Partitions with "
$$\left\lfloor \frac{N+1}{2} \right\rfloor$$
 copies of N"

by

José Plínio O. Santos*
and
Paulo Mondek

Abstract: A general theorem on partitions is given which, in two special cases, presents very interesting combinatorial interpretations.

1. Introduction

In this paper we shall prove a result in partitions wich involve the concept of "f(N) copies of N". Associate to this we have another concept: "multiset" M (for MacMahon). To exemplify these concepts we present bellow the 6 partitions of 3 with "N copies of N":

$$3_1, 3_2, 3_3$$

 $2_1 + 1_1, 2_2 + 1_1$
 $1_1 + 1_1 + 1_1$

where the multiset in this case is

$$M_0 = \{1_1, 2_1, 2_2, 3_1, 3_2, 3_3, 4_1, 4_2, 4_3, 4_4, \ldots\}.$$

Some results in the theory of partitions have been obtained in this context. Among them we have, due to MacMahon, that

$$\sum_{n=0}^{\infty} \pi(n)q^n = \prod_{n=1}^{\infty} \frac{1}{(1-q^n)^n}$$

^{*} Partially supported by FAPESP.

where $\pi(n)$ denote the number of plane partitions.

Also Agarwal and Andrews presented in [2] the following theorem:

"Let $A_0(k, n)$ denote the number of partitions of n with N copies of N such that if the weighted difference of any pair of summands m_i, r_j is nonpositive, then it is even and satisfies

$$m_i - r_j \ge -2\min\{i-1, j-1, k-3\}.$$

Let $B_{\ell}(k,n)$ denote the number of partitions of n into parts $\equiv 0, \pm 2(k-\ell)$ (mod 4k+2). Then

$$A_0(k,n) = B_0(k,n)$$

for all $n \ge 0$ and $k \ge 2$ ".

and in [1] Agarwal proved that

"For $k \geq 3$, let $c_k(n)$ denote the number of partitions of n with "N copies of N" such that each pair of summands m_i, r_j satisfies $|m_i - r_j| > i + j + k$. Then

$$\sum_{n=0}^{\infty} c_k(n) q^n = \sum_{n=0}^{\infty} \frac{q^{n[1 + \frac{(k+3)(n-1)}{2}]}}{(q;q)_n (q;q^2)_n}$$
".

For our theorem we shall work into the following multisets

$$M_{\ell} = \{k_r \in M_0 \mid k \equiv r \pmod{2} \text{ and } r \geq \ell\}$$

where $\ell = 1, 2, 3, ...$.

We finish this section by observing that from the definition of M_{ℓ} we have

$$M_1 \supseteq M_2 \supseteq \ldots \supseteq M_\ell \supseteq M_{\ell+1} \supseteq \ldots$$

that

$$M_1 = \{1_1, 2_2, 3_1, 3_3, 4_2, 4_4, 5_1, 5_3, 5_5, \ldots\},\$$

$$M_2 = \{2_2, 3_3, 4_2, 4_4, 5_3, 5_5, 6_2, 6_4, 6_6, \ldots\}$$

and that, in general, M_{ℓ} is a multiset with " $\left\lfloor \frac{N+2-\ell}{2} \right\rfloor$ copies of N".

2. The Theorem

Theorem 2.1. Let $A_{\ell}(n)$ be the number of partitions of n with parts in M_{ℓ} such that the difference between any two consecutive parts a_i and b_j satisfy

$$|a_i - b_j| \ge i + j. \tag{2.1}$$

Then

$$\sum_{n=0}^{\infty} A_{\ell}(n)q^n = \sum_{n=0}^{\infty} \frac{q^{\ell n^2}}{(q;q)_{2n}}.$$
(2.2)

Proof. Let $A_{\ell}(m, n)$ denote the number of partitions enumerated by $A_{\ell}(n)$ with the added restriction that there are exactly m parts. Next we show that $A_{\ell}(m, n)$ satisfies the following recurrence relation:

$$A_{\ell}(m,n) = A_{\ell}(m,n-2m) + A_{\ell}(m-1,n-2m\ell+\ell) + A_{\ell}(m,n-2m+1) - A_{\ell}(m,n-4m+1).$$
(2.3)

To prove (2.3) we split the partitions enumerated by $A_{\ell}(m, n)$ into three classes: (a) those in which k_k is not a part; (b) those in which ℓ_{ℓ} is a part and (c) those in which k_k is a part for $k > \ell$.

If in those from class (a) we subtract "2" from each part without changing the subscripts we are left with a partition of n-2m in exactly m parts and these are the ones enumerated by $A_{\ell}(m,n-2m)$. From those in class (b) if we drop the part " ℓ_{ℓ} " and subtract 2ℓ from each of the remaining parts (keeping the subscript) we are left with a partition of $n-2m\ell+\ell$ in exactly m-1 parts and these are the ones enumerated by $A_{\ell}(m-1,n-2m\ell+\ell)$.

Finally from those in class (c) we subtract "2" from each part different from k_k and replace k_k by $(k-1)_{k-1}$. In doing this, we are left with a partition of n-2m+1 in exactly m parts which are enumerated by $A_{\ell}(m, n-2m+1)$. At this point we have to observe that by this transformation we get only those partitions of n-2m+1 into m parts which contain a part of the form " r_r " with $r \geq \ell$. For this reason the partitions of class (c) can be put in an one to one correspondence with those that are enumerated by $A_{\ell}(m, n-2m+1) - A_{\ell}(m, n-4m+1)$ and this finished the proof of (2.3).

The transformations just described are possible by the following reasons:

- (i) the elements in class (a) for not having parts of the form " k_k " all of its parts are, then, of the form r_s where $r-s \geq 2$.
- (ii) the parts of a partition in class (b) that are distinct from ℓ_{ℓ} are greater than or equal to 3ℓ because of (2.1), i.e, for $r_j + \ell_{\ell}, r \ell \geq j + 2\ell$.
- (iii) due to the transformation done in class (a) the partitions of n-2m+1 with m parts without having part of form " r_r " is enumerated by $A_{\ell}(m, n-4m+1)$.

Now we define

$$F_{\ell}(z;q) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m,n) z^m q^n$$

and using (2.3) we get:

$$F_{\ell}(z;q) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} (A_{\ell}(m, n-2m) + A_{\ell}(m-1, n-2m\ell+\ell) + A_{\ell}(m, n-2m+1) - A_{\ell}(m, n-4m+1))z^{m}q^{n}$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m, n-2m)z^{m}q^{n} + \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m-1, n-2m\ell+\ell)z^{m}q^{n}$$

$$+ \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m, n-2m+1)z^{m}q^{n} - \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m, n-4m+1)z^{m}q^{n}$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m, n-2m)(zq^{2})^{m}q^{n-2m} +$$

$$zq^{\ell} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m-1, n-2m\ell+\ell) (zq^{2\ell})^{m-1} q^{n-2m\ell+\ell} +$$

$$\frac{1}{q} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m, n-2m+1) (zq^{2})^{m} q^{n-2m+1} -$$

$$\frac{1}{q} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m, n-4m+1) (zq^{4})^{m} q^{n-4m+1}$$

$$= F_{\ell}(zq^{2}; q) + zq^{\ell} F_{\ell}(zq^{2\ell}; q) + \frac{1}{q} F_{\ell}(zq^{2}; q) - \frac{1}{q} F_{\ell}(zq^{4}; q)$$
(2.4)

Assuming $F_{\ell}(z;q) = \sum_{n=0}^{\infty} \gamma(q,n) z^n$ and using (2.4) we may compare coefficients of z^n obtaining:

$$\gamma(q,n) = q^{2n}\gamma(q,n) + q^{2\ell n - \ell}\gamma(q,n-1) + q^{2n-1}\gamma(q,n) - q^{4n-1}\gamma(q,n)$$

Therefore

$$\gamma(q,n) = \frac{q^{2\ell n - \ell}}{(1 - q^{2n})(1 - q^{2n-1})} \gamma(q, n - 1)$$
(2.5)

and observing that $\gamma(q,0) = 1$ we may iterate (2.5) to get

$$\gamma(q,n) = \frac{q^{\ell n^2}}{(q;q)_{2n}}.$$

From this

$$F_{\ell}(z;q) = \sum_{n=0}^{\infty} \frac{q^{\ell n^2}}{(q;q)_{2n}} z^n.$$

Now we can finish the proof since

$$\sum_{n=0}^{\infty} A_{\ell}(n)q^{n} = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{\ell}(m,n)q^{n}$$
$$= F_{\ell}(1;q) = \sum_{n=0}^{\infty} \frac{q^{\ell n^{2}}}{(q;q)_{2n}}.$$

This theorem in the case $\ell = 5$ can be seen as:

$$\sum_{n=0}^{\infty} \frac{q^{5n^2}}{(q;q)_{2n}} = 1 + q^5 + q^6 + 2q^7 + 2q^8 + 3q^9 + \dots + 17q^{25} + \dots =$$

$$= 1 + q^{5_5} + q^{6_6} + (q^{7_5} + q^{7_7}) + (q^{8_6} + q^{8_8}) +$$

$$+ (q^{9_5} + q^{9_7} + q^{9_9}) + \dots + (q^{25_5} + q^{25_7} + q^{25_9} + \dots + q^{25_{23}} + q^{25_{25}} +$$

$$q^{20_6 + 5_5} + q^{20_8 + 5_5} + q^{20_{10} + 5_5} + q^{19_5 + 6_6} + q^{19_7 + 6_6} + q^{18_6 + 7_5}) + \dots$$

3. Particular Cases

For $\ell = 1$, by considering identity 79 of Slater [7, p.160]

$$\sum_{n=0}^{\infty} \frac{q^{n^2}}{(q;q)_{2n}} = \frac{(-q;q^2)_{\infty}}{(q^2;q^2)_{\infty}} \cdot \prod_{n=1}^{\infty} (1 - q^{20n-8})(1 - q^{20n-12})(1 - q^{20n})$$

we have the following theorem:

Theorem 3.1. The number of partitions of n with parts in M_1 such that the difference between any two consecutive parts a_i and b_j satisfy $|a_i - b_j| \ge i + j$ is equals the number of partitions in even parts $\not\equiv 0, \pm 8 \pmod{20}$ or distinct odd parts.

Now we illustrate this theorem for n = 8 in the table below.

8_2	7+1
84	6+2
86	5+3
88	5+2+1
$7_1 + 1_1$	4+4
$7_3 + 1_1$	4+3+1
$7_5 + 1_1$	4+2+2
$6_2 + 2_2$	3+2+2+1
$5_1 + 3_1$	2+2+2+2

For $\ell = 2$, as a consequence of Theorem 1, due to Andrews and Santos [5, p.92], we can enunciate the following result.

Theorem 3.2. Let $A_2(n)$ denote the number of partitions of n with parts in M_2 such that the difference between any two consecutive parts a_i and b_j satisfy $|a_i-b_j| \geq i+j$; let $\mathcal{A}_2(n)$ denote the number of partitions of n into parts that are $\equiv \pm 2, \pm 3, \pm 4, \pm 5 \pmod{16}$; let $\mathcal{B}_2(n)$ denote the number of partitions of n that are either even but $\not\equiv 0 \pmod{8}$ or distinct odd and $\equiv \pm 3 \pmod{8}$; $\mathcal{C}_2(n)$ denote the number of partitions of n such that the even parts are distinct and no even consecutive parts occur, and 2j+1 is a part only if 2j or 2j+2 occur. Then

$$A_2(n) = \mathcal{A}_2(n) = \mathcal{B}_2(n) = \mathcal{C}_2(n).$$

In the following table we have an illustration of the partitions described by this theorem for n = 10.

$A_2(10) = 7$	$\mathcal{A}_2(10) = 7$	$\mathcal{B}_2(10) = 7$	$\mathcal{C}_2(10) = 7$
10_{10}	5+5	10	10
10_{8}	5+3+2	6+4	8+2
10_{6}	4+4+2	6+2+2	6+4
10_{4}	4+2+2+2	5+3+2	6+2+1+1
10_{2}	3+3+4	4+4+2	4+3+2+1
$8_2 + 2_2$	3+3+2+2	4+2+2+2	3+2+1++1
$8_4 + 2_2$	2+2+2+2+2	2+2+2+2+2	2+1++1

References

[1] Agarwal, A.k.(1985). Partitions with "N copies of N", Proceedings of the Colloque De Combinatoire Enumerative, University of Quebec at Montreal, Lecture Notes in Math., No 1234, Springer-Verlag, Berlin/New York.

- [2] Agarwal, A.k. and Andrews, G.E.(1987). Rogers-Ramanujan identities for partitions with "N copies of N", J. Combin. Theory Ser. A 45, 40-49.
- [3] Agarwal, A.K. and Mullen, G.L. (1988). Partitions with "d(a) copies of a", Journal of Combinatorial Theory, Series A 48, 120-135.
- [4] Andrews, G.E., "The Theory of Partitions", Encyclopedia of Mathematics and its Applications, Vol. 2, Reading, MA, 1976 (Reprinted, Cambridge University Press, London/New York, 1984).
- [5] _____ and Santos, J.P.O. (1997). Rogers-Ramanujan Type Identities for Partitions with Attached Odd Parts, *The Ramanujan Journal* 1, 91-99.
- [6] Slater, L.J.(1951). A new proof of Rogers' transformations of infinite series, Proc. London Math. Soc(2)53, 460-475.
- [7] ______. (1952). Further identities of the Rogers-Ramanujan type, *Proc. London Math. Soc.* (2) 54, 147-167.

IMECC-UNICAMP Cx.P. 6065 13081-970 - Campinas - SP - Brasil email:josepli@ime.unicamp.br

CCET - UFMS Cx.P.649 79070-900 - Campo Grande - MS - Brasil email:mondek@hilbert.dmt.ufms.br