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Abstract
In this paper we derive a second variation of the energy formula for har-
monic closed Riemann surfaces into flag manifolds. Then we discuss the sta-
bility for a important class of maps with respect to a large class of metrics on
F(n) obtained via a perturbation of the Kahler ones.
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§1 Introduction

We study in this note the stability equations for maps (called Eells-Wood) from
closed Riemann surfaces into (F'(n), ds%:()\ij)) where ds?\:()\ij) is a Borel-type
metric. The stability properties of the Eells-Wood maps with respect to a very
large class of metrics obtained by perturbing the Kéahler ones through a precisely
defined procedure (6.2 Lemma) is obtained. The content of this paper in particular,
extends and corrects some results in my paper [18].

The modern study of harmonic surfaces in Riemannian homogenenous manifolds
started with Calabi [8], Chern [9] and Eells [12] and now, after Uhlenbeck [20] is
very well understood in the particular case of harmonic 2-spheres into a homogeneous
symmetric space. A crucial step was to complexify the problem, and this was done

by Eells-Wood [13], Din-Zakarewski [10] and Glaser-Stora [14].
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The case where the target manifold is a homogeneous non-symmetric space, like
flag manifolds, received considerable less attention. Some of the first works in this
direction, were [15] and [18].

Black’s book [3] discusses this case, relating this study with the understanding
of f-structures on flag manifolds which is very closely connected with Eells-Wood’s
theorem [13], so this study provides a natural relationship between theory of twistors
and harmonic maps into flags. The main interest in this case relies heavily in its
connection with symmetric spaces like Grassmannians, as well their similarities with
the variational approach to problems in low dimensional topology ([2], [11]).

In this paper we derive:

5.2 Theorem (Second variation of energy)

Let ¢ = (m1,...,m) : M? — (F'(n),ds3_,, ) be an arbitrary harmonic map.

©]

d? dq dq  Oq
Then “—| E(¢,) = I?(q) = 4 / A 24N 4o / s P
en e (1) 1(9) Re M<q ot 8Z>vg-l- Re%:)\y ; T Bz%’ o Vg

Using a very algebraic result (6.2. Lemma) we can deduce several stability

results:

6.5. Theorem: Let ¢ = (m,...,m,) : M? — (F(n), J,ds},_y )) be an Eells-
Wood map, where A" = (X};) is the following perturbation of a Kéhler metric (A =

(Aij):



o
Nl <) = (n—1)(n —2)
2

)\ij—i-sk,skzO for 1§]€§€:

Then 1 is stable.

6.7. Theorem. Let ¢ = (my,...,m,) : M* — (F(n),J,dsi_. ) be an Eells-
Wood map. We consider the following perturbation of a Kéhler metric A = (\;;):

(n—1)(n—2)

NN
2

)\ikojko — Eko» ko > O, k() € l].,

)\;kjk (Zk < Jk) -
A

irj, Otherwise

Then 1 is not stable.

Or more generally:

6.8. Theorem. Let ¢ = (my,...,m,) : M* — (F(n), J, ds?\,:()\;j)) be an Eells-

Wood map. Furthermore we consider the perturbation A" = (\{;) of a Kdhler metric
A = (\;) given by:

Nij if j=1+1

A1 < Jj) = (n—1)(n—2)

)\ij—€k,€k>0,1§k§ 5

Then 1 is not stable.
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§2 Complex differential geometry of F'(n)

Let F(n) = {(Li,..., Ly); L; is an uni-dimensional subspace of @", L;&1L;, P L; =

1=1

U —
@"}. ALgebraically, F(n) = % where U(n) = {A €@, = M(n x n;@’);A.At =

A.A* =T} and T is any maximal torus of U(n), i.e. T =U(1) x --- x U(1). Let p =

n ti?nes
T(F(n))y = F(n)a) where u(n) ={X e@p; X+ X* =0} =pdu(l) ®--- S u(l).
n tffnes
2.1. Definition: J : p — p such that J?> = —I is called an almost complex

structure.

Using the natural U(n) action on F(n), we see according to Borel-Hirzebruch
[4] that there are 2() such that invariant almost complex structures.

For each invariant J we have naturally associated a tournament 7, with n players

{1,...,n}. More precisely: we consider

J(laiy] = (aj;)  where

T — ](Z < ]) = a;j =V —1@2']' or
Z(—](Z <]) = a;j = —\/—]_CLZ']'.
Let {e1,...,e,} be the canonical basis of @™ and E; = the subspace of @' gene-

rated by e;. We have:

2.2. Lemma: u(n)’ = gi(n,@) 2d,.



Proof: Clearly u(n)¥ C@,. Reciprocally, given X €@, we can find A, B € u(n)

X — X*
and B =

such that X = A+ +/—1B. For this it is enough to take A =
X+ X*
2y/-1"

Now we have:

u(n)' = @, = Hom@"0") 20" 90" =

~E o --0F,)®(E 0 -0F,)2(E,QE,® - ®FE,®E,)
@(@ EzEj %) E_')Ez) Where EzEj means Ez X E]
1<J

Therefore if E; = {aej,a €@} so E; = {aej,a €q'}.

Let Df; = E;E; ® E;E;. For example in F(3):

0 a12 0
D(fz = asi 0 0 [;a12,a0 €@
0 0 0

We consider Dy; = D, Nu(n). We have p'* = P E;E; and p»' = ) E;E;.
i) =]
(1<) (i<9)

0
So given ¢ : M? — wu(n) we have naturally defined a—q € T(M)" @ p"? and
z
Jq
— e T(M)* ®p™.
5 € T(M)" ®p
We will now study the U(n)-invariant metrics on F'(n) (they are called Borel
type metrics).
Let A, B € F(n)r). We define: dsi_, (A, B) := 3 ; Ayjtr(E;AE; B*), where
Aij = Aji > 0, A = 0,1, 5. We notice that \;; = 1,Vi # j is just the metic induced
on F'(n) by the Killing form of U(n).

Borel in [4] described precisely the set of invariant Kahler metrics which are up

to permutation, given by the following symmetric matrix:
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0 N M+ X AL+ Ao
0 Ao Ao+ Az .
0 A3
*
A= *
*
*
0 )\nfl
0

83 f-holomorphic maps

We suppose that h : M? —@ P" ! is a non-degenerate holomorphic map. See [13] for
more details. Let h be given locally by u(z) = (ug(2),u1(2),...,u, 1(2)), then as it
is usual we can define the k—th associate curve of h, called oy by o}, : M? — G (@™)
given by: o(2) = u(z) Au'(2) A -+ Au®)(2). We can prove that oy, is well-defined.
Then we consider hy : M? —@'P" " as: hy = 0j(2) Nog;1(2). Therefore we have

naturally defined maps ) : M? — F(n) called Eells-Wood maps which are given by:
(2) = (ho(2), h1(2), - - ., hn1(2))

3.1. Definition. An f-structure on F(n) is a section F of End (T'(F'(n))) such

that F3+ F = 0.

3.2. Theorem ([17]). There is a 1-1 correspondence between U(n) invariant f-

structures F on F'(n) and n x n skew-symmetric matrices £(F) = (F;;) with values

o T o
in the set {1,0,—1} such that rank F = Y (1) = > (1) == > (1)t
Fij=1 Fij=—1 2 Fij#0
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and, F is an almost complex structure if and only if, F;; # 0 Vi # j, where rank
F is defined as the dimension of the eigenspace associated to the eigenvalue /—1 of
F.

Therefore F'(n) has 3(2) invariant f-structures.

Now let M? be as usual a closed Riemann surface with local complex coordinate

0
zand ¢ : M — F(n). Set A}, = m;o 5, ° T where m; denotes the orthogonal
2

projection onto E;. When i # j, A;; is called a second fundamental form of ¢.

3.3. Remark. The notation of the second fundamental is the same as in the paper

[6] by Burstall-Salomon.

3.4. Definition. A map ¢ : M — F(n) is said to be subordinate to an e-matrix
(€i7) if Aj; = 0 whenever €;; # 1,i # j. We recall that ;; € {—1,0,1} for any i # j.
Similarly to [19 , pg 90] we can see that ¢ : M — F(n) is f-homorphic relative

to an invariant f-structure F on F(n) if and only if, it is subordinate to £(F).

3.5. Definition. An invariant f-structure F on F'(n) with the property [F,, F_] C

u(1l) @ --- @ u(l) will be called a horizontal f-structure, where

e

n times

F4+ = +/—1 eigenspace

F_ = —/—1 eigenspace

3.6. Definition: ¢ : M — F(n) is said to be an equi-harmonic map if ¢ :
(M, g) — (F(n),ds}_,,,) is harmonic for any Borel type metric ds3_, .

According Black’s theorem [3] we have:
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3.7. Theorem ([3]). Suppose that ¢ : M? — F(n) is subordinate to an horizontal
f-structure. Then ¢ = (my,...,m,) is an equi-harmonic map and each m; : M? —

@ P"~! is harmonic for j =1,2,...,n.

3.8. Corollary ([18]). The Eells-Wood maps ¢ : M? — F(n) are equi-harmonic.

Proof: Let ¢ : M? —@P" ! be a full isotropic harmonic map. Then according to

6] its diagram is:

®e —> e —> e ... —> @ —>0

1 9 T
Hence ¢ = (7y,...,m,) : M?> — F(n) is subordinate to the horizontal e-matrix
0 1 0 e 0
10 1 - 0
o -1 01 --- 0
0 1
0 -1 0

Then by 3.7. Theorem we have 9 is equi-harmonic.

84 Harmonic map equations

Let ® : M? — U(n) be the lift map of ¢ : M — F(n), i.e., ¢ = m o ® where
U(n)
T

basis of @. We denote by m; the matrix of the orthogonal projection on Ej, where

m:U(n) — = F(n) is the natural projection. Let ey,...,e, the canonical

E; denotes the subspace of @™ generated by e;.



Then 7; : M — gl(n,@) satisfies that A (e1,...,en) = (e1,...,€,)AY, where

z )

g o
AY = m%' ForV e I'(¢*(T(F(n)))), weset ¢ = ¢*3(V'), where ¢*3 : ¢*(TF(n)) —
M x u(n) is the pull-back of the Maurer-Cartan form.

Define a variation of ¢ by:

o(z) = (exp(—tq)P)

Denote associate objects by m;(t), A (t), etc. Then we have:

4.1. Lemma a) dm; = 2‘ 7;(t) = [7j,q].
Ot li=o
0 | Om;y - 0q
b) a[ﬂ—])q] - [a7q‘| + [W]7§].
g 0 y y Jq
7y — L — v T
Q) 0(4Y) = 2| a%0) = [4Y.q) - m S,

Proof: a) According to the definition we have 7; = ®E;®*, where E; denotes the

n X n matrix having 1 in the (j, j)-position and zero elsewhere. Therefore

7Tj (t) = e*tqwjetq

d

Hence Om; = T

 mt) = —amj + miq = |, q).

b) It is clear

c¢) Using a) and b) we get

gy 9 i 0 o (t)
0(AY) = — AY () = — ; t J —
(A7) = 5| 45 attzo(ﬂ() 3 )
_ 8 87rj 8 8 o 871']‘
= (a t_oﬂ—l(t)> g +7T1,& (a t_o’ﬂ—](t)> = [WZ,Q] 02 +
0 y dq
. P — ij 4
+7T’L 8Z [71-]7 q] [Az Jq] Uy 82; 77']7
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where we notice that m;m; = 0 whenever ¢ # j.

The Hermitian inner product on gl(n,0') =@, is defined by:
(A, B) :==tr(AB"),YA, B €@,.

It is easy to check that (A, B) = (B, A),(4,[B,C]) = ([B*, A],C). In particular
(A, B) + (B, A) = 2Re(A, B).

4.2. Lemma. 1) Re([A', AY] ¢) =0.
2) (AY,mBrj) = (AY, B)
3) (A, [q, q,A”]D ~(lg, A7], [g, AY])

) 17 8q
A4, 7rjq> <Azjq, iy 7]

0
) <Aw;q7rlaz7rjq> = - <QAZZJ,7TZ'8—Z7T]'>,

VB e, q: M? — here AY := 1,
,q u(n) where i

Proof: 1) We see that (AL)* = —AY, so we have [AL, AU)* = [AL', A¥].

Hence 2Re([AL', AY], q) = ([AL, AY), q)+(q, [AL, AD]) = tr([AL, AD]q")+tr(g[AL, AD]") =
—tr([AZ, AVq) + tr(g[AL, AV]) = 0

2) Notice that mm; = 0,0 # j and 7} = m; so: (A9, m;Brj) = tr(AY7;B*r}) =

87rj « . 877']' % Omi 2 1k 87r] . i

tr (ﬂiaﬂjB 7Ti> =tr (ﬂiEﬂ'JB ) —tr(a ;B ) =tr|m—== P B*) = (AY, B).

3) (A%, g, q,A”]] (lg*, A7), [q, AY) = —([q, AY], [g, AY]).

% ’ % 8q ’ i 8q
4) < 7rjq> (A Ig*m ( ) ) —tr (A Ygm; <$> 7ri> = — <Azjq,7ri$7rj>.

i 8q i i oq* _ ij dq
5) <A Jq,m (A I (—) —tr(qAYm; (—Z 7ri) =— <qAZJ,7ri&7rj>.




4.3. Definition. Let ¢ = (m,...,m) : (M?,q) = (F(n),ds3__,))- We define
the energy of ¢ as:
E(¢) := /M ;Aiﬂfli"'ﬁvg
We will now compute the Euler-Lagrange equations of our variational problem:

d

0 .
_ — L 1j 2, _
il 00 = [, g 420,

t=0
0

= 2Re/ >N < 7, at‘ OAij(t)>vg =
= 2Re/ >N <A” [AY q] — Wi%m> Vg

so we get ——

(qﬁt) = I + 1] where

I = Re/ >N (AY[AY q))v,
i 0q
II = —RG/MZ)\” <AZ],7Ti$7Tj>Ug

But I = 0 due to 4.2. Lemma (part 1). For II, by using Stokes’theorem we get:

I = —Re/ SN <A” BZ> vy =
- Re/ Z)\”<8A” > vy —
_ Re/MZ)\ij§<A

8AA
— Re/ <8_ ,q>vg,

where A% :=> " \.AY. Therefore:

%
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0
4.4 Proposition. ¢ : (M?,g) — (F(n),ds%) is harmonic if and only if, =A% = 0
Z

5%
AA
if and only if 88; + %A;\ = 0, where

o o
AL AL
Aa: = Z)\i]’ﬂ'ia—;,Ay = Z)\”ﬂ'la—yj

Proof: Just apply Noether’s theorem ([1]) to the computations above.

85 Second variation of energy for maps into F(n)

A natural problem is:

“Find for each Borel type metric (or at least for a large number of them) when
a harmonic map ¢ = (71,...,m,) : (M?,g) = (F(n),ds{_,,)) is stable.

We will see that this question is a very difficult one, and we only will have an
interesting answer in the case that ¢ = (m1,...,m.) : (M2, g) — (F(n), J,ds3_,,))
is an Eells-Wood map. These results extend as well give a correct formula for the

second variation of energy as described in [18].

ani 2(t) _ =lmdldl

5.1. Lemma.

g,e*4]=0

0
Proof: By definition m;(t) = e~%m;e!d. Then —;(t) = —qe"me"’+e m;qe

ot

e "[m;, qle'. Hence

% t:o”z’(t) = —q[mi, q] + [mi, qlg = [[mi, q], al.
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5.2. Theorem (Second variation of energy).
Let ¢ = (my,...,m,) : (M?,q) — (F(n), ds?\:()\ij)) an arbitrary harmonic map.
Then:

d2

dq
B0 =) = 4Re /M <qu, az> vy +

dq  Oq
+2R62)\Z] /M <7Tla 7TJ, aZ>
Z’]

Proof: Using the definition we see that:
d g o ..
—E(qﬁt) =2Re )\ij/ AY(t), a—AlzJ (t) ) vg. Hence :

B0 =2 [ $ 0 {4200, a0 ) +
0?

+2R€Z)‘ij/ <Azzjv 012 AV (t )> Ug
Therefore:

iji

d2
E )
(¢t) t= =0~ dt

d
_O—QZAZ'J'/M@

A(0))
t=0
82

+2ReZ)\i]/ <A?,@ Aij(t)>vg =1+11

We will analise I and II separately. We begin our study with II. We have:
0? .
ReZA”/ <A;ﬂ, 5 A”(t)> v, =
0 0 87r
ey [ (402 i
w23 (o (0757 ) ) -
0 om;(t) Om;(
_ ; Az] . J
Re Ay [, < = Bt K ot 0: >+
o (0
# i) (0] oo -
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o or; 0
= Rez)‘lj/ <Azjaﬁ T (t) a; +a—

er (2] o) -

"0z \ ot
= e S (42 [l 022 4 2l (s )

05 (5] o)+

+7ri%([[7r],q] q]) > —ReZ)\ZJ/ AY ,A+ B+ C),

or; or 5, O or; .
But A = [[m; — = [mq — qm; = 1A=L — 2qmig—2L + ¢? A
ut [hn,d,q]az [miq qw,q}8 Mg = 20mig -+ A
On the other hand:
0 om;
B =il () = 2 = am) | 520 +
dq on; or; dq
+ lﬂj, §]> = 27riqa—;q — 27riq28—; + 27Tiq7rj§ —
. or; dq
gt — 2 AT g + 2qmig =L + 2qmie
and
0 . dq
- . — A2 _ o9 TH
C ﬂ-laz([[ﬂjaq]aq]) Az q 27TzaZ7qu
o ; dq 0 o ;
B, VSl ) 27, : EAPH 2=
qua q— 7rq7rja —I-7raz(q )i + g o
Hence:

3 3 )
A+ B+C = ¢"A7 —2q+ AY¢? +7ri§(q2)7rj —

dq dq dq
—27r$7rjq — 27riq$7rj + 2q7rz~8—7rj =
ij 3(12 dq
= [qa [qa Azj]] + M= 82’ —2m; 8Z7qu -
dq 8q
—27rZa i + 2q7rZa
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Finally:

2

11 = 2R62 )\ij /M <Aij, [q, [q, Alzj]] + Wiaaizﬂj—

aq dq dq
—2m; = 5, Tjq — 2miq——Tj + 2q7rZa > Vg

0z

Then if we apply 4.2. Lemma we obtain:
11 = —2Re Y Ay [ (g, A7), g, Ay,
M
+4RBZ)\"/ [AY q] 7r~@7r- +
ij o 2z 4]y zaz j
O¢?
onesay [ (40,2 -
F2he ) A M< ‘ 8z>
—4R62)\"/ AY ﬂ'q@ﬂ" v
ij |, \ Tl T | Vg

But since ¢ is harmonic, we can use 4.4. Proposition, hence:

ReZA”/ <A” ai> = Re / <AA 2> _

Therefore

I =—2ReY. A”/ lq, A7), [q, AY])v,

ij dq
—4Re Z )\ij /M <Az]7 7riq$7r3> Vg
+4R€ Z )\z / [ AZ] q] 8 V,.
J " ) Z 9
On the other hand, by using again 4.2. Lemma we get:
) 8 ? 8q
IZQR@Z)\”/ <[Azj7q] 8Z7TJ,[AZJ,q]—7TZ&7TJ>Ug
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= 2Rez Aij /M<[Aij: ql, [Aija q])vy

ij dq
_4R62)\U /M <[AZ],Q];7TZ'$7T]'> Vg

dqg  0Oq

+2Re Z )\ij /M <7Ti&ﬂ'j, $> Vg

Finally:

0 0 0
=4Re /M <qA?, 8—Z> vg +2Re Z Aij /M <7ri8—Z7rj, 8—Z> V.
§6 Stability on F(n)

6.1. Definition. A’ = (\};) is said to be a perturbation of A = (\;;) associated
toamap ¢ = (my,...,m,) : M? — F(n) if:
(i) Ay = A if (4, 5) # (i, 1), (G, 1) - - -5 (i, 5ir) and (G, 4r)

(ii)

Ik

= Nipj, Tex>0for 1 <k <r

(iii) At = Al = ... = AYIr = AJ = (), where dSi:(M) and ds?\,:(,\;j> are
Borel type metrics.

We will now deduce a key property of the second variation formula, that will be

exploited here.

16



6.2. Lemma. Set ¢ = (m,...,m,): M? = F(n) an equi-harmonic map. Then:
dq 2
IK:(Q):IK(Q)-F/ 261(7Ti1—7T]1 ) 4+t
M 0z

9 2
+"'+26,n< qﬂ'jr )vg

Tir 5,
Proof: IJ(q) = 4Re/ <qAA' gq> vy + 2Re >N < ng], gz>
But AY = A% since AWt = A0 = ... = AJr = Al = (). Hence:
Jq
I3,(q) = 4Re /M <qA’z\, $> vy +
dqg _ Jq
+2Re;j)\ij /M <7r o T}, az>v +

dq

2
+ |7, =T
]laz 1

2
+

dq
i, &T{']

. dq o |’
—|—2R6k§18k /M (Trikgﬂ.jk + ﬂ-jk&ﬂ.ik Ug =
d0q 2 dq 2
= If\j(q) + 2Re Z €k /M (Wikgﬂ'jk + ijgmk Vg

6.3. Definition. A harmonic map ¢ : (M?,q) — (F(n),ds3) is said to be stable

if I{(g) > 0 for any variation ¢ : M? — u(n).

6.4. Theorem ([16]). Let ¢ : (M?,.J1,q) = (F(n),J,ds%) be a holomorphic map
between Kéhler manifolds. Then ¢ is harmonic and stable.
We will now study the stability of the Eells-Wood maps with respect to a very

large set of Borel type metrics.

6.5. Theorem. Let ¢ = (my,...,m,) : M? — (F(n),J, dsi,:()\;j)) be an Eells-

Wood map. We consider A" = (\};) the following, perturbation of a Kéhler metric
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(A= (Ayj):
)‘ij if ]:2,,71,—1
)‘;j(i<j) =
Nij +epy e >0, for 1<k <

Then 1 is stable.

Proof: Let J be an almost complex structure in which ¢ : (M, J;) — (F(n),J) is

holomorphic. Then according to 6.2. Lemma we get:

dq dq 2
[;\p/:(,\’i].)a (q) = I;\p:(,\i]-)(q) + /M 251 (ngﬂ'g + 71'3&71'1 4+ .-
2 2
dq

44+ 2g (ma—ZWn + M M ) vy > 0,

since according to Lichnerowicz’s theorem (6.4. Theorem) I}(’(q) > 0 and every
—1 -2

€k20,f0r1§k§€:(g)_(n_1):(” )2(n )

6.6. Proposition ([19]). Let ¢ = (m,...,m) : (M? q) = (F(n),ds3_,,)) an
Eells. Wood map where ds3 is a Kéhler metric. Then there exists a variation

¢ : M? — u(n) such that I} (¢) = 0.

Proof: According to Lichnerowicz’s theorem (6.4. Theorem) we have:

d2
—F
dt? ('Q/)t) t=0

i—j

dg_ 9q
+4Re Z )\ij /M <7Ti$ﬂ'j, $> Vg

1—J

. _
- IA:(/\ij) -
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In order to make things easier to analise we will consider n = 3 and 7, isomorphic

to the canonical tournament, i.e.:
1= jEe >0
We notice that the general case is a straightforward generalization.

Let ¢ : M* — u(3) given by:

0 0 =
g=1| 0 0 0 |, therefore
* 0 0
0 0 =«
d0q dq
5_27(157(]': 0 0 O
i—j * 0 0
Now:
- 0 0 = 0 x 0
i * 0 0 0 00
0 0O
=100 0
0 x 0

Therefore <q. (Z )\iinj> , @> = 0. Hence I{(¢) =0+ 0 = 0.

i 0z

We are now in position to prove:

6.5. Theorem. Let ¢ = (m,...,m,) : (M? q) — (F(n),J, dsi,:(/\,ij)) and Eells-

Wood map. We consider the following perturbation of a K&hler metric A = (\;;):

)‘ikojk —8k0,6k0>0 for i:iko and j:jko,
(n—1)(n—2)
ko€ |1,0 = NN
)\;]: 0 ’ 2

Aij otherwise

Then 1 is not stable.
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Proof: According to 6.6. Proposition we have ¢ : M? — u(n) such that IX’:(M) (q)

0.

Now if we apply 6.2. Lemma we obtain:

IK]’:(/\’.,) = IK]:()\”)(q) +

v

dq dq
+/M[251( Mg M| T (Mg T

dq 2 d0q
+-- 4 2, (m»&wjr T\ g, T

if we choose ¢ such that

dq

dq
7Tik0 &ﬂ—jko 7é 0 or 7Tjk0 &ﬂ—iko 7§ 0.

More generally, we can prove:

6.8. Theorem. Let ¢ = (my,..

T) 2 (M2 g) — (F(n),dsi,:(/\,ij) be an Eells-

Wood map. Furthermore we consider the perturbation A" = (\{;) given by:

Ny if j=i4l

)‘;j(i <j)=

Nij = erren > 0,) # i+ 1,1 <k < =tz

where A = (\;;) is a Kéhler metric. Then # is not stable.

. : . 0
Proof: Let ¢ whose existence is assured by 6.6. Proposition, be such that: 7, a—qwjl #
z

0 0 0
0 or lea—z # 0"”’7”13_3% # 0 or ﬂjra—ZmT # 0.

Now we can again apply 6.2. Lemma so we get:

(@) =, (@) +/M[ — 2€ (

2

)
|y O

q
“aZ I ]182

20

7T1'1

).



Jq
75, —71']'

0z

4

+...+_25r(

6.9. Corollary ([18]). Let vy = (my,...,m,) : (M?,g) — (F(n), Killing metric)

be an Eells-Wood map. Then 1) is not stable.

Proof: Just apply 6.8. Theorem for Aj; = Aoz = -+ = A1) = 1,610 =

1, . ,8l_(n—l)(n—2) =n-—2.
===

6.10. Remark: Our result above implies in particular that an Eells-Wood map
Y = (m,m,m3) : M? — (F(3), Killing metric) is not stable. This fact is inter-
esting because in this case the Killing form metric is (1,2)-sympletic so according
to Licherowiz’s theorem holomorphic maps are harmonic. We can prove that the
Killing form metric is not (1,2)-sympletic on F(n),n > 4.

In [7] was proved that a stable harmonic map ¢ : S* — (G/H, h) where (G/H, h)
is a symmetric space is +-holomorphic. We finish this note with the following
conjecture:

“There exists ¢ = (m1,...,m,) : S = (F(n),dsi_,,,) stable but not holomor-

phic for any invariant almost complex structure”.
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