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Abstract

Analogous to the correspondence between unitary quaternions, U(1, H* ), and rotation
group, O(3), there is a correspondence between special linear quaternions, SL(1, HX @ CR),
and Lorentz group, O(3,1). The transformation laws of quaternionic one-dimensional
spinors allow a quaternionic derivation of Dirac equation. The quaternionic chiral rep-
resentation for gamma-matrices plays a fundamental role in quaternionic electroweak
models.

1 Introduction

We discuss a one-dimensional quaternionic version of the complex group SL(2,C). The trans-
formation properties of quaternionic spinors under such a group give the possibility to write
a quaternionic Dirac equation for two-dimensional spinors v, which, in the case of massless
particles, decouples into two one-dimensional equations, quaternionic counterpart of Weyl
equations. This new approach to quaternionic Dirac equation supplies a quaternionic chiral
representation for gamma-matrices which plays a fundamental role in quaternionic gauge
models for electroweak interactions [1, 2].

Two ingredients are necessary to formulate quaternionic versions of the group SL(2,C),
Dirac and Weyl equations: The introduction of right C-linear operators [3, 4] and the adoption
of a complex geometry [5], namely complex projection for inner products [6].

The paper is structured as follows: In the following section, we introduce the quater-
nionic field [7], H, and develop the relevant material concerning the correspondence between
unitary quaternions and spatial rotations [8]. Section 3 provides a detailed exposition of
the quaternionic Lorentz group [9] and contains a brief discussion on left/right operators.
Section 4 is intended to motivate our study of quaternionic Lorentz spinors. In such a sec-
tion, we formulate the quaternionic Dirac equation in the chiral representation. In section



5, we present a brief discussion on the quaternionic Dirac-Rotelli equation [10]. There, we
justify the adoption of a complex geometry and summarize the main motivations of using
the quaternionic chiral representation to formulate an electroweak theory.

2 Unitary Quaternionic Group and Spatial Rotations

Spatial rotations can be represented by

where the vector column

<<
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SIS S

defines the rotated vector and R denotes an orthogonal 3 x 3 real matrix
RR'=1.
In terms of infinitesimal generators, the previous equation reads
A=_A (1)

The rotation group, O(3), is a non-abelian Lie group, characterized by three parameters.
Corresponding to these three parameters there are three anti-hermitian generators defined
by Eq. (1). Explicitly,

00 0 0 01 0 -1 0
A= 0 0 -1 , Ay = 0 00 , A.=11 0 0
01 0 -1 0 0 0 0 O
Such generators satisfy the following commutation relations
-Ax = [AyaAz] 3 -Ay = [AZan] ) Az = [-Axa-Ay] . (2)

It is possible to represent spatial rotations by quaternions? Which is the quaternionic
counterpart of SU(2)? Can quaternions do for the space what complex do for the plane? Be-
fore to answering to such questions, let us recall some algebraic properties of the quaternionic
field, HL.

A quaternion can be defined by four real entries or by two complex quantities, symplectic
decomposition [11, 12],

q = aq, +ia, + ja, + kas =€+ jn , ap03 €R, & neC(l,q), (3)
and three, associative but non commutative, imaginary quaternionic units ¢, j, £ which satisfy
iP=7 =k =ijk=-1. (4)

The full conjugate, denoted by ¢, is given by

q" = ay, —ia, — ja, — kay; = £ — jn .



Let us now introduce the quaternionic group U(1,H"), characterized by unitary operators
uu' =ufu=1 uecH .
A generic element of U(1,H*) is
u = exp [(i0, + jO, + k0,) /2] . (5)

What means H*? Working with quaternions, we must admit left and right action for imagi-
nary units, and so the most general transformation on quaternionic states will be represented
by operators € H* ® H*. In this section we shall use only left operators and so it is not nec-
essary to use different notations to differentiate left and right quaternionic imaginary units.
This will become necessary in the next section, where the motivations in using left/right
operators appear clear.

One-dimensional quaternionic spinors transform under U(1, H*),

q—ugq. (6)
Using quaternionic spinors, we can construct the anti-hermitian quaternionic state qiq'
g —uqi, ¢ —q'u', qiqg" = ugigtu’ . (7)
Once identified the anti-hermitian quaternion ¢iq" with the three spatial coordinates
qq =iz +jy+kz = o= —|n?, y-—iz=2nt*, (8)
we can prove that an O(3)-transformation on
V=1v |,
z
is equivalent to a U(1, H")-transformation on the quaternionic spinor
q=&+7n .

The u-transformation (5) is characterized by three real parameters, just like the number of
real parameters in spatial rotations. Let us find the explicit relation between these two sets
of parameters. In taking the quaternionic spinor transformation

&+ jit = exp (0, + 30, + k0.) /2] (£ + jn) = [A+ iB] (£ + jn)
we obtain

g o= [P =il = (AP = [B]")z —i(AB - A*B*)y + (AB+ A*B") z,
j—iz = 2inf* = A*2(y—iz) + B?(y +iz) + 21A*Bzx . (9)

Setting u = eégz, from Egs. (9) we have

=z, j—iz=eY(y—iz) = i=ux, j=ycosb,—zsinb,, 7=ysinb,+zcosb,,



which represents a rotation about the z-axis through an angle 6. Hence, we gain the following

identification
1 0 0

“ 0 cosf, -sinf, . (10)
0 sinf, cosf,

7
659”

.. . J k
In a similar way, putting u = e2% and u = e2% we find

cosf, 0 sin6,

et o 0 1 0 , (11)
-sinf), 0 cosb,
and
X cos#, —sinf, 0
exls o sinf, cosf, 0 | . (12)

0 0 1

In this way, we establish a correspondence between the one-dimensional unitary quaternionic
group, U(1,H"), and the three-dimensional orthogonal real group, O(3). The above men-
tioned groups are algebraically isomorphic. It is immediate to check that the quaternionic
unitary generators

Ap=i)2, A,=j/2, A, =k/2, (13)
1

satisfy the commutation relations (2). We observe that the factor 3 is responsible for the
global topological distinction between U(1,H"*) and O(3). Increasing the angles 6,, 6,, 6, by
2m

u—-u, R—-R,

so the elements u and —u in U(1, H") both correspond to the rotation R in O(3). Thus, there is
a two-to-one mapping of the elements of U(1, H") onto those of O(3). Finally, the quaternionic
(one-dimensional) unitary group, U(1,H"), represents the quaternionic “translation” of the
complex (two-dimensional) special unitary group, SU(2).

3 Quaternions and Lorentz Group

The Lorentz group, O(3,1), is characterized by six parameters, three for rotations and
three for boosts. Corresponding to these six parameters there are six generators. The
anti-hermitian generators associated to spatial rotations are

000 O 0 0 00O 00 0 O
000 0 0 0 01 00 -1 0
Az = 00 0 -1 o A= 0 0 00O ’ Az = 01 0 O ’
001 0 0 -1 00 00 0 O
and the hermitian boosts generators
0 -1 00 0 0 -1 0 0 0 0 -1
-1 0 00 0 0 0 O 0 00 O
B, = 0 0 00 o By = -1 0 0 O ’ B. = 0 00 O
0 0 00 0 0 0 O -1 0 0 O



Such generators satisfy the following commutation relations

-Ax = [AyaAz] ) Ax = [BZaBy] ) Bz = [AyaBz] = [Bya-Az] )
Ay = [AzuAa:] ) Ay = [Ba:aBz] ) By = [AzuBz] = [BzaAz] ) (14)
A, = [Aa:aAy] ’ A, = [ByaBz] , B.= [Aa:aBy] = [BmAy] )
Observe that by changing the sign of our boost generators we do not modify the previous com-
mutation relations. This will give the possibility to introduce two inequivalent quaternionic
representations of the Lorentz group.
We showed in the previous section a possible quaternionic one-dimensional representa-
tions (13) for the anti-hermitian rotations operators of O(3). The aim of this section is to
extend such a correspondence to include boost generators. To do it, let us introduce left/right

operators. Such operators will represent the left /right actions of the imaginary quaternionic
units and , in the sequel, will be denoted by

=

L=(LyLj,L;) and R=(R;,Rj,Ry) , (15)
with
L:H—H, Lg=hq and R : H—H, Rq=qh, HE(i,j,k).
The algebra of left and right operators can be concisely expressed by
L; = L; =L =L,LjL, = R} = R; = R}, = RyR;R; = -1,

and
[Lijk > Rijk]=0.

The idea of combining left and right imaginary units gives the possibility to obtain a one
dimensional representation for boost generators by C-linear quaternionic operators

Oc(gz) = (Ocq)z , 2z € C(L,4) .

Explicitly,

and
B, = iLiRZ’/2 , By = iLjRi/2 , B, = iLkRZ’/2 e H @ C? . (17)

These two inequivalent quaternionic representations for the Lorentz generators imply two
different transformation laws for quaternionic spinors

S, = exp [E (5—1— R; @') /2] and s_ =exp [E (g—Ri @') /2] , (18)

where .
0= (ezugyugz) , SBE (Sozasoyﬂpz) .

For consistence, we introduce two one-dimensional quaternionic spinors, ¢, which transform
in the following way

g+ —> Si G+ , qr =& +Jne , &xome €C. (19)



Due to the right C-linearity of boost generators, the spinor ¢.¢ transforms like ¢

q:l:/l: — Sy q:l:Z .
Taking the quaternion ¢, (1 +7)g} defined by the four space-time coordinates

(1 +i)gi=ct+iz+jy+kz =
=P+, 2= 6P —nel?, y—iz =287, (20)

we will show that O(3, 1)-transformations on

are equivalent to s.-transformations on the quaternionic spinors

g =& + 11 -

L-GI

We follow the proof presented in the previous section. Putting s, =e#2,

ig. _ig,
g —e2’"qe, qf —qle 2™,
we obtain

go(1 +i)gh — e2? * lqe(L+1d)gl] e % = g.qt + et q ighe 2%

Consequently, _ |
of +iF + ji + kZ = ct + 2% (iz + jy + kz) e 2% |

which implies

10
Oz 01
L;
et e 0 0 cosH 7sm0 (21)
0 0 sinf, cosf,
0
In a similar way, choosing s, = ¢ and s, =el* 2 2 , we find
1 0 0 0
[4
L. 0 cosfy 0 sinf,
v e Lo 0o 1 0 (22)
0 -sinfy 0 cosb,
and
1 0 0 0
[ 0 cosf, -sinf, O
Ly
etz e 0 sinf, «cosf, O (23)
0 0 0 1



Our next objective is to evaluating the correspondence between one-dimensional quaternionic

boosts and 4 x 4 real matrix representing space/time transformations. Let us consider the
p Pz
first generator of quaternionic boosts in Eq. (17), s, = erliltisy ,

+L;R; %

e — € q+ = qq cosh £& g isinh £ .

The transformation law associated with such a quaternionic generator gives for the quater-
nionic space-time vector

g (1 +i)g} — (gecosh £ +iguisinh £2) (1 +4) (¢} cosh & £ iglisinh £2) |
which implies
Ge(1+14)g" = g (1 +1)q} cosh® £2 —ig, (1 4i)glisinh® £ + {i, ¢, (1 — 1)¢li} sinh £* cosh £F .
Observing that
gegl =ct, quigl =iz +jy+kz, {i,q:(i —1)gli} = 2(z +ict) ,
the previous equation can be directly written in terms of space-time coordinates as follows
c+ii+jj+ki = (ct+iz) (cosh® £ 4 sinh® £2) F 2 (ct + iz) sinh 42 cosh & + jy + kz
= ctcoshp, F zsinh p, + i (z cosh @, F ctsinhp,) + jy + kz .
Thus, we obtain the following identification between our quaternionic transformations, s, =
eiLiRi%w, and Lorentz boosts which mix time ¢ and spatial coordinate ,

coshy, Fsinhyp, 0 0
GELiR: % o Fsinh g, coshy,

0 0
0 0 10 (24)
0 0 0 1
Py Pz
Finally, by setting s, = e*%i% > and s, = eI e obtain
coshypy, 0 zsinhy, 0
Ry 0 1 0 0
+L;Ri %y
€ H #sinhyp, 0 coshy, 0 ’ (25)
0 0 0 1
and
coshep, 0 0 zsinheyp,
Ly R 0 1 0 0
e “ 0 01 0 (26)
#sinhp, 0 0 coshep,

In the previous section, we observed that unitary quaternions, U(1,H"), represent the
quaternionic counterpart of complex special unitary groups, SU(2). In this section, we proved
that (16,17) represent the quaternionic counterpart of the generators of complex special
linear groups, SL(2,C). The corresponding quaternionic group will be thus indicated by
SL(1,H" ® C®). For a completed and detailed review of quaternionic group theory, we refer
the reader to [4, 13, 14]. The situation can be summarized by

U(1,HE) o SU(2) ~ 0(3)
SL(LHE®CE)  «  SL(2,0) ~  0(3,1)



4 Quaternionic Dirac Equation and Chiral Representation

As remarked in section 3, corresponding to the two possible signs of Bin Eq. (17), we have
g+ — S;qy = exp [I_: (§+Ri gZ)') /2} qs ,

and
g — S_q_ =exp [L- (H—Ri @') /2} q_ .

These inequivalent representations of the Lorentz group are related to two different types of
one-component quaternionic spinors, q., which represent the quaternionic counterpart of the
standard complex dotted and undotted spinors. Such spinors correspond to the representations

(3:0) and (0,3)

of the Lorentz group. In fact, by defining

—

from Egs. (14), we obtain
Am,$ = [Am,y ? 'Am,z] ’ Am,y = [Am Z Am,$] ’ Am,z = [Am,I ) Am,y] ? m=1,2,

)

and
[ A, A =0
The quaternionic Lorentz group is thus essentially
U,(1,H") ® Uy(1,H") ,
and states transform by two angular momenta
(J1J2) -

The first one corresponding to A, and the second to A,. As special case,
A=L/2,
{=1/2,

A
Under parity, P, velocity changes sign, hence the boost generators B change sign

g=+ERi/2 = K1=E/2, .[(220, (%70) )
g:—ERZ/2 = A’QZE/27 A’IZO, (07%) .

—

P-transformation : B — _B.

The rotation generators ./f, behaving like axial vectors, 7 x P, does not change sign

-

P-transformation : A — A .

So, we have
P-transformation :  (j,,0) <> (0,7,) , ¢ <> q_ .

By introducing parity, it is no longer sufficient to consider one-dimensional quaternionic
spinors ¢, and q_ separately, but we need to define two-dimensional quaternionic spinors

o= (1) &



Finally, under Lorentz transformations
s+ 0 4+
= (50 (0)
0 1 q+
o (10)(5)

The two-dimensional spinor ¢ is an irreducible representation of the Lorentz group extended
by parity. Let us now consider Lorentz boosts, 8 =0, ¢ # 0,

and under parity

q+ — €xp (ERz : 85/2> g+ = exp (LaRip/2) ¢4 ,

where
Lon=L-ii=nLi+n,Lj+nLy, Li=-1, o=.,/07+¢+¢2.

Consequently,
g+ — (cosh £ + LyR;sinh £) g, .

The ¢_ transformation is soon obtained from the previous one by changing ¢ — -,
q_ — (Cosh% — Ly R;sinh %) q_ .

By supposing original spinors refering to particles at rest, ¢.(0), and the transformed spinors,
g+ to a particles with momentum p’, and observing that

coshp=v=E/m, sinhp=py=p/m, (c=1),

which implies

vy+1 3 E+m)\? ) v—1 5 E—m\*®
he=(211") = he=(1"-) =
oS ( 2 > ( 2m > ) Sy ( 2 2m ’

we find
E+m\? E—m\*
g+ = + LnR; q.+(0)
2m 2m
= (E +m+ LR; 'ﬁ) 2m (E +m)] % ¢,
and
E+m\? E—m)\:?
g e = ( > — LpR; ( > ] q_ (0
2m 2m

At rest, q,.0) = q_(0), thus with a bit of algebra we obtain

mqy @ = (E—i‘[_;Ri -ﬁ) g @ and mgq = (E—ERz' -ﬁ) 4.6 -



In matrix form, these equations read

-m E + ERi g q+@® (29)
E—LR;-p -m ew )

By adopting the following representation for gamma matrices
01 0 -1\ »
0 = — .

(Y'pu —m)pm =0

This is the quaternionic Dirac equation for massive spin % particle in the chiral representation.
For massless particles, such an equation decouples into two equations, each characterized by
a one-component quaternionic spinor

Eq. (29) becomes

(B+LR5) g w=0,
and

(B-LR;-7) a.(7) =0,
which represent the quaternionic Weyl equations. Since, for a massless particle, EZ = p, these
equations also read

LR;-pg w=-q @, LR pe»=qw . (31)
The operator
LR;-p

measures the component of the spin in the direction of momentum and defines the gquater-
nionic helicity operator.

5 Chiral and Dirac Representations

The derivation of the quaternionic Dirac equation given above differs from the original one
formulated by Rotelli [10]. The equation presented in this paper is obtained directly from
transformation properties of quaternionic Lorentz spinors, whereas the Rotelli equation fol-
lows the Dirac original approach. The difference becomes clear by observing the representa-
tions for gamma matrices. In the Dirac-Rotelli equation we find:

1 0 0 1Y) »
0 = S~ =
vl h) =) s
In the Dirac-De Leo equation we obtain the following set of gamma-matrices
0 1 0 -1\ »
0 — & — .
7—<1 0)’7—(1 0>LRZ‘

Apparently, the Dirac-Rotelli equation contains left operators, v* € M,(H"), whereas our
Dirac equation is based on a right C-linear quaternionic algebra, v# € M,(H* ® C*). Nev-
ertheless, the use of right imaginary unit, R;, is only hidden in the Rotelli approach.

10



In the complex world, the Dirac equation reads indifferently as
10 = Hyp or Owpi = Hy .

In the quaternionic world there is a clear difference in choosing a left or right position for
our complex imaginary unit z. In fact, by requiring norm conservation

o [ @zvy=0.
we find that a left position of the imaginary unit ¢ in the quaternionic Dirac equation,
Loy = i0p = Hy
gives
o [ ey = [ @ovi i,
in general # 0 for quaternionic Hamiltonians. A right position of the imaginary unit ¢,

RiOpp = Oppi = Hp

ensures the norm conservation. From covariance, by treating time and space in the same
way, we obtain the following “quaternionic” momentum operator

pp‘ 4 Rz-é)" = pp‘Q/J 4 Rzap‘@b = 8”1/)7, . (32)
Finally, the quaternionic Dirac equation reads
Ry*Oup =1 Oupi =myp , [¥*,7] = 29" . (33)

Another fundamental ingredient in the formulation of quaternionic relativistic quantum me-
chanics is represented by the adoption of a complexr geometry [5], necessary in order to
guarantee that R;0 be an hermitian operator

/d%« o' R;dp = /d% (R;dp) 4 .
The previous relation implies
/d% ot i = —i/d3x dotp (after integration by parts) = i/d3:1: o I .
The different position of the imaginary unit ¢ forces the use of a complex projection [6] for

inner products
/dB.’L‘ — /dB.’L‘. (34)
C

By introducing the following matrices
T =Ry* eH: @CPt,
the quaternionic Dirac equation (33) becomes

Tuaﬂd] =my , ['I‘N, TV] = -2¢"" . (35)

11



The Rotelli representation modifies in

TOE<2_)01>RZ, T

and the chiral representation in

o_ (01 om0 1)z
T_(lo R,, T= 10 L.

These Y-matrices give the possibility to construct the following quaternionic algebra

1]
7N
—_ O
O =
N~~~

'l

&

'ro , T123 — TITQTB , 'I‘S — 'I‘O’r123 , (36)

in fact,
(T0)2 — (T123)2 — (rr5)2 — T0T123T5 — _]]_ .

Standard and chiral representations diagonalize respectively T° and Y?. The new (Maiorana)

TOE<(1) é)Ri, fE(é _01>I_;Ri.

diagonalizes T'**. By simple algebraic manipulations, it is immediate to show that these
three representations, corresponding to three possible choices in the diagonalization of Y° |
T3 Y5 generate the “complex” group

representation

SU(2,CR) .

It is not our purpose to study here quaternionic gauge theories. We would like spend only
some considerations on quaternionic fermion states. The first family in the Salam-Weinberg

model [15] is represented by
v d u
. a PR

In the chiral representation leptons v, ,r, e,,z and quarks u,,r, d;,z are given in terms of
one-dimensional quaternionic spinors and so they can be accommodate in the following 2 x 2

o Vyp Urp o Vr Ugr
() () o

The massless fermion electroweak Lagrangian [16]

quaternionic matrices

Le= (T, 79,0, +TpTHI,T,) . (38)
is global invariant under the Glashow gauge group [17]

SU(2,C%), ® U(1,C")y . (39)

12



6 Conclusions

This work was intended as an attempt to motivate the use of quaternions in physics [18], in
particular relativistic quantum mechanics [19, 20] and gauge theories [1, 2, 6].

By following the Rider approach [21, 22], we obtained a two-dimensional quaternionic
Dirac equation by using the transformation properties of quaternionic spinors under

SL(1,H* ® C*) ,

quaternionic counterpart of SL(2,C). This gives as result the quaternionic version of chiral
representation which plays an important role in the fermion sector of electroweak Lagrangian.
The quaternionic gamma-matrices in the chiral representation also suggest that the true space
for quaternionic 2 x 2 gamma-matrices be a left-quaternionic/right-complex space, namely

e M,(H" @ C*)

In the special case of Dirac-Rotelli representation, y* € M,(H") C M,(H"* ® C?), the right
C-linear algebra is hidden in the definition of momentum operator p* = R;0".

It is interesting to observe that all possible representations for gamma matrices are gen-
erated by three special representations, diagonalization of Y° , Y*?3 T® which have the prop-
erties to generate the group SU(2,C*) and consequently the Glashow group [17] of Salam-
Weinberg model [15]. In a forthcoming paper [23] will be discussed in detail a quaternionic
electroweak theory based on the “complex” group

9:SU(2,C"); ® gy U(1,C%)y .
Formulations of left/right symmetric models [24, 25] require the simple generalization
G2, SU(2,C"), ® 95,2 SU(2,C"), ® g,U(1,C") .
Grand unification models and super-symmetric theories [26] could require the choice of ef-

fective quaternionic gauge groups [27].
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