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Abstrat: A general theorem on partitions is given whih, in two speial

ases, presents very interesting ombinatorial interpretations.

1. Introdution

In this paper we shall prove a result in partitions wih involve the onept of

\f(N) opies of N". Assoiate to this we have another onept: \multiset" M (for

MaMahon). To exemplify these onepts we present bellow the 6 partitions of 3

with \N opies of N":
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where the multiset in this ase is
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Some results in the theory of partitions have been obtained in this ontext.

Among them we have, due to MaMahon, that
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where �(n) denote the number of plane partitions.

Also Agarwal and Andrews presented in [2℄ the following theorem:

\Let A

0

(k; n) denote the number of partitions of n with N opies of N suh that

if the weighted di�erene of any pair of summands m

i

; r

j

is nonpositive, then it is

even and satis�es

m

i

� r

j

� �2minfi� 1; j � 1; k � 3g:

Let B

`

(k; n) denote the number of partitions of n into parts � 0;�2(k� `) (mod

4k + 2). Then

A

0

(k; n) = B

0

(k; n)

for all n � 0 and k � 2".

and in [1℄ Agarwal proved that

\For k � 3, let 

k

(n) denote the number of partitions of n with \N opies of N"

suh that eah pair of summands m

i

; r

j

satis�es jm

i

� r

j

j > i+ j + k. Then
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For our theorem we shall work into the following multisets

M

`

= fk

r

2M

0

j k � r(mod2) and r � `g

where ` = 1; 2; 3; : : : :

We �nish this setion by observing that from the de�nition of M

`

we have
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M

2

= f2
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and that, in general, M

`

is a multiset with \

$

N + 2� `

2

%

opies of N".

2. The Theorem

Theorem 2.1. Let A

`

(n) be the number of partitions of n with parts in M

`

suh

that the di�erene between any two onseutive parts a

i

and b

j

satisfy

ja

i

� b

j

j � i+ j: (2.1)

Then
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(q; q)
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: (2.2)

Proof. Let A

`

(m;n) denote the number of partitions enumerated by A

`

(n) with

the added restrition that there are exatly m parts. Next we show that A

`

(m;n)

satis�es the following reurrene relation:

A

`

(m;n) = A

`

(m;n� 2m) + A

`

(m� 1; n� 2m` + `)

+ A

`

(m;n� 2m+ 1)� A

`

(m;n� 4m + 1): (2.3)

To prove (2.3) we split the partitions enumerated by A

`

(m;n) into three lasses:

(a) those in whih k

k

is not a part; (b) those in whih `

`

is a part and () those in

whih k

k

is a part for k > `.

If in those from lass (a) we subtrat \2" from eah part without hanging the

subsripts we are left with a partition of n � 2m in exatly m parts and these are

the ones enumerated by A

`

(m;n� 2m). From those in lass (b) if we drop the part

\`

`

" and subtrat 2` from eah of the remaining parts (keeping the subsript) we

are left with a partition of n�2m`+ ` in exatly m�1 parts and these are the ones

enumerated by A

`

(m� 1; n� 2m`+ `).
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Finally from those in lass () we subtrat \2" from eah part di�erent from k

k

and replae k

k

by (k�1)

k�1

. In doing this, we are left with a partition of n�2m+1

in exatly m parts whih are enumerated by A

`

(m;n � 2m + 1). At this point we

have to observe that by this transformation we get only those partitions of n�2m+1

into m parts whih ontain a part of the form \r

r

" with r � `. For this reason the

partitions of lass () an be put in an one to one orrespondene with those that

are enumerated by A

`

(m;n � 2m + 1) � A

`

(m;n � 4m + 1) and this �nished the

proof of (2.3).

The transformations just desribed are possible by the following reasons:

(i) the elements in lass (a) for not having parts of the form \k

k

" all of its parts are,

then, of the form r

s

where r � s � 2.

(ii) the parts of a partition in lass (b) that are distint from `

`

are greater than or

equal to 3` beause of (2.1), i.e, for r

j

+ `

`

; r � ` � j + 2`.

(iii) due to the transformation done in lass (a) the partitions of n � 2m + 1 with

m parts without having part of form \r

r

" is enumerated by A

`

(m;n� 4m+ 1).

Now we de�ne

F

`

(z; q) =

1

X

n=0

1

X

m=0

A

`

(m;n)z

m

q

n

and using (2.3) we get:

F

`

(z; q) =

1

X

n=0

1

X

m=0

(A

`

(m;n� 2m) +

A

`

(m� 1; n� 2m`+ `) + A

`

(m;n� 2m+ 1)

�A

`

(m;n� 4m+ 1))z

m

q

n

=

1

X

n=0

1

X

m=0

A

`

(m;n� 2m)z

m

q

n

+

1

X

n=0

1

X

m=0

A

`

(m� 1; n� 2m`+ `)z

m

q

n

+

1

X

n=0

1

X

m=0

A

`

(m;n� 2m+ 1)z

m

q

n

�

1

X

n=0

1

X

m=0

A

`

(m;n� 4m+ 1)z

m

q

n

=

1

X

n=0

1

X

m=0

A

`

(m;n� 2m)(zq

2

)

m

q

n�2m

+

4



zq
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Assuming F

`

(z; q) =

P

1

n=0

(q; n)z

n

and using (2.4) we may ompare oeÆients

of z

n

obtaining:

(q; n) = q

2n

(q; n) + q

2`n�`

(q; n� 1) + q

2n�1

(q; n)� q

4n�1

(q; n)

Therefore

(q; n) =

q

2`n�`

(1� q

2n

)(1� q

2n�1

)

(q; n� 1) (2.5)

and observing that (q; 0) = 1 we may iterate (2.5) to get

(q; n) =

q
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2

(q; q)

2n

:

From this

F

`

(z; q) =

1

X

n=0

q

`n

2

(q; q)

2n

z

n

:

Now we an �nish the proof sine
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This theorem in the ase ` = 5 an be seen as:

1
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3. Partiular Cases

For ` = 1, by onsidering identity 79 of Slater [7, p.160℄
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we have the following theorem:

Theorem 3.1. The number of partitions of n with parts in M

1

suh that the

di�erene between any two onseutive parts a

i

and b

j

satisfy ja

i

� b

j

j � i + j is

equals the number of partitions in even parts 6� 0;�8 (mod20) or distint odd parts.

Now we illustrate this theorem for n = 8 in the table below.

8

2

7+1

8

4

6+2

8

6

5+3

8

8

5+2+1

7

1

+ 1

1

4+4

7

3

+ 1

1

4+3+1

7

5

+ 1

1

4+2+2

6

2

+ 2

2

3+2+2+1

5

1

+ 3

1

2+2+2+2
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For ` = 2, as a onsequene of Theorem 1, due to Andrews and Santos [5, p.92℄,

we an enuniate the following result.

Theorem 3.2. Let A

2

(n) denote the number of partitions of n with parts inM

2

suh

that the di�erene between any two onseutive parts a

i

and b

j

satisfy ja

i

�b

j

j � i+j;

let A

2

(n) denote the number of partitions of n into parts that are � �2;�3;�4;�5

(mod 16); let B

2

(n) denote the number of partitions of n that are either even but 6� 0

(mod 8) or distint odd and � �3 (mod 8); C

2

(n) denote the number of partitions

of n suh that the even parts are distint and no even onseutive parts our, and

2j + 1 is a part only if 2j or 2j + 2 our. Then

A

2

(n) = A

2

(n) = B

2

(n) = C

2

(n):

In the following table we have an illustration of the partitions desribed by this

theorem for n = 10.

A

2

(10) = 7 A

2

(10) = 7 B

2

(10) = 7 C

2

(10) = 7

10

10

5+5 10 10

10

8

5+3+2 6+4 8+2

10

6

4+4+2 6+2+2 6+4

10

4

4+2+2+2 5+3+2 6+2+1+1

10

2

3+3+4 4+4+2 4+3 +2+1

8

2

+ 2

2

3+3+2+2 4+2+2+2 3+ 2+1+. . .+1

8

4

+ 2

2

2+2+2+2+2 2+2+2+2+2 2+1+. . .+1
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