Partitions with" $\left\lfloor\frac{N+1}{2}\right\rfloor$ copies of N "

by

José Plínio O. Santos*
and
Paulo Mondek

Abstract

A general theorem on partitions is given which, in two special cases, presents very interesting combinatorial interpretations.

1. Introduction

In this paper we shall prove a result in partitions wich involve the concept of " $f(N)$ copies of N ". Associate to this we have another concept: "multiset" M (for MacMahon). To exemplify these concepts we present bellow the 6 partitions of 3 with " N copies of N ":

$$
\begin{aligned}
& 3_{1}, 3_{2}, 3_{3} \\
& 2_{1}+1_{1}, 2_{2}+1_{1} \\
& 1_{1}+1_{1}+1_{1}
\end{aligned}
$$

where the multiset in this case is

$$
M_{0}=\left\{1_{1}, 2_{1}, 2_{2}, 3_{1}, 3_{2}, 3_{3}, 4_{1}, 4_{2}, 4_{3}, 4_{4}, \ldots\right\} .
$$

Some results in the theory of partitions have been obtained in this context. Among them we have, due to MacMahon, that

$$
\sum_{n=0}^{\infty} \pi(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)^{n}}
$$

[^0]where $\pi(n)$ denote the number of plane partitions.
Also Agarwal and Andrews presented in [2] the following theorem:
"Let $A_{0}(k, n)$ denote the number of partitions of n with N copies of N such that if the weighted difference of any pair of summands m_{i}, r_{j} is nonpositive, then it is even and satisfies
$$
m_{i}-r_{j} \geq-2 \min \{i-1, j-1, k-3\} .
$$

Let $B_{\ell}(k, n)$ denote the number of partitions of n into parts $\equiv 0, \pm 2(k-\ell)$ (mod $4 k+2)$. Then

$$
A_{0}(k, n)=B_{0}(k, n)
$$

for all $n \geq 0$ and $k \geq 2$ ".
and in [1] Agarwal proved that
"For $k \geq 3$, let $c_{k}(n)$ denote the number of partitions of n with " N copies of N " such that each pair of summands m_{i}, r_{j} satisfies $\left|m_{i}-r_{j}\right|>i+j+k$. Then

$$
\sum_{n=0}^{\infty} c_{k}(n) q^{n}=\sum_{n=0}^{\infty} \frac{q^{n\left[1+\frac{(k+3)(n-1)}{2}\right]}}{(q ; q)_{n}\left(q ; q^{2}\right)_{n}}
$$

For our theorem we shall work into the following multisets

$$
M_{\ell}=\left\{k_{r} \in M_{0} \mid k \equiv r(\bmod 2) \text { and } r \geq \ell\right\}
$$

where $\ell=1,2,3, \ldots$.
We finish this section by observing that from the definition of M_{ℓ} we have

$$
M_{1} \supsetneqq M_{2} \supsetneqq \cdots \underset{\nexists}{\supsetneqq} M_{\ell} \supsetneqq M_{\ell+1} \supsetneqq \cdots
$$

that

$$
M_{1}=\left\{1_{1}, 2_{2}, 3_{1}, 3_{3}, 4_{2}, 4_{4}, 5_{1}, 5_{3}, 5_{5}, \ldots\right\},
$$

$$
M_{2}=\left\{2_{2}, 3_{3}, 4_{2}, 4_{4}, 5_{3}, 5_{5}, 6_{2}, 6_{4}, 6_{6}, \ldots\right\}
$$

and that, in general, M_{ℓ} is a multiset with " $\left\lfloor\frac{N+2-\ell}{2}\right\rfloor$ copies of N ".

2. The Theorem

Theorem 2.1. Let $A_{\ell}(n)$ be the number of partitions of n with parts in M_{ℓ} such that the difference between any two consecutive parts a_{i} and b_{j} satisfy

$$
\begin{equation*}
\left|a_{i}-b_{j}\right| \geq i+j \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{\ell}(n) q^{n}=\sum_{n=0}^{\infty} \frac{q^{\ell n^{2}}}{(q ; q)_{2 n}} \tag{2.2}
\end{equation*}
$$

Proof. Let $A_{\ell}(m, n)$ denote the number of partitions enumerated by $A_{\ell}(n)$ with the added restriction that there are exactly m parts. Next we show that $A_{\ell}(m, n)$ satisfies the following recurrence relation:

$$
\begin{align*}
A_{\ell}(m, n) & =A_{\ell}(m, n-2 m)+A_{\ell}(m-1, n-2 m \ell+\ell) \\
& +A_{\ell}(m, n-2 m+1)-A_{\ell}(m, n-4 m+1) . \tag{2.3}
\end{align*}
$$

To prove (2.3) we split the partitions enumerated by $A_{\ell}(m, n)$ into three classes: (a) those in which k_{k} is not a part; (b) those in which ℓ_{ℓ} is a part and (c) those in which k_{k} is a part for $k>\ell$.

If in those from class (a) we subtract " 2 " from each part without changing the subscripts we are left with a partition of $n-2 m$ in exactly m parts and these are the ones enumerated by $A_{\ell}(m, n-2 m)$. From those in class (b) if we drop the part " ℓ " and subtract 2ℓ from each of the remaining parts (keeping the subscript) we are left with a partition of $n-2 m \ell+\ell$ in exactly $m-1$ parts and these are the ones enumerated by $A_{\ell}(m-1, n-2 m \ell+\ell)$.

Finally from those in class (c) we subtract " 2 " from each part different from k_{k} and replace k_{k} by $(k-1)_{k-1}$. In doing this, we are left with a partition of $n-2 m+1$ in exactly m parts which are enumerated by $A_{\ell}(m, n-2 m+1)$. At this point we have to observe that by this transformation we get only those partitions of $n-2 m+1$ into m parts which contain a part of the form " r_{r} " with $r \geq \ell$. For this reason the partitions of class (c) can be put in an one to one correspondence with those that are enumerated by $A_{\ell}(m, n-2 m+1)-A_{\ell}(m, n-4 m+1)$ and this finished the proof of (2.3).

The transformations just described are possible by the following reasons:
(i) the elements in class (a) for not having parts of the form " k_{k} " all of its parts are, then, of the form r_{s} where $r-s \geq 2$.
(ii) the parts of a partition in class (b) that are distinct from ℓ_{ℓ} are greater than or equal to 3ℓ because of (2.1), i.e, for $r_{j}+\ell_{\ell}, r-\ell \geq j+2 \ell$.
(iii) due to the transformation done in class (a) the partitions of $n-2 m+1$ with m parts without having part of form " r_{r} " is enumerated by $A_{\ell}(m, n-4 m+1)$.

Now we define

$$
F_{\ell}(z ; q)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m, n) z^{m} q^{n}
$$

and using (2.3) we get:

$$
\begin{aligned}
F_{\ell}(z ; q)= & \sum_{n=0}^{\infty} \sum_{m=0}^{\infty}\left(A_{\ell}(m, n-2 m)+\right. \\
& A_{\ell}(m-1, n-2 m \ell+\ell)+A_{\ell}(m, n-2 m+1) \\
& \left.-A_{\ell}(m, n-4 m+1)\right) z^{m} q^{n} \\
= & \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m, n-2 m) z^{m} q^{n}+\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m-1, n-2 m \ell+\ell) z^{m} q^{n} \\
+ & \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m, n-2 m+1) z^{m} q^{n}-\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m, n-4 m+1) z^{m} q^{n} \\
= & \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m, n-2 m)\left(z q^{2}\right)^{m} q^{n-2 m}+
\end{aligned}
$$

$$
\begin{align*}
& z q^{\ell} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m-1, n-2 m \ell+\ell)\left(z q^{2 \ell}\right)^{m-1} q^{n-2 m \ell+\ell}+ \\
& \frac{1}{q} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m, n-2 m+1)\left(z q^{2}\right)^{m} q^{n-2 m+1}- \\
& \frac{1}{q} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m, n-4 m+1)\left(z q^{4}\right)^{m} q^{n-4 m+1} \\
= & F_{\ell}\left(z q^{2} ; q\right)+z q^{\ell} F_{\ell}\left(z q^{2 \ell} ; q\right)+\frac{1}{q} F_{\ell}\left(z q^{2} ; q\right)-\frac{1}{q} F_{\ell}\left(z q^{4} ; q\right) \tag{2.4}
\end{align*}
$$

Assuming $F_{\ell}(z ; q)=\sum_{n=0}^{\infty} \gamma(q, n) z^{n}$ and using (2.4) we may compare coefficients of z^{n} obtaining:

$$
\gamma(q, n)=q^{2 n} \gamma(q, n)+q^{2 \ell n-\ell} \gamma(q, n-1)+q^{2 n-1} \gamma(q, n)-q^{4 n-1} \gamma(q, n)
$$

Therefore

$$
\begin{equation*}
\gamma(q, n)=\frac{q^{2 \ell n-\ell}}{\left(1-q^{2 n}\right)\left(1-q^{2 n-1}\right)} \gamma(q, n-1) \tag{2.5}
\end{equation*}
$$

and observing that $\gamma(q, 0)=1$ we may iterate (2.5) to get

$$
\gamma(q, n)=\frac{q^{\ell n^{2}}}{(q ; q)_{2 n}}
$$

From this

$$
F_{\ell}(z ; q)=\sum_{n=0}^{\infty} \frac{q^{\ell n^{2}}}{(q ; q)_{2 n}} z^{n}
$$

Now we can finish the proof since

$$
\begin{aligned}
\sum_{n=0}^{\infty} A_{\ell}(n) q^{n} & =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m, n) q^{n} \\
& =F_{\ell}(1 ; q)=\sum_{n=0}^{\infty} \frac{q^{\ell n^{2}}}{(q ; q)_{2 n}}
\end{aligned}
$$

This theorem in the case $\ell=5$ can be seen as:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{q^{5 n^{2}}}{(q ; q)_{2 n}}=1+q^{5}+q^{6}+2 q^{7}+2 q^{8}+3 q^{9}+\ldots+17 q^{25}+\ldots= \\
& =1+q^{55}+q^{66}+\left(q^{7_{5}}+q^{7_{7}}\right)+\left(q^{8_{6}}+q^{8_{8}}\right)+ \\
& +\left(q^{9_{5}}+q^{9_{7}}+q^{9_{9}}\right)+\ldots+\left(q^{25_{5}}+q^{25_{7}}+q^{25_{9}}+\ldots+q^{25_{23}}+q^{25_{25}}+\right. \\
& \left.q^{20_{6}+5_{5}}+q^{20_{8}+5_{5}}+q^{20_{10}+5_{5}}+q^{19_{5}+6_{6}}+q^{19_{7}+6_{6}}+q^{18_{6}+7_{5}}\right)+\ldots
\end{aligned}
$$

3. Particular Cases

For $\ell=1$, by considering identity 79 of Slater [7, p.160]

$$
\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{2 n}}=\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}} \cdot \prod_{n=1}^{\infty}\left(1-q^{20 n-8}\right)\left(1-q^{20 n-12}\right)\left(1-q^{20 n}\right)
$$

we have the following theorem:

Theorem 3.1. The number of partitions of n with parts in M_{1} such that the difference between any two consecutive parts a_{i} and b_{j} satisfy $\left|a_{i}-b_{j}\right| \geq i+j$ is equals the number of partitions in even parts $\not \equiv 0, \pm 8(\bmod 20)$ or distinct odd parts.

Now we illustrate this theorem for $n=8$ in the table below.

8_{2}	$7+1$
8_{4}	$6+2$
8_{6}	$5+3$
8_{8}	$5+2+1$
$7_{1}+1_{1}$	$4+4$
$7_{3}+1_{1}$	$4+3+1$
$7_{5}+1_{1}$	$4+2+2$
$6_{2}+2_{2}$	$3+2+2+1$
$5_{1}+3_{1}$	$2+2+2+2$

For $\ell=2$, as a consequence of Theorem 1, due to Andrews and Santos [5, p.92], we can enunciate the following result.

Theorem 3.2. Let $A_{2}(n)$ denote the number of partitions of n with parts in M_{2} such that the difference between any two consecutive parts a_{i} and b_{j} satisfy $\left|a_{i}-b_{j}\right| \geq i+j$; let $\mathcal{A}_{2}(n)$ denote the number of partitions of n into parts that are $\equiv \pm 2, \pm 3, \pm 4, \pm 5$ $(\bmod 16)$; let $\mathcal{B}_{2}(n)$ denote the number of partitions of n that are either even but $\not \equiv 0$ $(\bmod 8)$ or distinct odd and $\equiv \pm 3(\bmod 8) ; \mathcal{C}_{2}(n)$ denote the number of partitions of n such that the even parts are distinct and no even consecutive parts occur, and $2 j+1$ is a part only if $2 j$ or $2 j+2$ occur. Then

$$
A_{2}(n)=\mathcal{A}_{2}(n)=\mathcal{B}_{2}(n)=\mathcal{C}_{2}(n)
$$

In the following table we have an illustration of the partitions described by this theorem for $n=10$.

$A_{2}(10)=7$	$\mathcal{A}_{2}(10)=7$	$\mathcal{B}_{2}(10)=7$	$\mathcal{C}_{2}(10)=7$
10_{10}	$5+5$	10	10
10_{8}	$5+3+2$	$6+4$	$8+2$
10_{6}	$4+4+2$	$6+2+2$	$6+4$
10_{4}	$4+2+2+2$	$5+3+2$	$6+2+1+1$
10_{2}	$3+3+4$	$4+4+2$	$4+3+2+1$
$8_{2}+2_{2}$	$3+3+2+2$	$4+2+2+2$	$3+2+1+\ldots+1$
$8_{4}+2_{2}$	$2+2+2+2+2$	$2+2+2+2+2$	$2+1+\ldots+1$

References

[1] Agarwal, A.k.(1985). Partitions with " N copies of N ", Proceedings of the Colloque De Combinatoire Enumerative, University of Quebec at Montreal, Lecture Notes in Math., № 1234, Springer-Verlag, Berlin/New York.
[2] Agarwal, A.k. and Andrews, G.E.(1987). Rogers-Ramanujan identities for partitions with " N copies of N ", J. Combin. Theory Ser. A 45, 40-49.
[3] Agarwal, A.K. and Mullen, G.L. (1988). Partitions with " $d(a)$ copies of a ", Journal of Combinatorial Theory, Series A 48, 120-135.
[4] Andrews, G.E., "The Theory of Partitions", Encyclopedia of Mathematics and its Applications, Vol. 2, Reading, MA, 1976 (Reprinted, Cambridge University Press, London/New York, 1984).
[5] __ and Santos, J.P.O. (1997). Rogers-Ramanujan Type Identities for Partitions with Attached Odd Parts, The Ramanujan Journal 1, 91-99.
[6] Slater, L.J.(1951). A new proof of Rogers' transformations of infinite series, Proc. London Math. Soc(2)53, 460-475.
[7] . (1952). Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc.(2) 54, 147-167.

IMECC-UNICAMP Cx.P. 6065
13081-970-Campinas - SP - Brasil
email:josepli@ime.unicamp.br
CCET - UFMS Cx.P. 649
79070-900 - Campo Grande - MS - Brasil email:mondek@hilbert.dmt.ufms.br

[^0]: * Partially supported by FAPESP.

