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Abstrat: In this paper we onsider symmetri equilibriums of reversible vetor

�elds having eigenvalues (0; �i;��i). The objetive of the paper is to analyze

the dynamis of suh systems around these ritial points. The main results

of the paper inlude a omplete list of all normal forms, versal unfoldings, and

bifuration diagrams of odimensional one ase. Important onlusions on ex-

istene of homolini and heterolini orbits, invariant tori and symmetri pe-

riodi orbits are obtained, too.
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1 Introdution

Let X be a (germ of) C

1

vetor �eld de�ned on R

n

; 0 given by an ordinary

di�erential equation

X : _x = F (x); x 2 R

n

; (1)

where F (x) is a smooth funtion. Assume that X has an equilibrium point at

the origin, i.e., F (0) = 0. Vetor �eld (1) is alled time-reversible if there is

a germ of a smooth involution � : R

n

; 0 ! R

n

; 0 (� Æ � = id:) suh that the

relation

F (�(x)) = ��

0

(x) � F (x); x 2 R

n

; 0 (2)
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holds. Moreover, X is said to be of type (n; k) if the dimension of the �xed

point set of ', S = Fixf�g, is equal to k. It is lear that 0 � k � n.

The objetive of this artile is to study symmetri ritial points of generi

one-parameter families of reversible vetor �elds of type (3; 1), with emphasis on

topologial lassi�ation of suh systems. Sine in (3; 1)-type ase any involution

� is C

1

onjugated to �

0

(x; y; z) = (�x;�y; z) (see [10℄), therefore throughout

the paper we assume that the systems onsidered are �

0

reversible. Remind

that in terms of this loal oordinate system the �xed point set is given by

S = fx = 0; y = 0g.

Given a �

0

reversible system X , it is easy to see that the 1-jet of X always

takes the form (�

1

+az)

�

�x

+(�

2

+ bz)

�

�y

+(x+dy)

�

�z

, where �

1

; �

2

, a; b;  and

d are parameters. Sine we are interested in the loal behavior of a reversible

vetor �eld around a symmetri ritial point, that is, if X(0) = 0 then 0 2

Fix '

0

, we assume that �

1

and �

2

vanish (for a study of families of vetor �elds

depending on ertain parameters, please see [6, 7℄). Consequently, we know

that in generi ase the eigenvalues of suh systems are either (0; �;��) or

(0; �i;��i), where � is a nonzero real parameter. The present artile is devoted

to the systems of the latter ase, i.e., having eigenvalues (0; �i;��i).

We notie that some study on bifuration and lassi�ation for general (not

neessarily reversible) systems having eigenvalues (0;��i) has been arried out

(see, for example, [6, 12℄). Systems having suh eigenvalues but in other on-

texts, say, divergent free systems, also attrated attentions (see [2℄). In parti-

ular, one an see shortly that divergent free systems in R

3

in generi ase is

topologially orbitally equivalent to one spei�ed type of reversible system (see

X

4

in equation (11)). In [3℄ there is an exposition between various ontexts.

In the ontext of reversible vetor �elds, di�erent types of systems have been
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examined. In [14℄ all reversible systems having (2; 1) type are lassi�ed, in [4℄

(2; 0) type, and in [9℄ (3; 2) type. In eah ase, topologial lassi�ation and the

respetive normal forms of the symmetri singularities of lower odimensions

are presented. For appliations of (3; 1) type reversible vetor �elds, please refer

to [11℄, where some models from physis and hydrodynamis are disussed.

The tehniques employed in [14, 9℄ are to perform speial hanges of oor-

dinates around the singularity suh that the analysis of the full system an be

transfered to a study of the ontat between a general system and a odimension

1 submanifold in R

n

. These tehniques an be generalized to the (n; n�1)-type

(see [14℄ for more details). In (3; 1)-type ase, however, these tehniques are not

appliable any longer and, di�erent methods should be pursued.

The main ideas of the present paper are from [6, 5, 1, 8℄. Namely, we per-

form formal hanges of oordinates to redue X to the resonant normal form,

and the latter, as usual, is furthermore rewritten in the form of a ylindrial

polar oordinates (together with possible time-resale). Sine in the ylindrial

polar oordinates the azimuthal oordinate takes the form

_

� = �1, therefore

to analyze the qualitative behavior of suh systems we an drop the azimuthal

oordinate and only onsider the restrited planar systems. Moreover, due to

the independene of the polar oordinates on the azimuthal one, this allows

us to perform \blowing-ups". On the other hand, sine the restrited planar

system satis�es an inequality of Lojasiewiz type, therefore by [5℄ we know that

the results onerning the lassi�ation of the 2-dimensional singularities of the

restrited system hold in C

0

onjugay ategory instead of merely C

0

equiva-

lene. To arry out these proedures and to extrat the dynamial properties

of the original system from the redued one, we found out, however, that some

essential di�erene and diÆulties arise beause of the reversibility. Firstly, the
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reversibility assumption generally imposes ertain onstraints on the resonant

normal form, whih in turn results in some degeneray of the restrited planar

vetor �eld. For example, in the redued system, even when the nonlinear part

is generi, all the terms having degree 3 do not appear. This happens typially

to the (3,1)-type of reversible vetor �elds, but it does bring some umbersome

alulation and diÆulties in �nding the redued normal forms, and one needs

to perform more \blowing-ups". The seond di�erene is more mathematial.

In studying the redued planar vetor �eld, we should take the reversibility

of the original system into onsideration to determine the dynamis patterns.

More preisely, we shall fae the enter-fous problem in the unfolded planar

system (see for instane ase X

+

3;�;

1

4

in the diagram) and we proess as follows.

Notie that a pair of singularities in the unfolded system in fat exatly give

rise to a symmetri periodi solution of the original system therefore the orbit

annot be an attrator or a repellor. It follows that the singularities must be

of enter type. This implies that the original system has a family of invariant

tori. Similarly, when the unfolded 2D systems admit symmetri singularities of

saddle type then we an draw onlusion that the original systems have homo-

lini orbits (see for instane ase X

�

3;+;

1

4

in the diagram) or heterolini orbits

(see for instane ase X

�

5;+

in the diagram). We emphasize that the phenomena

desribed above are due to the reversal symmetry of the original system. In

other words, a general vetor �eld (not neessarily reversible) with the same

linear part may not enjoy suh properties. Therefore the approah employed in

the paper is not a simple appliation of [6, 2℄.

The main results of this paper inlude a lassi�ation and qualitative behav-

ior of symmetri singularities ourring generially for 1-parameter families of

(3,1)-type vetor �elds. Also from the lassi�ation we an draw some interest-
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ing onlusions about the existene of invariant tori, periodi orbits, homolini

and heterolini orbits for vetor �elds onsidered. In this paper we also give a

omplete list of bifuration diagrams.

The rest of the paper is arranged as follows: In setion 2 we �rst present

a preliminary and review some important properties of reversible vetor �elds.

Then we give the normal form on whih our disussion relies. We exhibit all

results in setion 3. In setion 4 we shall give a brief disussion on the generiity

onditions as well as the proof of the results. Setion 5 ontains the lassi�ation

of all ases. In this setion, we also draw some onlusions about the existene

of invariant tori and homolini orbits. The last part of the paper illustrates the

bifuration diagrams. We remark that in these diagrams the arrows indiating

the diretion of the ow of the vetor �elds do not neessarily reet the diretion

of that of the original system. This is beause in deriving the orbital C

0

normal

form we may multiply a nonvanishing negative funtion.

Aknowledgement: JY is very grateful for the IMECC, Uniamp for their

hospitality.

2 Preliminaries

In this setion we �rst larify some terms and reall the related properties on-

erning reversible systems. Then we proess our objets to the desired forms

for further study.

2.1 Basi fats

LetX be a �-reversible system on R

n

. A ritial point p ofX is alled symmetri

ritial point if it lies on S

�

, the �xed point set of the involution �.

The following statements are known.
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� The phase portrait of X is symmetri with respet to S

�

.

� Any periodi orbit  is symmetri if and only if S

�

T

 6= 0. If (t) is a

solution of X then so is �(�t).

� Any symmetri ritial point or symmetri periodi orbit annot be an

attrator or a repellor.

The riteria of the proposed lassi�ation is based on the following de�nition.

De�nition 2.1 Two vetor �elds X and Y at their singularities are said to

be C

0

onjugated in neighborhoods of the singular points if there is a homeo-

morphism arrying one singular point into the other and onjugating the loal

phase ows of the systems at these singular points. They are alled orbitally

C

0

equivalent if there is a homeomorphism mapping the loal phase urves of X

into that of Y .

De�nition 2.2 We say that vetor �eld X de�ned on R

n

; 0 satis�es an in-

equality of Lojasiewiz type if there exists an integer k > 0 and  > 0 suh that

jjX(x)jj � jjxjj

k

for all x in a neigbourhood of the singular point.

The following statements an be dedued from [5℄.

Theorem 1 Assume that a smooth vetor �eld X de�ned on R

2

; 0 satis�es an

inequality of Lojasiewiz type and has a harateristi orbit. Then the singularity

is �nitely determined for C

0

onjugay. Moreover, if two �nitely determined

singularities on the plane are C

0

-equivalent, then they are also C

0

onjugated.

2.2 Redued normal form

Let -x be the spae of germs (at 0) of C

r

�

0

reversible vetor �elds having

eigenvalues (0;��i). Assume that -x is endowed with the C

r

-topology, r > 3.
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Then for any vetor �eld X 2 -x, due to the relation (2), one an show with

some alulation that X takes the form

X :

8

<

:

_x = a

0

z + a

1

x

2

+ a

2

y

2

+ a

3

z

2

+ a

4

xy + � � �

_y = b

0

z + b

1

x

2

+ b

2

y

2

+ b

3

z

2

+ b

4

xy + � � �

_z = 

0

x+ d

0

y + 

1

xz + 

2

yz + � � �

(3)

where a

0

; b

0

; 

0

and d

0

are onstant. Note that in terms of this oordinates, to

have eigenvalues of the form (0;��i), the inequality a

0



0

+ b

0

d

0

< 0 must be

satis�ed. Indeed, it is easy to see that the equality a

0



0

+ b

0

d

0

= 0 leads to

three idential eigenvalues, and the orresponds systems are more degenerated,

whih shall not be the objets of the present paper.

Sine under a linear hange of oordinates (together with a multipliation

of a onstant, if neessary), one an always redue the linear part of the vetor

�eld (3) to the form

j

1

X = z

�

�y

� y

�

�z

;

therefore throughout the paper, we assume that the linear part of (3) has been

normalized to the above form.

System (3) an be put into resonant normal form (see [15℄). To realize so,

we rewrite the involution �

0

in the form �

0

(x; �) = (�x;�

�

�), where � = y + iz.

The resonant normal form means that X takes the form

_x = f(x; r

2

);

_

� = �g(x; r

2

); (4)

where r

2

= �

�

�, f is a real funtion and g a funtion having omplex oeÆients.

It is easy to see that the reversibility of X leads to the following equalities:

f(x; r

2

) = f(�x; r

2

); �g(x; r

2

) = �

�

�g(�x; r

2

): (5)

It follows from these relations that f is even in x and g an be deomposed into

the form g(x; r

2

) = xg

1

(x

2

; r

2

)+ i(�+ g

2

(x

2

; r

2

)), where � 6= 0. In other words,
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X has the following form.

8

<

:

_x = f(x

2

; r

2

)

_y = z(�+ g

2

(x

2

; r

2

)) + yxg

1

(x

2

; r

2

)

_z = �y(�+ g

2

(x

2

; r

2

)) + zxg

1

(x

2

; r

2

):

(6)

Multiplying the above system by a funtion h =

1

�+g

2

(x

2

;r

2

)

�rst and then

putting the multiplied system into ylindrial polar system, we have _x =

~

f(x

2

; r

2

),

_r = xrg(x

2

; r

2

),

_

� = �1. Equivalently, the following expansion holds.

X :

(

_x = Æ

1

x

2

+ Æ

2

r

2

+ Æ

3

x

4

+ Æ

4

r

4

+ �x

2

r

2

+ � � �

_r = xr + �x

3

r + xr

3

+ � � �

_

� = �1

(7)

where Æ

1

= f0; 1g; Æ

2

= f0;�1g, Æ

3

; Æ

4

; �; �;  and  are parameters. Note that

this normal form ontains no �-dependent terms. Thus by treating the azimuthal

oordinate as time, we arrive at the redued form

~

X :

�

_x = Æ

1

x

2

+ Æ

2

r

2

+ Æ

3

x

4

+ Æ

4

r

4

+ �x

2

r

2

+ � � �

_r = xr + �x

3

r + xr

3

+ � � �

(8)

Convention: Throughout the paper when we say X 2 -x is orbitally

topologially equivalent to a 2-dimensional system

~

X of the form (8), we always

mean that X has been proessed to the ylindrial polar system (7) and there

the azimuthal oordinate has been dropped out. In other words, for a given

system X 2 -x we shall denote by

~

X the orresponding redued 2D normal

form of X . We also introdue the notation

~

-x whih stands for the set of

~

X

with X 2 -x. Therefore there is a 1-1 orrespondene, i.e., (7) and (8), between

-x and

~

-x.

3 Statement of the Results

In terms of (8), we introdue the following notation.

�

1

0

= fX 2 -x : Æ

1

6= 0; Æ

2

= 1;  6= 1g;

�

2

0

= fX 2 -x : Æ

1

6= 0; Æ

2

= �1;  6= 0; 1g;

�

0

= �

1

0

S

�

2

0

:

(9)
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It is not hard to see that the algebrai onditions desribed in �

0

haraterize

the generiity onditions. The derivation of these onditions will be explained

in the next setion. In other words, the following statement is true.

Theorem 2 Vetor �elds orbitally equivalent to those of �

0

form an open and

dense set in -x.

In generi ase, the lassi�ation and normal forms of suh systems are

known. For ompleteness we reall these results. There are slightly di�erent

expositions in [13, 6℄. The following rearrangement is of more onveniene in

our further disussion.

Theorem 3 The set �

0

an be divided into the following �ve subsets �

0

(i),

(i = 1; 2; 3; 4; 5), suh that any two vetor �elds belonging to the same subset are

orbitally topologially equivalent:

�

0

(1) = fX 2 -x : Æ

1

= 1; Æ

2

= �1;  > 1g

�

0

(2) = fX 2 -x : Æ

1

= 1; Æ

2

= 1;  < 1g

�

0

(3) = fX 2 -x : Æ

1

= 1; Æ

2

= �1; 0 <  < 1g

�

0

(4) = fX 2 -x : Æ

1

= 1; Æ

2

= �1;  < 0; g

�

0

(5) = fX 2 -x : Æ

1

= 1; Æ

2

= 1;  > 1g

(10)

As to the normal form, we have the following results. Remind the onvention

desribed at the end of the previous setion.

Theorem 4 In generi ase, any vetor �eld Y 2 -x is C

0

orbitally equivalent

to one of the normal forms X where

~

X

1

:

~

X = (x

2

� r

2

; 2xr)

~

X

2

:

~

X = (x

2

+ r

2

;

1

2

xr)

~

X

3

:

~

X = (x

2

� r

2

;

1

2

xr)

~

X

4

:

~

X = (x

2

� r

2

;�xr)

~

X

5

:

~

X = (x

2

+ r

2

; 2xr):

(11)

The orresponding normal forms of 3D an be obtained by pulling the above

2D normal forms bak to the form X

i

= (

~

X

i

;�1). Also due to theorem 1 we
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know that the C

0

orbital equivalene in the above theorem an be improved to

C

0

onjugay if only planar singularities are involved.

When the generiity onditions are violated then we get degenerated vetor

�elds. The odimensional 1 singularity of X means that one (and only one) of

the following onditions

Æ

1

= 0; Æ

2

= 0;  = 0; Æ

1

=  = 1; (12)

is satis�ed and at the same time the higher order terms are generi. To give

a lassi�ation of all odimensional 1 singularities, we need to investigate the

higher order terms. We shall show that the topologial lassi�ation in odimen-

sional 1 ase depends on the parameters Æ

3

; Æ

4

; �; �;  and . Like in the generi

ase, we introdue the following sets whih haraterize the topologial types of

the singularities of the 3D systems. The topologial invariane of these algebrai

onditions desribing these sets will be explained in the following setion.

�

1

(1:1) = fX 2 -x : Æ

1

= 0; Æ

2

= 1; Æ

3

= 1;  < 0g

�

1

(1:2) = fX 2 -x : Æ

1

= 0; Æ

2

= 1; Æ

3

= �1;  < 0g

�

1

(2:1) = fX 2 -x : Æ

1

= 0; Æ

2

= 1; Æ

3

= 1;  > 0g

�

1

(2:2) = fX 2 -x : Æ

1

= 0; Æ

2

= 1; Æ

3

= �1;  > 0g

�

1

(3:1) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= 1;  < 0g

�

1

(3:2) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= �1;  < 0g

�

1

(3:3) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= 1; 0 <  <

1

2

g

�

1

(3:4) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= �1; 0 <  <

1

2

g

�

1

(3:5) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= 1;

1

2

<  < 1g

�

1

(3:6) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= �1;

1

2

<  < 1g

�

1

(3:7) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= 1;  > 1g

�

1

(3:8) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= �1;  > 1g

�

1

(4:1) = fX 2 -x : Æ

1

=  = 1; Æ

2

= 1g

�

1

(4:2) = fX 2 -x : Æ

1

=  = 1; Æ

2

= �1g

�

1

(5:1) = fX 2 -x :  = 0; Æ

1

= 1; Æ

2

= �1; � +  > 0g

�

1

(5:2) = fX 2 -x :  = 0; Æ

1

= 1; Æ

2

= �1; � +  < 0g

(13)

Denote by �

1

the union of the above 16 sets, i.e.,

�

1

:=

[

�

1

(i; j): (14)
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Let -x

1

= -x� �

0

. Then similar to the generi ase, we have the following

Theorem 5 Vetor �elds whih are orbitally equivalent to those of �

1

form an

open and dense set in -x

1

. �

1

is a odimensional 1 embedded submanifold of

-x.

As to the singularities of generi 1-parameter families of reversible vetor

�elds of -x we prove the following results.

Theorem 6 1) Two vetor �elds X and Y in -x

1

are C

0

orbitally equivalent

if and only if they belong to the same subset �

1

(i; j) of (13).

2) Any one-parameter family

~

X

�

, with X

0

2 �

1

, in generi ase (transversal

to �

1

) is C

0

orbitally equivalent to one of the following 16 normal forms.

~

X

�

1;�

: (�x

2

+ r

2

� x

4

;�xr);

~

X

�

2;�

: (�x

2

+ r

2

� x

4

; xr);

~

X

�

3;�;

: (x

2

+ �r

2

� r

4

; xr);

~

X

�

4;�

: ((1 + �)x

2

� r

2

; xr);

~

X

�

5;�

: (x

2

� r

2

; �xr � xr

3

),

(15)

where  takes one of the following values f�1;

1

4

;

3

4

; 2g, and � is the unfolding

parameter.

By realling theorem 1 we have the following

Corollary 3.1 Any planar singularity

~

X 2

~

-x, where X 2 �

1

, in generi ase

is C

0

onjugated to one of the normal form (15) where the unfolding parameter

� is 0.

Notie that in the theorem we do not require that the normal form

~

X

�

is on-

tinuous with respet to the parameter. Also remind that the seond statement of

the theorem does not imply that the orresponding 3D unfoldings X

�

= (

~

X

�

; 1)

are C

0

stable in the spae of all one-parameter families of vetor �elds of -x.

11



In other words, the normal forms X

0

= (

~

X

0

;�1), where

~

X

0

is from (15) with

� = 0, only give a topologial lassi�ation of singularities of 3D systems, not

the lassi�ation of the unfolding systems.

A list of 2D bifuration �gures are attahed at the end of the artile.

4 Proof of The Main Theorem

4.1 Comments on the generi ase

It is known from [13℄ that the system (8) in generi ase is 2-determined with

respet to C

0

onjugay. Below we verify that the algebrai onditions desribed

in (9) oinide with the generiity onditions of this system in our terminology.

In other words, if one of these onditions in (12) is violated then (8) is not

generi. To show this, onsider the 2-jet of

~

X : _x = Æ

1

x

2

+ Æ

2

r

2

, _r = xr, where

Æ

1

and Æ

2

have been resaled so that Æ

1

= 0; 1, and Æ

2

= 0;�1. This system,

after one blowing-up under x = � os �; r = � sin �, an be put into the following

form

�

_� = �(Æ

1

os

3

� + (Æ

2

+ ) os � sin

2

�)

_

� = �Æ

2

sin

3

� + (� Æ

1

) sin � os

2

�:

(16)

Note that for generi Æ

2

and (� Æ

1

) one has Æ

2

(� Æ

1

) 6= 0. If Æ

2

(� Æ

1

) < 0

then system (16) has only one singular point (0; 0). In this ase it is easy to see

that the blown-up system is hyperboli if and only if Æ

1

6= 0. If Æ

2

( � Æ

1

) > 0

then system (16) has three singular points (0; 0), (0;�artan

q

�Æ

1

Æ

2

). A little

alulation shows that in this ase system (16) is hyperboli at all these singular

points if and only if  6= 0. Rearranging these relations, we veri�ed the generiity

onditions spei�ed in (9).

12



4.2 Codimension 1 ase

>From the previous disussion we know that if one of the onditions (12) is

broken then the vetor �eld is degenerated. In this part we �rst preise the

onditions under whih the system is of odimension 1. This means that er-

tain generiity onditions should be imposed on the oeÆients of other terms.

Obviously, we need only to onsider the following four ases.

1. Æ

1

= 0; Æ

2

6= 0;  6= 0;

2. Æ

2

= 0; Æ

1

6= 0;  6= 0; 1;

3. Æ

1

=  = 1; Æ

2

6= 0;

4.  = 0; Æ

1

6= 0; Æ

2

6= 0;

Beause of the similarity of these ases, in what follows we only treat one

ase in more details. In all the other ases we shall primarily fous on the

di�erene from this one.

Taking ase (1), we onsider the following items: the generiity onditions

imposed on the higher order terms, the unfolding of the system, and the bifur-

ation of the unfolded system. Remember in all the 2D ases, the disussion

should be in the ategory of C

0

onjugay, not the orbital equivalene, this is

beause we have treated the azimuthal oordinate as time. In fat one an hek

that all the alulation below abides by this rule.

Let Æ

1

= 0, Æ

2

= �1;  6= 0. Note that in this ase we an always sale x,

thus preserve time, suh that Æ

2

= 1 and Æ

3

takes one of the following values:

0; 1;�1. Therefore, the equation (8) takes the following form

�

_x = r

2

+ Æ

3

x

4

+ Æ

4

r

4

+ �x

2

r

2

+ � � �

_r = xr + �x

3

r + xr

3

+ � � �

(17)

where  6= 0 and the dots denote the terms of degrees higher than 4.
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It is a straightforward exerise to hek that the above system is of odimen-

sion 1 in

~

-x if and only if Æ

3

6= 0. If Æ

3

6= 0 then aording to signs of Æ

3

and

 we an divide (17) into four di�erent ases:  > 0; Æ

3

= �1;  < 0; Æ

3

= �1.

Performing blowing-ups, one an show that these four ases are topologially

di�erent from eah other.

Below we prove that we an hoose

~

X

�

1;�

and

~

X

�

2;�

(see 15) as the orre-

sponding unfoldings.

First we larify the equivalene of two 1-parameter families of vetor �elds.

We say X

�

� Y

�

, if there exists a funtion h: (��; �)! (��; �), where � is small

and h(�) = �, suh that X

�

is onjugated to Y

�

.

Let

~

X

�

be an unfolding suh that

~

X

0

is in one of the �rst four sets of (13).

Assume that, say,

~

X

�

0

2 �

1

(1; 1). Then Æ

1

(�

0

) = 0, and for any �

1

and �

2

suh

that (�

1

��

0

)(mu

2

��

0

) < 0, one has

~

X

�

1

;

~

X

�

2

2 �

0

, and

~

X

�

1

is topologially

di�erent from

~

X

�

2

. This fat implies that for �

1

> �

0

(resp. �

1

< �

0

) there are

only two possibilities: Æ

1

> 0 (resp. Æ

1

< 0), or Æ

1

< 0 (resp. Æ

1

> 0). Take the

�rst ase (the other possibility an be treated exatly in the same way). Then

for any � > �

0

one has

~

X

�

2 �

0

(i) and � < �

0

one has

~

X

�

2 �

0

(j), where

i 6= j. The reparameterizing �(�) = �� �

0

gives us the unfolding

~

X

�

1;+

.

As to the validity of Theorem 5 it is suÆient to notie that �

1

given by

(14) is a submanifold of odimensional 1 of -x. The proof of this fat is omitted

here.

Next we shall briey disuss the remaining ases, speifying the primary

di�erene from the previous ase.

In ase (2), i.e., Æ

2

= 0; Æ

1

= 1;  6= 0; 1, we an resale x and r suh that Æ

4

takes one of the values 0;�1. In this ase, when blowing-up the orresponding

system, one an see that if  =

1

2

then the vetor �eld onsidered shall have

14



Figure 1: Blow-ups of ases

~

X

0

3;�;

1

4

and

~

X

0

3;�;

3

4

higher odimension. Correspondingly, we have eight subases due to all the

possible ombinations between Æ

4

= �1 and  lies in (�1; 0), (0;

1

2

), (

1

2

; 1)

and (1;1). Sine  takes values from these four sets, onsequently, there is no

modality in the lassi�ation. The unfolding is given by

~

X

�

3;�;

(see 15).

Remark 4.1 Remind that in the attahed bifuration �gures, the phase por-

traits of the ases

~

X

�

3;�;

1

4

and

~

X

�

3;�;

3

4

seem to be idential. Their blowing-ups at

� = 0, however, show that these two ases are topologially di�erent. The two

blow-ups are shown in �gure 1.

Case (3), i.e., Æ

1

=  = 1; Æ

2

6= 0, an be treated in a similar way. The

unfoldings are given by

~

X

�

4;�

(see 15).

To study ase (4), i.e.,  = 0; Æ

1

6= 0; Æ

2

6= 0, one only to onsider the higher

order terms of _r. The essential di�erene between this ase and the previous

ones is that in this ase one needs to show the invariane of (� + ), whih an

be done by blowing-up the system onsidered. Aording to the signs of (�+)

we have two subases. The unfoldings are given by

~

X

�

5;�

(see 15).
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5 Symmetri periodi orbits, invariant tori, ho-

molini and heterolini orbits

In this setion based on the lassi�ation of the 2D systems obtained in the

previous setions, we shall give an analysis of the original 3D systems, speifying

the existene of symmetri periodi orbits, homolini orbits, invariant tori and

other important properties.

5.1 Symmetri periodi orbits and invariant tori

Consider the lassi�ation and the unfoldings of the redued 2D system. From

the bifuration diagrams we see that in the unfolded systems

~

X

�

3;+;�1

,

~

X

+

3;�;

1

4

,

~

X

+

3;�;

3

4

, and

~

X

+

3;�;

3

2

the orresponding blown-up systems are of enter-fous

type. In eah ase, we have a pair of singularities in the unfolded system and we

have a enter-fous problem. Remind that these two symmetri singularities of

the 2D system in fat orrespond to a symmetri periodi orbit of the original

3D system. Consequently, the orbit annot be an attrator or a repellor (see

Setion 2.1). This implies that the type of the 2D unfolded system is a enter.

In other words, we have two families of irles entered around the singularities.

Therefore the orresponding 3D unfolded system admits a family of invariant

tori whih link these two families of tori. It is lear that the 3D unfolded system

has no singularities on these invariant tori, and the 3D pull-bak X = (

~

X

:

:

;�1),

where

~

X

:

:

takes the 2D normal form with � = 0, only gives a lassi�ation of

3D singularities of the systems, not the 3D unfoldings.

Besides the ases mentioned above there are other ases where symmetri

periodi orbits exist:

~

X

�

3;+;

1

4

,

~

X

�

3;+;

3

4

,

~

X

�

3;+;

3

2

~

X

+

3;�;�1

,

~

X

�

5;+

and

~

X

+

5;�

.
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5.2 Homolini and Heterolini orbits

In the 2D bifuration diagram we see that in the ases

~

X

�

3;+;

1

4

,

~

X

�

3;+;

3

4

,

~

X

�

3;+;

3

2

and

~

X

+

3;�;�1

the unfolded systems also have a pair of symmetri singularities.

These singularities, however, are of saddle type. Moreover, one an see that

exept the ase

~

X

+

3;�;�1

in all the other ases in a neighborhood of  there exist

a family of homolini orbits tending to 0.

The other ases where homolini orbits exist are

~

X

+

1;+

,

~

X

0

1;�

,

~

X

+

1;�

,

~

X

�

3;�;

1

4

,

~

X

0

3;�;

1

4

,

~

X

�

3;�;

3

4

,

~

X

0

3;�;

3

4

,

~

X

�

3;�;

3

2

,

~

X

�

4;�

,

~

X

�

5;+

and

~

X

0

5;+

In a similar way, we know that in the ases

~

X

�

5;+

and

~

X

+

5;�

the unfolded

2D problem has two pairs of symmetri singularities. For example, from ase

~

X

+

5;�

we dedue that for positive �, the unfolding parameter,

~

X

�

5;�

2

~

-x has

a loop onneting the two periodi orbits and the symmetri equilibrium point

P

�

. Moreover, there is at P

�

a one parameter family of heterolini orbits.

In the ase

~

X

�

1;�

there are also a family of heterolini orbits.

Note that the 3D systems orresponding to

~

X

+

5;�

possess homolini as well

as heterolini orbits.
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