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Abstract: In this paper we consider symmetric equilibriums of reversible vector
fields having eigenvalues (0, «i, —ai). The objective of the paper is to analyze
the dynamics of such systems around these critical points. The main results
of the paper include a complete list of all normal forms, versal unfoldings, and
bifurcation diagrams of codimensional one case. Important conclusions on ex-
istence of homoclinic and heteroclinic orbits, invariant tori and symmetric pe-

riodic orbits are obtained, too.
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1 Introduction

Let X be a (germ of) C* vector field defined on R*,0 given by an ordinary
differential equation

X: &¢=F(z), zeR", (1)

where F(z) is a smooth function. Assume that X has an equilibrium point at
the origin, i.e., F(0) = 0. Vector field (1) is called time-reversible if there is
a germ of a smooth involution ¢ : R",0 — R",0 (¢ o ¢ = id.) such that the
relation

F(¢(z)) = =¢(z) - F(z), z€R",0 (2)
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holds. Moreover, X is said to be of type (n,k) if the dimension of the fixed
point set of , S = Fiz{¢}, is equal to k. It is clear that 0 < k < n.

The objective of this article is to study symmetric critical points of generic
one-parameter families of reversible vector fields of type (3,1), with emphasis on
topological classification of such systems. Since in (3, 1)-type case any involution
¢ is C* conjugated to ¢o(z,y,z) = (—z, —y, z) (see [10]), therefore throughout
the paper we assume that the systems considered are ¢y reversible. Remind
that in terms of this local coordinate system the fixed point set is given by
S={z=0,y=0}.

Given a ¢g reversible system X, it is easy to see that the 1-jet of X always
takes the form (p1 +az) 2 + (u2 + bz)a% + (cz +dy) &, where i1, p2, a,b,c and
d are parameters. Since we are interested in the local behavior of a reversible
vector field around a symmetric critical point, that is, if X(0) = 0 then 0 €
Fiz g, we assume that p; and pe vanish (for a study of families of vector fields
depending on certain parameters, please see [6, 7]). Consequently, we know
that in generic case the eigenvalues of such systems are either (0,a, —a) or
(0, i, —avi), where a is a nonzero real parameter. The present article is devoted
to the systems of the latter case, i.e., having eigenvalues (0, ai, —«i).

We notice that some study on bifurcation and classification for general (not
necessarily reversible) systems having eigenvalues (0, £ai) has been carried out
(see, for example, [6, 12]). Systems having such eigenvalues but in other con-
texts, say, divergent free systems, also attracted attentions (see [2]). In partic-
ular, one can see shortly that divergent free systems in R® in generic case is
topologically orbitally equivalent to one specified type of reversible system (see
X4 in equation (11)). In [3] there is an exposition between various contexts.

In the context of reversible vector fields, different types of systems have been



examined. In [14] all reversible systems having (2,1) type are classified, in [4]
(2,0) type, and in [9] (3,2) type. In each case, topological classification and the
respective normal forms of the symmetric singularities of lower codimensions
are presented. For applications of (3, 1) type reversible vector fields, please refer
to [11], where some models from physics and hydrodynamics are discussed.

The techniques employed in [14, 9] are to perform special changes of coor-
dinates around the singularity such that the analysis of the full system can be
transfered to a study of the contact between a general system and a codimension
1 submanifold in R™. These techniques can be generalized to the (n,n —1)-type
(see [14] for more details). In (3, 1)-type case, however, these techniques are not
applicable any longer and, different methods should be pursued.

The main ideas of the present paper are from [6, 5, 1, 8]. Namely, we per-
form formal changes of coordinates to reduce X to the resonant normal form,
and the latter, as usual, is furthermore rewritten in the form of a cylindrical
polar coordinates (together with possible time-rescale). Since in the cylindrical
polar coordinates the azimuthal coordinate takes the form 6 = +1, therefore
to analyze the qualitative behavior of such systems we can drop the azimuthal
coordinate and only consider the restricted planar systems. Moreover, due to
the independence of the polar coordinates on the azimuthal one, this allows
us to perform “blowing-ups”. On the other hand, since the restricted planar
system satisfies an inequality of Lojasiewicz type, therefore by [5] we know that
the results concerning the classification of the 2-dimensional singularities of the
restricted system hold in C° conjugacy category instead of merely C° equiva-
lence. To carry out these procedures and to extract the dynamical properties
of the original system from the reduced one, we found out, however, that some

essential difference and difficulties arise because of the reversibility. Firstly, the



reversibility assumption generally imposes certain constraints on the resonant
normal form, which in turn results in some degeneracy of the restricted planar
vector field. For example, in the reduced system, even when the nonlinear part
is generic, all the terms having degree 3 do not appear. This happens typically
to the (3,1)-type of reversible vector fields, but it does bring some cumbersome
calculation and difficulties in finding the reduced normal forms, and one needs
to perform more “blowing-ups”. The second difference is more mathematical.
In studying the reduced planar vector field, we should take the reversibility
of the original system into consideration to determine the dynamics patterns.
More precisely, we shall face the center-focus problem in the unfolded planar
system (see for instance case X;ﬁ,% in the diagram) and we process as follows.
Notice that a pair of singularities in the unfolded system in fact exactly give
rise to a symmetric periodic solution of the original system therefore the orbit
cannot be an attractor or a repellor. It follows that the singularities must be
of center type. This implies that the original system has a family of invariant
tori. Similarly, when the unfolded 2D systems admit symmetric singularities of
saddle type then we can draw conclusion that the original systems have homo-
clinic orbits (see for instance case X; g in the diagram) or heteroclinic orbits
(see for instance case X; , in the diagram). We emphasize that the phenomena
described above are due to the reversal symmetry of the original system. In
other words, a general vector field (not necessarily reversible) with the same
linear part may not enjoy such properties. Therefore the approach employed in
the paper is not a simple application of [6, 2].

The main results of this paper include a classification and qualitative behav-
ior of symmetric singularities occurring generically for 1-parameter families of

(3,1)-type vector fields. Also from the classification we can draw some interest-



ing conclusions about the existence of invariant tori, periodic orbits, homoclinic
and heteroclinic orbits for vector fields considered. In this paper we also give a
complete list of bifurcation diagrams.

The rest of the paper is arranged as follows: In section 2 we first present
a preliminary and review some important properties of reversible vector fields.
Then we give the normal form on which our discussion relies. We exhibit all
results in section 3. In section 4 we shall give a brief discussion on the genericity
conditions as well as the proof of the results. Section 5 contains the classification
of all cases. In this section, we also draw some conclusions about the existence
of invariant tori and homoclinic orbits. The last part of the paper illustrates the
bifurcation diagrams. We remark that in these diagrams the arrows indicating
the direction of the flow of the vector fields do not necessarily reflect the direction
of that of the original system. This is because in deriving the orbital C° normal
form we may multiply a nonvanishing negative function.
Acknowledgement: JY is very grateful for the IMECC, Unicamp for their

hospitality.

2 Preliminaries

In this section we first clarify some terms and recall the related properties con-
cerning reversible systems. Then we process our objects to the desired forms

for further study.

2.1 Basic facts

Let X be a ¢-reversible system on R™. A critical point p of X is called symmetric
critical point if it lies on S, the fixed point set of the involution ¢.

The following statements are known.



e The phase portrait of X is symmetric with respect to Sy.

e Any periodic orbit v is symmetric if and only if Sg (v # 0. If v(¢) is a

solution of X then so is ¢y(—t).

e Any symmetric critical point or symmetric periodic orbit cannot be an

attractor or a repellor.
The criteria of the proposed classification is based on the following definition.

Definition 2.1 Two vector fields X and Y at their singularities are said to
be C° conjugated in neighborhoods of the singular points if there is a homeo-
morphism carrying one singular point into the other and conjugating the local
phase flows of the systems at these singular points. They are called orbitally
C° equivalent if there is a homeomorphism mapping the local phase curves of X

into that of Y.

Definition 2.2 We say that vector field X defined on R",0 satisfies an in-
equality of Lojasiewicz type if there exists an integer k > 0 and ¢ > 0 such that

|X (2)| > c|z|* for all z in a neighourhood of the singular point.
The following statements can be deduced from [5].

Theorem 1 Assume that a smooth vector field X defined on R?,0 satisfies an
inequality of Lojasiewicz type and has a characteristic orbit. Then the singularity
is finitely determined for C° conjugacy. Moreover, if two finitely determined

singularities on the plane are C°-equivalent, then they are also C° conjugated.
2.2 Reduced normal form

Let & be the space of germs (at 0) of C" ¢ reversible vector fields having

eigenvalues (0, £«i). Assume that & is endowed with the C"-topology, r > 3.



Then for any vector field X € &, due to the relation (2), one can show with
some calculation that X takes the form

T = apz + a12% + asy® + azz® + agzy + - -
Xt Qg =boz+ b1a? + bay? + b3z® + by + - - - (3)
2 =cox +doy + 17z + Coyz + -

where ag, by, co and dy are constant. Note that in terms of this coordinates, to
have eigenvalues of the form (0, +wi), the inequality agco + body < 0 must be
satisfied. Indeed, it is easy to see that the equality agco + body = 0 leads to
three identical eigenvalues, and the corresponds systems are more degenerated,
which shall not be the objects of the present paper.

Since under a linear change of coordinates (together with a multiplication
of a constant, if necessary), one can always reduce the linear part of the vector

field (3) to the form
0 0
.1X -, v _ Y9
J 5y Ve
therefore throughout the paper, we assume that the linear part of (3) has been
normalized to the above form.
System (3) can be put into resonant normal form (see [15]). To realize so,

we rewrite the involution ¢¢ in the form ¢o(x, &) = (—x, —&), where £ = y + iz.

The resonant normal form means that X takes the form

jj:f(m,T'Z), é:fg(:l?,T'Z), (4)

where 12 = €€, f is a real function and ¢ a function having complex coefficients.

It is easy to see that the reversibility of X leads to the following equalities:
f(iL”,’I"Z) Zf(—:E,T'Z), fg(mJTZ) = _gg(_marz)' (5)

It follows from these relations that f is even in z and g can be decomposed into

the form g(z,7?) = wg1(2%,r?) +i(a+ g2(2?,7?)), where a # 0. In other words,



X has the following form.

&= f(a®,r?)
§ = 2(a+ g2(a,1%)) + yxgi (z*,17) (6)
2= —y(a+ g2(2?, %)) + zzgy (22, r?).

Multiplying the above system by a function h = Ww?ﬂ) first and then

putting the multiplied system into cylindrical polar system, we have & = f( 2 r?)
i = zrg(z?,r?), § = £1. Equivalently, the following expansion holds.
&= 6102 + 6212 + 32t + Surt + i + -
X i = car + Badr 4+ yar® + - - (7)
0 =+1
where §; = {0,1},02 = {0,%1}, J5, 04,0, 3,7 and ¢ are parameters. Note that
this normal form contains no #-dependent terms. Thus by treating the azimuthal

coordinate as time, we arrive at the reduced form

(8)

X_ I':51£L'2+(52T2+63:L'4+547‘4+a$2r2+...
' r = cxr+ Badr + yord + -

Convention: Throughout the paper when we say X € & is orbitally
topologically equivalent to a 2-dimensional system X of the form (8), we always
mean that X has been processed to the cylindrical polar system (7) and there
the azimuthal coordinate has been dropped out. In other words, for a given
system X € & we shall denote by X the corresponding reduced 2D normal
form of X. We also introduce the notation & which stands for the set of X
with X € &. Therefore there is a 1-1 correspondence, i.e., (7) and (8), between
X and ¥.

3 Statement of the Results

In terms of (8), we introduce the following notation.

E(l): {XE $2517£0, 52:1,0751},
2= {Xe F:0,£0, 6= —1,c#£0,1}, 9)
So= N2



It is not hard to see that the algebraic conditions described in ¥ characterize
the genericity conditions. The derivation of these conditions will be explained

in the next section. In other words, the following statement is true.

Theorem 2 Vector fields orbitally equivalent to those of Yo form an open and

dense set in &

In generic case, the classification and normal forms of such systems are
known. For completeness we recall these results. There are slightly different
expositions in [13, 6]. The following rearrangement is of more convenience in

our further discussion.

Theorem 3 The set ¥y can be divided into the following five subsets Y (i),
(i=1,2,3,4,5), such that any two vector fields belonging to the same subset are

orbitally topologically equivalent:

20(1)—{X€ $C 51:1, 52:—1, C>].}

20(2)—{X€ $351:1,52:1,C<1}

YB3 ={Xe :6=106=-1,0<c<1} (10)
20(4)={X€ x (5121, (522—1, C<0,}

20(5)—{X€ $Z(51=1,62=1,C>1}

As to the normal form, we have the following results. Remind the convention

described at the end of the previous section.

Theorem 4 In generic case, any vector field Y € X is C° orbitally equivalent

to one of the normal forms X where

X0 X = (a2 =2 2ar)
Xy: X = (2 +1?, Lar)
Xz X = (2% -1, ar) (11)
Xy: X =(2? —r% —ar)
X5 X = (22 + 1%, 2z2r)

The corresponding normal forms of 3D can be obtained by pulling the above

2D normal forms back to the form X; = (X;, +1). Also due to theorem 1 we



know that the C° orbital equivalence in the above theorem can be improved to
C° conjugacy if only planar singularities are involved.

When the genericity conditions are violated then we get degenerated vector
fields. The codimensional 1 singularity of X means that one (and only one) of

the following conditions
51:0, 52:0, CZO, 512021, (].2)

is satisfied and at the same time the higher order terms are generic. To give
a classification of all codimensional 1 singularities, we need to investigate the
higher order terms. We shall show that the topological classification in codimen-
sional 1 case depends on the parameters d3,d4, @, 3,7 and c. Like in the generic
case, we introduce the following sets which characterize the topological types of
the singularities of the 3D systems. The topological invariance of these algebraic

conditions describing these sets will be explained in the following section.

21(11) {XG X (5120, (5221, (5321,C<0}
21(1 2) {X e X: 46 = 0,02=1, 63 =-1, c< 0}
21(21) {XE X 61 =0, 02 =1, 53:1,C>0}
21(2 2) {X e X: 46 = 0, 02=1, 3 =-1, ¢> 0}
21(31) {XG X (5220, (5121, (5421,C<0}
21(3 2) {X e X: 0y = 0, 01 = 1, 04 = -1, ¢c< 0}
$1(33)={X€ X:6=0,6=10=10<c<i}
Y.(34)={X ¢ $:52=o,51=1,54=—1,0<c<§} (13)
21(35) {XG X (5220, (5121, (5421, <C<].}
21(36) {XG $152=0,61=1,(54=—,2<C<1}
21(37):{X€ X (5220, (5121, (5421 C>].}
21(38) = {X e ¥: 0o = 0, 0 = 1, 04 = -1, ¢> ].}
21(41):{){6 $C 512021, 62:1}
21(42):{){6 $C 512021, 52:—1}
21(51)={X€ X c=0, (5121, (522—1, B+'Y>0}
21(52)—{X€ X c=0, (5121, (522—1, B+'Y<0}

Denote by ¥; the union of the above 16 sets, i.e.,

2= 16, 4)- (14)

10



Let 1 = ¥ — ¥y. Then similar to the generic case, we have the following

Theorem 5 Vector fields which are orbitally equivalent to those of X1 form an

open and dense set in 1. X, is a codimensional 1 embedded submanifold of

x.

As to the singularities of generic 1-parameter families of reversible vector

fields of & we prove the following results.

Theorem 6 1) Two vector fields X and Y in F1 are C° orbitally equivalent
if and only if they belong to the same subset ¥4 (i,7) of (13).
2) Any one-parameter family XX, with X° € 4, in generic case (transversal

to $1) is C° orbitally equivalent to one of the following 16 normal forms.

(Az? +r? L2t —ar);
(Az? +r? L2t 2r);
Xé\,i,c-' (x? + M £ 74, car); (15)
o ((a +)\)x + 72 ar);
(2 —r2, Aar £ ar?),

where ¢ takes one of the following values {—1 2}, and X\ is the unfolding

74747

parameter.

By recalling theorem 1 we have the following

Corollary 3.1 Any planar singularity X € ~$, where X € ¥, in generic case
is CY conjugated to one of the normal form (15) where the unfolding parameter

Ais 0.

Notice that in the theorem we do not require that the normal form X* is con-
tinuous with respect to the parameter. Also remind that the second statement of
the theorem does not imply that the corresponding 3D unfoldings X* = (X*, 1)

are C° stable in the space of all one-parameter families of vector fields of Z.

11



In other words, the normal forms X = (X9, +1), where X° is from (15) with
A =0, only give a topological classification of singularities of 3D systems, not
the classification of the unfolding systems.

A list of 2D bifurcation figures are attached at the end of the article.

4 Proof of The Main Theorem

4.1 Comments on the generic case

It is known from [13] that the system (8) in generic case is 2-determined with
respect to C° conjugacy. Below we verify that the algebraic conditions described
in (9) coincide with the genericity conditions of this system in our terminology.
In other words, if one of these conditions in (12) is violated then (8) is not
generic. To show this, consider the 2-jet of X: & = 6,22 + 6572, 7 = car, where
d; and d2 have been rescaled so that §; = 0,1, and o = 0,+1. This system,
after once blowing-up under z = pcosé,r = psin, can be put into the following
form

{ p = p(d1 cos® B + (d5 + c) cos @ sin® §) (16)

6 = —8,sin® @ + (¢ — 6;) sin @ cos? 4.
Note that for generic do and (¢ —d1) one has d2(c—3d1) #Z 0. If d02(c—3d1) <0
then system (16) has only one singular point (0,0). In this case it is easy to see

that the blown-up system is hyperbolic if and only if 07 # 0. If d2(c — d1) > 0

then system (16) has three singular points (0,0), (0, arctan cgfl). A little
calculation shows that in this case system (16) is hyperbolic at all these singular
points if and only if ¢ # 0. Rearranging these relations, we verified the genericity

conditions specified in (9).
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4.2 Codimension 1 case

JFrom the previous discussion we know that if one of the conditions (12) is
broken then the vector field is degenerated. In this part we first precise the
conditions under which the system is of codimension 1. This means that cer-
tain genericity conditions should be imposed on the coefficients of other terms.

Obviously, we need only to consider the following four cases.
1. 01 =0, 62 #0, ¢ #0;
2. 60=0, 6 #0, c#0,1;
3. 01 =c=1, d #0;
4. ¢=0, 61 #0, d2 #£0;

Because of the similarity of these cases, in what follows we only treat one
case in more details. In all the other cases we shall primarily focus on the
difference from this one.

Taking case (1), we consider the following items: the genericity conditions
imposed on the higher order terms, the unfolding of the system, and the bifur-
cation of the unfolded system. Remember in all the 2D cases, the discussion
should be in the category of C° conjugacy, not the orbital equivalence, this is
because we have treated the azimuthal coordinate as time. In fact one can check
that all the calculation below abides by this rule.

Let §; = 0, 0 = +1,¢ # 0. Note that in this case we can always scale x,
thus preserve time, such that o = 1 and d3 takes one of the following values:
0,1, —1. Therefore, the equation (8) takes the following form

L0 4 4 2,2 ...
{x—r + 03 + dar* 4+ a®r® + (17)

= car + Badr +yard 4+ -

where ¢ # 0 and the dots denote the terms of degrees higher than 4.

13



It is a straightforward exercise to check that the above system is of codimen-
sion 1in & if and only if §3 # 0. If §3 # 0 then according to signs of d3 and
¢ we can divide (17) into four different cases: ¢ > 0,05 = £1; ¢ < 0,05 = £1.
Performing blowing-ups, one can show that these four cases are topologically
different from each other.

Below we prove that we can choose Xf\,i and f(g\’i (see 15) as the corre-
sponding unfoldings.

First we clarify the equivalence of two l-parameter families of vector fields.
We say X* ~ Y*# | if there exists a function h: (—¢,€) — (—¢, €), where € is small
and h()\) = p, such that X* is conjugated to Y*.

Let X, be an unfolding such that Xj is in one of the first four sets of (13).
Assume that, say, Xuo € ¥1(1,1). Then 6, (uo) = 0, and for any py and ps such
that (1 — o) (mus — po) < 0, one has X,,,, X,,, € Xy, and X, is topologically
different from Xw- This fact implies that for u; > po (resp. p1 < po) there are
only two possibilities: 6; > 0 (resp. d; < 0), or d; < 0 (resp. d; > 0). Take the
first case (the other possibility can be treated exactly in the same way). Then
for any p > o one has X, € $y(i) and p < po one has X, € %o(j), where
i # j. The reparameterizing u(A) = A — o gives us the unfolding f(f‘,_i_.

As to the validity of Theorem 5 it is sufficient to notice that ¥; given by
(14) is a submanifold of codimensional 1 of . The proof of this fact is omitted
here.

Next we shall briefly discuss the remaining cases, specifying the primary
difference from the previous case.

In case (2), i.e., 0, =0, 9, =1, ¢ #0, 1, we can rescale x and r such that d4
takes one of the values 0,+1. In this case, when blowing-up the corresponding

system, one can see that if ¢ = % then the vector field considered shall have

14



Figure 1: Blow-ups of cases X! _, and X?
=3

_.3
'q

)

higher codimension. Correspondingly, we have eight subcases due to all the
possible combinations between d4 = +1 and ¢ lies in (—o0,0), (0,3), (3,1)
and (1,00). Since ¢ takes values from these four sets, consequently, there is no

modality in the classification. The unfolding is given by X&ic (see 15).

Remark 4.1 Remind that in the attached bifurcation figures, the phase por-
traits of the cases beL 1 and Xé}i 3 seem to be identical. Their blowing-ups at
E =5

A = 0, however, show that these two cases are topologically different. The two

blow-ups are shown in figure 1.

Case (3), i.e., 01 = ¢ = 1,02 # 0, can be treated in a similar way. The
unfoldings are given by X, (see 15).

To study case (4), i.e., ¢ =0, d; # 0, d2 # 0, one only to consider the higher
order terms of 7. The essential difference between this case and the previous
ones is that in this case one needs to show the invariance of (5 + ), which can
be done by blowing-up the system considered. According to the signs of (8 +7)

we have two subcases. The unfoldings are given by X;i (see 15).
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5 Symmetric periodic orbits, invariant tori, ho-
moclinic and heteroclinic orbits

In this section based on the classification of the 2D systems obtained in the
previous sections, we shall give an analysis of the original 3D systems, specifying
the existence of symmetric periodic orbits, homoclinic orbits, invariant tori and

other important properties.

5.1 Symmetric periodic orbits and invariant tori

Counsider the classification and the unfoldings of the reduced 2D system. From

the bifurcation diagrams we see that in the unfolded systems Xg L 1s X ;r 1y
T T d

X 4, and X
=g 3,—,5

the corresponding blown-up systems are of center-focus
type. In each case, we have a pair of singularities in the unfolded system and we
have a center-focus problem. Remind that these two symmetric singularities of
the 2D system in fact correspond to a symmetric periodic orbit of the original
3D system. Consequently, the orbit cannot be an attractor or a repellor (see
Section 2.1). This implies that the type of the 2D unfolded system is a center.
In other words, we have two families of circles centered around the singularities.
Therefore the corresponding 3D unfolded system admits a family of invariant
tori which link these two families of tori. It is clear that the 3D unfolded system
has no singularities on these invariant tori, and the 3D pull-back X = (X.', +1),
where X - takes the 2D normal form with A = 0, only gives a classification of
3D singularities of the systems, not the 3D unfoldings.

Besides the cases mentioned above there are other cases where symmetric

. . . . . - — — o — "+ X — ~+
periodic orbits exist: X37+7%, X37+7%, X37+7% Xy 1, X5 4 and X7 .

16



5.2 Homoclinic and Heteroclinic orbits

In the 2D bifurcation diagram we see that in the cases X L X X
g

34,8 “73,+,3
and er _,—1 the unfolded systems also have a pair of symmetric singularities.
These singularities, however, are of saddle type. Moreover, one can see that
except the case X. f_7_1 in all the other cases in a neighborhood of v there exist
a family of homoclinic orbits tending to 0.

The other cases where homoclinic orbits exist are )N(ler, Xﬂf, )N(lf_, X7 .,

g

o v 0 A CID o 0
XO X, s X9 o X} o XD X, and X2

In a similar way, we know that in the cases )Nfg 4 and X Jf_ the unfolded
2D problem has two pairs of symmetric singularities. For example, from case
X, 5 we deduce that for positive A, the unfolding parameter, )N(g‘ _ € & has
a loop connecting the two periodic orbits and the symmetric equilibrium point
P,. Moreover, there is at P, a one parameter family of heteroclinic orbits.

In the case Xf _ there are also a family of heteroclinic orbits.

Note that the 3D systems corresponding to X f7 possess homoclinic as well

as heteroclinic orbits.
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