os �

x

� sin �

x

0 sin �

x

os �

x

1

A

: (10)

In a similar way, putting u = e

j

2

�

y

and u = e

k

2

�

z

we �nd

e

j

2

�

y

$

0

�

os �

y

0 sin �

y

0 1 0

� sin �

y

0 os �

y

1

A

; (11)

and

e

k

2

�

z

$

0

�

os �

z

� sin �

z

0

sin �

z

os �

z

0

0 0 1

1

A

: (12)

In this way, we establish a orrespondene between the one-dimensional unitary quaternioni

group, U(1; H

L

), and the three-dimensional orthogonal real group, O(3). The above men-

tioned groups are algebraially isomorphi. It is immediate to hek that the quaternioni

unitary generators

A

x

= i=2 ; A

y

= j=2 ; A

z

= k=2 ; (13)

satisfy the ommutation relations (2). We observe that the fator

1

2

is responsible for the

global topologial distintion between U(1; H

L

) and O(3). Inreasing the angles �

x

, �

y

, �

z

by

2�

u! �u ; R! R ;

so the elements u and �u in U(1; H

L

) both orrespond to the rotationR inO(3). Thus, there is

a two-to-one mapping of the elements of U(1; H

L

) onto those of O(3). Finally, the quaternioni

(one-dimensional) unitary group, U(1; H

L

), represents the quaternioni \translation" of the

omplex (two-dimensional) speial unitary group, SU(2).

3 Quaternions and Lorentz Group

The Lorentz group, O(3; 1), is haraterized by six parameters, three for rotations and

three for boosts. Corresponding to these six parameters there are six generators. The

anti-hermitian generators assoiated to spatial rotations are

A

x

=

0

B

B

�

0 0 0 0

0 0 0 0

0 0 0 �1

0 0 1 0

1

C

C

A

; A

y

=

0

B

B

�

0 0 0 0

0 0 0 1

0 0 0 0

0 �1 0 0

1

C

C

A

; A

z

=

0

B

B

�

0 0 0 0

0 0 �1 0

0 1 0 0

0 0 0 0

1

C

C

A

;

and the hermitian boosts generators

B

x

=

0

B

B

�

0 �1 0 0

�1 0 0 0

0 0 0 0

0 0 0 0

1

C

C

A

; B

y

=

0

B

B

�

0 0 �1 0

0 0 0 0

�1 0 0 0

0 0 0 0

1

C

C

A

; B

z

=

0

B

B

�

0 0 0 �1

0 0 0 0

0 0 0 0

�1 0 0 0

1

C

C

A

:
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Suh generators satisfy the following ommutation relations

A

x

= [A

y

;A

z

℄ ; A

x

= [B

z

;B

y

℄ ; B

x

= [A

y

;B

z

℄ = [B

y

;A

z

℄ ;

A

y

= [A

z

;A

x

℄ ; A

y

= [B

x

;B

z

℄ ; B

y

= [A

z

;B

x

℄ = [B

z

;A

x

℄ ; (14)

A

z

= [A

x

;A

y

℄ ; A

z

= [B

y

;B

x

℄ ; B

z

= [A

x

;B

y

℄ = [B

x

;A

y

℄ ;

Observe that by hanging the sign of our boost generators we do not modify the previous om-

mutation relations. This will give the possibility to introdue two inequivalent quaternioni

representations of the Lorentz group.

We showed in the previous setion a possible quaternioni one-dimensional representa-

tions (13) for the anti-hermitian rotations operators of O(3). The aim of this setion is to

extend suh a orrespondene to inlude boost generators. To do it, let us introdue left/right

operators. Suh operators will represent the left/right ations of the imaginary quaternioni

units and , in the sequel, will be denoted by

~

L � (L

i

; L

j

; L

k

) and

~

R � (R

i

; R

j

; R

k

) ; (15)

with

~

L : H ! H ;

~

L q �

~

h q and

~

R : H ! H ;

~

R q � q

~

h ;

~

h � (i; j; k) :

The algebra of left and right operators an be onisely expressed by

L

2

i

= L

2

j

= L

2

k

= L

i

L

j

L

k

= R

2

i

= R

2

j

= R

2

k

= R

k

R

j

R

i

= �11 ;

and

[L

i;j;k

; R

i;j;k

℄ = 0 :

The idea of ombining left and right imaginary units gives the possibility to obtain a one

dimensional representation for boost generators by C -linear quaternioni operators

O

C

(qz) = (O

C

q)z ; z 2 C (1; i) :

Expliitly,

A

x

= L

i

=2 ; A

y

= L

j

=2 ; A

z

= L

k

=2 2 H

L

; (16)

and

B

x

= �L

i

R

i

=2 ; B

y

= �L

j

R

i

=2 ; B

z

= �L

k

R

i

=2 2 H

L


 C

R

: (17)

These two inequivalent quaternioni representations for the Lorentz generators imply two

di�erent transformation laws for quaternioni spinors

s

+

= exp

h

~

L �

�

~

� +R

i

~'

�

=2

i

and s

�

= exp

h

~

L �

�

~

� �R

i

~'

�

=2

i

; (18)

where

~

� � (�

x

; �

y

; �

z

) ; ~' � ('

x

; '

y

; '

z

) :

For onsistene, we introdue two one-dimensional quaternioni spinors, q

�

, whih transform

in the following way

q

�

! s

�

q

�

; q

�

= �

�

+ j�

�

; �

�

; �

�

2 C : (19)
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Due to the right C -linearity of boost generators, the spinor q

�

i transforms like q

�

q

�

i! s

�

q

�

i :

Taking the quaternion q

�

(1 + i)q

y

�

de�ned by the four spae-time oordinates

q

�

(1 + i)q

y

�

� t+ ix+ jy + kz )

t � j�

�

j

2

+ j�

�

j

2

; x � j�

�

j

2

� j�

�

j

2

; y � iz � 2i�

�

�

�

�

; (20)

we will show that O(3; 1)-transformations on

X =

0

B

B

�

t

x

y

z

1

C

C

A

;

are equivalent to s

�

-transformations on the quaternioni spinors

q

�

= �

�

+ j�

�

:

We follow the proof presented in the previous setion. Putting s

�

= e

L

i

�

x

2

,

q

�

! e

i

2

�

x

q

�

; q

y

�

! q

y

�

e

�

i

2

�

x

;

we obtain

q

�

(1 + i)q

y

�

! e

i

2

�

x

�

q

�

(1 + i)q

y

�

�

e

�

i

2

�

x

= q

�

q

y

�

+ e

i

2

�

x

q

�

iq

y

�

e

�

i

2

�

x

:

Consequently,



~

t+ i~x+ j~y + k~z = t+ e

i

2

�

x

(ix+ jy + kz) e

�

i

2

�

x

;

whih implies

e

L

i

�

x

2

$

0

B

B

�

1 0 0 0

0 1 0 0

0 0 os �

x

� sin �

x

0 0 sin �

x

os �

x

1

C

C

A

: (21)

In a similar way, hoosing s

�

= e

L

j

�

y

2

and s

�

= e

L

k

�

z

2

, we �nd

e

L

j

�

y

2

$

0

B

B

�

1 0 0 0

0 os �

y

0 sin �

y

0 0 1 0

0 � sin �

y

0 os �

y

1

C

C

A

; (22)

and

e

L

k

�

z

2

$

0

B

B

�

1 0 0 0

0 os �

z

� sin �

z

0

0 sin �

z

os �

z

0

0 0 0 1

1

C

C

A

: (23)
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Our next objetive is to evaluating the orrespondene between one-dimensional quaternioni

boosts and 4� 4 real matrix representing spae/time transformations. Let us onsider the

�rst generator of quaternioni boosts in Eq. (17), s

�

= e

�L

i

R

i

'

x

2

,

q

�

! e

�L

i

R

i

'

x

2

q

�

� q

�

osh

'

x

2

� iq

�

i sinh

'

x

2

:

The transformation law assoiated with suh a quaternioni generator gives for the quater-

nioni spae-time vetor

q

�

(1 + i)q

y

�

!

�

q

�

osh

'

x

2

� iq

�

i sinh

'

x

2

�

(1 + i)

�

q

y

�

osh

'

x

2

� iq

y

�

i sinh

'

x

2

�

;

whih implies

~q

�

(1+ i)~q

y

�

= q

�

(1+ i)q

y

�

osh

2

'

x

2

� iq

�

(1 + i)q

y

�

i sinh

2

'

x

2

�fi; q

�

(i� 1)q

y

�

ig sinh

'

x

2

osh

'

x

2

:

Observing that

q

�

q

y

�

� t ; q

�

iq

y

�

� ix+ jy + kz ; fi; q

�

(i� 1)q

y

�

ig = �2(x+ it) ;

the previous equation an be diretly written in terms of spae-time oordinates as follows



~

t+ i~x+ j~y + k~z = (t+ ix)

�

osh

2

'

x

2

+ sinh

2

'

x

2

�

� 2 (t+ ix) sinh

'

x

2

osh

'

x

2

+ jy + kz

= t osh'

x

� x sinh'

x

+ i (x osh'

x

� t sinh'

x

) + jy + kz :

Thus, we obtain the following identi�ation between our quaternioni transformations, s

�

=

e

�L

i

R

i

'

x

2

, and Lorentz boosts whih mix time t and spatial oordinate x,

e

�L

i

R

i

'

x

2

$

0

B

B

�

osh'

x

� sinh'

x

0 0

� sinh'

x

osh'

x

0 0

0 0 1 0

0 0 0 1

1

C

C

A

: (24)

Finally, by setting s

�

= e

�L

j

R

i

'

y

2

and s

�

= e

�L

k

R

i

'

z

2

, we obtain

e

�L

j

R

i

'

y

2

$

0

B

B

�

osh'

y

0 � sinh'

y

0

0 1 0 0

� sinh'

y

0 osh'

y

0

0 0 0 1

1

C

C

A

; (25)

and

e

�L

k

R

i

'

z

2

$

0

B

B

�

osh'

z

0 0 � sinh'

z

0 1 0 0

0 0 1 0

� sinh'

z

0 0 osh'

z

1

C

C

A

: (26)

In the previous setion, we observed that unitary quaternions, U(1; H

L

), represent the

quaternioni ounterpart of omplex speial unitary groups, SU(2). In this setion, we proved

that (16,17) represent the quaternioni ounterpart of the generators of omplex speial

linear groups, SL(2; C ). The orresponding quaternioni group will be thus indiated by

SL(1; H

L


 C

R

). For a ompleted and detailed review of quaternioni group theory, we refer

the reader to [4, 13, 14℄. The situation an be summarized by

U(1; H

L

) $ SU(2) � O(3)

SL(1; H

L


 C

R

) $ SL(2; C ) � O(3; 1)
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4 Quaternioni Dira Equation and Chiral Representation

As remarked in setion 3, orresponding to the two possible signs of

~

B in Eq. (17), we have

q

+

! s

+

q

+

= exp

h

~

L �

�

~

� +R

i

~'

�

=2

i

q

+

;

and

q

�

! s

�

q

�

= exp

h

~

L �

�

~

� �R

i

~'

�

=2

i

q

�

:

These inequivalent representations of the Lorentz group are related to two di�erent types of

one-omponent quaternioni spinors, q

�

, whih represent the quaternioni ounterpart of the

standard omplex dotted and undotted spinors. Suh spinors orrespond to the representations

�

1

2

; 0

�

and

�

0;

1

2

�

of the Lorentz group. In fat, by de�ning

~

A

1

=

1

2

�

~

A�

~

BR

i

�

and

~

A

2

=

1

2

�

~

A+

~

BR

i

�

; (27)

from Eqs. (14), we obtain

A

m;x

= [A

m;y

; A

m;z

℄ ; A

m;y

= [A

m;z

; A

m;x

℄ ; A

m;z

= [A

m;x

; A

m;y

℄ ; m = 1; 2 ;

and

h

~

A

1

;

~

A

2

i

= 0 :

The quaternioni Lorentz group is thus essentially

U

1

(1; H

L

)
 U

2

(1; H

L

) ;

and states transform by two angular momenta

(j

1

; j

2

) :

The �rst one orresponding to

~

A

1

and the seond to

~

A

2

. As speial ase,

~

A =

~

L=2 ;

~

B = +

~

LR

i

=2 )

~

A

1

=

~

L=2 ;

~

A

2

= 0 ;

�

1

2

; 0

�

;

~

A =

~

L=2 ;

~

B = �

~

LR

i

=2 )

~

A

2

=

~

L=2 ;

~

A

1

= 0 ;

�

0;

1

2

�

:

Under parity, P, veloity hanges sign, hene the boost generators

~

B hange sign

P-transformation :

~

B ! �

~

B :

The rotation generators

~

A, behaving like axial vetors, ~r � ~p, does not hange sign

P-transformation :

~

A !

~

A :

So, we have

P-transformation : (j

1

; 0)$ (0; j

2

) ; q

+

$ q

�

:

By introduing parity, it is no longer suÆient to onsider one-dimensional quaternioni

spinors q

+

and q

�

separately, but we need to de�ne two-dimensional quaternioni spinors

 =

�

q

+

q

�

�

: (28)
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Finally, under Lorentz transformations

 !

�

s

+

0

0 s

�

��

q

+

q

�

�

;

and under parity

 !

�

0 1

1 0

��

q

+

q

�

�

:

The two-dimensional spinor  is an irreduible representation of the Lorentz group extended

by parity. Let us now onsider Lorentz boosts,

~

� = 0 ; ~' 6= 0,

q

+

! exp

�

~

LR

i

� ~'=2

�

q

+

= exp (L

n

R

i

'=2) q

+

;

where

L

n

�

~

L � ~n = n

1

L

i

+ n

2

L

j

+ n

3

L

k

; L

2

n

= �11 ; ' =

p

'

2

x

+ '

2

y

+ '

2

z

:

Consequently,

q

+

!

�

osh

'

2

+ L

n

R

i

sinh

'

2

�

q

+

:

The q

�

transformation is soon obtained from the previous one by hanging '! �',

q

�

!

�

osh

'

2

� L

n

R

i

sinh

'

2

�

q

�

:

By supposing original spinors refering to partiles at rest, q

�

(0), and the transformed spinors,

q

�

(~p) to a partiles with momentum ~p, and observing that

osh' =  = E=m ; sinh' = � = p=m ; ( = 1) ;

whih implies

osh

'

2

=

�

 + 1

2

�

1

2

=

�

E +m

2m

�

1

2

; sinh

'

2

=

�

 � 1

2

�

1

2

=

�

E �m

2m

�

1

2

;

we �nd

q

+

(~p) =

"

�

E +m

2m

�

1

2

+ L

n

R

i

�

E �m

2m

�

1

2

#

q

+

(0)

=

�

E +m+

~

LR

i

� ~p

�

[2m (E +m)℄

�

1

2

q

+

(0) ;

and

q

�

(~p) =

"

�

E +m

2m

�

1

2

� L

n

R

i

�

E �m

2m

�

1

2

#

q

�

(0)

=

�

E +m�

~

LR

i

� ~p

�

[2m (E +m)℄

�

1

2

q

�

(0) :

At rest, q

+

(0) = q

�

(0), thus with a bit of algebra we obtain

mq

+

(~p) =

�

E +

~

LR

i

� ~p

�

q

�

(~p) and mq

�

(~p) =

�

E �

~

LR

i

� ~p

�

q

+

(~p) :
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In matrix form, these equations read

 

�m E +

~

LR

i

� ~p

E �

~

LR

i

� ~p �m

!

�

q

+

(~p)

q

�

(~p)

�

: (29)

By adopting the following representation for gamma matries



0

�

�

0 1

1 0

�

; ~ �

�

0 �1

1 0

�

~

LR

i

; (30)

Eq. (29) beomes

(

�

p

�

�m) (p) = 0 :

This is the quaternioni Dira equation for massive spin

1

2

partile in the hiral representation.

For massless partiles, suh an equation deouples into two equations, eah haraterized by

a one-omponent quaternioni spinor

�

E +

~

LR

i

� ~p

�

q

�

(~p) = 0 ;

and

�

E �

~

LR

i

� ~p

�

q

+

(~p) = 0 ;

whih represent the quaternioni Weyl equations. Sine, for a massless partile, E = p, these

equations also read

~

LR

i

� p̂ q

�

(~p) = �q

�

(~p) ;

~

LR

i

� p̂ q

+

(~p) = q

+

(~p) : (31)

The operator

~

LR

i

� p̂

measures the omponent of the spin in the diretion of momentum and de�nes the quater-

nioni heliity operator.

5 Chiral and Dira Representations

The derivation of the quaternioni Dira equation given above di�ers from the original one

formulated by Rotelli [10℄. The equation presented in this paper is obtained diretly from

transformation properties of quaternioni Lorentz spinors, whereas the Rotelli equation fol-

lows the Dira original approah. The di�erene beomes lear by observing the representa-

tions for gamma matries. In the Dira-Rotelli equation we �nd:



0

�

�

1 0

0 �1

�

; ~ �

�

0 1

1 0

�

~

L :

In the Dira-De Leo equation we obtain the following set of gamma-matries



0

�

�

0 1

1 0

�

; ~ �

�

0 �1

1 0

�

~

LR

i

:

Apparently, the Dira-Rotelli equation ontains left operators, 

�

2 M

2

(H

L

), whereas our

Dira equation is based on a right C -linear quaternioni algebra, 

�

2 M

2

(H

L


 C

R

). Nev-

ertheless, the use of right imaginary unit, R

i

, is only hidden in the Rotelli approah.
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In the omplex world, the Dira equation reads indi�erently as

i�

t

 = H or �

t

 i = H :

In the quaternioni world there is a lear di�erene in hoosing a left or right position for

our omplex imaginary unit i. In fat, by requiring norm onservation

�

t

Z

d

3

x 

y

 = 0 ;

we �nd that a left position of the imaginary unit i in the quaternioni Dira equation,

L

i

�

t

 � i�

t

 = H ;

gives

�

t

Z

d

3

x 

y

 =

Z

d

3

x 

y

[H; i℄ ;

in general 6= 0 for quaternioni Hamiltonians. A right position of the imaginary unit i,

R

i

�

t

 � �

t

 i = H ;

ensures the norm onservation. From ovariane, by treating time and spae in the same

way, we obtain the following \quaternioni" momentum operator

p

�

$ R

i

�

�

) p

�

 $ R

i

�

�

 � �

�

 i : (32)

Finally, the quaternioni Dira equation reads

R

i



�

�

�

 � 

�

�

�

 i = m ; [

�

; 

�

℄ = 2g

��

: (33)

Another fundamental ingredient in the formulation of quaternioni relativisti quantum me-

hanis is represented by the adoption of a omplex geometry [5℄, neessary in order to

guarantee that R

i

~

� be an hermitian operator

Z

d

3

x'

y

R

i

~

� =

Z

d

3

x (R

i

~

�')

y

 :

The previous relation implies

Z

d

3

x'

y

~

� i = �i

Z

d

3

x

~

�'

y

 (after integration by parts) = i

Z

d

3

x'

y

~

� :

The di�erent position of the imaginary unit i fores the use of a omplex projetion [6℄ for

inner produts

Z

d

3

x !

Z

C

d

3

x : (34)

By introduing the following matries

�

�

� R

i



�

2 H

L


 C

R

;

the quaternioni Dira equation (33) beomes

�

�

�

�

 = m ; [�

�

;�

�

℄ = �2g

��

: (35)
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The Rotelli representation modi�es in

�

0

�

�

1 0

0 �1

�

R

i

;

~

� �

�

0 1

1 0

�

~

LR

i

;

and the hiral representation in

�

0

�

�

0 1

1 0

�

R

i

;

~

� �

�

0 1

�1 0

�

~

L :

These �-matries give the possibility to onstrut the following quaternioni algebra

�

0

; �

123

= �

1

�

2

�

3

; �

5

= �

0

�

123

; (36)

in fat,

(�

0

)

2

= (�

123

)

2

= (�

5

)

2

= �

0

�

123

�

5

= �11 :

Standard and hiral representations diagonalize respetively �

0

and �

5

. The new (Maiorana)

representation

�

0

�

�

0 1

1 0

�

R

i

;

~

� �

�

1 0

0 �1

�

~

LR

i

:

diagonalizes �

123

. By simple algebrai manipulations, it is immediate to show that these

three representations, orresponding to three possible hoies in the diagonalization of �

0

,

�

123

, �

5

, generate the \omplex" group

SU(2; C

R

) :

It is not our purpose to study here quaternioni gauge theories. We would like spend only

some onsiderations on quaternioni fermion states. The �rst family in the Salam-Weinberg

model [15℄ is represented by

�

�

e

�

and

�

u

d

�

:

In the hiral representation leptons �

L=R

, e

L=R

and quarks u

L=R

, d

L=R

are given in terms of

one-dimensional quaternioni spinors and so they an be aommodate in the following 2� 2

quaternioni matries

	

L

=

�

�

L

u

L

e

L

d

L

�

; 	

R

=

�

�

R

u

R

e

R

d

R

�

: (37)

The massless fermion eletroweak Lagrangian [16℄

L

F

=

�

�

	

L

�

�

�

�

	

L

+

�

	

R

�

�

�

�

	

R

�

C

; (38)

is global invariant under the Glashow gauge group [17℄

SU(2; C

R

)

L


 U(1; C

R

)

Y

: (39)
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6 Conlusions

This work was intended as an attempt to motivate the use of quaternions in physis [18℄, in

partiular relativisti quantum mehanis [19, 20℄ and gauge theories [1, 2, 6℄.

By following the Rider approah [21, 22℄, we obtained a two-dimensional quaternioni

Dira equation by using the transformation properties of quaternioni spinors under

SL(1; H

L


 C

R

) ;

quaternioni ounterpart of SL(2; C ). This gives as result the quaternioni version of hiral

representation whih plays an important role in the fermion setor of eletroweak Lagrangian.

The quaternioni gamma-matries in the hiral representation also suggest that the true spae

for quaternioni 2� 2 gamma-matries be a left-quaternioni/right-omplex spae, namely



�

2M

2

(H

L


 C

R

) ;

In the speial ase of Dira-Rotelli representation, 

�

2M

2

(H

L

) �M

2

(H

L


 C

R

), the right

C -linear algebra is hidden in the de�nition of momentum operator p

�

= R

i

�

�

.

It is interesting to observe that all possible representations for gamma matries are gen-

erated by three speial representations, diagonalization of �

0

, �

123

, �

5

, whih have the prop-

erties to generate the group SU(2; C

R

) and onsequently the Glashow group [17℄ of Salam-

Weinberg model [15℄. In a forthoming paper [23℄ will be disussed in detail a quaternioni

eletroweak theory based on the \omplex" group

g

2

SU(2; C

R

)

L


 g

Y

U(1; C

R

)

Y

:

Formulations of left/right symmetri models [24, 25℄ require the simple generalization

g

2;L

SU(2; C

R

)

L


 g

2;R

SU(2; C

R

)

R


 g

1

U(1; C

R

) :

Grand uni�ation models and super-symmetri theories [26℄ ould require the hoie of ef-

fetive quaternioni gauge groups [27℄.
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