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Abstract

In this note we discuss the relation between the degeneracy of a given planar

vector �eld and the normalizing processes. With respect to various equivalence

relations (smooth conjugacy, formal conjugacy, smooth orbital equivalence, and

formal orbital equivalence), we present the corresponding normal forms and classi-

�cations.

1 Introduction

Consider a planar vector �eld given by an ordinary di�erential equation

X : _x = ax+ by + f(x; y); _y = cx+ dy + g(x; y); (1)

where at least one of a, b, c and d is di�erent from 0, and where f and g

are smooth (C

1

) functions in a neighborhood of (0,0) with neither free nor

linear parts.

We begin with the following de�nitions.

De�nition 1.1 System (1) is said to be smoothly orbitally equivalent (SOE)

to the system

Y : _u = a

1

u+ b

1

v + f

1

(u; v); _v = c

1

u+ d

1

v + g

1

(u; v) (2)

if there are a nonzero smooth function F (x; y) and a smooth change of co-

ordinates

� : x = �u+ �v + �(u; v); y = u+ �v + �(u; v); (3)
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where � and � have neither free nor linear parts, such that � reduces the

vector �eld F �X to Y .

If the relations above hold only in the formal category, then system (1)

is said to be formally orbitally equivalent (FOE) to system (2).

De�nition 1.2 System (1) is said to be smoothly conjugated (SC) to (2) if

there exists a smooth change of coordinates � reducing (1) to (2).

Formal conjugacy (FC) between (1) and (2) can be de�ned in a similar

way.

It is clear that SOE implies FOE and SC results in FC.

Since the linear part of system (1) is always SOE to one of the following

systems:

L

1

: _x = x+ y; _y = y;

L

2

: _x = �x+ y; _y = �x+ �y;

L

3

: _x = �x; _y = y;

L

4

: _x = y; _y = 0;

(4)

therefore throughout the paper we assume that the linear part of system (1)

has been normalized to one of the above linear parts (4).

To classify all the planar systems with a �xed linear part, one needs to

consider the corresponding nonlinear parts. The latter characterizes the de-

generacy of the systems. The main aim of this note is to expose, with respect

to the above mentioned categories, the relation between the degeneracy of a

given system and its normalization. In turns out that, in certain cases, the

categories of the normalizing processes have to become lower if the system

is too degenerated. By examining the corresponding resonant normal form,

we can explicitly describe the degeneracy of the system. Consequently, we

can obtain the normal form. Also when possible, we shall explain, from
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geometric point of view, the algebraic conditions describing the genericity

conditions.

The motivation of this note is due to [6, 1, 10]. In [6] the normal form of

a planar vector �eld is given with respect to orbital equivalence. It is known

that, except the case where both eigenvalues are 0, any planar vector �eld

X around an isolated singular point and with a nonvanishing linear part is

orbitally reducible to a polynomial normal form. We note, however, that

the normal forms given there are not the simplest ones in the sense that the

reduced polynomials are not of the lowest possible degrees. Also in [6] the

categories of normalizing processes can be ameliorated, say, from FOE to

SOE, in certain cases. we feel that the investigation on the degeneracy of a

system helps one to clarify these categories.

The results and the methods involved in this note can be easily gen-

eralized to higher dimensions. The primary techniques employed here are

mainly developed by [2, 3, 8] and are exhibited in [10] in more details.

We will use the following de�nitions:

De�nition 1.3 A vector �eld X _x = Ax+ � � � is called 0-resonant if there

is no nontrivial relations of the form k

1

�

1

+ � � � + k

n

�

n

= 0 between the

eigenvalues (�

1

; : : : ; �

n

) of the matrix A, where k

1

; : : : k

n

are nonnegative

integers.

X is called 1-resonant if all the relations l

1

�

1

+ � � � + l

n

�

n

= 0 are

corollaries of a �xed relation k

1

�

1

+ � � � + k

n

�

n

= 0.

De�nition 1.4 A term x

k

1

1

: : : x

k

n

n

@

@x

j

, where k

i

are nonnegative integers

with the sum k

1

+ � � �+ k

n

� 2, is called a resonant monomial if

�

j

= k

1

�

1

+ � � �+ k

n

�

n

: (5)

Relation (5) is called a resonant relation. A vector �eld X is called

non-resonant vector �eld if the eigenvalues admit no resonant relations.
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It is clear that a non-resonant vector �eld is necessarily 0-resonant, but

not vice versa. For 2-dimensional vector �elds we have the following cases.

� Vector �elds with linear parts L

1

, L

2

(� 6= 0), L

3

(� is irrational) are

non-resonant.

� Vector �elds with linear parts L

3

(if � = 2; 3; : : :) are 0-resonant.

� Vector �elds with linear parts L

2

(� = 0), L

3

(� = 0;�p=q, p; q are

positive integers and (p; q) = 1) are 1-resonant.

� Vector �elds with linear part L

4

are neither 0-resonant nor 1-resonant,

since both eigenvalues are 0.

The following statement is known.

Theorem 1 Any smooth vector �eld is FC to its resonant normal form, a

normal form containing resonant monomials only.

Any smooth non-resonant vector �eld X is SC to its linear part.

Any smooth 0-resonant is SC to a polynomial resonant normal form.

Any smooth 1-resonant is SC to a polynomial resonant normal form,

provided it does not belong to a set E of in�nite codimension in the set of

all 1-resonant vector �elds.

Any smooth vector �eld not belonging to the above cases is not FC to a

polynomial normal form.

This theorem contains a series of results obtained in the past decades.

For a comprehensive exposition and the relations between them, refer to

[10].

One sees that if a vector �eld X is SC to its linear part (a polynomial,

resp.) then it is SOE to its linear part (a polynomial. resp.), since one can

always choose the multiplying function F to be identical.
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From Theorem 1 we see that to give a classi�cation of planar vector �elds

one needs only to consider those systems which have resonant monomials,

this means the following cases: L

2

with � = 0, L

3

with � = 0;�p=q;m

(m = 2; 3; : : :), and L

4

.

2 Statement of the results

2.1 O-resonant vector �elds

We know from Theorem 1 that any 0-resonant vector �eld is SC to its

resonant normal form. The latter is a polynomial. In 2-dimensional case

this can happen only whenX has a linear part L

3

with � = m (m = 2; 3; : : :).

Theorem 2 Any vector �eld with eigenvalues (m; 1) (m = 2; 3; :::) is SC

and SOE to the following normal form

_x = mx+ �y

m

; _y = y; (6)

where � = f0; 1g.

Note that in (6) vector �elds with � = 0 and � = 1 are not equivalent.

A geometric explanation of this observation is that if � = 1 then the system

has exactly one invariant manifold given by y = 0, while if � = 0 then

except this one invariant manifold there are in�nity many others having

the form x = cy

m

, where c is a parameter. Also note that a vector �eld

with vanishing � only means that the nonlinear is degenerated not that it is

smoothly linearizable.

For vector �elds with generic nonlinear part we have � = 1. Therefore

we have the following

Corollary 2.1 All planar vector �elds with eigenvalues (m�; �) (m = 2; 3; :::)

and generic nonlinear part are SC (SOE) to each other.
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2.2 1-resonant vector �elds

The classi�cation of vector �elds in this case involves those systems whose

linear part is either L

2

with vanishing � or L

3

where � = 0;�p=q. We shall

treat these cases separately.

Let X be a smooth vector �eld having a linear part (y;�x). Then the

following statements hold.

Theorem 3 If X does not belong to an exceptional set E of in�nite codi-

mension in the set of all 1-resonant vector �elds then there exists an integer

k > 0 such that X is SC to

_x = y(1+P (Z))+ �xZ

k

+axZ

2k

; _y = �x(1+P (Z))+ �yZ

k

+ayZ

2k

; (7)

and is SOE to

_x = y + ayZ

k

+ �xZ

k

; _y = �x� axZ

k

+ �yZ

k

; (8)

where Z = x

2

+ y

2

, P is a polynomial of degree k without constant term,

� = �1, and a is a parameter.

If X belongs to the exceptional set E then X is FC to

_x = y(1 + F (Z)); _y = �x(1 + F (Z)); (9)

where F is a formal series of Z without constant term, and X is FOE to its

linear part y

@

@x

� x

@

@y

.

The invariance of the integer k and the description of the exceptional set

E will be explained in the following section.

As to vector �elds having L

3

linear part, we have two subcases: L

3

(1) =

(0; y) and L

3

(2) = (�

p

q

x; y).

Theorem 4 If X has a linear part (0; y) and if 0 is an isolated singular

point then there exists an integer k such that X is SC to

_x = �x

k+1

+ ax

2k+1

; _y = y(1 + P (x)); (10)
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and is SOE to

_x = �x

k+1

; _y = y + ax

k

y; (11)

where P is a polynomial of degree k, � = 1 if k is odd, otherwise � = �1.

Theorem 5 If X has a linear part (�

p

q

x; y), where p; q are positive integers

with (p; q) = 1, then it is SC either to a polynomial system

_x = �

p

q

x(1+P (Z))+axZ

k

+cxZ

2k

; _y = y(1+P (Z))+byZ

k

+cyZ

2k

; (12)

where P is a polynomial of degree k � 1 without constant term, a; b; c are

constant such that qa+ pb 6= 0, Z = x

q

y

p

, or to

_x = �

p

q

x(1 + F (Z)); _y = y(1 + F (Z)); (13)

where F is a formal series without constant term. Respectively, X is SOE

to

_x = �

p

q

x+ axZ

k

; _y = y + byZ

k

(14)

or FOE to its linear part.

2.3 Nilpotent singularity

From Theorem 1 one knows that vector �eld having linear part L

4

is not

FC to a polynomial. This result is proved in [4, 5]. A brief account of

normal forms of such vector �elds is as follows. In [8] it is proved that

an analytic system with L

4

linear part is FC to _x = y + ax

n

+ � � �, _y =

bx

k

+ � � �. In [7] it was proved that the normal form above can be chosen to

be analytic. Departing from this normal form, the authors in [9] discussed

the analyticity of orbital normal form and the center-focus problem. Certain

study concerning FOE was conducted in [6]. In [7], the FOE of the original

system is investigated also.
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3 The degeneracy and the exceptional set E

Using elementary reasoning, we can give a proof of the theorems described

in the previous section. This involves the well known techniques of nor-

malization of vector �elds. Due to the Poincare-Dulac theorem (the �rst

statement in Theorem 1), when normalizing a given vector �eld, one can

depart from the so-called resonant normal form. The latter consists of the

resonant monomials only.

In two dimensional case, the proper category (smooth or formal) of a

normalization process is known (see Theorem 1). Therefore in this section,

instead of proving all the lists of normal forms, we shall give a discussion

on the genericity and degeneracy of the nonlinear part of a given system.

Nevertheless, to illustrate the methods of normalization, we shall give a brief

derivation in one case (L

3

(2) case).

The degree of degeneracy of vector �eld is an invariant of the system,

which is reected by the number k. In particular, if k tends to in�nity, then

an exceptional set E appears and the categories (SC, FC, SOE, FOE) of

normalization change. The exceptional set was noticed in [5, 2].

In what follows, we shall give an explicit description of this exceptional

set in terms of the resonant normal form. Since this exceptional set happens

only to 1-resonant vector �elds, below we shall examine with some details

the following cases: L

2

(� = 0), L

3

(� = 0;�

p

q

).

It is worthy pointing out that outside the set E the FC and the SC

are equivalent and within this codimensional in�nity set there exist germs

of vector �elds that are FC to each other but are not even topologically

equivalent, see [2] for more exploration.
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3.1 Vector �elds with a center-type linear part

The resonant normal form in this case is given by the following form.

_x = y + yf(Z) + xg(Z); _y = �x� xf(Z) + yg(Z); (15)

where Z = x

2

+ y

2

, f and g are formal series.

If g is not identical zero, then there is an integer k such that g(Z) =

aZ

k

+ � � � (a 6= 0). It is clear that k is uniquely determined by g and it

is invariant of the system. This can be explained as follows. The ring of

�rst integrals of the linear approximation of X is generated by Z = x

2

+ y

2

.

The function Zg(Z) is the result of application of the vector �eld X to the

function Z.

In generic case, k = 1. In this case the original system is SC to a

polynomial vector �eld of degree 5, which is a focus. In fact, for any �nite k

the origin is of focus-type. The bigger k is the more degenerated the system

is. If k =1, then g is identical 0. In this case, one can not decide the type

of the original system. Due to the possible existence of at functions in the

original system, there exist such systems which are formally conjugated but

are not topologically equivalent.

In terms of (15) the exceptional set E contains those vector �eld such

that the Taylor expansion of g vanishes. The result can be reformulated as

follows: If X is in E then it is SC to a polynomial and the origin is of focus

type. If X is outside E then it is FC to (y(1 + F (Z));�x(1 + f(Z)), where

F is a formal series, and no information on the type of the origin can be

derived from the reduced normal form.

3.2 Vector �elds with linear part (0; y)

Very similar to the case discussed above, in this case there exists an excep-

tional set E, too. Because the center-manifold in this case is 1-dimensional,

the restriction of X to the center manifold has the form _x = f(x). In this
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case, it is known that the exceptional set E contains those vector �elds where

the Taylor expansion of f above vanishes. Outside E, the formal conjugacy

and the smooth one are one thing.

If f is not identical zero, then there exists a uniquely determined k such

that f(x) = ax

k

+ � � �. Therefore the resonant normal form is as follows:

_x = �x

k

+ � � � ; _y = y + yg(x): (16)

The simpli�ed normal form of this system, up to SC, is given by:

_x = �x

k

+ ax

2k�1

; _y = y(1 + P (x)); (17)

where P is a polynomial of degree k � 1.

If X has a generic nonlinear part, then k = 2. Consequently, the system

is 3-jet determined.

To get the SOE normal form, one can multiply a function to eliminate

the terms x

2k�1

@

@x

and P (x)y

@

@y

. This multiplication, however, will lead to

the appearance of the term x

k

y

@

@y

. The �nal orbital normal form is (11).

Since we are interested in the systems having an isolated singular point,

therefore the Taylor expansion of f is supposed not to vanish. This means

that the system is outside the exceptional set. The normal forms we obtained

are always in SC and SOE categories.

3.3 Vector �elds with linear part (�

p

q

x; y)

Due to the relation q�

1

+ p�

2

= 0, it is easy to see that any system with

such a linear part has in�nite many resonant relations

�

1

= �

1

+ l(q�

1

+ p�

2

); �

2

= �

2

+ l(q�

1

+ p�

2

); (18)

for any l = 1; 2; : : :. Consequently, the resonant normal form takes the form

_x = x(�

p

q

+ f(Z)); _y = y(1 + g(Z)); (19)
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where Z = x

q

y

p

.

To consider the normal form of such systems, denote F (Z) := qf(Z) +

pg(Z) (remind that q�

1

+ p�

2

= 0). Then it is known (see [10]) that if F

does not vanish, i.e., there exists an integer k such that F (Z) = aZ

k

+ � � �,

a 6= 0, then X is SC to a polynomial. Certain calculation shows that it is

SC to system (12).

The degeneracy of X can be described by k, whose invariance can be

explained similarly: the ring of �rst integrals of the linear approximation of

X is generated by Z, and the function ZF (Z) is the result of application of

the vector �eld to the function Z.

If k = 1, i.e, F is identically 0, then in this case, the normal form of

X is not reducible to a polynomial but to (13). The normalization process,

however, can still be chosen to be SC. This is due to the Chen's theorem (see

[1]) which states that if two germs of vector �elds at a hyperbolic singular

point are FC then they are SC.

Below we derive the orbital normal form of X, illustrating some basic

methods of normalization. Without loss of generality, we assume that the

nonlinear part of X is generic, this means that we assume k = 1.

Take the resonant normal form

_x = �

p

q

x+ a

1

xZ + a

2

xZ

2

+ � � � _y = y + b

1

xZ + b

2

xZ

2

+ � � � (20)

where qa

1

+ pb

1

6= 0, Z = x

q

y

p

. To obtain the orbital normal form, we need

only to normalize the 2(p + q) + 1 jet, since it is already known that the

system is SC to

_x = �

p

q

x+ a

1

xZ + axZ

2

; _y = y + b

1

xZ + axZ

2

; (21)

which means that all the higher order terms can be removed.

To orbitally normalize the 2(p + q) + 1 jet, we �rst multiply X with

the function F = 1 + c

1

Z, where c

1

=

a

2

q+b

2

p

a

1

q+b

1

p

, then make a change of
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coordinates (x; y) ! (x + �xZ; y + �yZ), where �; � are parameters to be

decided. This change of coordinates will keep the p + q + 1 jet unchanged

while the homogeneous terms of degree 2(p + q) + 1 are transformed to

the same terms with di�erent coe�cients. The elimination of these terms

depends on the solvability of � and � from a homological equation

(a

1

�

p

q

c

1

)� � (b

1

+ c

1

)� =

a

2

+ a

1

c

1

p

: (22)

It is clear that this equation is solvable because at least one of the numbers

(a

1

�

p

q

c

1

) and (b

1

+ c

1

) is not zero. Therefore we obtain the normal form

(14).

The FOE normal form when X is in the set E can be studied in a similar

way.
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