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Abstract: A general theorem on partitions is given which, in two special
cases, presents very interesting combinatorial interpretations.

1. Introduction
In this paper we shall prove a result in partitions wich involve the concept of

“f(IN) copies of N”. Associate to this we have another concept: “multiset” M (for
MacMahon). To exemplify these concepts we present bellow the 6 partitions of 3
with “N copies of N”:

31, 32,33

21+ 11,2,+ 14

L+1+1

where the multiset in this case is
MO = {]-17 217 227317327337417427437447 }

Some results in the theory of partitions have been obtained in this context.

Among them we have, due to MacMahon, that
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where 7(n) denote the number of plane partitions.

Also Agarwal and Andrews presented in [2] the following theorem:

“Let Ag(k,n) denote the number of partitions of n with N copies of N such that
if the weighted difference of any pair of summands m;,r; is nonpositive, then it is

even and satisfies
m; —r; > —2min{i — 1,7 — 1,k — 3}.

Let By(k,n) denote the number of partitions of n into parts = 0, £2(k —{) (mod
4k +2). Then
AU(I{I, n) = Bo(k, n)

foralln >0 and k > 2”.
and in [1] Agarwal proved that

“For k > 3, let cp(n) denote the number of partitions of n with “N copies of N”

such that each pair of summands m;,r; satisfies |m; —rj| > i+ j+ k. Then
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For our theorem we shall work into the following multisets
My, = {k, € My | k = r(mod2) and r > ¢}

where £ =1,2,3,... .
We finish this section by observing that from the definition of M, we have

My, D> My, D ... DMy DM, DI

12 M 2 2 Me 2 Men 2
that

Ml - {]-17 227 317 337427447 517 537 557 }7
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M2 - {227 337 427 447 537 557 627 647 667 }

N+2—-/

5 J copies of N”.

and that, in general, M, is a multiset with “ {
2. The Theorem

Theorem 2.1. Let Ay(n) be the number of partitions of n with parts in M, such

that the difference between any two consecutive parts a; and b; satisfy

Then .
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Proof. Let A,(m,n) denote the number of partitions enumerated by A,(n) with
the added restriction that there are exactly m parts. Next we show that A,(m,n)

satisfies the following recurrence relation:

Ag(m,n) = Alm,n—2m)+ Am—1,n—2ml+ ()
+ Ay(m,n—2m+1)— Ay(m,n —4m +1). (2.3)

To prove (2.3) we split the partitions enumerated by Ay(m,n) into three classes:
(a) those in which kj is not a part; (b) those in which ¢ is a part and (c¢) those in
which kj is a part for £ > /.

If in those from class (a) we subtract “2” from each part without changing the
subscripts we are left with a partition of n — 2m in exactly m parts and these are
the ones enumerated by A,(m,n —2m). From those in class (b) if we drop the part
“0," and subtract 2¢ from each of the remaining parts (keeping the subscript) we
are left with a partition of n —2mf+ ¢ in exactly m — 1 parts and these are the ones

enumerated by Ay(m — 1,n —2ml + ().



Finally from those in class (c¢) we subtract “2” from each part different from ky
and replace ki by (k—1),_1. In doing this, we are left with a partition of n—2m+1
in exactly m parts which are enumerated by A,(m,n — 2m + 1). At this point we
have to observe that by this transformation we get only those partitions of n—2m+1
into m parts which contain a part of the form “r.” with r» > ¢. For this reason the
partitions of class (¢) can be put in an one to one correspondence with those that
are enumerated by A,(m,n —2m + 1) — As(m,n — 4m + 1) and this finished the
proof of (2.3).

The transformations just described are possible by the following reasons:

(i) the elements in class (a) for not having parts of the form “k,” all of its parts are,
then, of the form ry where r — s > 2.

(ii) the parts of a partition in class (b) that are distinct from ¢, are greater than or
equal to 3¢ because of (2.1), i.e, for r; + €, r — ¢ > j + 2/.

(iii) due to the transformation done in class (a) the partitions of n — 2m + 1 with

’

m parts without having part of form “r,” is enumerated by A,(m,n —4m + 1).

Now we define
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and using (2.3) we get:
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(2.4)

Assuming Fy(z;q) = Y02 (g, n)2z™ and using (2.4) we may compare coefficients

of 2" obtaining:

20n—~t 2n—1

Y(g,n) = ¢"y(g,n)+ " Y(g,n—1)+¢" (g, n) —

Therefore
q2ln—l

v(g,n) = 0= )= q%,l)v(q, n—1)

and observing that v(¢,0) = 1 we may iterate (2.5) to get
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From this on?
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Now we can finish the proof since

i}Ag(n)q” = i iAg(m,n)q”
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This theorem in the case ¢ = 5 can be seen as:
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3. Particular Cases

For ¢ =1, by considering identity 79 of Slater [7, p.160]
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we have the following theorem:

Theorem 3.1. The number of partitions of n with parts in M; such that the
difference between any two consecutive parts a; and b; satisfy |a; — bj| > i +j is
equals the number of partitions in even parts Z 0, 8 (mod20) or distinct odd parts.

Now we illustrate this theorem for n = 8 in the table below.

89 7+1

84 642

86 o+3

8s 5+2+1
7+ 1 444

73+ 1 44341
75+ 14 44242

62 + 29 3424241
o1+ 31 2424242




For ¢ = 2, as a consequence of Theorem 1, due to Andrews and Santos [5, p.92],

we can enunciate the following result.

Theorem 3.2. Let As(n) denote the number of partitions of n with parts in M, such
that the difference between any two consecutive parts a; and b; satisfy |a;—b;| > i+7;
let Ay(n) denote the number of partitions of n into parts that are = £2, 43, +£4, +5
(mod 16); let By(n) denote the number of partitions of n that are either even but # 0
(mod 8) or distinct odd and = £3 (mod 8); C2(n) denote the number of partitions
of n such that the even parts are distinct and no even consecutive parts occur, and

27 + 1 is a part only if 25 or 25 4+ 2 occur. Then

Ag(n) == AQ(TL) == Bg(n) = C2 (n)

In the following table we have an illustration of the partitions described by this

theorem for n = 10.

Ay(10) =7 | Ag(10) =7 B,(10) =7 Cy(10) =7

1019 545 10 10

10g o+34+2 6-+4 842

10¢ 44442 64+2+2 6-+4

104 4424242 0+3+2 6+2+1+1

10, 3+3+4 A+4+2 443 +2+1

8o + 25 3+34+2+2 4424242 3+ 2414...4+1

84 + 2 242424242 | 242424242 | 241+...+1
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