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Abstract

The maximal semigroups with non-empty interior in a semi-simple Lie
group with finite center are characterized as compression semigroups of subsets
in the flag manifolds of the group. For this purpose a convexity theory, called
here B-convexity, based on the open Bruhat cells is developed. It turns out
that a semigroup with nonempty interior is maximal if and only if it is the
compression semigroup of the interior of a B-convex set.
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1 Introduction

The purpose of this paper is to characterize the maximal semigroups with nonempty
interior in semi-simple Lie groups with finite center. The principal result is Theorem
5.4 which gives a precise description of the maximal semigroups through their actions
on the flag manifolds of the group.

When studying semigroups embedded into groups many different questions have
a natural formulation and solution by means of the knowledge of the maximal semi-
groups on a specific group. This makes the problem of determine the maximal
semigroups one of the major problems in the theory of semigroups. For semigroups
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in Lie groups J. Lawson [7], appealing to the Levi decomposition of a Lie algebra,
divided the task of classifying — or at least understanding — the maximal semigroups,
by considering two main classes namely the semigroups of solvable type and those
of semi-simple type, according to the kind of Lie group containing them. In order
to understand the maximal semigroups in a general Lie group G it is required to
have a classification of these two types, and then mix them up in G. In [7] Lawson
himself provided a classification of the maximal semigroups with nonempty inte-
rior in solvable groups: There is a one-to-one correspondence between the maximal
subsemigroups and the half-spaces in the Lie algebra bounded by a hyperplane sub-
algebra. Thus for solvable groups the maximal semigroups have an algebraic nature.
This classification is extended to compact extensions of solvable groups in [7] (see
also Hilgert and Neeb [5]), and to semigroups in lattices of solvable groups (see do
Rocio and San Martin [10]).

In a semi-simple Lie group GG with finite center it was proved in San Martin
and Tonelli [13] that any maximal semigroup S C G with nonempty interior is a
compression semigroup of a subset C' of one of the minimal flag manifolds of G:

S=Sc={9eG:9CCC}.

However in order to have a complete picture of the maximal semigroups in G it is
required to find the appropriate family of sets C' such that S¢ is indeed maximal.
In [13] this was made only for the real rank one simple Lie groups. This paper pro-
vides the appropriate sets for general semi-simple groups, generalizing the rank one
case. The approach is through a convexity theory for subsets of the flag manifolds.
Precisely, we say that a subset of a flag manifold is B-convex if it is the intersection
of the open Bruhat cells containing it. This notion of convexity is formally defined
by a convex hull operator on subsets. This operator in turn comes from a duality
operator mapping subsets of a flag manifold into subsets of the dual flag manifold.
Once this convexity theory is settled we prove that a semigroup with nonvoid inte-
rior in G is maximal if and only if it is the compression semigroup of the interior of
a B-convex set in a minimal flag manifold. This same characterization also holds for
partial maximal semigroups in the following sense: From [13] we know that there are
different classes of semigroups with nonempty interior in a semi-simple Lie group,
namely, one class for each flag manifold of the group (see Section 4 below). A par-
tial maximal semigroup (©-maximal in the text) is a semigroup which is maximal
within the class given by a flag manifold. These partial maximal semigroups are also
described by compression and B-convexity, but now on the flag manifolds different
from the minimal ones.



Some simple examples show that the B-convex sets may be rather arbitrary
subsets. For instance for a real rank one group any subset of the flag manifold
is B-convex. Although in general B-convexity may be a stronger property, this
shows the existence of a great profusion of nonconjugate maximal semigroups in
semi-simple groups, making it hard — if feasible — to have a classification of them.
There is anything one can do about this. It is in the realm of the structure of
semi-simple Lie groups. However a further development of the theory of B-convex
sets may provide decisive tools in the investigation and application of the theory of
semigroups.

2 Preliminaries

In this section we set the notations and basic facts about semi-simple Lie algebras
and the associated flag manifolds which are used throughout the paper.

Let g be a noncompact semi-simple Lie algebra. We first make some standard
choices in g. Let # be a Cartan involution of g and g = €& s the associated Cartan
decomposition with € standing for the subalgebra of f-fixed points. Select a maximal
abelian subalgebra a C s and let Il stand for the set of restricted roots of the pair
(g,a). For a root v € 11 its root space is denoted by g,. Choose a simple system of
roots ¥ C II and denote by IIT the set of positive roots spanned by ¥. We let a®
stand for the Weyl chamber associated to IIT and

n =) ga

a€cll*

for the nilpotent subalgebras associated with ITT and II~™ = —II" respectively. De-
note by m be the centralizer of a in €.

The subalgebra p = m @ a @ nt is the standard minimal parabolic subalgebra
of g. More generally, if © # X is a subset of ¥ we denote by pg the parabolic
subalgebra

po =n" (O) D p.

Here n™ (0) is the subalgebra spanned by the root spaces g_,, o € (O), where (©)
is the set of positive roots generated by ©. Of course, p = py.

Let G be a Lie group with Lie algebra g. We assume always that G has finite
center. In this case the subgroup K = expt is compact. For ¢ € G and X € g
we put g - X for the adjoint action of g in X. The parabolic subgroup Pg is the



normalizer of pg in G:
P@:{gEG:g-p@:p@}.

Its Lie algebra is pg. The flag manifold Bg = G/Pg is realized as the set {g - po :
g € G} of parabolic subalgebras conjugate to pe. Alternatively, let nd stand for the
nilpotent radical (nilradical) of pe. Explicitly, n§ = > g, with the sum extended
through the positive roots outside (0). It is well known that the normalizer of ng
in g and G are pg and Pg respectively. Hence Bg is realized also as the subset
{g-no : g € G} of subalgebras conjugate to ng.

From these standard constructions the set of flag manifolds become parameter-
ized by the proper subsets of the fixed simple system of roots X. If ©; C O, are
subsets of ¥ then Py, C Po, so there is a natural fibration By, — B, given by
gPo, — gPo,. The maximal flag manifold By fibers over all Bg. It will be de-
noted simply by B. We denote these fibrations by 7, indistinctly of the specific flag
manifolds. If they are to be emphasized the projection is written 7r8; : Bo, — Bo,.

In the sequel it will be required the notion of the flag manifold dual to Bg: Let
W be the Weyl group of G and denote by wy € W its principal involution, that is,
the element of maximal length as a product of reflections with respect to the simple
roots in 3. Alternatively wy is the only element of W such that wy (X)) = —X. It
is well known that wy = —¢ where ¢ is an involutive automorphism of the Dynkin
diagram associated with . For the sake of simplicity we put ©* =+ (0), if © C X.
The flag manifold Be- is said to be dual to Bg. This notion is independent of the
choice of X.

Put N* = expn®. The decomposition of Bg into the N~-orbits is the Bruhat
decomposition of Bg. These orbits are given by N~ w - pg, with w € W, so that
its number is [W/Weg| where Wg stands for the subgroup of W generated by the
reflections with respect to the simple roots in ©. Just one of these orbits is open
and dense in Bg, namely N~ - pg. We refer to this orbit as an open (Bruhat)
cell in Bg. This open cell has an alternative description through incidence with
a nilpotent subalgebra, which will be largely used in the sequel. Let c¢g be the
nilpotent subalgebra spanned by the root spaces complementary to pg in g:

Co = Zga

with the sum extended through the negative roots outside —(©). Since the Cartan
involution € takes a root « into —a, it follows that ¢ = 0 (ng). However, n= =
6 (n") and n* normalizes nd hence cg is normalized by n~ and thus by N—.



Lemma 2.1 For a parabolic subalgebra q € Be the following statements are equiv-
alent:

1. q belongs to the open cell N~ - po,
2. qNcg =0 and
3. nNcg = 0 where n is the nil radical of q.

Proof: Take w € W with w - po # pe. Since w interchanges root spaces we have
that dim (w - po N¢g) > 1. Now N~ normalizes cg. Hence

N~ (w-pe Nco) C co

therefore any q € N~ w - pg has nontrivial intersection with c¢g. On the other hand
if ¢ =n-pe with n € N~ then qNcg = 0 for otherwise n™! - (gN¢cg) = p Nco
would have positive dimension. This shows the equivalence between the first two
statements.

The last equivalence follows the same way from the fact that w - nd Ncg # 0 if
w - Ppo # po (see [14, Prop. 1.1.2.13]). O

In the sequel we say that a subset o € Bg is an open cell if 0 = g (N~ - pg) for
some g € . Of course any such open cell is the open orbit of a group conjugate to
N~. By the above lemma an open cell is realized as the set of parabolic subalgebras
q € Bo which have null intersection with a conjugate of c¢g. Now we recognize the
set of conjugates of cg as the flag Bo- dual to Bg. In fact, since c¢g = 0 (ng) it is
the nilradical of the parabolic subalgebra 6 (pe). Hence the conjugates of c¢g are in
one-to-one correspondence with a flag manifold Bg/. To see that ©' = ©* observe
that the restriction of wyf to a is the involution ¢. Hence wyf (pe) = pe-. This
shows that the set of conjugates of # (pg) is Be- and thus this is the flag manifold
of the conjugates of cg.

Notation: The set of open Bruhat cells in Bg is denoted by Bg and its bijection with
Bo- by x € Be« — 0, € Bg. The complement of o, is denoted with k, = Bg \ 0.

It follows from the definitions that if ¢ € G' and = € Be- then go, = o, and
gKz = Kgy. Also, any projection 7 : Bg — Bes is equivariant so that 7 (o) € Ber if
o is an open cell in Bg.

From Lemma 2.1 it follows that if p € Bg and q € Bo- then p € oy if and only if
n(p) Nn(q) = 0 where n(p) stands for the nilradical of p. This implies at once the
following statement.



Proposition 2.2 Let v € By and y € Bo.. Then x € o, if and only if y € o,.

In the sequel we say that an element in g (respectively in G) is split-regular if
it is conjugate to some H € at (respectively h € AT = expa’). More generally,
X € g will be said to be O-regular if it is conjugate to H € cl (a™) such that

©={aeX:a(H)=0}

Analogously, g € G is ©-regular if ¢ = exp X with X a O-regular element of the
Lie algebra. Of course split-regularity and (-regularity are the same thing. If h € G
is ©'-regular then for any flag manifold Bg, with ©" C © there exists © € Bg and
o € Be with z € o and such that h'y — x for all y € 0. When this holds we say
that x is the attractor of A and o its stable manifold. In particular split-regular
elements have attractors and stable manifolds in any flag manifold. We denote by
o (h) the stable manifold of the regular element h.

More generally for a split-regular h its set of fixed-points in the maximal flag
manifold B is in bijection with W. These fixed-points are the same for every element
in the Weyl chamber A" containing h. Hence each Weyl chamber settles a bijection
of W with a subset of B. Sometimes it is convenient to emphasize which subset of
B is being considered. We do this by putting a subscript A*. Thus W,+ stands
for the Weyl group viewed as the subset of A*-fixed points in B. For h € A" a
fixed-point b is related to some w € W under the bijection. When this is the case
we say that b is the fixed-point of type w of h.

The following lemma shows that for any pair (x,0) with € o one can find
a regular element having = as attractor and o as stable manifold. It will be used
frequently in the study of maximal semigroups.

Lemma 2.3 Tuke 0 € Bg and x € o. Then there is a ©-reqular element h € G
such that x is its attractor and o = o (h).

Proof: Let by be the base point of Bg = G/Pg and 0 = N~ by. If ©' C O then by is
the attractor for any ©’-regular element in the closure of the Weyl chamber A" and
o is the stable manifold. Given x € o there exists n € N~ such that © = nby. So
that if h € clAT is ©'-regular then h; = nhn~! has x as attractor and o as stable
manifold. This shows the lemma for this specific o. Since G is transitive on Bg the
lemma follows by conjugation with arbitrary g € G. O



3 B-convexity

Roughly speaking a subset C' of a flag manifold Bg is said to be B-convex provided C
is the intersection of the open Bruhat cells containing it. This concept of convexity
is easier to develop with the aid of a convex hull operator on subsets of the flag
manifolds and a duality operator * that assigns to a subset C' of a flag Bg a subset
C* of the dual flag manifold Bg-. Precisely,

C* = {z € By : C C o, }. (1)

Of course this duality operator can be defined also for a subset D C Bg- giving rise
to its dual D* C Bg. Hence it makes sense to write C**, which is contained in Bg.
We put cog (C') = C** and call this subset the B-convezr hull of C.

Accordingly C'is said to be B-convez if C' = cog (C).

Following Goodman and Pollack [3] a convex hull operator co (-) deserving this
name must satisfy:

1. C C co(C) for any subset C,
2. co(-) is the identity on singletons,
3. co () is increasing with respect to inclusion of sets, and

4. co(+) is idempotent.

Let us discuss briefly these properties for the B-convex hull operator. For the
first one we distinguish the cases where C* is empty or not. Clearly the dual ()* of
the empty set is the whole dual flag manifold so that cog (C) = C** =Bg if C' C Be
and C* = (). Hence C' C cog(C) in this case. On the other hand a nonempty
subset C' is said to be admissible if C* # 0, i.e., if C C o0, for some y € Bg-. For
an admissible C' its B-convex hull is seen to be the intersection of the open cells
containing it. In fact, C** = {y € Bg : C* C 0,}. By Proposition 2.2, z € o, if
and only if y € o,. Since C* # ), it follows that y € C** if and only if y € o, for
all x € C*. But any Bruhat cell containing C' is o, for some x € C*, so that for an
admissible subset there is the alternative definition

cop (C) = ﬂ{a € Bo:C C o} (2)

Of course this implies that C' C cop (C'). Furthermore we note that if C' is B-convex
then either C' = (), By or C is admissible, for otherwise cos (C') = Bg.
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Since it is irrelevant to our purposes here we do not dwell on the B-convexity of
the singletons. We just note that if x,y € Bg then there exists 0 € Bg with © ¢ o
and y € o so that {y} is indeed B-convex. Finally the last two of the above listed
properties follow from the following statements about the duality operator:

Proposition 3.1 For a flag manifold Be it holds:

1. IfCl C 02 C IB@ then Cf D) C;
2. Let C C Bg. Then C* is B-convex in Bg-.

Proof:

1. Assuming that C) C Oy, take © € (5. Then Cy C o, so that C; C o,. This
implies that z € Cf.

2. If C is not admissible then C* = (), Bg- so that its B-convexity is trivial.
Assuming that C* # () we must check that C* = (C*)™. The inclusion
C* C (C*)™ is equivalent C* C cog (C*), showed above. On the other hand
take y € (C*)™. Then z € o, for every x € C**. In particular x € o, for all
x € C because C' is contained in C**. But this means that y € C*, showing
that (C*)™ c C*.

O

From this proposition we get easily the following properties of the operator
cog (+):

Proposition 3.2 For a flag manifold Be it holds:
1. If Cy C Cy then cop (C) C cop (Cy).
2. If C C Bg then cop (C) C cop (cop (C)).

Proof: The second statement is a consequence of the first one and the inclusion
C C cop (C). The first property follows immediately from 1. in the previous propo-
sition. 0



3.1 Examples

The examples below illustrates that the B-convex sets may be either rather arbitrary
sets or sets which resemble the standard convex sets in affine spaces or in Riemannian
manifolds.

1. In case g is a Lie algebra with real rank one there is just one flag manifold B
which is diffeomorphic to a sphere in some dimension. The Bruhat decompo-
sition of B has two components the open one and its complement which is a
singleton. Thus B consists of the subsets B\ {z}, € B. Therefore any subset
of B is B-convex.

2. Let g = sl(n,R). The flag manifolds are the standard manifolds of flags
of subspaces in R". In particular the Grassmannians, including the projec-
tive space, are flag manifolds of Lie groups associated with sl (n,R). Let us
focus attention to the Grassmannians Gry (n) of k-dimensional subspaces of
R™. A direct check at the isotropy subalgebras of the Sl (n,R)-action on the
Grasssmannians shows that the dual of Gry (n) is the Grassmannian Gr,_ (n)
of subspaces having complementary dimension. In more concrete terms this
duality is given by incidence between k-dimensional and (n — k)-dimensional
subspaces of R*. Indeed an open cell is the stable manifold of the attractor
for the action of a split regular element A in the group. In the present case
h is a diagonalizable matrix in Sl (n, R) having positive and distinct eigenval-
ues. If {ey,...,e,} is a basis of eigenvectors of h then the subspace spanned
by {ei,...,er} is the attractor of h in Gry (n). Its stable manifold is easily
seen to be the open and dense subset of k-dimensional subspaces transversal
to span{eg41, ..., e, }. This implies that for each U € Gr,,_j (n) its associated
open cell is

oy ={V € Grg(n) : VNU =0},

while ky is the set of k-dimensional subspaces meeting U nontrivially. It
follows that ) # C' C Gry (n) is admissible if and only if there is a (n — k)-
dimensional subspace U such that V NU = 0 for all V € C. Note that as
in the case of rank one groups there are rather arbitrary B-convex subsets in
the Grassmannians. In fact, for any admissible D C Gr,_y (n), its dual D* is
B-convex in Gy, (n).

For k =1 we can single out a nice class of B-convex sets, namely the classical
convex subsets in the projective space P !: Let W C R" be a pointed convex



cone and denote by W the set of lines in P*~! contained in W. Since W is
pointed W is admissible. Also, W is the intersection of the half-spaces in R®
containing it. Hence W is B-convex in P"~!. Of course not every B-convex set
is constructed this way from a convex cone.

3. We continue with g = sl (n,R). Let r = (r, <--- <ry,) be a sequence of
integers with 1 <y and r,, < n — 1 and denote by F(r) the manifold of flags

(ViC"'CVm)

of subspaces of R" with dimV; =r;. Put T = (n —r; <--- <n—ry,). Then
F(T) is the flag manifold dual to F(r). As in the Grassmannian case this can
be seen either by looking at the isotropy subalgebras or by verifying directly
that the open cells are given by incidence between the subspaces in a flag.
Indeed, if U = (U, C --- C Uy,) € F(TF) then

oy={ViC---CV,):VinU; =0,i=1,...,m}

is an open cell in F(r).

3.2 Topology

Up to this point we have considered B-convexity for arbitrary subsets of the flag
manifolds, looking at the incidence of parabolic subalgebras only. Now we consider
some topological properties of the duality and B-convex hull operators.

Since a flag manifold Bg is a homogenous space of G, it is endowed with the
quotient topology, rendering it a compact metrizable space. This topology is given
also by the embedding Bg in a Grassmannian, either by identifying it with the
subalgebras conjugate to pe or to ng. Here the topology in a Grassmannian is the
standard one. A basic property of this topology is: Let L be a vector space with
dim L = n. Denote by Gry (L) the Grassmannian of k-dimensional subspaces of L.
Suppose that & € Gry (L) and 19 € Gr,,_j (L) are transversal, i.e., Ny = 0. Then
there are neighborhoods A 5 £ and B 3 n in Gry (L) and Gr,,_ (L), respectively,
such that ENn =0 forall £ € A and n € B.

Now recall that an open cell o4, q € Be-, is the set of parabolic subalgebras in
Bo which are transversal to the nilradical n(q) of q. Since the dimension of n (q)
complements the dimension of any p € Bg, the above transversality property implies
the
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Lemma 3.3 Let x9g € Bg and yo € Bo- be such that yo € oy, and xy € oy,. Then
there are neighborhoods U > x and V' > y in Bg and Be- respectively such that
x€oyandy € oy, forallz e U andy € V.

Another basic property of the topology in the flag manifolds is related to se-
quences in the complements x, of the open cells oy:

Lemma 3.4 Let y; € Bo- be a sequence with limy; = y. If x € K, then there is a
sequence xj € Ky, such that limz; = x.

Proof: By transitivity of G in Be- there exists a sequence g; € G with g; — 1 and
such that y; = g;y. The required sequence is z; = g;r. In fact, z; € K, = g;r, and
T; — . O

From these lemmas we get the following topological properties of the duality
operator which are basic for the study of maximal semigroups.

Proposition 3.5 Suppose that C C Be is compact and admissible. Then C* is
open.

Proof: Suppose that C' # () # C* and take v € C and y € C*. From Lemma 3.3
above there are neighborhoods U, > x and V, 2 y such that z € o, for all z € U,
and w € V,. By compactness there is a finite covering

C CUyU---UU,,.

Then V =V, N---NV,, is a neighborhood of y contained in C*. O

Proposition 3.6 Suppose that C C Bg is admissible and intC' # (. Then cl (C*) C
o, for all x € intC. Hence ¢l (C*) C (intC)" and ¢l (C*) is admissible.

Proof: Take z € intC. Let y € cl(C*) and y; € C* be such that limy; = y. We
must check that x € o,. Suppose to the contrary that € x,. Then by Lemma 3.4
there is a sequence ; € k,, with limz; = x. This implies that x; € intC' for large
j. But this contradicts the fact that y; € C* C (intC')". O

Proposition 3.7 Let C' C Bg be open and such that c1C' is admissible. Then C* is
closed and int (C*) = (clC)".

11



Proof: Since C is open, Proposition 3.6 implies that cl(C*) C C* so that C*
is closed. Furthermore Proposition 3.1 implies that (cIC)" C C*. But (cIC)" is
open hence (cIC)* C int (C*). For the reverse inclusion suppose that there exists
z € int (C*) \ (clC)*. Then z € k, for some y € clC. Take a sequence y; € C such
that limy; = y. By Lemma 3.4 there exists a sequence x; € k,, with limz; = z.
Hence, for large j, ; € int (C*) C C* and x; € K, with y; € C, which is a contra-
diction. a

Applying this proposition twice we get the following information about the B-
convex hull of a closed subset.

Proposition 3.8 Let C C Bg be closed admissible subset with intC' # (). Then
cop (C) is closed and has nonempty interior

int (cos (C)) = (el (C7))".

Proof: Proposition 3.5 implies that C* is open hence cog (C') = C** is closed. The
above proposition applied to C* implies that

int (C**) = (cl (C*))*.

This open set is not empty because cl (C*) is admissible as follows from Proposition
3.6. O

3.3 Invariance

The relevance of B-convexity for semigroups in G stays in the following invariance
properties of the dual and the B-convex hull operators.

Proposition 3.9 Let g € G and C C Bg. Then (gC)* = g (C*).

Proof: Take a parabolic subalgebra p € C* and denote by n its nilradical. By
definition g Nn = 0 for every parabolic subalgebra q € C'. Now ¢ - n is the nilradical
of g - p, and

g-ang-m=g-(aNn)=0
if ¢ € C. This implies that g - p € (¢9C)* and hence that g (C*) C (¢C)*. Applying
this inclusion to gC' and g~' we have ¢g=!((gC)*) C C* so that (gC)" C ¢ (C*),
concluding the proof. O
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Corollary 3.10 Let g € G and C C Bg be such that gC C C. Then g~ (C*) C C*.

Proof: By Proposition 3.2 (¢C')* D C*. Hence by the above proposition g (C*) D C*
which is equivalent to g=! (C*) C C*. O

Corollary 3.11 Let g € G and C C Bg. Then g (cog (C)) = cog (9C). Therefore
gC' s B-convex if C' is B-convex.

Proof: Follows from the proposition and the equality cop (C') = C**. O

We can state now that the B-convex hull operator maps invariant subsets into
invariant subsets. This will be essential in the description of maximal semigroups.

Proposition 3.12 Let g € G and C C Bg be such that gC C C. Then g (cop (C)) C
cog (C).

Proof: Follows immediately from the previous corollary and Proposition 3.2. O

Finally we have the following localization type property of the B-convex sets:

Proposition 3.13 The family of open B-convex sets is a basis for the topology of
Be .

Proof: Let C' C Bo- be a compact admissible subset with intC' # (). From the
previous section we know that C* is open and its closure is admissible. Clearly C*
is an open B-convex set. From it we generate a basis for the open sets in Bg. First
take x € C* and an open cell o0 D clC*. By Lemma 2.3 there exists a split-regular
h € G such that z is its attractor and ¢ = o (h). The sequence h* contracts o into
x as k — 4o00. Since cl (C*) is a compact subset of o, the contraction is uniform
in ¢l (C*). This means that for any neighborhood U of x there exists a ky > 0 such
that h*C* C U for k > ky. This shows that the open B-convex sets form a basis for
the neighborhoods of z. The corollary follows then by transitivity of G' and the fact
that ¢ € G maps B-convex sets into B-convex sets. O
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4 Semigroups

In this section we consider the action on the flag manifolds of semigroups in semi-
simple Lie groups. We complement the results of San Martin [11] and San Martin
and Tonelli [13], paving the way for the characterization of the maximal semigroups.

4.1 Topological introduction

Before looking at the semigroup actions on the flag manifolds we recall some termi-
nology of topological nature which hold in a more general context. In this subsection
we let G be a topological group acting continuously in a compact topological space
M. Let S C G be a semigroup with intS # 0.

Its action on M induces the pre-order relation © < y if y € ¢l (Sx), z,y € M.
Let ~ be the equivalence relation associated with <, namely x ~ y if x < y and
y = x. The pre-order in M induces a partial order in the quotient M/ ~ which is
also denoted by <.

A control set for S in M is an equivalence class D of ~ having the property that
there exists € D and g € intS with gz = z. Given a control set D the fixed-point
set

Dy={x € D:dg € intS, gz =z}

is known to be open and dense in D. It is named the core or set of transitivity of
D (see [13]). This second name comes from the fact that for every x,y € Dy there
exists g € S such that gx = y. We denote by D (S) the set of control sets of S. It is
partially ordered by < in M/ ~. In case M is compact there are invariant control
sets. These are the control sets which are maximal with respect to <. They are
closed subsets of M. The same way there are minimal control sets. They are open
and coincide with the cores of the invariant control sets of the inverse semigroup
St ={g7':ge S}
The domain of attraction A (D) of a control set D is defined by

AD)={x e M:3g € S,gx € D}.
For a subset C' contained in M we denote by S¢ its compression semigroup in G-
Se={9eG:gC CC}.

A quick glance at this expression is enough to show that if C' = cl(intC) then
Sc = Sins(c)- We refer to Colonius and Kliemann 2] for a detailed development of
these concepts in the context of control systems.
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4.2 Flag manifolds

We return here to the flag manifold setting with S a semigroup with nonvoid interior
in the semi-simple group G.

Consider for a moment the maximal flag manifold B = By. From [13] we know
that for each w € W there exists a control set D (w) such that x € D (w), if and
only x is the w-fixed point for some split-regular h € intS. Moreover, any control
set D is D (w) for some w € W. The assignment w — D (w) permits to single
out, from S, a flag manifold B(S) as follows: Take a split-regular h € intS and
denote by AT = exp a® the Weyl chamber containing h. Recall that we write W+
to emphasize the bijection of W with subsets of B. Let 1 € W4+ be the identity.
Then the control set D (1) is the only invariant control set in B. The same way the
control set D (wy) is the only minimal control set in B where wy is the principal
involution of W.

The subset Wy+ (S) = {w € W : D(w) = D (1)} is a parabolic subgroup of
W+, that is, it is generated by the reflections with respect to the simple roots in
a proper subset O (S) C X. Here ¥ is the simple system of roots associated with
at. We put B(S) = Be(s). A decisive property of this special flag manifold is that
the invariant control set of S on it is an admissible subset, i.e., is contained in open
Bruhat cells. Precisely,

Proposition 4.1 With the above notations let C C B(S) be the invariant control
set. Then C is contained in the stable manifold o (h) for any split-reqular h € intS.

Moreover if © C © (S) and 7 : Bg — B(S) is the canonical fibration then = (C)
is the invariant control set for S in Bg.

Proof: See Proposition 4.8 and Theorem 4.3 in [13]. O

In the sequel we say that the semigroup is of type © if © (S) = O, i.e., B(S) = Be.
We emphasize that any proper semigroup with nonempty interior is of type © for
some ©. Furthermore if S C T are semigroups with nonempty interior then any
control set of S is contained in just one control set of 7', and 7" is of type ©' D O if
S is of type O.

Another information provided by the subgroup Wj+ concerns the number of
control sets in the flag manifold Bg. It is given by the order of the double coset
space Wa+ \W/We, where W is the parabolic subgroup generated by the reflections
in O.
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For a semigroup of type O its invariant control set in Bg is an admissible subset
which is the closure of its interior. The next proposition complements this statement
by showing that every subset of Bg having these properties is the invariant control
set of some semigroup of type O.

Proposition 4.2 Suppose that the admissible subset C C Bg satisfies C' = cl (intC').
Then the compression semigroup

Sce={9eG:9CCC}

has nonempty interior. Moreover C is the invariant control set of S¢ in Bg, Cy =
intC' and S¢ s of type O.

Proof: Take x € intC' and let o be an open cell containing C. By Lemma, 2.3 there
exists a split-regular h € G such that x is its attractor and o = o (h). The sequence
h¥ contracts o into  as k — +o00. Since C is a compact subset of o, the contraction
is uniform in C'. This means that for any neighborhood U of = there exists ky > 0
such that h*C C U for k > ky. In particular if we take U C C we find that g = h*°
belongs to S¢. Furthermore the subset {f : f (C) C U} is open in the compact-open
topology on the continuous maps of Bg. By the continuity of the G-action we have
then that g € intS¢ showing the first part of the proposition.

For the second statement note that C'is invariant under Sc. Moreover, we found
a split-regular g € intS having = as attractor for arbitrary x € intC. This implies
that C is the invariant control set of Sg because the core of the invariant control
set contains the attractors for the split-regular elements in intS. O

5 Maximal semigroups

A subsemigroup S of a group L is said to maximal if it is not a group and there
is no semigroup 7' # L containing S properly. A well known fact in the theory of
subsemigroups of topological groups is that any semigroup with interior points is
contained in a maximal semigroup, which by force is closed. See Hilgert, Hofmann
and Lawson [4] for a proof using the Lemma of Zorn.

For semigroups with nonempty interior in semi-simple Lie groups we can enlarge
the notion of maximality by taking into account the type of the semigroup. As
before let G be a semi-simple Lie group.
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Definition 5.1 We say that a semigroup S C G with intS # 0 is ©-mazximal or
mazimal with respect to Be if it is of type © and is not properly contained in any
semigroup of type O.

It will be proved below that the ©-maximal semigroups are essentially the com-
pression semigroups of the B-convex sets in Bg. Before providing the proof for this
fact we make the following remarks:

Let S be a ©-maximal semigroup and denote by C' its invariant control set in
Bo. Since C' is S-invariant if follows that S C Sc where S¢ is the compression

semigroup
Sce={geG:gC CC}.

By Proposition 4.2, S¢ is of type ©. This shows that if S is ©-maximal then S is the
compression semigroup of its invariant control set in Bg. Suppose there is @ #£ ¥
containing © properly and let 7 : Bg — Bg/. Then 7 (C) is admissible in Bg .
Moreover int (7 (C')) is dense in 7 (C') because 7 is an open map. Hence Sy(c) is of
type ©' by Proposition 4.2. Since 7 is equivariant under the actions of G in Bg and
Be: it follows that S C Sr(¢). This inclusion is proper. In fact, the invariant control
set of Sy(cy in Bg is 77! (m (C)) because Sy(c) is of type ©'. But C' is admissible
hence C # 7! (7 (C)) so that 7=! (7 (C')) cannot be the invariant control set of S in
Bg. This shows that any semigroup of type © is contained properly in a semigroup
of type © D O if © # ©'. In particular a ©-maximal semigroup is not maximal
unless O is maximal in ¥, that is, the complement of a singleton. In this case Bg is
a minimal flag manifold.

Conversely, if © is maximal and S is a ©-maximal semigroup then S is maximal.
In fact, if 7' C S and T' # S then T is of type ©' D ©. Since S is ©-maximal this
implies that ©" # ©, but then 7" can not be a proper semigroup.

Now, thanks to the invariance of the B-convex hull of a subset it follows easily
that a ©-maximal semigroup is the compression semigroup of a B-convex set in Bg:

Proposition 5.2 Suppose that S is a ©-maximal semigroup and denote by C' its
invariant control set in Bg. Put K = cl(int (cog (C))). Then C = K and

S=Sc={9eG:9CCC}.

Proof: If g € S then gC C C so that Proposition 3.12 ensures that g (cog (C)) C
cog (C). By continuity gK C K. Hence S is contained in the compression semi-
group Sk of K. By definition of a semigroup of type O, C' is admissible in Bg.
This implies that K is contained in an open cell o of Bg. It follows that K is a
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nonempty admissible subset satisfying K = cl (intK). Therefore Proposition 4.2
implies that Sk is of type ©. Now by assumption S is ©-maximal. Hence S = Sk.
Invoking Proposition 4.2 again we have that the invariant control set of S is K so
that ' = K concluding the proof. O

This proposition has the following converse which ensures that the compression
semigroup of the interior of a B-convex set is maximal.

Proposition 5.3 Let C C Bg be a proper closed B-convex set with intC' # (). Put
K =cl(intC). Then the compression semigroup Sk is ©-mazimal.

Proof: By definition of B-convexity C' is admissible. Proposition 3.8 then implies
that K is admissible. Since K = cl(intK) it follows from Proposition 4.2 that
intSxg # 0, Sk is of type © and K is the invariant control set of Sg. To see
the ©-maximality take a semigroup 7T of type © with Sx C T. Denote by D the
invariant control set of 1" in Bg. From Sx C T it follows that K C D. Now, Sk
is a compression semigroup and D is T-invariant. Hence it is enough to show that
K =D to get T C Sk and thus Sg =T.

We prove first that D C cog (K). Suppose to the contrary that there exists
y € D\ cog(K). By definition of B-convexity there exists an open cell o € Bg
such that K C o and y ¢ 0. Take x € intK. From Lemma 2.3 there is a split-
regular h € G such that x is its attractor and o = o (h). Arguing as in the proof of
Proposition 4.2 we can assume, after substituting h by some of its powers h*, p > 1,
that h € intSk.

The limit yo = lim;_, ;o A7y is a fixed point of h different from the attractor x
because y ¢ o (h). Since h € intSk there exists a control set, say E, of Sk such
that yo € Ey. The fact that yg is not the attractor of h implies that £ # K. On the
other hand h € T', y € D and D is closed and T-invariant. Hence yy € D. But £ is
entirely contained in a control set of T'. Therefore £ C D.

Now, both Sk and T are of type © so that they have the same number of control
sets in Bg. Since any control set of Sk is contained in a control set of T', the existence
of E # K with K, E C D is a contradiction. This shows that D C cop (K).

Therefore intD C int (cog (K)). But int (cos (K)) = intC' by Proposition 3.8.
On the other hand D = cl (intD) because it is the invariant control set of a semi-
group with nonvoid interior. Hence D C cl (intC') = K. This implies that 7" = Sk,
showing that Sk is ©-maximal. O
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We summarize the previous remarks and the above two propositions in the fol-
lowing final characterization of maximal semigroups in semi-simple Lie groups.

Theorem 5.4 A semigroup S is ©-mazimal if and only if there is a B-conver set
C with intC # () such that S = Sk, the compression semigroup of K = cl (intC). In
this case K is the invariant control set of S in Be and cog (K) C C.

A semigroup S 1s maximal if and only if Be is a minimal flag manifold and S is
O-mazximal.

6 Miscellanea

In this section we prove further results about maximal semigroups and provide some
examples.

6.1 Duality and minimal control set

Since a ©-maximal semigroup S is the compression semigroup of its invariant control
set C' every object related to S is in principle obtained from C'. We indicate here how
the control sets of S on the flag manifolds are obtained from C', determining in detail
the minimal control set from the duality operator. The minimal control set is the
core of the invariant control set of S™t = {g~!: g € S} so we start by discussing this
semigroup. Clearly S~! has nonvoid interior if and only if intS # (). A consequence
of Corollary 4.6 in [13] is that B (S™') is the flag manifold dual to B(.S). Since there
are imprecisions in the statement and in the proof of that corollary we offer here a
version of it.

Proposition 6.1 Take a split-reqular h € intS and let AT = expa®™ be the Weyl
chamber containing h. Then

Wa- (S71) = Wa+ (9) (3)
where A~ = (AT)",

Proof: Let by be the attractor of A and wy the principal involution with respect to
at. We have wyA™ = A~ and that wyby is the repeller of h that is the attractor of
h=!. Let C and C~ be the invariant control set for S and S~! in B, respectively.
By definition w € Wy+ (S) if and only if D (w) = C. This means that wby € C
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because wby is the w-fixed-point of h and hence wby € D (w). By Theorem 4.5 in [13]
D (wwy) = D (wyp). In fact, this theorem ensures that W+ (S) wwy = W+ (S) wy
is a consequence of w € Wy+ (S). Since wy is the principal involution D (wy) is the
minimal control set, which is given by Cjy. Then we get from D (wwg) = D (wyp)
that wweby € C~. On the other hand wwyby = w (woby) is the w-fixed point for h~*
because woby is its attractor. Hence wwyby € C~ implies that w € Wy- (S71).
Therefore we have Wy« (S) C Wy- (S71). The reverse inclusion follows from
this after remarking that S = (S=1)™" and At = (A7) " O

From this proposition we can define B(S) and B (S~!) by taking the same Weyl
chamber AT as reference. In doing this it emerges that B (S™!) is the dual of B (5).

Take a split-regular i € intS and assume without loss of generality that h € A*.
If 3 is the associated simple system of roots then W+ (S) is generated by reflections
with respect to the subset © (S) C X. By formula (3) Wy- (S™!) is generated by
the same set of reflections. However by definition of W,- (S™1) we must look the
generators of this subgroup in the subsets of —X. This is of course —O. Hence the
parabolic subalgebra associated to W,- (S7!) is

Po=p+n"(O) (4)

where n* (©) is the subalgebra spanned by g, with & € —(—0) = (©) and p is the
standard minimal parabolic subalgebra. Then B (S™!) = G/Pg. Now wy (—0) =
1O and wopg = Pre where

pro =p+n" (1O)

and n~ (7O) is spanned by g_, with @ € (:0). Hence B(S™ ') = B,(e) the dual of
B(S) = Bg. Summarizing

Proposition 6.2 The flag B(S™!) is the dual to B(S).

Returning to the maximal semigroups suppose that S is ©-maximal. Then S—*
is ©*-maximal. In fact, by Proposition 6.2, S~! is of type ©*. If T D S~!is a
semigroup of type ©* then S C 7! and 77! is of type ©. Hence S = T~! showing
that S~! is ©*-maximal. With this in mind we can describe S—! as a compression
semigroup.

Proposition 6.3 Let S be a O-maximal semigroup and denote by C' its invariant
control set in Bg. Then the invariant control set of S™' in Be~ is cl (C*). Moreover
S~1 s the compression semigroup Sei(c)-
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Proof: From the S-invariance of C it follows that C* is invariant under S—!
(see Corollary 3.10). Hence ¢l (C*) is S~'-invariant so that S C Sgc+). But
cl(C*) = (intC)" hence by Theorem 5.4, Sg(c+) is ©*-maximal. The equality
S~ = Syc-y follows then by the ©*-maximality of S~ O

This proposition allows the determination of the minimal control sets of the
maximal semigroup S = S¢. In fact, in any flag manifold the minimal control
set of S is the set of transitivity of the invariant control set of S~'. Keeping the
above notations, the invariant control set of S7! inBg. is D = c¢l(C*) and its
set of transitivity is Dy = int (cl (C*)), which contains C* densely. Moreover, let
7 : B — Bo- be the fibration from the maximal flag manifold. Then 7=! (D) is the
invariant control set for S™! in B and its core 7! (Dy) (see Proposition 4.1). Also,
if Ber is any flag manifold, the projection 7o : B — Beor maps control sets and their
cores into control sets and cores respectively. Hence the minimal control set for S
in B is mer (7 (Dy)). Since the projections between the flag manifolds and their
inverse images preserve closures and interiors of subsets we get the minimal control
set as the interior of the closure of e/ (77! (C*)).

The subset 7o (7! (C*)) is easily described in terms of incidence of parabolic
subalgebras and their nilradicals: Think of a point x € Bg+ as being the nilradical
of the corresponding parabolic subalgebra. Viewing the elements of B as minimal
parabolic subalgebras the fiber 771{x} is the set of minimal parabolic subalgebras
containing x. On the other hand, if y € B then 7g/ (y) is the only parabolic subalge-
bra in Bes containing y. Hence the parabolic subalgebras in 7o/ (7 ~'{z}) contain z.
Reciprocally if z € Ber is a parabolic subalgebra containing « then there is a minimal
parabolic subalgebra y € 75 {2} containing x so that z € me/ (7~ *{z}). Therefore
me (m{z}) is the set of parabolic subalgebras in Bes containing the nilradical .
Thus from the previous paragraph we can state:

Proposition 6.4 Let S = Sc be a ©-mazimal semigroup. Given a flag Ber denote
by C* the set of parabolic subalgebras in Be: containing the nilradical of the parabolic
subalgebras in C* C Bg«. Then the minimal control set of S in Ber is int (cl (C*))

We mention by pass that the other control sets, or more precisely their cores, are
determined from the invariant and the minimal control sets. This is true not only
for maximal semigroups but for an arbitrary semigroup S with nonvoid interior.
The idea is that for any control D of S there is a control set D~ of S~! such that
(D7), = Dy. The intersection of their domains of attraction (under the actions of S
and S™! respectively) is Dy. Now in [12] it was proved that the domain of attraction
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of a control set D (w) of S is built from the minimal control set and an algebraic
property of w, namely its minimal decomposition as product of simple reflections.
In a symmetric way the domain of attraction of D (w)~ depends only on w and
the minimal control set of S~!, that is, the invariant control set of S. With this
construction it is possible to describe the cores of the control sets by incidence of
parabolic subalgebras. Since this is not specific for maximal semigroups we leave
outside the details.

6.2 Maximal semigroups containing a given semigroup

As mentioned above any semigroup with nonvoid interior in a topological group is
contained in a maximal one. This very general fact can be improved in our context
by means of Theorem 5.4. Starting with a semigroup S of type © let C' be its
invariant control set in Bg. Then cop (C) is S-invariant and the arguments in the
proof of Proposition 5.2 ensure that S is contained in the ©-maximal semigroup Sk
where K = cl (int (cog (C))). Also, if © C ©' then the projection 7 : Bg — Ber
is defined and the same argument applied to 7 (C') instead of C shows that S is
contained in a ©'-maximal semigroup. In particular we recover the general result
that there exists a maximal semigroup containing S.

In general a semigroup S of type © can be contained in several ©'-maximal semi-
groups if © C ©', according to the B-convex sets left invariant by S. The following
statement shows that sometimes there is uniqueness of the maximal semigroup con-
taining S.

Proposition 6.5 Let S = S¢ be a O-mazimal semigroup with C' = cl (intC') a B-
convex set. Suppose that for © C ©', w(C) is B-convex in Ber. Then Sy is the
only ©'-mazximal semigroup containing S.

Proof: From Theorem 5.4 it follows that C' is the invariant control set of S in Bg
hence the S-invariant control set in Bg is 7 (C). In particular 7 (C) is S-invariant
so that S C Sy(c). By assumption 7 (C) is B-convex. Moreover, int (7 (C)) is dense
in 7 (C) because 7 is an open map. Applying Theorem 5.4 again it follows that Sy ()
is indeed ©'-maximal. Now let 7" be a ©’-maximal semigroup containing S. The
the invariant control set of 7" in Ber, say D, contains 7 (C). Of course T' = Sy(¢ if
D = 7 (C). On the other hand the arguments in the proof of Proposition 5.3 show
that D # 7 (C') contradicts the assumption that 7" is of type ©'. O
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6.3 Examples
6.3.1 Total positivity

A square matrix with real entries is said to be totally positive provided its minors of
all orders are nonnegative numbers. It is well known that the set of totally positive
matrices in Sl(n,R) is a semigroup with nonvoid interior. We consider here the
maximality properties of a semigroup slightly larger than 7: An n X n matrix is
said to be sign-regular if for every £k = 1,...,n — 1, its minors of order k£ have the
same sign. The semigroup 1" of sign-regular matrices clearly contains 7. It is a
compression semigroup as shows the following constructions.

Let Ay = A" R" be the k-fold exterior product of R*. The Grassmannian Gry, (n)
embeds into the projective space of Aj as the set of lines spanned by the decom-
posable elements. Analogously the Grassmannian Gr; (n) of oriented k-dimensional
subspaces, which is a two-fold covering of Gry (n) embeds in a sphere of Aj. For
g € Sl(n,R) denote also by g the induced linear map of Ax. Both Grassmannians
Gri (n) and Gr;f (n) are invariant under g € Sl (n, R).

Let 0, = {e1,...,e,} be the standard basis of R” and f, = {ef = e;, A---Ae; }
where I = (i; < --- < i) the basis induced in Aj. This basis is orthonormal with
respect to the inner product (-,-) in A coming from the standard inner product in
R™. The positive orthant in Ay is determined by the inequalities (e;,-) > 0. We
denote by Oy its intersection with the oriented Grassmannian Gr; (n):

O = {v € Gr} (n): (v,er) >0 for all I}.
Consider the compression semigroup
T, = {g e Sl (TL,R) : g0y C Ok}

Since the k-minors of g are the entries (ger, e;) of the matrix of g, with respect to
Bk, it follows that g € T} if and only if all its minors of order k are nonnegative.
Hence

T:Tlﬁ---ﬂTn_l.

Put Cj, = 7 (O) where 7 : G} (n) — Gry (n) is the canonical projection and set
Tk = {g e Sl (TL, R) cgCy C Ck}

It is easily checked that g € T}, if and only if either g € T}, or all the k-minors of ¢
are negative. Hence o )
T:Tlﬁ---ﬂTn_l.

Now we verify that C} is B-convex. This will be a consequence of
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Lemma 6.6 ForV ¢ int (Cy) let V* be its orthocomplement in R*. Then V* ¢ Cf,
i.e., there exists W € Cy with diim (W NV+) > 1,

Proof: Take a basis {vy,...,vt} of V and let v = vy A --- A vy be the associated
decomposable vector in Ay.

If V' is in the boundary of Cj then (v,e;) = 0 for some basic element e; =
ey, N+ Ney. Put Ef = span{e;,...,e; }. Then (v,e;) = 0 is equivalent to
dim (EI N VL) > 1. Since E; € C}, this shows the lemma in case V' € C},.

Assume that V' ¢ C}, and consider the continuous map

fo:w € Grf (n) — (v,w) € R

By definition of Cy it follows that v ¢ £O so that there are indices I, J such that
(v,er) > 0 and (v,e;) < 0. Let A be the subgroup of diagonal matrices with pos-
itive eigenvalues. This subgroup is connected and leaves invariant the orthant Oy.
Moreover it is easy to find g,h € A and z € O such that ¢’z — e; and hiz — e, as
t — +00. Hence f, assumes positive and negative values in Az, implying that there
is w=w; A--- Awy in O such that (v,w) = 0. Put W = span{wy,...,wx}. Then
(v, w) = 0 means that dim (W N V=) > 1. Since W € Cj, this shows the lemma. O

This lemma shows immediately that if an (n — k)-dimensional subspace U be-
longs to C} then its orthocomplement U+ belongs to int (Cy). Reciprocally, take
V,W € int (Cf) and choose bases {vy,...,vc} and {wy,...,wg} of V and W respec-
tively such that v = vy A -+ Avg and w = wy A --- A wy, are in int (Ok). Then
(v,w) > 0 because Oy is in an orthant defined by an orthonormal basis. Hence
VWL =0=WnV*so that V4, W+ € Cf. Therefore

Cy ={V+:V eint(Cy)}.
The above lemma also shows that V' ¢ C;* if V' ¢ Cy so that Cy = C;* is B-convex.
Therefore,

Proposition 6.7 T}, is mazimal for allk=1,...,n— 1.

We leave aside further discussions about the semigroup 7, but mention that a
similar approach shows for any sequence r = (1 < - -+ < 1), the semigroup

T.=1,N---N1T,,
is maximal with respect to F(r). In particular T is maximal with respect to the
maximal flag manifold.

We refer to Ando [1] for a survey about totally positivity matrices. See also
Lusztig [8] and references therein for a generalization to semi-simple groups.
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6.3.2 A class of compression semigroups

The following example is a particular instance of the compression semigroups con-
sidered by Hilgert and Neeb [6]. Let @ be a quadratic form in R" with matrix

< Lixk 0 )
0 —lu-mxm-r

Denote by f the corresponding nondegenerate bilinear form. Let C' C Grg (n) be
the set of subspaces where () is positive semi-definite and consider the compression
semigroup S¢ as a subsemigroup of Sl(n,R). The continuity of () ensures that
C = cl(intC). Moreover, let U € Gr, 4 (n) be such @ is negative definite on U.
Then @) is negative definite in any subspace of U. This implies that V NU = 0 for
all Ve C. Hence C C op so that C is admissible and U € C*. Therefore S has
nonempty interior and is of type Gry (n).

Denote by D C Gr,_ (n) the set of subspaces where () is negative definite. We
have just seen that D C C* or equivalently C' C D*. We claim that C' = D*. To
check this use the well known fact that if W C R" is a subspace with dimW < n—k
and such that @) is negative definite in W then it extends to a subspace U DO W
with dim U = n — k and () negative definite in U.

Now suppose that there exists V' € D* such that () is not positive semi-definite
in V. Then there is a subspace W C V where @) is negative definite. Since W
extends to an element of D this contradicts the fact that V' is transversal to every
element of D. Hence D* C C' and C' = D*.

Therefore C' is B-convex which implies that S is maximal of type Gry (n), and
hence maximal in Sl (n, R).

6.4 Remarks and questions

Although Theorem 5.4 gives an exact characterization of the maximal semigroups in
terms of B-convexity it is far from of being conclusive for the full understanding of the
maximal semigroups. Specially in what concerns specific classes of semigroups, like
e.g. connected semigroups, infinitesimally generated semigroups, etc. For deeper
insights into the maximal semigroups our results must be followed by a further
development of the geometry of the B-convex sets and their compression semigroups.
Below we list some natural questions and remarks pointing to this direction.

1. From the work of Lawson [7] one knows that a maximal semigroup S in a
solvable group @ is total in the sense that G = SUS™!. This property does not
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hold for semigroups in semi-simple groups because of the existence of an open
set of compact elements. However one can ask whether a maximal semigroup
is total with respect to a flag manifold Beg, in the sense that Bg is the union
of the S-control sets. With this kind of totality the action of S on the flag
manifold is completely clear since one knows the action inside the control sets.
At this regard we mention that under totality the proof Proposition 5.3 would
be simplified. In fact, the main point there is to show that a point outside the
invariant control set is in the domain of attraction of another control set.

2. If S is connected then its invariant control set (in any homogeneous space
of G) is connected. This suggests to investigate the compression semigroups
Sc with C' convex and connected. In general S is not connected. This is
shown for instance by the compression semigroup in Sl (2, R) of an interval in
the projective line PL. It has two connected components +SI* (2, R), where
SIT (2,R) is the semigroup of 2 x 2 matrices with positive entries. However
SI™ (2,R) is connected and maximal with this property. Similar facts may
occur in general: There might be a class of connected B-convex sets which are
invariant control sets of semigroups which are maximal with the property of
being connected. This development certainly goes through the study of the
connected B-convex sets and the B-convex hull of connected sets, which in
general may not be connected. Of course the same kind of questions make
sense for ©-maximal semigroups.

3. Similar remarks apply to the infinitesimally generated semigroups. Here one
of the basic questions seems to be characterization of the maximal semigroups
(and corresponding B-convex sets) whose tangent wedge generate a semigroup
with same invariant control set (see D. Mittenhuber [9]).

4. It looks like that Proposition 6.5 can be improved by showing that the pro-
jection of a B-convex set is B-convex, at least for large classes of B-convex
sets.
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