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Abstract

A strongly polynomial algorithm for lotsizing and scheduling N

orders of two products on M identical parallel machines is proposed;

preemption and job splitting are allowed and setup time between tasks

of di�erent products is required. Any order implies an arbitrary dead-

line, and the quantity of product (or products) demanded. Initial

machine ready times are arbitrary but machines are assumed to be

available continuously thereafter. The aim is to minimize any arbi-

trary non-decreasing function of the number of setups for each product

using a scheduling which satis�es both the demands and deadlines in a

make-to-order environment. Wavy schedulings are de�ned using un-

balanced scheduling and scheduling gaps, as these concepts can be

useful in the design of heuristics for model extensions.
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1 Introduction

Scheduling problems involving setups on parallel machines show a lack

of theoretical development, although they are a crucial aspect of two new

industrial trends. The �rst is the importance of product customizing and

quality improvement in a competitive market. This has led to a reduction

in lot sizes in manufacturing systems, which has made setup time and cost
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considerations of great economic relevance. However, relatively little work

has been done on scheduling problems with machine setups, with even less

work involving setup time considerations [17]. As a consequence, poor per-

formance heuristics that ignore setup e�ects are commonly used [11].

The second trend is an attempt to improve e�ciency and productivity

through the concept of parallelism. The use of parallel machines not only

contributes to production exibility, but also helps cope with bottleneck

problems and improves production regularity [9]. Despite the advantages

of the use of parallel machines, however, little work has been done with

parallel machines using due-date based performance measures.

One reason for the lack of development may be due to the mathematical

intractability of problems of this type, as the use of parallel machines and the

choice involved in the assignment of jobs to machines greatly increases the

complexity of a problem. Moreover, scheduling problems that involve either

setup costs or setup times are notoriously di�cult to solve. The consideration

of setup times also introduces non-conservation of production capacity into

the model, which can make it hard even to judge the feasibility of speci�c

problem instances.

Problems of this kind appear in many industries involving continuous

processing. In the textile industry, for example, scheduling is characterized

by a large number of identical machines (looms) which require extensive and

time-consuming setups. In the paper industry, the number of machines is

small and setup time is quite short, but the number of products tends to be

large due to the numerous combinations of paper thickness and composition.

The at glass industry is characterized by numerous glass thickness setups

and also costly composition setups.

Restriction to jobs of two products on a single machine is present in the

works of Lee and Danusaputro [10] and Gupta [7]. Cattrysse [2] works on

a single machine DLSP (Discrete Lotsizing and Scheduling Problem) with

setup times. Unal and Kiran [18] present an exponential time exact algo-

rithm (polynomial time if the number of setups is bounded); they consider a

single machine and an arbitrary number of products. Monma and Potts [12]

developed a dynamic programming algorithm for minimizing Lmax (maxi-

mum lateness) on parallel machines; it is a polynomial time algorithm for a

�xed number of products. A closely related work is the one of Gon�calves and

Marques [5] which presents a branch and bound heuristic to solve the prob-

lem involving several products and holding costs. Guinet [6] and Sera�ni and
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Speranza [16] both produce approaches for the textile industry environment,

although the former does not allow preemption, whereas the latter consider

job splitting, but using a special kind of setup.

2 Structure of the Algorithm

This paper presents a strongly polynomial algorithm for lotsizing and

scheduling N orders of two products on M identical parallel machines so

that total setup time is minimal and deadlines are met. Arbitrary non-

negative setup times are considered. The number of setups for both products

is simultaneously minimized, while neither planning horizons nor restrictions

as to the number of machines need to be considered.

Problem Statement

The proposed algorithm solves scheduling problems of the following type:

Given

� M parallel identical machines that work with tasks of two products

� A list of N orders with deadlines and job demands for the products

� The setup length of each product

Find (if possible)

� A lotsizing and scheduling of tasks on the machines requiring the least

number of setups

Where

� Setup is required between tasks of di�erent products on the same ma-

chine

� Job demands should be satis�ed without delay

� Job splitting is allowed

� Preemption is allowed

A problem is feasible if it has a feasible scheduling. Feasible scheduling

allocates tasks and accounts for appropriate setups so that the total quantity

of a product which can be produced by a deadline is greater than or equal

to the quantity required. Any feasible problem has an optimal scheduling,

which is that feasible scheduling which utilizes the least number of setups.
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Scheduling Gap

Prior to the presentation of the algorithm itself, it is necessary to intro-

duce the concept of scheduling gap. For a given machine, this is the time

interval [s; t] in which its use is not scheduled, although its use is scheduled

for one product before and for the other after this period of time (Figure 1).

The time must be more than su�cient for the setup of the second product,

so that time can be made available for additional production of either of the

two products involved.

m

�

1

( )

setup

�

2

scheduling gap

s t

Figure 1: Example of a Scheduling Gap

The Algorithm

The algorithm iterates on a non-decreasing sequence of deadlines. At

each iteration, tasks are allocated to the machines so that the demand for

each product will be satis�ed by the deadline. Machines are grouped (group 1

or group 2) in accordance with the product (�

1

or �

2

) being processed. The

available processing time of each machine is the di�erence between the current

deadline and its current ready time; moreover, there may be a scheduling gap

on one of the machines. The allocation of jobs for the production of product

�

1

proceeds in the following order until its demand is satis�ed:

a) it progressively involves the group 1 machines; the group 1 machine with

the smallest non-null available time is selected; allocation is made for-

wards, from the machine's ready time to the deadline;

b) further production utilizes the time interval [s; t] of the scheduling gap;

depending on the setup required in the scheduling gap, for the same

or for the opposite product, allocation is made backwards from t or

forwards from s;

c) it progressively involves the group 2 machines; the group 2 machine with

the greatest available time is selected; allocation is made backwards from
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the deadline to the machine's ready time and is preceded by a setup for

the product.

Each task fully occupies the available time on the machine with the possible

exception of the last allocation; if it is made on a group 2 machine, the old

scheduling gap is already fully occupied and possibly a new scheduling gap

is created on this machine. Tasks involving product �

2

are allocated in a

similar way, except that allocation order starts with group 2, follows with the

scheduling gap and �nishes with group 1. If the algorithm cannot allocate

enough work to satisfy the current demand of any of the products, then it

stops because no solution is possible, and, therefore, the problem is infeasible.

It should be noted that, for each iteration, all new setups are for the

same product and are created in a non-decreasing time sequence. The �nal

scheduling utilizes the least number of setups and tends to be unbalanced

in terms of new ready times. Moreover, the setup time of a scheduling gap

becomes �xed before and earlier than any additional setup time allocation.

Example. Consider a scheduling problem de�ned with one deadline d =

170, four machines (m

1

to m

4

), the �rst two working with product �

1

and

the others working with product �

2

, setup times (t

1

; t

2

) = (1; 3), demands

(q

1

; q

2

) = (74; 15), ready times r = (150; 145; 135; 150), and a scheduling gap

[r

0

; d

0

] = [110; 124] assigned to machine m

0

= m

2

. The algorithm produces

scheduling with new ready times r

0

= (170; 170; 170; 165), three machines

working with product �

1

(m

1

tom

3

), the old scheduling gap occupied with the

processing of product �

1

, and a setup time for product �

1

�xed at r

0

= 110.

Moreover, a new scheduling gap [r

0

0

; d

0

0

] = [135; 154] together with a setup

of size t

1

= 1, is allocated on machine m

0

0

= m

3

. The top half of Figure 2

indicates the ready time for each machine and the lower half shows the tasks,

with the allocation order indicated in parentheses. 2

Figure 3 shows the sequence of setups supposedly allocated by successive

iterations of the algorithm. Observe that this sequence tends to form waves

along the time axis, hence the term wavy scheduling for this type of solution.

Notation

In order to specify complete scheduling, a matrix r

n

m

indicating the ready

time of machine m at iteration n of the algorithm is used; these variables
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Figure 2: Example of One-Deadline Scheduling
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Figure 3: Example of Wavy Scheduling
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represent the accumulated work allocated to the machines at the deadline

d

n

; d

n+1

� r

n

m

is the time available on machine m for the next iteration.

In addition, s

n

m

is used to specify the start time of each setup. The basic

notations are presented in Table 1.

Indices

i 2 f1; 2g { product index

m 2 f1 : : :Mg { machine index

n 2 f1 : : : Ng { order and iteration index

� 2 M { gap index { M = f m� 0:1 : m = 1::M g

Data

t

i

{ setup time of product �

i

d; d

n

{ deadline of order n

q

i

; q

n

i

{ processing time demanded by product i in order n

Variables

r

m

; r

n

m

{ ready time of machine m at iteration n

s

m

; s

n

m

{ start of the setup on machine m at iteration n

[r

0

; d

0

]; [r

n

0

; d

n

0

] { scheduling gap at iteration n

R = (r; [r

0

; s

0

]; �) { ready time vector

m

0

= round(�) { machine with scheduling gap

Table 1: Basic Notations

Sharp Ready Time Vector

The algorithm works for the machines grouped according to the product

currently being produced and ordered according to the ready times within

the group. We assume that initial ready times satisfy r

m

�d

1

; 8m so that

each machine starts with a nonnegative available processing time d

1

� r

m

.

Machines are sorted by order of decreasing ready times in group 1 and by

increasing ready times in group 2. Such ordering is maintained throughout

the execution of the algorithm. A non-integer value � will thus be used

to separate the machines according to group, with a machine with index

m < � belonging to group 1 and one with an index m > u belonging to

group 2. Notice that any initial ready times can be transformed to satisfy
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these conditions by combining and eliminating scheduling gaps and reorder-

ing the machine indices. These properties give rise to a ready time vector

R = (r

1

; : : : ; r

M

; [r

0

; d

0

]; �).

For each iteration, the current ready time vector R is said to be sharp

because it satis�es the following conditions:

� there is an index � and at most one scheduling gap [r

0

; d

0

]

� machines with an indexm < � are working on product �

1

and the ready

times of these machines form a non-increasing sequence: r

m

�r

m�1

, for

1 < m < �

� machines with an indexm > � are working on product �

2

and the ready

times of these machines form a non-decreasing sequence: r

m

�r

m+1

, for

� < m < M

Each scheduling gap generated by the algorithm is characterized by a

gap index � and a net available processing time during the interval [r

0

; d

0

]

on machine m

0

. The initiation of the setup in the scheduling gap is �xed

later on in accordance with the jobs remaining to be allocated. Therefore,

d

0

+ t < d = d

n

, where t denotes the appropriate setup time: t

1

for product

�

1

or t

2

for product �

2

. In order to designate the machine with the scheduling

gap, a speci�c set of values M is assigned to �. When a scheduling gap is

created on machine m

0

which is working with product �

1

(�

2

), the gap index

is set to � = m

0

+ :1 (� = m

0

� :1) and the setup involved will be for product

�

2

(�

1

). Therefore, m

0

= round(�) and a machine m is working with �

1

whenever m < �, and with �

2

whenever m > �.

One-Deadline Problem

A scheduling problem with n deadlines is solved by solving a sequence of

n one-deadline problems. A one-deadline problem P = P (d; q; R) is de�ned

by a deadline d, processing time demands for both products (q

1

; q

2

), and a

sharp ready time vector R = (r; [r

0

; d

0

]; �) where r = (r

1

; : : : ; r

M

). If the

problem P is feasible, the algorithm produces a scheduling which is a new

ready time vector R

0

= (r

0

; [r

0

0

; d

0

0

]; �

0

) (characterized in the Appendix B)

with the following properties:

� this vector is sharp
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� there are three sets of adjacent machines, at least one of which must

be non-empty:

{ machines working with �

1

without additional setup (m < �; �

0

)

{ machines for which additional setup was necessary (if � 6= �

0

)

{ machines working with �

2

without additional setup (m > �; �

0

)

� all new setups are for only one of the products (�

1

or �

2

) and they form

a non-decreasing sequence in time, whereas the sequence of machine

indices will be either increasing (for �

1

) or decreasing (for �

2

)

In other words, such wavy scheduling is de�ned as a feasible scheduling

of P that requires time of exactly q

1

for product �

1

and q

2

for product �

2

; for

every positive integer k, given the �rst k setups with the last one allocated on

a machine m, the next setup, if one exists, is allocated at the earliest possible

time on the machine m + 1 (m � 1) whenever the setups are for product

�

1

(�

2

). This earliest possible time can neither cause infeasibility nor increase

the total number of setups. Clearly, if a setup for product �

1

(�

2

) needs to be

allocated, every machine working with this product is already occupied, and

the scheduling gap has been eliminated; hence, the setup will be allocated

to the machine with the earliest ready time (or greatest availability) of those

that are currently producing �

2

(�

1

). Therefore, every setup is allocated

at the earliest possible ready time s

m

= r

m

with the possible exception of

the �nal one, when a scheduling gap [r

0

0

; d

0

0

] may be created. In addition,

Theorem 1 shows that wavy scheduling is an optimal scheduling.

Wavy Scheduling

Consider a scheduling problem P

n

with n deadlines. The problem ob-

tained from P

n

by considering just the �rst n � 1 orders and deadlines is

denoted by P

n�1

. The wavy scheduling R

n

= (r

n

; [r

n

0

; d

n

o

]; �

n

) of P

n

is de�ned

as the scheduling produced with the one-deadline problem P (d

n

; q

n

; R

n�1

).

Therefore, R

1

; R

2

: : :R

n

denotes a sequence of wavy schedulings, representing

a solution which is greedy in relation to deadlines. Moreover, wavy schedul-

ings are extreme in the following sense:

Wavy Scheduling Property. Given any �rst k setups, with the last one

allocated on machine m, the next, if there is one, is allocated at the earliest

possible time on:
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� the same machine m, if setups k and k + 1 are for opposite products

� machine m + 1, if setups k and k + 1 are both for product �

1

� machine m� 1, if setups k and k + 1 are both for product �

2

Theorem 1 Wavy scheduling R

n

of a feasible problem P

n

is an optimal so-

lution.

Proof. Suppose that non-wavy

�

R is an optimal scheduling for P

n

. Using

wavy scheduling transformation presented in appendix C,

�

R is transformed

into a wavy scheduling R. This maintains feasibility and the number of

setups. Therefore, R represents optimal scheduling. On the other hand,

if P

n

does not admit wavy scheduling, then no scheduling is possible, i.e.,

Problem P

n

is infeasible.

Observation. The transformation is applied one deadline at time in order to

maintain feasibility. 2

Theorem 2 . Wavy scheduling simultaneously minimizes each one of the

following objectives:

� the number of setups for each product,

� the total number of setups,

� the total time for setups of each product,

� the total time for setups,

� any non-decreasing function of the number of setups for each product.

Proof. Theorem 1 can be used to prove the �rst objective concerning the

number of setups of each product, because no setups are added during trans-

formation. This means that the number of setups for each product will not

increase, nor will the sum of any regular function involving the number of

setups of each product. Since the other four objectives are regular functions,

involving only the number of setups, they will also be minimized. 2

Complexity Analysis

Theorem 3 . If the scheduling problem is feasible, then the algorithm ter-

minates with wavy scheduling; otherwise the problem is infeasible.

Proof. If P

N

is feasible, then, by Theorem 1, it has wavy scheduling, and the

algorithm constructs it. If the algorithm does not produce wavy scheduling

for a problem P

n

; n�N , then this problem is infeasible, which means that

P

N

is infeasible. 2
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Theorem 4 . The algorithm is strongly polynomial with time complexity

O(MN +M logM +N logN).

Proof. The algorithm constructs wavy scheduling with N iterations of

O(M), for a total of O(MN). However, if it is necessary to sort the M

machines initially to obtain sharp scheduling, O(M logM) should be added

to the total time complexity. Moreover, if it is necessary to sort according

to deadline demands, O(N logN) should be added to the total time com-

plexity. Moreover, since the algorithm executes only operations of additions,

subtractions, and comparisons, it is a strongly polynomial algorithm. 2

3 Conclusions

Scheduling is a rich area for NP-hard problems, which are usually ap-

proached by heuristics. This paper presents a routine for lotsizing and

scheduling jobs involving setups and deadlines on parallel machines which

is useful in the design of such heuristics. The traditional strategy of bal-

anced schedulings uses equal division of work among machines, whereas the

algorithm suggested here provides wavy scheduling, which tends to be un-

balanced (i.e., for each product, the end-of-scheduling of machines varies

greatly).

The proof for the theorem of wavy scheduling assumes that the initial

ready times satisfy r

m

�d; 8m. However, it is easy to modify the algorithm

so that when r

m

> d for some machine m then no allocation is made for this

machine and its ready time remains the same: r

0

m

= r

m

.

The algorithm is greedy in relation to deadlines. It is also possible to

develop another version of the same algorithm which would be greedy as far

as machines are concerned, making the same allocations as does the original,

but in a di�erent order. This leads to the belief that good heuristics to

deal with various orders and machines can be developed for extensions of the

model.

The results are due to the advantages of the model, including homogene-

ity from the use of identical machines and the bipolarity introduced by the

restriction to two products. It has been suggested [14] that an analogy can

be viewed between two-product and two-machine restrictions, but that the

former is relatively less explored. The restriction to two products implies
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di�culties in application, and the algorithms are not as exible as when the

number of machines is restricted. The latter situation leads to algorithms

that are easily adapted to situations where more machines are involved. Nev-

ertheless, looking at problems with two products can provide useful insights

for problems where more products are involved. In actual practice, grouping

various types of products as if they were a single one is indeed a common

planning strategy.

There would also be no special di�culty involved in extending the al-

gorithm to deal with issues of product availability (stock). Existing stock

must be used to ful�ll the most urgent orders, a situation which also applies

to problems with various products. Stock should not be preserved, since it

does not matter how many units of a product are in the inventory when

another product is needed. Only if no existing stock is available should work

be allocated to meet demands, �rst considering machines working the same

product, then the �lling of scheduling gaps, and �nally machines working

with the other product.

The algorithm produces a very suitable scheduling for situations where

cancellations of orders, acceptance of new orders, and even machines break-

downs can occur. If an order of deadline d

�n

changes, there are no alterations

on the partial schedulings of orders with deadlines d

n

< d

�n

and they can be

used to recompute the new optimal scheduling.

In addition, the wavy schedulings naturally minimize the number of ma-

chines needed. On the other hand, by interchanging allocations among ma-

chines it is possible to transform the wavy scheduling into a balanced optimal

scheduling with a di�erence of at most 2 setups for any pair of machines.

Appendices

A Algorithm

The algorithm is presented in Table 2 using an algol-like language with

comments between exclamation points (!). Each iteration of the algorithm

starts with a sharp ready time vector and constructs wavy scheduling, which

is used as a sharp ready time vector for the next iteration. Initial sharp ready

times are assumed.
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Algorithm Wavy Scheduling.

start with sharp ready time vector (r; �) satisfying

r

m

� d

1

; 8m, and r

0

< d

0

< d

1

for ( n 1::N ) do ! for every deadline !

d d

n

; q1 q

n

1

; q2 q

n

2

! assign � units of �

1

on a group 1 machine m !

for (m 1::b�c with q1 > 0 ) do

�  minfd� r

m

; q1g; q1 q1� �; r

m

 r

m

+ �;

! assign � units of �

2

on a group 2 machine m !

for ( m M::d�e with q2 > 0 ) do

�  minfd� r

m

; q2g; q2 q2� �; r

m

 r

m

+ �;

! assign � of �

1

on the scheduling gap !

if ( q1 > 0 ) then �  minfd

0

� r

0

; q1g; q1 q1� �;

if ( round(�) < � ) then r

0

 r

0

+ �; else s

n

round(�)

; d

0

 d

0

� �

! assign � of �

2

on the scheduling gap !

if ( q2 > 0 ) then �  minfd

0

� r

0

; q2g; q2 q2� �;

if ( round(�) > � ) then r

0

 r

0

+ �; else s

n

round(�)

; d

0

 d

0

� �

! assign setup and � of �

1

on a group 2 machine m !

for ( m b�c::M with q1 > 0 ) do

if ( t1 + q1 > d� r

m

)

then �  d� r

m

� t1; q1 q1� �; s

n

m

 r

m

; r

m

 r

m

+ �

! create a new scheduling gap !

else � m+ :1; r

0

 r

m

; d

0

 d� t1� q1; q1 0; ; r

m

 d;

! assign setup and � of �

2

on a group 1 machine m !

for ( m d�e::1 with q2 > 0 ) do

if ( t2 + q2 > d� r

m

)

then �  d� r

m

� t2; q2 q2� �; s

n

m

 r

m

; r

m

 r

m

+ �

! create a new scheduling gap !

else � m� :1; r

0

 r

m

; d

0

 d� t2� q2; q2 0; r

m

 d;

if ( q1 + q2 > 0 ) then stop (

0

problem is infeasible

0

)

Table 2: Algorithm of Wavy Schedulings
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B Characterization of One-Deadline Wavy Schedulings

The algorithm is presented with an M -vector of current ready times r

m

instead of a matrix. Setup times, however, are maintained in the form of a

matrix (s

n

m

). Although it would be possible to replace the matrix with two

vectors, the second being a setup counter, this was avoided to maintain a con-

stant notation. The largest (smallest) integer not larger (not smaller) than

� is designated as b�c (d�e). The maximum quantity of allocable processing

time Q

0

(j), Q

1

(j), Q

2

(j) obtained with jjj setups is de�ned as j setups of �

1

if j is positive or �j setups of �

2

if j is negative. These times are computed

recursively as follows:

j = 0

Q

0

(0) = r

0

0

Q

1

(0) =

P

m<�

(d� r

m

)

Q

2

(0) =

P

m>�

(d� r

m

)

j = 1 : : : bM + 1� �c

Q

0

(j) = (d� r

m

� t

1

)

Q

1

(j) = Q

1

(j � 1) +Q

0

(j � 1)

Q

2

(j) = Q

2

(j � 1)� (d� r

m

); m = b�+ jc

j = �1 : : : d��e

Q

0

(j) = (d� r

m

� t

2

)

Q

1

(j) = Q

1

(j + 1)� (d� r

m

); m = d�+ je

Q

2

(j) = Q

2

(j + 1) +Q

0

(j + 1)

Theorem 5 . A one-deadline problem P is feasible if and only if there is

an integer j 2 (��;M + 1� �) such that

q

1

� Q

1

(j)+Q

0

(j) q

2

� Q

2

(j)+Q

0

(j) q

1

+ q

2

� Q

1

(j)+Q

2

(j)+Q

0

(j)

The lowest value for jjj among those values of j that satisfy these conditions

is the minimum number of setups that can be used in optimal scheduling.

Proof. The expressions of Q

i

(j) represent wavy scheduling with j setups. 2

Theorem 6 . In a feasible one-deadline problem P , wavy scheduling S

0

=

S

0

(r

0

; �

0

) has the following assignments where jjj is the number of setups �xed

by the application of the previous theorem.

j < 0

�

0

= �+ j � 0:2; � > m

0

�

0

= �+ j; � < m

0

j = 0
�

0

= �

j > 0

�

0

= �+ j; � > m

0

�

0

= �+ j + 0:2; � < m

0
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1 � m < �; �

0

r

0

m

= minfd; r

m

+maxf0; q

1

�

P

`<m

(d� r

`

)gg

minf�; �

0

g < m < maxf�; �

0

g r

0

m

= d

�; �

0

< m �M r

0

m

= minfd; r

m

+maxf0; q

2

�

P

`<m

(d� r

`

)gg

�

0

= �

r

0

0

= minfd

0

; r

0

+maxf0; q

1

�

P

m<�

(d� r

m

)g; � < m

0

r

0

0

= minfd

0

; r

0

+maxf0; q

2

�

P

m>�

(d� r

m

)g; � > m

0

d

0

0

= minfr

0

; d

0

�maxf0; q

2

�

P

m>�

(d� r

m

)g; � < m

0

d

0

0

= minfr

0

; d

0

�maxf0; q

1

�

P

m<�

(d� r

m

)g; � > m

0

�

0

> �

d

0

0

= d� (jjj � t

1

+ q

1

� (d

0

� r

0

)�

P

m<�

0

(d� r

m

))

r

0

0

= r

m

0

0

+maxf0; q

2

�

P

m>�

0

(d� r

m

)g

�

0

< �

d

0

0

= d� (jjj � t

2

+ q

2

� (d

0

� r

0

)�

P

m>�

0
(d� r

m

))

r

0

0

= r

m

0

0

+maxf0; q

1

�

P

m<�

0

(d� r

m

)g

Proof. This follows from the allocations made by the wavy scheduling. 2

Theorem 7 The wavy scheduling of a one deadline problem P is character-

ized by the following:

� if a machine is fully occupied with �

1

(�

2

), then every machine with a

smaller (larger) index is fully occupied with �

1

(�

2

):

r

0

m

= d) r

0

m�1

= d; for 1 < m < �

r

0

m

= d) r

0

m+1

= d; for � < m < M

� if a machine is not fully occupied with �

1

(�

2

), then every other machine

with a larger (smaller) index is not fully occupied with �

1

(�

2

):

r

0

m�1

< d) r

0

m

= r

m

; for 1 < m < �

r

0

m+1

< d) r

0

m

= r

m

; for � < m < M

� if there is a scheduling gap for work of �

1

(�

2

), then the previous machine

is fully occupied with �

1

(�

2

):

�

0

= �; d

0

0

< d

0

) r

m

0

= d

�

0

= � < m

0

; r

0

0

> r

0

) r

m

0

�1

= d

�

0

= � > m

0

; r

0

0

> r

0

) r

m

0

+1

= d

� if the scheduling gap if totally �lled and a new one is created with a setup

of �

1

(�

2

), then a setup of �

1

(�

2

) is determined for each machine m between

�; �

0

, with each one fully occupied with �

1

(�

2

); moreover, the setup is �xed

at one of the extremes of the old scheduling gap.
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�

0

> � ) s

m

= r

m

; r

0

m

= d; for � < m < �

0

; r

m

0

0

�r

0

0

< d

0

0

+ t

1

< d

�

0

< � ) s

m

= r

m

; r

0

m

= d; for �

0

< m < �; r

m

0

0

�r

0

0

< d

0

0

+ t

2

< d

�

0

> � > m

0

or �

0

< � < m

0

) s

m

0

= r

0

�

0

> � < m

0

or �

0

< � > m

0

) s

m

0

= d

0

Proof. This follows from the allocations made by the wavy scheduling. 2

C Wavy Scheduling Transformation

.

These routines can be used to transform a feasible scheduling

�

R of a

scheduling problem P

n

into wavy scheduling

^

R of the scheduling problem

^

P

n

obtained from P

n

, but with the demands of the �nal deadline d

n

increased up

to the level of

�

R. The �nal routine eliminates production excesses, yielding

wavy scheduling R of P

n

.

Idle Gap Elimination. For every idle gap (i.e., time interval [s; t] in which a

machine is not in use, although it is producing the same product both before

and after the gap), the work scheduled at time t is moved forward to time s

(Figure 4). At this point,

�

R has no idle gaps.

m

�

1

(

�

1

idle gap

Figure 4: Idle Gap Elimination

Extra Scheduling Gap Elimination. For every pair of scheduling gaps 

1

; 

2

where the end of 

1

comes prior to the end of 

2

, the work scheduled after 

2

is transferred to 

1

until either 

1

or 

2

disappears; the gap 

1

should be �lled

from left to right or vice-versa, depending on the product which is involved

in the work transferred from 

2

. Making this transfer will guarantee that

at least one of the scheduling gaps will disappear. If 

2

increases and fuses

with another setup, then two setups can be eliminated. If 

2

increases until

no more work remains to be allocated, the setup of 

2

can be eliminated. If



1

decreases until no more work can be transferred, it is eliminated. In all

16



cases, the new scheduling is feasible and no worse than the old one. This

reasoning can be applied for any pair of gaps. The �nal scheduling will have

at most a single gap (see Figure 5). At this point, there is at most a single

scheduling gap.

m

0

m

�

1

(

)



1

�

2

�

1

�

2



2

*

Figure 5: Extra Scheduling Gap Elimination

Opposite Setup Delay. For every pair of opposite setups in a given deadline

interval [d

n�1

; d

n

], whether on the same machine or on di�erent machines,

both are delayed by interchanging the ensuing work until one of the setups

a) starts at the deadline d

n

, b) fuses with another setup so that both can

be eliminated, or c) has no more ensuing work so the �nal setup can be

eliminated (Figure 6). At this point, all setups between two consecutive

deadlines are of the same type.

m

�

1

)

t

2

�

1

�

2

)

t

1

�

2

�

1

d

n

d

n�1

Figure 6: Opposite Setup Delay

Scheduling Switch. Let � be the �rst setup of �

1

(�

2

) starting on a machine

m simultaneously with the production of the other product on the machine

m

0

< m (m

0

> m). For every such a setup, switch the work after the initial

� from one machine to the other so that the ensuing production of �

1

(�

2

)

will be on machine m, and that of �

2

(�

1

) on m

0

(Figure 7). At this point,

every sequence of adjacent setups of product �

1

(�

2

) forms an increasing

(decreasing) sequence of machine indices.
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m

0

m

�

1

�

�

2

�

1

m m m

Figure 7: Scheduling Switch

Setup Adjustment. Let �

1

be the �rst setup of

�

R which is postponed with

respect to the associated setup

^

R

n

m

of

^

R; this results in a lack of production

of the product during setup and implies the existence of a setup of the same

(opposite) product which has been moved forward (postponed). Let �

2

be the

�rst of such setups which is associated with ŝ

n

0

m

0

. For each pair of such setups,

�

1

is moved forward, and �

2

is delayed (moved forward) by transferring work

of both products back and forth from one machine to the other until one of

the setups matches on

�

R;

^

R. Feasibility is maintained because work moved

forward never causes infeasibility and delay transfers work to a position prior

to the deadline d

n

0

which gave rise to the original allocation of the setup �

2

.

At this point, the schedulings

�

R,

^

R match.

Observation. The objective of the setup adjustment routine is to force the

scheduling

^

R to satisfy the wavy scheduling property which requires setups to

be allocated at the earliest possible time. Although the routine is presented in

terms of setups of scheduling

^

R

n

m

, it is not necessary to assume the existence

of wavy scheduling

^

R. Setups are allocated, one by one, for each deadline,

in accordance with the formulae in the appendix B; each setup is �xed, with

the possible exception of the one associated with the current scheduling gap,

which depends upon the work demands of later deadlines. Even in this case,

the setup is determined prior to the allocation of any new setup. Therefore,

setups are examined one at a time, and work is transferred in order to move

each setup examined forward as much as possible without losing feasibility

with respect to �nal deadlines. Once a setup has been examined, it is �xed

for the execution of the rest of the routine.

Elimination of Excess Production. Eliminate the surplus production of

�

R

with respect to P

n

by applying the rules of construction of wavy scheduling

in the reverse order (Figure 9). At this point, the schedulings

�

R, R match.
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m

0

m

�

2

�

1

(

�

1

+ *

�

2

�

2

)

�

1

d

n

0

Figure 8: Setup Adjustment

m

�

1

�

1

excess

d

n

Figure 9: Elimination of Production Excess
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