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Abstra
t: In this paper we 
onsider symmetri
 equilibriums of reversible ve
tor

�elds having eigenvalues (0; �i;��i). The obje
tive of the paper is to analyze

the dynami
s of su
h systems around these 
riti
al points. The main results

of the paper in
lude a 
omplete list of all normal forms, versal unfoldings, and

bifur
ation diagrams of 
odimensional one 
ase. Important 
on
lusions on ex-

isten
e of homo
lini
 and hetero
lini
 orbits, invariant tori and symmetri
 pe-

riodi
 orbits are obtained, too.
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al subje
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1 Introdu
tion

Let X be a (germ of) C

1

ve
tor �eld de�ned on R

n

; 0 given by an ordinary

di�erential equation

X : _x = F (x); x 2 R

n

; (1)

where F (x) is a smooth fun
tion. Assume that X has an equilibrium point at

the origin, i.e., F (0) = 0. Ve
tor �eld (1) is 
alled time-reversible if there is

a germ of a smooth involution � : R

n

; 0 ! R

n

; 0 (� Æ � = id:) su
h that the

relation

F (�(x)) = ��

0

(x) � F (x); x 2 R

n

; 0 (2)
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holds. Moreover, X is said to be of type (n; k) if the dimension of the �xed

point set of ', S = Fixf�g, is equal to k. It is 
lear that 0 � k � n.

The obje
tive of this arti
le is to study symmetri
 
riti
al points of generi


one-parameter families of reversible ve
tor �elds of type (3; 1), with emphasis on

topologi
al 
lassi�
ation of su
h systems. Sin
e in (3; 1)-type 
ase any involution

� is C

1


onjugated to �

0

(x; y; z) = (�x;�y; z) (see [10℄), therefore throughout

the paper we assume that the systems 
onsidered are �

0

reversible. Remind

that in terms of this lo
al 
oordinate system the �xed point set is given by

S = fx = 0; y = 0g.

Given a �

0

reversible system X , it is easy to see that the 1-jet of X always

takes the form (�

1

+az)

�

�x

+(�

2

+ bz)

�

�y

+(
x+dy)

�

�z

, where �

1

; �

2

, a; b; 
 and

d are parameters. Sin
e we are interested in the lo
al behavior of a reversible

ve
tor �eld around a symmetri
 
riti
al point, that is, if X(0) = 0 then 0 2

Fix '

0

, we assume that �

1

and �

2

vanish (for a study of families of ve
tor �elds

depending on 
ertain parameters, please see [6, 7℄). Consequently, we know

that in generi
 
ase the eigenvalues of su
h systems are either (0; �;��) or

(0; �i;��i), where � is a nonzero real parameter. The present arti
le is devoted

to the systems of the latter 
ase, i.e., having eigenvalues (0; �i;��i).

We noti
e that some study on bifur
ation and 
lassi�
ation for general (not

ne
essarily reversible) systems having eigenvalues (0;��i) has been 
arried out

(see, for example, [6, 12℄). Systems having su
h eigenvalues but in other 
on-

texts, say, divergent free systems, also attra
ted attentions (see [2℄). In parti
-

ular, one 
an see shortly that divergent free systems in R

3

in generi
 
ase is

topologi
ally orbitally equivalent to one spe
i�ed type of reversible system (see

X

4

in equation (11)). In [3℄ there is an exposition between various 
ontexts.

In the 
ontext of reversible ve
tor �elds, di�erent types of systems have been

2



examined. In [14℄ all reversible systems having (2; 1) type are 
lassi�ed, in [4℄

(2; 0) type, and in [9℄ (3; 2) type. In ea
h 
ase, topologi
al 
lassi�
ation and the

respe
tive normal forms of the symmetri
 singularities of lower 
odimensions

are presented. For appli
ations of (3; 1) type reversible ve
tor �elds, please refer

to [11℄, where some models from physi
s and hydrodynami
s are dis
ussed.

The te
hniques employed in [14, 9℄ are to perform spe
ial 
hanges of 
oor-

dinates around the singularity su
h that the analysis of the full system 
an be

transfered to a study of the 
onta
t between a general system and a 
odimension

1 submanifold in R

n

. These te
hniques 
an be generalized to the (n; n�1)-type

(see [14℄ for more details). In (3; 1)-type 
ase, however, these te
hniques are not

appli
able any longer and, di�erent methods should be pursued.

The main ideas of the present paper are from [6, 5, 1, 8℄. Namely, we per-

form formal 
hanges of 
oordinates to redu
e X to the resonant normal form,

and the latter, as usual, is furthermore rewritten in the form of a 
ylindri
al

polar 
oordinates (together with possible time-res
ale). Sin
e in the 
ylindri
al

polar 
oordinates the azimuthal 
oordinate takes the form

_

� = �1, therefore

to analyze the qualitative behavior of su
h systems we 
an drop the azimuthal


oordinate and only 
onsider the restri
ted planar systems. Moreover, due to

the independen
e of the polar 
oordinates on the azimuthal one, this allows

us to perform \blowing-ups". On the other hand, sin
e the restri
ted planar

system satis�es an inequality of Lojasiewi
z type, therefore by [5℄ we know that

the results 
on
erning the 
lassi�
ation of the 2-dimensional singularities of the

restri
ted system hold in C

0


onjuga
y 
ategory instead of merely C

0

equiva-

len
e. To 
arry out these pro
edures and to extra
t the dynami
al properties

of the original system from the redu
ed one, we found out, however, that some

essential di�eren
e and diÆ
ulties arise be
ause of the reversibility. Firstly, the

3



reversibility assumption generally imposes 
ertain 
onstraints on the resonant

normal form, whi
h in turn results in some degenera
y of the restri
ted planar

ve
tor �eld. For example, in the redu
ed system, even when the nonlinear part

is generi
, all the terms having degree 3 do not appear. This happens typi
ally

to the (3,1)-type of reversible ve
tor �elds, but it does bring some 
umbersome


al
ulation and diÆ
ulties in �nding the redu
ed normal forms, and one needs

to perform more \blowing-ups". The se
ond di�eren
e is more mathemati
al.

In studying the redu
ed planar ve
tor �eld, we should take the reversibility

of the original system into 
onsideration to determine the dynami
s patterns.

More pre
isely, we shall fa
e the 
enter-fo
us problem in the unfolded planar

system (see for instan
e 
ase X

+

3;�;

1

4

in the diagram) and we pro
ess as follows.

Noti
e that a pair of singularities in the unfolded system in fa
t exa
tly give

rise to a symmetri
 periodi
 solution of the original system therefore the orbit


annot be an attra
tor or a repellor. It follows that the singularities must be

of 
enter type. This implies that the original system has a family of invariant

tori. Similarly, when the unfolded 2D systems admit symmetri
 singularities of

saddle type then we 
an draw 
on
lusion that the original systems have homo-


lini
 orbits (see for instan
e 
ase X

�

3;+;

1

4

in the diagram) or hetero
lini
 orbits

(see for instan
e 
ase X

�

5;+

in the diagram). We emphasize that the phenomena

des
ribed above are due to the reversal symmetry of the original system. In

other words, a general ve
tor �eld (not ne
essarily reversible) with the same

linear part may not enjoy su
h properties. Therefore the approa
h employed in

the paper is not a simple appli
ation of [6, 2℄.

The main results of this paper in
lude a 
lassi�
ation and qualitative behav-

ior of symmetri
 singularities o

urring generi
ally for 1-parameter families of

(3,1)-type ve
tor �elds. Also from the 
lassi�
ation we 
an draw some interest-

4



ing 
on
lusions about the existen
e of invariant tori, periodi
 orbits, homo
lini


and hetero
lini
 orbits for ve
tor �elds 
onsidered. In this paper we also give a


omplete list of bifur
ation diagrams.

The rest of the paper is arranged as follows: In se
tion 2 we �rst present

a preliminary and review some important properties of reversible ve
tor �elds.

Then we give the normal form on whi
h our dis
ussion relies. We exhibit all

results in se
tion 3. In se
tion 4 we shall give a brief dis
ussion on the generi
ity


onditions as well as the proof of the results. Se
tion 5 
ontains the 
lassi�
ation

of all 
ases. In this se
tion, we also draw some 
on
lusions about the existen
e

of invariant tori and homo
lini
 orbits. The last part of the paper illustrates the

bifur
ation diagrams. We remark that in these diagrams the arrows indi
ating

the dire
tion of the 
ow of the ve
tor �elds do not ne
essarily re
e
t the dire
tion

of that of the original system. This is be
ause in deriving the orbital C

0

normal

form we may multiply a nonvanishing negative fun
tion.

A
knowledgement: JY is very grateful for the IMECC, Uni
amp for their

hospitality.

2 Preliminaries

In this se
tion we �rst 
larify some terms and re
all the related properties 
on-


erning reversible systems. Then we pro
ess our obje
ts to the desired forms

for further study.

2.1 Basi
 fa
ts

LetX be a �-reversible system on R

n

. A 
riti
al point p ofX is 
alled symmetri



riti
al point if it lies on S

�

, the �xed point set of the involution �.

The following statements are known.
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� The phase portrait of X is symmetri
 with respe
t to S

�

.

� Any periodi
 orbit 
 is symmetri
 if and only if S

�

T


 6= 0. If 
(t) is a

solution of X then so is �
(�t).

� Any symmetri
 
riti
al point or symmetri
 periodi
 orbit 
annot be an

attra
tor or a repellor.

The 
riteria of the proposed 
lassi�
ation is based on the following de�nition.

De�nition 2.1 Two ve
tor �elds X and Y at their singularities are said to

be C

0


onjugated in neighborhoods of the singular points if there is a homeo-

morphism 
arrying one singular point into the other and 
onjugating the lo
al

phase 
ows of the systems at these singular points. They are 
alled orbitally

C

0

equivalent if there is a homeomorphism mapping the lo
al phase 
urves of X

into that of Y .

De�nition 2.2 We say that ve
tor �eld X de�ned on R

n

; 0 satis�es an in-

equality of Lojasiewi
z type if there exists an integer k > 0 and 
 > 0 su
h that

jjX(x)jj � 
jjxjj

k

for all x in a neigbourhood of the singular point.

The following statements 
an be dedu
ed from [5℄.

Theorem 1 Assume that a smooth ve
tor �eld X de�ned on R

2

; 0 satis�es an

inequality of Lojasiewi
z type and has a 
hara
teristi
 orbit. Then the singularity

is �nitely determined for C

0


onjuga
y. Moreover, if two �nitely determined

singularities on the plane are C

0

-equivalent, then they are also C

0


onjugated.

2.2 Redu
ed normal form

Let -x be the spa
e of germs (at 0) of C

r

�

0

reversible ve
tor �elds having

eigenvalues (0;��i). Assume that -x is endowed with the C

r

-topology, r > 3.
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Then for any ve
tor �eld X 2 -x, due to the relation (2), one 
an show with

some 
al
ulation that X takes the form

X :

8

<

:

_x = a

0

z + a

1

x

2

+ a

2

y

2

+ a

3

z

2

+ a

4

xy + � � �

_y = b

0

z + b

1

x

2

+ b

2

y

2

+ b

3

z

2

+ b

4

xy + � � �

_z = 


0

x+ d

0

y + 


1

xz + 


2

yz + � � �

(3)

where a

0

; b

0

; 


0

and d

0

are 
onstant. Note that in terms of this 
oordinates, to

have eigenvalues of the form (0;��i), the inequality a

0




0

+ b

0

d

0

< 0 must be

satis�ed. Indeed, it is easy to see that the equality a

0




0

+ b

0

d

0

= 0 leads to

three identi
al eigenvalues, and the 
orresponds systems are more degenerated,

whi
h shall not be the obje
ts of the present paper.

Sin
e under a linear 
hange of 
oordinates (together with a multipli
ation

of a 
onstant, if ne
essary), one 
an always redu
e the linear part of the ve
tor

�eld (3) to the form

j

1

X = z

�

�y

� y

�

�z

;

therefore throughout the paper, we assume that the linear part of (3) has been

normalized to the above form.

System (3) 
an be put into resonant normal form (see [15℄). To realize so,

we rewrite the involution �

0

in the form �

0

(x; �) = (�x;�

�

�), where � = y + iz.

The resonant normal form means that X takes the form

_x = f(x; r

2

);

_

� = �g(x; r

2

); (4)

where r

2

= �

�

�, f is a real fun
tion and g a fun
tion having 
omplex 
oeÆ
ients.

It is easy to see that the reversibility of X leads to the following equalities:

f(x; r

2

) = f(�x; r

2

); �g(x; r

2

) = �

�

�g(�x; r

2

): (5)

It follows from these relations that f is even in x and g 
an be de
omposed into

the form g(x; r

2

) = xg

1

(x

2

; r

2

)+ i(�+ g

2

(x

2

; r

2

)), where � 6= 0. In other words,

7



X has the following form.

8

<

:

_x = f(x

2

; r

2

)

_y = z(�+ g

2

(x

2

; r

2

)) + yxg

1

(x

2

; r

2

)

_z = �y(�+ g

2

(x

2

; r

2

)) + zxg

1

(x

2

; r

2

):

(6)

Multiplying the above system by a fun
tion h =

1

�+g

2

(x

2

;r

2

)

�rst and then

putting the multiplied system into 
ylindri
al polar system, we have _x =

~

f(x

2

; r

2

),

_r = xrg(x

2

; r

2

),

_

� = �1. Equivalently, the following expansion holds.

X :

(

_x = Æ

1

x

2

+ Æ

2

r

2

+ Æ

3

x

4

+ Æ

4

r

4

+ �x

2

r

2

+ � � �

_r = 
xr + �x

3

r + 
xr

3

+ � � �

_

� = �1

(7)

where Æ

1

= f0; 1g; Æ

2

= f0;�1g, Æ

3

; Æ

4

; �; �; 
 and 
 are parameters. Note that

this normal form 
ontains no �-dependent terms. Thus by treating the azimuthal


oordinate as time, we arrive at the redu
ed form

~

X :

�

_x = Æ

1

x

2

+ Æ

2

r

2

+ Æ

3

x

4

+ Æ

4

r

4

+ �x

2

r

2

+ � � �

_r = 
xr + �x

3

r + 
xr

3

+ � � �

(8)

Convention: Throughout the paper when we say X 2 -x is orbitally

topologi
ally equivalent to a 2-dimensional system

~

X of the form (8), we always

mean that X has been pro
essed to the 
ylindri
al polar system (7) and there

the azimuthal 
oordinate has been dropped out. In other words, for a given

system X 2 -x we shall denote by

~

X the 
orresponding redu
ed 2D normal

form of X . We also introdu
e the notation

~

-x whi
h stands for the set of

~

X

with X 2 -x. Therefore there is a 1-1 
orresponden
e, i.e., (7) and (8), between

-x and

~

-x.

3 Statement of the Results

In terms of (8), we introdu
e the following notation.

�

1

0

= fX 2 -x : Æ

1

6= 0; Æ

2

= 1; 
 6= 1g;

�

2

0

= fX 2 -x : Æ

1

6= 0; Æ

2

= �1; 
 6= 0; 1g;

�

0

= �

1

0

S

�

2

0

:

(9)
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It is not hard to see that the algebrai
 
onditions des
ribed in �

0


hara
terize

the generi
ity 
onditions. The derivation of these 
onditions will be explained

in the next se
tion. In other words, the following statement is true.

Theorem 2 Ve
tor �elds orbitally equivalent to those of �

0

form an open and

dense set in -x.

In generi
 
ase, the 
lassi�
ation and normal forms of su
h systems are

known. For 
ompleteness we re
all these results. There are slightly di�erent

expositions in [13, 6℄. The following rearrangement is of more 
onvenien
e in

our further dis
ussion.

Theorem 3 The set �

0


an be divided into the following �ve subsets �

0

(i),

(i = 1; 2; 3; 4; 5), su
h that any two ve
tor �elds belonging to the same subset are

orbitally topologi
ally equivalent:

�

0

(1) = fX 2 -x : Æ

1

= 1; Æ

2

= �1; 
 > 1g

�

0

(2) = fX 2 -x : Æ

1

= 1; Æ

2

= 1; 
 < 1g

�

0

(3) = fX 2 -x : Æ

1

= 1; Æ

2

= �1; 0 < 
 < 1g

�

0

(4) = fX 2 -x : Æ

1

= 1; Æ

2

= �1; 
 < 0; g

�

0

(5) = fX 2 -x : Æ

1

= 1; Æ

2

= 1; 
 > 1g

(10)

As to the normal form, we have the following results. Remind the 
onvention

des
ribed at the end of the previous se
tion.

Theorem 4 In generi
 
ase, any ve
tor �eld Y 2 -x is C

0

orbitally equivalent

to one of the normal forms X where

~

X

1

:

~

X = (x

2

� r

2

; 2xr)

~

X

2

:

~

X = (x

2

+ r

2

;

1

2

xr)

~

X

3

:

~

X = (x

2

� r

2

;

1

2

xr)

~

X

4

:

~

X = (x

2

� r

2

;�xr)

~

X

5

:

~

X = (x

2

+ r

2

; 2xr):

(11)

The 
orresponding normal forms of 3D 
an be obtained by pulling the above

2D normal forms ba
k to the form X

i

= (

~

X

i

;�1). Also due to theorem 1 we

9



know that the C

0

orbital equivalen
e in the above theorem 
an be improved to

C

0


onjuga
y if only planar singularities are involved.

When the generi
ity 
onditions are violated then we get degenerated ve
tor

�elds. The 
odimensional 1 singularity of X means that one (and only one) of

the following 
onditions

Æ

1

= 0; Æ

2

= 0; 
 = 0; Æ

1

= 
 = 1; (12)

is satis�ed and at the same time the higher order terms are generi
. To give

a 
lassi�
ation of all 
odimensional 1 singularities, we need to investigate the

higher order terms. We shall show that the topologi
al 
lassi�
ation in 
odimen-

sional 1 
ase depends on the parameters Æ

3

; Æ

4

; �; �; 
 and 
. Like in the generi



ase, we introdu
e the following sets whi
h 
hara
terize the topologi
al types of

the singularities of the 3D systems. The topologi
al invarian
e of these algebrai



onditions des
ribing these sets will be explained in the following se
tion.

�

1

(1:1) = fX 2 -x : Æ

1

= 0; Æ

2

= 1; Æ

3

= 1; 
 < 0g

�

1

(1:2) = fX 2 -x : Æ

1

= 0; Æ

2

= 1; Æ

3

= �1; 
 < 0g

�

1

(2:1) = fX 2 -x : Æ

1

= 0; Æ

2

= 1; Æ

3

= 1; 
 > 0g

�

1

(2:2) = fX 2 -x : Æ

1

= 0; Æ

2

= 1; Æ

3

= �1; 
 > 0g

�

1

(3:1) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= 1; 
 < 0g

�

1

(3:2) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= �1; 
 < 0g

�

1

(3:3) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= 1; 0 < 
 <

1

2

g

�

1

(3:4) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= �1; 0 < 
 <

1

2

g

�

1

(3:5) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= 1;

1

2

< 
 < 1g

�

1

(3:6) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= �1;

1

2

< 
 < 1g

�

1

(3:7) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= 1; 
 > 1g

�

1

(3:8) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= �1; 
 > 1g

�

1

(4:1) = fX 2 -x : Æ

1

= 
 = 1; Æ

2

= 1g

�

1

(4:2) = fX 2 -x : Æ

1

= 
 = 1; Æ

2

= �1g

�

1

(5:1) = fX 2 -x : 
 = 0; Æ

1

= 1; Æ

2

= �1; � + 
 > 0g

�

1

(5:2) = fX 2 -x : 
 = 0; Æ

1

= 1; Æ

2

= �1; � + 
 < 0g

(13)

Denote by �

1

the union of the above 16 sets, i.e.,

�

1

:=

[

�

1

(i; j): (14)

10



Let -x

1

= -x� �

0

. Then similar to the generi
 
ase, we have the following

Theorem 5 Ve
tor �elds whi
h are orbitally equivalent to those of �

1

form an

open and dense set in -x

1

. �

1

is a 
odimensional 1 embedded submanifold of

-x.

As to the singularities of generi
 1-parameter families of reversible ve
tor

�elds of -x we prove the following results.

Theorem 6 1) Two ve
tor �elds X and Y in -x

1

are C

0

orbitally equivalent

if and only if they belong to the same subset �

1

(i; j) of (13).

2) Any one-parameter family

~

X

�

, with X

0

2 �

1

, in generi
 
ase (transversal

to �

1

) is C

0

orbitally equivalent to one of the following 16 normal forms.

~

X

�

1;�

: (�x

2

+ r

2

� x

4

;�xr);

~

X

�

2;�

: (�x

2

+ r

2

� x

4

; xr);

~

X

�

3;�;


: (x

2

+ �r

2

� r

4

; 
xr);

~

X

�

4;�

: ((1 + �)x

2

� r

2

; xr);

~

X

�

5;�

: (x

2

� r

2

; �xr � xr

3

),

(15)

where 
 takes one of the following values f�1;

1

4

;

3

4

; 2g, and � is the unfolding

parameter.

By re
alling theorem 1 we have the following

Corollary 3.1 Any planar singularity

~

X 2

~

-x, where X 2 �

1

, in generi
 
ase

is C

0


onjugated to one of the normal form (15) where the unfolding parameter

� is 0.

Noti
e that in the theorem we do not require that the normal form

~

X

�

is 
on-

tinuous with respe
t to the parameter. Also remind that the se
ond statement of

the theorem does not imply that the 
orresponding 3D unfoldings X

�

= (

~

X

�

; 1)

are C

0

stable in the spa
e of all one-parameter families of ve
tor �elds of -x.
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In other words, the normal forms X

0

= (

~

X

0

;�1), where

~

X

0

is from (15) with

� = 0, only give a topologi
al 
lassi�
ation of singularities of 3D systems, not

the 
lassi�
ation of the unfolding systems.

A list of 2D bifur
ation �gures are atta
hed at the end of the arti
le.

4 Proof of The Main Theorem

4.1 Comments on the generi
 
ase

It is known from [13℄ that the system (8) in generi
 
ase is 2-determined with

respe
t to C

0


onjuga
y. Below we verify that the algebrai
 
onditions des
ribed

in (9) 
oin
ide with the generi
ity 
onditions of this system in our terminology.

In other words, if one of these 
onditions in (12) is violated then (8) is not

generi
. To show this, 
onsider the 2-jet of

~

X : _x = Æ

1

x

2

+ Æ

2

r

2

, _r = 
xr, where

Æ

1

and Æ

2

have been res
aled so that Æ

1

= 0; 1, and Æ

2

= 0;�1. This system,

after on
e blowing-up under x = � 
os �; r = � sin �, 
an be put into the following

form

�

_� = �(Æ

1


os

3

� + (Æ

2

+ 
) 
os � sin

2

�)

_

� = �Æ

2

sin

3

� + (
� Æ

1

) sin � 
os

2

�:

(16)

Note that for generi
 Æ

2

and (
� Æ

1

) one has Æ

2

(
� Æ

1

) 6= 0. If Æ

2

(
� Æ

1

) < 0

then system (16) has only one singular point (0; 0). In this 
ase it is easy to see

that the blown-up system is hyperboli
 if and only if Æ

1

6= 0. If Æ

2

(
 � Æ

1

) > 0

then system (16) has three singular points (0; 0), (0;�ar
tan

q


�Æ

1

Æ

2

). A little


al
ulation shows that in this 
ase system (16) is hyperboli
 at all these singular

points if and only if 
 6= 0. Rearranging these relations, we veri�ed the generi
ity


onditions spe
i�ed in (9).

12



4.2 Codimension 1 
ase

>From the previous dis
ussion we know that if one of the 
onditions (12) is

broken then the ve
tor �eld is degenerated. In this part we �rst pre
ise the


onditions under whi
h the system is of 
odimension 1. This means that 
er-

tain generi
ity 
onditions should be imposed on the 
oeÆ
ients of other terms.

Obviously, we need only to 
onsider the following four 
ases.

1. Æ

1

= 0; Æ

2

6= 0; 
 6= 0;

2. Æ

2

= 0; Æ

1

6= 0; 
 6= 0; 1;

3. Æ

1

= 
 = 1; Æ

2

6= 0;

4. 
 = 0; Æ

1

6= 0; Æ

2

6= 0;

Be
ause of the similarity of these 
ases, in what follows we only treat one


ase in more details. In all the other 
ases we shall primarily fo
us on the

di�eren
e from this one.

Taking 
ase (1), we 
onsider the following items: the generi
ity 
onditions

imposed on the higher order terms, the unfolding of the system, and the bifur-


ation of the unfolded system. Remember in all the 2D 
ases, the dis
ussion

should be in the 
ategory of C

0


onjuga
y, not the orbital equivalen
e, this is

be
ause we have treated the azimuthal 
oordinate as time. In fa
t one 
an 
he
k

that all the 
al
ulation below abides by this rule.

Let Æ

1

= 0, Æ

2

= �1; 
 6= 0. Note that in this 
ase we 
an always s
ale x,

thus preserve time, su
h that Æ

2

= 1 and Æ

3

takes one of the following values:

0; 1;�1. Therefore, the equation (8) takes the following form

�

_x = r

2

+ Æ

3

x

4

+ Æ

4

r

4

+ �x

2

r

2

+ � � �

_r = 
xr + �x

3

r + 
xr

3

+ � � �

(17)

where 
 6= 0 and the dots denote the terms of degrees higher than 4.
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It is a straightforward exer
ise to 
he
k that the above system is of 
odimen-

sion 1 in

~

-x if and only if Æ

3

6= 0. If Æ

3

6= 0 then a

ording to signs of Æ

3

and


 we 
an divide (17) into four di�erent 
ases: 
 > 0; Æ

3

= �1; 
 < 0; Æ

3

= �1.

Performing blowing-ups, one 
an show that these four 
ases are topologi
ally

di�erent from ea
h other.

Below we prove that we 
an 
hoose

~

X

�

1;�

and

~

X

�

2;�

(see 15) as the 
orre-

sponding unfoldings.

First we 
larify the equivalen
e of two 1-parameter families of ve
tor �elds.

We say X

�

� Y

�

, if there exists a fun
tion h: (��; �)! (��; �), where � is small

and h(�) = �, su
h that X

�

is 
onjugated to Y

�

.

Let

~

X

�

be an unfolding su
h that

~

X

0

is in one of the �rst four sets of (13).

Assume that, say,

~

X

�

0

2 �

1

(1; 1). Then Æ

1

(�

0

) = 0, and for any �

1

and �

2

su
h

that (�

1

��

0

)(mu

2

��

0

) < 0, one has

~

X

�

1

;

~

X

�

2

2 �

0

, and

~

X

�

1

is topologi
ally

di�erent from

~

X

�

2

. This fa
t implies that for �

1

> �

0

(resp. �

1

< �

0

) there are

only two possibilities: Æ

1

> 0 (resp. Æ

1

< 0), or Æ

1

< 0 (resp. Æ

1

> 0). Take the

�rst 
ase (the other possibility 
an be treated exa
tly in the same way). Then

for any � > �

0

one has

~

X

�

2 �

0

(i) and � < �

0

one has

~

X

�

2 �

0

(j), where

i 6= j. The reparameterizing �(�) = �� �

0

gives us the unfolding

~

X

�

1;+

.

As to the validity of Theorem 5 it is suÆ
ient to noti
e that �

1

given by

(14) is a submanifold of 
odimensional 1 of -x. The proof of this fa
t is omitted

here.

Next we shall brie
y dis
uss the remaining 
ases, spe
ifying the primary

di�eren
e from the previous 
ase.

In 
ase (2), i.e., Æ

2

= 0; Æ

1

= 1; 
 6= 0; 1, we 
an res
ale x and r su
h that Æ

4

takes one of the values 0;�1. In this 
ase, when blowing-up the 
orresponding

system, one 
an see that if 
 =

1

2

then the ve
tor �eld 
onsidered shall have

14



Figure 1: Blow-ups of 
ases

~

X

0

3;�;

1

4

and

~

X

0

3;�;

3

4

higher 
odimension. Correspondingly, we have eight sub
ases due to all the

possible 
ombinations between Æ

4

= �1 and 
 lies in (�1; 0), (0;

1

2

), (

1

2

; 1)

and (1;1). Sin
e 
 takes values from these four sets, 
onsequently, there is no

modality in the 
lassi�
ation. The unfolding is given by

~

X

�

3;�;


(see 15).

Remark 4.1 Remind that in the atta
hed bifur
ation �gures, the phase por-

traits of the 
ases

~

X

�

3;�;

1

4

and

~

X

�

3;�;

3

4

seem to be identi
al. Their blowing-ups at

� = 0, however, show that these two 
ases are topologi
ally di�erent. The two

blow-ups are shown in �gure 1.

Case (3), i.e., Æ

1

= 
 = 1; Æ

2

6= 0, 
an be treated in a similar way. The

unfoldings are given by

~

X

�

4;�

(see 15).

To study 
ase (4), i.e., 
 = 0; Æ

1

6= 0; Æ

2

6= 0, one only to 
onsider the higher

order terms of _r. The essential di�eren
e between this 
ase and the previous

ones is that in this 
ase one needs to show the invarian
e of (� + 
), whi
h 
an

be done by blowing-up the system 
onsidered. A

ording to the signs of (�+
)

we have two sub
ases. The unfoldings are given by

~

X

�

5;�

(see 15).
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5 Symmetri
 periodi
 orbits, invariant tori, ho-

mo
lini
 and hetero
lini
 orbits

In this se
tion based on the 
lassi�
ation of the 2D systems obtained in the

previous se
tions, we shall give an analysis of the original 3D systems, spe
ifying

the existen
e of symmetri
 periodi
 orbits, homo
lini
 orbits, invariant tori and

other important properties.

5.1 Symmetri
 periodi
 orbits and invariant tori

Consider the 
lassi�
ation and the unfoldings of the redu
ed 2D system. From

the bifur
ation diagrams we see that in the unfolded systems

~

X

�

3;+;�1

,

~

X

+

3;�;

1

4

,

~

X

+

3;�;

3

4

, and

~

X

+

3;�;

3

2

the 
orresponding blown-up systems are of 
enter-fo
us

type. In ea
h 
ase, we have a pair of singularities in the unfolded system and we

have a 
enter-fo
us problem. Remind that these two symmetri
 singularities of

the 2D system in fa
t 
orrespond to a symmetri
 periodi
 orbit of the original

3D system. Consequently, the orbit 
annot be an attra
tor or a repellor (see

Se
tion 2.1). This implies that the type of the 2D unfolded system is a 
enter.

In other words, we have two families of 
ir
les 
entered around the singularities.

Therefore the 
orresponding 3D unfolded system admits a family of invariant

tori whi
h link these two families of tori. It is 
lear that the 3D unfolded system

has no singularities on these invariant tori, and the 3D pull-ba
k X = (

~

X

:

:

;�1),

where

~

X

:

:

takes the 2D normal form with � = 0, only gives a 
lassi�
ation of

3D singularities of the systems, not the 3D unfoldings.

Besides the 
ases mentioned above there are other 
ases where symmetri


periodi
 orbits exist:

~

X

�

3;+;

1

4

,

~

X

�

3;+;

3

4

,

~

X

�

3;+;

3

2

~

X

+

3;�;�1

,

~

X

�

5;+

and

~

X

+

5;�

.

16



5.2 Homo
lini
 and Hetero
lini
 orbits

In the 2D bifur
ation diagram we see that in the 
ases

~

X

�

3;+;

1

4

,

~

X

�

3;+;

3

4

,

~

X

�

3;+;

3

2

and

~

X

+

3;�;�1

the unfolded systems also have a pair of symmetri
 singularities.

These singularities, however, are of saddle type. Moreover, one 
an see that

ex
ept the 
ase

~

X

+

3;�;�1

in all the other 
ases in a neighborhood of 
 there exist

a family of homo
lini
 orbits tending to 0.

The other 
ases where homo
lini
 orbits exist are

~

X

+

1;+

,

~

X

0

1;�

,

~

X

+

1;�

,

~

X

�

3;�;

1

4

,

~

X

0

3;�;

1

4

,

~

X

�

3;�;

3

4

,

~

X

0

3;�;

3

4

,

~

X

�

3;�;

3

2

,

~

X

�

4;�

,

~

X

�

5;+

and

~

X

0

5;+

In a similar way, we know that in the 
ases

~

X

�

5;+

and

~

X

+

5;�

the unfolded

2D problem has two pairs of symmetri
 singularities. For example, from 
ase

~

X

+

5;�

we dedu
e that for positive �, the unfolding parameter,

~

X

�

5;�

2

~

-x has

a loop 
onne
ting the two periodi
 orbits and the symmetri
 equilibrium point

P

�

. Moreover, there is at P

�

a one parameter family of hetero
lini
 orbits.

In the 
ase

~

X

�

1;�

there are also a family of hetero
lini
 orbits.

Note that the 3D systems 
orresponding to

~

X

+

5;�

possess homo
lini
 as well

as hetero
lini
 orbits.
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