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Abstrat

The maximal semigroups with non-empty interior in a semi-simple Lie

group with �nite enter are haraterized as ompression semigroups of subsets

in the ag manifolds of the group. For this purpose a onvexity theory, alled

here B-onvexity, based on the open Bruhat ells is developed. It turns out

that a semigroup with nonempty interior is maximal if and only if it is the

ompression semigroup of the interior of a B-onvex set.
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1 Introdution

The purpose of this paper is to haraterize the maximal semigroups with nonempty

interior in semi-simple Lie groups with �nite enter. The prinipal result is Theorem

5.4 whih gives a preise desription of the maximal semigroups through their ations

on the ag manifolds of the group.

When studying semigroups embedded into groups many di�erent questions have

a natural formulation and solution by means of the knowledge of the maximal semi-

groups on a spei� group. This makes the problem of determine the maximal

semigroups one of the major problems in the theory of semigroups. For semigroups
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in Lie groups J. Lawson [7℄, appealing to the Levi deomposition of a Lie algebra,

divided the task of lassifying { or at least understanding { the maximal semigroups,

by onsidering two main lasses namely the semigroups of solvable type and those

of semi-simple type, aording to the kind of Lie group ontaining them. In order

to understand the maximal semigroups in a general Lie group G it is required to

have a lassi�ation of these two types, and then mix them up in G. In [7℄ Lawson

himself provided a lassi�ation of the maximal semigroups with nonempty inte-

rior in solvable groups: There is a one-to-one orrespondene between the maximal

subsemigroups and the half-spaes in the Lie algebra bounded by a hyperplane sub-

algebra. Thus for solvable groups the maximal semigroups have an algebrai nature.

This lassi�ation is extended to ompat extensions of solvable groups in [7℄ (see

also Hilgert and Neeb [5℄), and to semigroups in latties of solvable groups (see do

Roio and San Martin [10℄).

In a semi-simple Lie group G with �nite enter it was proved in San Martin

and Tonelli [13℄ that any maximal semigroup S � G with nonempty interior is a

ompression semigroup of a subset C of one of the minimal ag manifolds of G:

S = S

C

= fg 2 G : gC � Cg:

However in order to have a omplete piture of the maximal semigroups in G it is

required to �nd the appropriate family of sets C suh that S

C

is indeed maximal.

In [13℄ this was made only for the real rank one simple Lie groups. This paper pro-

vides the appropriate sets for general semi-simple groups, generalizing the rank one

ase. The approah is through a onvexity theory for subsets of the ag manifolds.

Preisely, we say that a subset of a ag manifold is B-onvex if it is the intersetion

of the open Bruhat ells ontaining it. This notion of onvexity is formally de�ned

by a onvex hull operator on subsets. This operator in turn omes from a duality

operator mapping subsets of a ag manifold into subsets of the dual ag manifold.

One this onvexity theory is settled we prove that a semigroup with nonvoid inte-

rior in G is maximal if and only if it is the ompression semigroup of the interior of

a B-onvex set in a minimal ag manifold. This same haraterization also holds for

partial maximal semigroups in the following sense: From [13℄ we know that there are

di�erent lasses of semigroups with nonempty interior in a semi-simple Lie group,

namely, one lass for eah ag manifold of the group (see Setion 4 below). A par-

tial maximal semigroup (�-maximal in the text) is a semigroup whih is maximal

within the lass given by a ag manifold. These partial maximal semigroups are also

desribed by ompression and B-onvexity, but now on the ag manifolds di�erent

from the minimal ones.
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Some simple examples show that the B-onvex sets may be rather arbitrary

subsets. For instane for a real rank one group any subset of the ag manifold

is B-onvex. Although in general B-onvexity may be a stronger property, this

shows the existene of a great profusion of nononjugate maximal semigroups in

semi-simple groups, making it hard { if feasible { to have a lassi�ation of them.

There is anything one an do about this. It is in the realm of the struture of

semi-simple Lie groups. However a further development of the theory of B-onvex

sets may provide deisive tools in the investigation and appliation of the theory of

semigroups.

2 Preliminaries

In this setion we set the notations and basi fats about semi-simple Lie algebras

and the assoiated ag manifolds whih are used throughout the paper.

Let g be a nonompat semi-simple Lie algebra. We �rst make some standard

hoies in g. Let � be a Cartan involution of g and g = k� s the assoiated Cartan

deomposition with k standing for the subalgebra of �-�xed points. Selet a maximal

abelian subalgebra a � s and let � stand for the set of restrited roots of the pair

(g; a). For a root � 2 � its root spae is denoted by g

�

. Choose a simple system of

roots � � � and denote by �

+

the set of positive roots spanned by �. We let a

+

stand for the Weyl hamber assoiated to �

+

and

n

�

=

X

�2�

�

g

�

for the nilpotent subalgebras assoiated with �

+

and �

�

= ��

+

respetively. De-

note by m be the entralizer of a in k.

The subalgebra p = m � a � n

+

is the standard minimal paraboli subalgebra

of g. More generally, if � 6= � is a subset of � we denote by p

�

the paraboli

subalgebra

p

�

= n

�

(�)� p:

Here n

�

(�) is the subalgebra spanned by the root spaes g

��

, � 2 h�i, where h�i

is the set of positive roots generated by �. Of ourse, p = p

;

.

Let G be a Lie group with Lie algebra g. We assume always that G has �nite

enter. In this ase the subgroup K = exp k is ompat. For g 2 G and X 2 g

we put g � X for the adjoint ation of g in X. The paraboli subgroup P

�

is the
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normalizer of p

�

in G:

P

�

= fg 2 G : g � p

�

= p

�

g:

Its Lie algebra is p

�

. The ag manifold B

�

= G=P

�

is realized as the set fg � p

�

:

g 2 Gg of paraboli subalgebras onjugate to p

�

. Alternatively, let n

+

�

stand for the

nilpotent radial (nilradial) of p

�

. Expliitly, n

+

�

=

P

�

g

�

with the sum extended

through the positive roots outside h�i. It is well known that the normalizer of n

+

�

in g and G are p

�

and P

�

respetively. Hene B

�

is realized also as the subset

fg � n

�

: g 2 Gg of subalgebras onjugate to n

+

�

.

From these standard onstrutions the set of ag manifolds beome parameter-

ized by the proper subsets of the �xed simple system of roots �. If �

1

� �

2

are

subsets of � then P

�

1

� P

�

2

so there is a natural �bration B

�

1

! B

�

2

given by

gP

�

1

! gP

�

2

. The maximal ag manifold B

;

�bers over all B

�

. It will be de-

noted simply by B . We denote these �brations by �, indistintly of the spei� ag

manifolds. If they are to be emphasized the projetion is written �

�

1

�

2

: B

�

1

! B

�

2

.

In the sequel it will be required the notion of the ag manifold dual to B

�

: Let

W be the Weyl group of G and denote by w

0

2 W its prinipal involution, that is,

the element of maximal length as a produt of reetions with respet to the simple

roots in �. Alternatively w

0

is the only element of W suh that w

0

(�) = ��. It

is well known that w

0

= �� where � is an involutive automorphism of the Dynkin

diagram assoiated with �. For the sake of simpliity we put �

�

= � (�), if � � �.

The ag manifold B

�

�

is said to be dual to B

�

. This notion is independent of the

hoie of �.

Put N

�

= exp n

�

. The deomposition of B

�

into the N

�

-orbits is the Bruhat

deomposition of B

�

. These orbits are given by N

�

w � p

�

, with w 2 W, so that

its number is jW=W

�

j where W

�

stands for the subgroup of W generated by the

reetions with respet to the simple roots in �. Just one of these orbits is open

and dense in B

�

, namely N

�

� p

�

. We refer to this orbit as an open (Bruhat)

ell in B

�

. This open ell has an alternative desription through inidene with

a nilpotent subalgebra, whih will be largely used in the sequel. Let 

�

be the

nilpotent subalgebra spanned by the root spaes omplementary to p

�

in g:



�

=

X

�

g

�

with the sum extended through the negative roots outside �h�i. Sine the Cartan

involution � takes a root � into ��, it follows that 

�

= �

�

n

+

�

�

. However, n

�

=

� (n

+

) and n

+

normalizes n

+

�

hene 

�

is normalized by n

�

and thus by N

�

.
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Lemma 2.1 For a paraboli subalgebra q 2 B

�

the following statements are equiv-

alent:

1. q belongs to the open ell N

�

� p

�

,

2. q \ 

�

= 0 and

3. n \ 

�

= 0 where n is the nil radial of q.

Proof: Take w 2 W with w � p

�

6= p

�

. Sine w interhanges root spaes we have

that dim (w � p

�

\ 

�

) � 1. Now N

�

normalizes 

�

. Hene

N

�

� (w � p

�

\ 

�

) � 

�

therefore any q 2 N

�

w � p

�

has nontrivial intersetion with 

�

. On the other hand

if q = n � p

�

with n 2 N

�

then q \ 

�

= 0 for otherwise n

�1

� (q \ 

�

) = p \ 

�

would have positive dimension. This shows the equivalene between the �rst two

statements.

The last equivalene follows the same way from the fat that w � n

+

�

\ 

�

6= 0 if

w � p

�

6= p

�

(see [14, Prop. 1.1.2.13℄). 2

In the sequel we say that a subset � 2 B

�

is an open ell if � = g (N

�

� p

�

) for

some g 2 G. Of ourse any suh open ell is the open orbit of a group onjugate to

N

�

. By the above lemma an open ell is realized as the set of paraboli subalgebras

q 2 B

�

whih have null intersetion with a onjugate of 

�

. Now we reognize the

set of onjugates of 

�

as the ag B

�

�

dual to B

�

. In fat, sine 

�

= �

�

n

+

�

�

it is

the nilradial of the paraboli subalgebra � (p

�

). Hene the onjugates of 

�

are in

one-to-one orrespondene with a ag manifold B

�

0

. To see that �

0

= �

�

observe

that the restrition of w

0

� to a is the involution �. Hene w

0

� (p

�

) = p

�

�

. This

shows that the set of onjugates of � (p

�

) is B

�

�

and thus this is the ag manifold

of the onjugates of 

�

.

Notation: The set of open Bruhat ells in B

�

is denoted by B

�

and its bijetion with

B

�

�

by x 2 B

�

�

7! �

x

2 B

�

. The omplement of �

x

is denoted with �

x

= B

�

n �

x

.

It follows from the de�nitions that if g 2 G and x 2 B

�

�

then g�

x

= �

gx

and

g�

x

= �

gx

. Also, any projetion � : B

�

! B

�

0

is equivariant so that � (�) 2 B

�

0

if

� is an open ell in B

�

.

From Lemma 2.1 it follows that if p 2 B

�

and q 2 B

�

�

then p 2 �

q

if and only if

n (p) \ n (q) = 0 where n (p) stands for the nilradial of p. This implies at one the

following statement.
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Proposition 2.2 Let x 2 B

�

and y 2 B

��

. Then x 2 �

y

if and only if y 2 �

x

.

In the sequel we say that an element in g (respetively in G) is split-regular if

it is onjugate to some H 2 a

+

(respetively h 2 A

+

= exp a

+

). More generally,

X 2 g will be said to be �-regular if it is onjugate to H 2 l (a

+

) suh that

� = f� 2 � : � (H) = 0g:

Analogously, g 2 G is �-regular if g = expX with X a �-regular element of the

Lie algebra. Of ourse split-regularity and ;-regularity are the same thing. If h 2 G

is �

0

-regular then for any ag manifold B

�

, with �

0

� � there exists x 2 B

�

and

� 2 B

�

with x 2 � and suh that h

i

y ! x for all y 2 �. When this holds we say

that x is the attrator of h and � its stable manifold. In partiular split-regular

elements have attrators and stable manifolds in any ag manifold. We denote by

� (h) the stable manifold of the regular element h.

More generally for a split-regular h its set of �xed-points in the maximal ag

manifold B is in bijetion withW. These �xed-points are the same for every element

in the Weyl hamber A

+

ontaining h. Hene eah Weyl hamber settles a bijetion

of W with a subset of B . Sometimes it is onvenient to emphasize whih subset of

B is being onsidered. We do this by putting a subsript A

+

. Thus W

A

+

stands

for the Weyl group viewed as the subset of A

+

-�xed points in B . For h 2 A

+

a

�xed-point b is related to some w 2 W under the bijetion. When this is the ase

we say that b is the �xed-point of type w of h.

The following lemma shows that for any pair (x; �) with x 2 � one an �nd

a regular element having x as attrator and � as stable manifold. It will be used

frequently in the study of maximal semigroups.

Lemma 2.3 Take � 2 B

�

and x 2 �. Then there is a �-regular element h 2 G

suh that x is its attrator and � = � (h).

Proof: Let b

0

be the base point of B

�

= G=P

�

and � = N

�

b

0

. If �

0

� � then b

0

is

the attrator for any �

0

-regular element in the losure of the Weyl hamber A

+

and

� is the stable manifold. Given x 2 � there exists n 2 N

�

suh that x = nb

0

. So

that if h 2 lA

+

is �

0

-regular then h

1

= nhn

�1

has x as attrator and � as stable

manifold. This shows the lemma for this spei� �. Sine G is transitive on B

�

the

lemma follows by onjugation with arbitrary g 2 G. 2
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3 B-onvexity

Roughly speaking a subset C of a ag manifold B

�

is said to be B-onvex provided C

is the intersetion of the open Bruhat ells ontaining it. This onept of onvexity

is easier to develop with the aid of a onvex hull operator on subsets of the ag

manifolds and a duality operator

�

that assigns to a subset C of a ag B

�

a subset

C

�

of the dual ag manifold B

�

�

. Preisely,

C

�

= fx 2 B

�

�

: C � �

x

g: (1)

Of ourse this duality operator an be de�ned also for a subset D � B

�

�

giving rise

to its dual D

�

� B

�

. Hene it makes sense to write C

��

, whih is ontained in B

�

.

We put o

B

(C) = C

��

and all this subset the B-onvex hull of C.

Aordingly C is said to be B-onvex if C = o

B

(C).

Following Goodman and Pollak [3℄ a onvex hull operator o (�) deserving this

name must satisfy:

1. C � o (C) for any subset C,

2. o (�) is the identity on singletons,

3. o (�) is inreasing with respet to inlusion of sets, and

4. o (�) is idempotent.

Let us disuss briey these properties for the B-onvex hull operator. For the

�rst one we distinguish the ases where C

�

is empty or not. Clearly the dual ;

�

of

the empty set is the whole dual ag manifold so that o

B

(C) = C

��

= B

�

if C � B

�

and C

�

= ;. Hene C � o

B

(C) in this ase. On the other hand a nonempty

subset C is said to be admissible if C

�

6= ;, i.e., if C � �

y

for some y 2 B

�

�

. For

an admissible C its B-onvex hull is seen to be the intersetion of the open ells

ontaining it. In fat, C

��

= fy 2 B

�

: C

�

� �

y

g. By Proposition 2.2, x 2 �

y

if

and only if y 2 �

x

. Sine C

�

6= ;, it follows that y 2 C

��

if and only if y 2 �

x

for

all x 2 C

�

. But any Bruhat ell ontaining C is �

x

for some x 2 C

�

, so that for an

admissible subset there is the alternative de�nition

o

B

(C) =

\

f� 2 B

�

: C � �g: (2)

Of ourse this implies that C � o

B

(C). Furthermore we note that if C is B-onvex

then either C = ;; B

�

or C is admissible, for otherwise o

B

(C) = B

�

.
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Sine it is irrelevant to our purposes here we do not dwell on the B-onvexity of

the singletons. We just note that if x; y 2 B

�

then there exists � 2 B

�

with x =2 �

and y 2 � so that fyg is indeed B-onvex. Finally the last two of the above listed

properties follow from the following statements about the duality operator:

Proposition 3.1 For a ag manifold B

�

it holds:

1. If C

1

� C

2

� B

�

then C

�

1

� C

�

2

.

2. Let C � B

�

. Then C

�

is B-onvex in B

�

�

.

Proof:

1. Assuming that C

1

� C

2

, take x 2 C

�

2

. Then C

2

� �

x

so that C

1

� �

x

. This

implies that x 2 C

�

1

.

2. If C is not admissible then C

�

= ;; B

�

�

so that its B-onvexity is trivial.

Assuming that C

�

6= ; we must hek that C

�

= (C

�

)

��

. The inlusion

C

�

� (C

�

)

��

is equivalent C

�

� o

B

(C

�

), showed above. On the other hand

take y 2 (C

�

)

��

. Then x 2 �

y

for every x 2 C

��

. In partiular x 2 �

y

for all

x 2 C beause C is ontained in C

��

. But this means that y 2 C

�

, showing

that (C

�

)

��

� C

�

.

2

From this proposition we get easily the following properties of the operator

o

B

(�):

Proposition 3.2 For a ag manifold B

�

it holds:

1. If C

1

� C

2

then o

B

(C

1

) � o

B

(C

2

).

2. If C � B

�

then o

B

(C) � o

B

(o

B

(C)).

Proof: The seond statement is a onsequene of the �rst one and the inlusion

C � o

B

(C). The �rst property follows immediately from 1. in the previous propo-

sition. 2
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3.1 Examples

The examples below illustrates that the B-onvex sets may be either rather arbitrary

sets or sets whih resemble the standard onvex sets in aÆne spaes or in Riemannian

manifolds.

1. In ase g is a Lie algebra with real rank one there is just one ag manifold B

whih is di�eomorphi to a sphere in some dimension. The Bruhat deompo-

sition of B has two omponents the open one and its omplement whih is a

singleton. Thus B onsists of the subsets B nfxg, x 2 B . Therefore any subset

of B is B-onvex.

2. Let g = sl (n;R). The ag manifolds are the standard manifolds of ags

of subspaes in R

n

. In partiular the Grassmannians, inluding the proje-

tive spae, are ag manifolds of Lie groups assoiated with sl (n;R). Let us

fous attention to the Grassmannians Gr

k

(n) of k-dimensional subspaes of

R

n

. A diret hek at the isotropy subalgebras of the Sl (n;R)-ation on the

Grasssmannians shows that the dual of Gr

k

(n) is the Grassmannian Gr

n�k

(n)

of subspaes having omplementary dimension. In more onrete terms this

duality is given by inidene between k-dimensional and (n� k)-dimensional

subspaes of R

n

. Indeed an open ell is the stable manifold of the attrator

for the ation of a split regular element h in the group. In the present ase

h is a diagonalizable matrix in Sl (n;R) having positive and distint eigenval-

ues. If fe

1

; : : : ; e

n

g is a basis of eigenvetors of h then the subspae spanned

by fe

1

; : : : ; e

k

g is the attrator of h in Gr

k

(n). Its stable manifold is easily

seen to be the open and dense subset of k-dimensional subspaes transversal

to spanfe

k+1

; : : : ; e

n

g. This implies that for eah U 2 Gr

n�k

(n) its assoiated

open ell is

�

U

= fV 2 Gr

k

(n) : V \ U = 0g;

while �

U

is the set of k-dimensional subspaes meeting U nontrivially. It

follows that ; 6= C � Gr

k

(n) is admissible if and only if there is a (n� k)-

dimensional subspae U suh that V \ U = 0 for all V 2 C. Note that as

in the ase of rank one groups there are rather arbitrary B-onvex subsets in

the Grassmannians. In fat, for any admissible D � Gr

n�k

(n), its dual D

�

is

B-onvex in G

k

(n).

For k = 1 we an single out a nie lass of B-onvex sets, namely the lassial

onvex subsets in the projetive spae P

n�1

: Let W � R

n

be a pointed onvex
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one and denote by

�

W the set of lines in P

n�1

ontained in W . Sine W is

pointed

�

W is admissible. Also, W is the intersetion of the half-spaes in R

n

ontaining it. Hene

�

W is B-onvex in P

n�1

. Of ourse not every B-onvex set

is onstruted this way from a onvex one.

3. We ontinue with g = sl (n;R). Let r = (r

1

< � � � < r

m

) be a sequene of

integers with 1 � r

1

and r

m

� n� 1 and denote by F (r) the manifold of ags

(V

1

� � � � � V

m

)

of subspaes of R

n

with dimV

i

= r

i

. Put �r = (n� r

1

< � � � < n� r

m

). Then

F (�r) is the ag manifold dual to F (r). As in the Grassmannian ase this an

be seen either by looking at the isotropy subalgebras or by verifying diretly

that the open ells are given by inidene between the subspaes in a ag.

Indeed, if U = (U

1

� � � � � U

m

) 2 F (�r) then

�

U

= f(V

1

� � � � � V

m

) : V

i

\ U

i

= 0; i = 1; : : : ; mg

is an open ell in F (r).

3.2 Topology

Up to this point we have onsidered B-onvexity for arbitrary subsets of the ag

manifolds, looking at the inidene of paraboli subalgebras only. Now we onsider

some topologial properties of the duality and B-onvex hull operators.

Sine a ag manifold B

�

is a homogenous spae of G, it is endowed with the

quotient topology, rendering it a ompat metrizable spae. This topology is given

also by the embedding B

�

in a Grassmannian, either by identifying it with the

subalgebras onjugate to p

�

or to n

+

�

. Here the topology in a Grassmannian is the

standard one. A basi property of this topology is: Let L be a vetor spae with

dimL = n. Denote by Gr

k

(L) the Grassmannian of k-dimensional subspaes of L.

Suppose that �

0

2 Gr

k

(L) and �

0

2 Gr

n�k

(L) are transversal, i.e., �

0

\�

0

= 0. Then

there are neighborhoods A 3 � and B 3 � in Gr

k

(L) and Gr

n�k

(L), respetively,

suh that � \ � = 0 for all � 2 A and � 2 B.

Now reall that an open ell �

q

, q 2 B

�

�

, is the set of paraboli subalgebras in

B

�

whih are transversal to the nilradial n (q) of q. Sine the dimension of n (q)

omplements the dimension of any p 2 B

�

, the above transversality property implies

the

10



Lemma 3.3 Let x

0

2 B

�

and y

0

2 B

�

�

be suh that y

0

2 �

x

0

and x

0

2 �

y

0

. Then

there are neighborhoods U 3 x and V 3 y in B

�

and B

�

�

respetively suh that

x 2 �

y

and y 2 �

x

, for all x 2 U and y 2 V .

Another basi property of the topology in the ag manifolds is related to se-

quenes in the omplements �

y

of the open ells �

y

:

Lemma 3.4 Let y

j

2 B

�

�

be a sequene with limy

j

= y. If x 2 �

y

then there is a

sequene x

j

2 �

y

j

suh that limx

j

= x.

Proof: By transitivity of G in B

�

�

there exists a sequene g

j

2 G with g

j

! 1 and

suh that y

j

= g

j

y. The required sequene is x

j

= g

j

x. In fat, x

j

2 �

y

j

= g

j

�

y

and

x

j

! x. 2

From these lemmas we get the following topologial properties of the duality

operator whih are basi for the study of maximal semigroups.

Proposition 3.5 Suppose that C � B

�

is ompat and admissible. Then C

�

is

open.

Proof: Suppose that C 6= ; 6= C

�

and take x 2 C and y 2 C

�

. From Lemma 3.3

above there are neighborhoods U

x

3 x and V

x

3 y suh that z 2 �

w

for all z 2 U

x

and w 2 V

x

. By ompatness there is a �nite overing

C � U

x

1

[ � � � [ U

x

l

:

Then V = V

x

1

\ � � � \ V

x

l

is a neighborhood of y ontained in C

�

. 2

Proposition 3.6 Suppose that C � B

�

is admissible and intC 6= ;. Then l (C

�

) �

�

x

for all x 2 intC. Hene l (C

�

) � (intC)

�

and l (C

�

) is admissible.

Proof: Take x 2 intC. Let y 2 l (C

�

) and y

j

2 C

�

be suh that limy

j

= y. We

must hek that x 2 �

y

. Suppose to the ontrary that x 2 �

y

. Then by Lemma 3.4

there is a sequene x

j

2 �

y

j

with limx

j

= x. This implies that x

j

2 intC for large

j. But this ontradits the fat that y

j

2 C

�

� (intC)

�

. 2

Proposition 3.7 Let C � B

�

be open and suh that lC is admissible. Then C

�

is

losed and int (C

�

) = (lC)

�

.

11



Proof: Sine C is open, Proposition 3.6 implies that l (C

�

) � C

�

so that C

�

is losed. Furthermore Proposition 3.1 implies that (lC)

�

� C

�

. But (lC)

�

is

open hene (lC)

�

� int (C

�

). For the reverse inlusion suppose that there exists

x 2 int (C

�

) n (lC)

�

. Then x 2 �

y

for some y 2 lC. Take a sequene y

j

2 C suh

that limy

j

= y. By Lemma 3.4 there exists a sequene x

j

2 �

y

j

with limx

j

= x.

Hene, for large j, x

j

2 int (C

�

) � C

�

and x

j

2 �

y

j

with y

j

2 C, whih is a ontra-

dition. 2

Applying this proposition twie we get the following information about the B-

onvex hull of a losed subset.

Proposition 3.8 Let C � B

�

be losed admissible subset with intC 6= ;. Then

o

B

(C) is losed and has nonempty interior

int (o

B

(C)) = (l (C

�

))

�

:

Proof: Proposition 3.5 implies that C

�

is open hene o

B

(C) = C

��

is losed. The

above proposition applied to C

�

implies that

int (C

��

) = (l (C

�

))

�

:

This open set is not empty beause l (C

�

) is admissible as follows from Proposition

3.6. 2

3.3 Invariane

The relevane of B-onvexity for semigroups in G stays in the following invariane

properties of the dual and the B-onvex hull operators.

Proposition 3.9 Let g 2 G and C � B

�

. Then (gC)

�

= g (C

�

).

Proof: Take a paraboli subalgebra p 2 C

�

and denote by n its nilradial. By

de�nition q\ n = 0 for every paraboli subalgebra q 2 C. Now g � n is the nilradial

of g � p, and

g � q \ g � n = g � (q \ n) = 0

if q 2 C. This implies that g � p 2 (gC)

�

and hene that g (C

�

) � (gC)

�

. Applying

this inlusion to gC and g

�1

we have g

�1

((gC)

�

) � C

�

so that (gC)

�

� g (C

�

),

onluding the proof. 2
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Corollary 3.10 Let g 2 G and C � B

�

be suh that gC � C. Then g

�1

(C

�

) � C

�

.

Proof: By Proposition 3.2 (gC)

�

� C

�

. Hene by the above proposition g (C

�

) � C

�

whih is equivalent to g

�1

(C

�

) � C

�

. 2

Corollary 3.11 Let g 2 G and C � B

�

. Then g (o

B

(C)) = o

B

(gC). Therefore

gC is B-onvex if C is B-onvex.

Proof: Follows from the proposition and the equality o

B

(C) = C

��

. 2

We an state now that the B-onvex hull operator maps invariant subsets into

invariant subsets. This will be essential in the desription of maximal semigroups.

Proposition 3.12 Let g 2 G and C � B

�

be suh that gC � C. Then g (o

B

(C)) �

o

B

(C).

Proof: Follows immediately from the previous orollary and Proposition 3.2. 2

Finally we have the following loalization type property of the B-onvex sets:

Proposition 3.13 The family of open B-onvex sets is a basis for the topology of

B

�

.

Proof: Let C � B

�

�

be a ompat admissible subset with intC 6= ;. From the

previous setion we know that C

�

is open and its losure is admissible. Clearly C

�

is an open B-onvex set. From it we generate a basis for the open sets in B

�

. First

take x 2 C

�

and an open ell � � lC

�

. By Lemma 2.3 there exists a split-regular

h 2 G suh that x is its attrator and � = � (h). The sequene h

k

ontrats � into

x as k ! +1. Sine l (C

�

) is a ompat subset of �, the ontration is uniform

in l (C

�

). This means that for any neighborhood U of x there exists a k

0

> 0 suh

that h

k

C

�

� U for k � k

0

. This shows that the open B-onvex sets form a basis for

the neighborhoods of x. The orollary follows then by transitivity of G and the fat

that g 2 G maps B-onvex sets into B-onvex sets. 2

13



4 Semigroups

In this setion we onsider the ation on the ag manifolds of semigroups in semi-

simple Lie groups. We omplement the results of San Martin [11℄ and San Martin

and Tonelli [13℄, paving the way for the haraterization of the maximal semigroups.

4.1 Topologial introdution

Before looking at the semigroup ations on the ag manifolds we reall some termi-

nology of topologial nature whih hold in a more general ontext. In this subsetion

we let G be a topologial group ating ontinuously in a ompat topologial spae

M . Let S � G be a semigroup with intS 6= ;.

Its ation on M indues the pre-order relation x � y if y 2 l (Sx), x; y 2 M .

Let � be the equivalene relation assoiated with �, namely x � y if x � y and

y � x. The pre-order in M indues a partial order in the quotient M= � whih is

also denoted by �.

A ontrol set for S inM is an equivalene lass D of � having the property that

there exists x 2 D and g 2 intS with gx = x. Given a ontrol set D the �xed-point

set

D

0

= fx 2 D : 9g 2 intS; gx = xg

is known to be open and dense in D. It is named the ore or set of transitivity of

D (see [13℄). This seond name omes from the fat that for every x; y 2 D

0

there

exists g 2 S suh that gx = y. We denote by D (S) the set of ontrol sets of S. It is

partially ordered by � in M= �. In ase M is ompat there are invariant ontrol

sets. These are the ontrol sets whih are maximal with respet to �. They are

losed subsets of M . The same way there are minimal ontrol sets. They are open

and oinide with the ores of the invariant ontrol sets of the inverse semigroup

S

�1

= fg

�1

: g 2 Sg.

The domain of attration A (D) of a ontrol set D is de�ned by

A (D) = fx 2M : 9g 2 S; gx 2 Dg:

For a subset C ontained in M we denote by S

C

its ompression semigroup in G:

S

C

= fg 2 G : gC � Cg:

A quik glane at this expression is enough to show that if C = l (intC) then

S

C

= S

int(C)

. We refer to Colonius and Kliemann [2℄ for a detailed development of

these onepts in the ontext of ontrol systems.
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4.2 Flag manifolds

We return here to the ag manifold setting with S a semigroup with nonvoid interior

in the semi-simple group G.

Consider for a moment the maximal ag manifold B = B

;

. From [13℄ we know

that for eah w 2 W there exists a ontrol set D (w) suh that x 2 D (w)

0

if and

only x is the w-�xed point for some split-regular h 2 intS. Moreover, any ontrol

set D is D (w) for some w 2 W. The assignment w 7! D (w) permits to single

out, from S, a ag manifold B (S) as follows: Take a split-regular h 2 intS and

denote by A

+

= exp a

+

the Weyl hamber ontaining h. Reall that we write W

A

+

to emphasize the bijetion of W with subsets of B . Let 1 2 W

A

+

be the identity.

Then the ontrol set D (1) is the only invariant ontrol set in B . The same way the

ontrol set D (w

0

) is the only minimal ontrol set in B where w

0

is the prinipal

involution of W.

The subset W

A

+

(S) = fw 2 W : D (w) = D (1)g is a paraboli subgroup of

W

A

+

, that is, it is generated by the reetions with respet to the simple roots in

a proper subset � (S) � �. Here � is the simple system of roots assoiated with

a

+

. We put B (S) = B

�(S)

. A deisive property of this speial ag manifold is that

the invariant ontrol set of S on it is an admissible subset, i.e., is ontained in open

Bruhat ells. Preisely,

Proposition 4.1 With the above notations let C � B (S) be the invariant ontrol

set. Then C is ontained in the stable manifold � (h) for any split-regular h 2 intS.

Moreover if � � �(S) and � : B

�

! B (S) is the anonial �bration then �

�1

(C)

is the invariant ontrol set for S in B

�

.

Proof: See Proposition 4.8 and Theorem 4.3 in [13℄. 2

In the sequel we say that the semigroup is of type � if � (S) = �, i.e., B (S) = B

�

.

We emphasize that any proper semigroup with nonempty interior is of type � for

some �. Furthermore if S � T are semigroups with nonempty interior then any

ontrol set of S is ontained in just one ontrol set of T , and T is of type �

0

� � if

S is of type �.

Another information provided by the subgroup W

A

+

onerns the number of

ontrol sets in the ag manifold B

�

. It is given by the order of the double oset

spaeW

A

+

nW=W

�

, whereW

�

is the paraboli subgroup generated by the reetions

in �.
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For a semigroup of type � its invariant ontrol set in B

�

is an admissible subset

whih is the losure of its interior. The next proposition omplements this statement

by showing that every subset of B

�

having these properties is the invariant ontrol

set of some semigroup of type �.

Proposition 4.2 Suppose that the admissible subset C � B

�

satis�es C = l (intC).

Then the ompression semigroup

S

C

= fg 2 G : gC � Cg

has nonempty interior. Moreover C is the invariant ontrol set of S

C

in B

�

, C

0

=

intC and S

C

is of type �.

Proof: Take x 2 intC and let � be an open ell ontaining C. By Lemma 2.3 there

exists a split-regular h 2 G suh that x is its attrator and � = � (h). The sequene

h

k

ontrats � into x as k! +1. Sine C is a ompat subset of �, the ontration

is uniform in C. This means that for any neighborhood U of x there exists k

0

> 0

suh that h

k

C � U for k � k

0

. In partiular if we take U � C we �nd that g = h

k

0

belongs to S

C

. Furthermore the subset ff : f (C) � Ug is open in the ompat-open

topology on the ontinuous maps of B

�

. By the ontinuity of the G-ation we have

then that g 2 intS

C

showing the �rst part of the proposition.

For the seond statement note that C is invariant under S

C

. Moreover, we found

a split-regular g 2 intS having x as attrator for arbitrary x 2 intC. This implies

that C is the invariant ontrol set of S

C

beause the ore of the invariant ontrol

set ontains the attrators for the split-regular elements in intS. 2

5 Maximal semigroups

A subsemigroup S of a group L is said to maximal if it is not a group and there

is no semigroup T 6= L ontaining S properly. A well known fat in the theory of

subsemigroups of topologial groups is that any semigroup with interior points is

ontained in a maximal semigroup, whih by fore is losed. See Hilgert, Hofmann

and Lawson [4℄ for a proof using the Lemma of Zorn.

For semigroups with nonempty interior in semi-simple Lie groups we an enlarge

the notion of maximality by taking into aount the type of the semigroup. As

before let G be a semi-simple Lie group.
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De�nition 5.1 We say that a semigroup S � G with intS 6= ; is �-maximal or

maximal with respet to B

�

if it is of type � and is not properly ontained in any

semigroup of type �.

It will be proved below that the �-maximal semigroups are essentially the om-

pression semigroups of the B-onvex sets in B

�

. Before providing the proof for this

fat we make the following remarks:

Let S be a �-maximal semigroup and denote by C its invariant ontrol set in

B

�

. Sine C is S-invariant if follows that S � S

C

where S

C

is the ompression

semigroup

S

C

= fg 2 G : gC � Cg:

By Proposition 4.2, S

C

is of type �. This shows that if S is �-maximal then S is the

ompression semigroup of its invariant ontrol set in B

�

. Suppose there is �

0

6= �

ontaining � properly and let � : B

�

! B

�

0

. Then � (C) is admissible in B

�

0

.

Moreover int (� (C)) is dense in � (C) beause � is an open map. Hene S

�(C)

is of

type �

0

by Proposition 4.2. Sine � is equivariant under the ations of G in B

�

and

B

�

0

it follows that S � S

�(C)

. This inlusion is proper. In fat, the invariant ontrol

set of S

�(C)

in B

�

is �

�1

(� (C)) beause S

�(C)

is of type �

0

. But C is admissible

hene C 6= �

�1

(� (C)) so that �

�1

(� (C)) annot be the invariant ontrol set of S in

B

�

. This shows that any semigroup of type � is ontained properly in a semigroup

of type �

0

� � if � 6= �

0

. In partiular a �-maximal semigroup is not maximal

unless � is maximal in �, that is, the omplement of a singleton. In this ase B

�

is

a minimal ag manifold.

Conversely, if � is maximal and S is a �-maximal semigroup then S is maximal.

In fat, if T � S and T 6= S then T is of type �

0

� �. Sine S is �-maximal this

implies that �

0

6= �, but then T an not be a proper semigroup.

Now, thanks to the invariane of the B-onvex hull of a subset it follows easily

that a �-maximal semigroup is the ompression semigroup of a B-onvex set in B

�

:

Proposition 5.2 Suppose that S is a �-maximal semigroup and denote by C its

invariant ontrol set in B

�

. Put K = l (int (o

B

(C))). Then C = K and

S = S

C

= fg 2 G : gC � Cg:

Proof: If g 2 S then gC � C so that Proposition 3.12 ensures that g (o

B

(C)) �

o

B

(C). By ontinuity gK � K. Hene S is ontained in the ompression semi-

group S

K

of K. By de�nition of a semigroup of type �, C is admissible in B

�

.

This implies that K is ontained in an open ell � of B

�

. It follows that K is a
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nonempty admissible subset satisfying K = l (intK). Therefore Proposition 4.2

implies that S

K

is of type �. Now by assumption S is �-maximal. Hene S = S

K

.

Invoking Proposition 4.2 again we have that the invariant ontrol set of S

K

is K so

that C = K onluding the proof. 2

This proposition has the following onverse whih ensures that the ompression

semigroup of the interior of a B-onvex set is maximal.

Proposition 5.3 Let C � B

�

be a proper losed B-onvex set with intC 6= ;. Put

K = l (intC). Then the ompression semigroup S

K

is �-maximal.

Proof: By de�nition of B-onvexity C is admissible. Proposition 3.8 then implies

that K is admissible. Sine K = l (intK) it follows from Proposition 4.2 that

intS

K

6= ;, S

K

is of type � and K is the invariant ontrol set of S

K

. To see

the �-maximality take a semigroup T of type � with S

K

� T . Denote by D the

invariant ontrol set of T in B

�

. From S

K

� T it follows that K � D. Now, S

K

is a ompression semigroup and D is T -invariant. Hene it is enough to show that

K = D to get T � S

K

and thus S

K

= T .

We prove �rst that D � o

B

(K). Suppose to the ontrary that there exists

y 2 D n o

B

(K). By de�nition of B-onvexity there exists an open ell � 2 B

�

suh that K � � and y =2 �. Take x 2 intK. From Lemma 2.3 there is a split-

regular h 2 G suh that x is its attrator and � = � (h). Arguing as in the proof of

Proposition 4.2 we an assume, after substituting h by some of its powers h

p

, p � 1,

that h 2 intS

K

.

The limit y

0

= lim

j!+1

h

j

y is a �xed point of h di�erent from the attrator x

beause y =2 � (h). Sine h 2 intS

K

there exists a ontrol set, say E, of S

K

suh

that y

0

2 E

0

. The fat that y

0

is not the attrator of h implies that E 6= K. On the

other hand h 2 T , y 2 D and D is losed and T -invariant. Hene y

0

2 D. But E is

entirely ontained in a ontrol set of T . Therefore E � D.

Now, both S

K

and T are of type � so that they have the same number of ontrol

sets in B

�

. Sine any ontrol set of S

K

is ontained in a ontrol set of T , the existene

of E 6= K with K;E � D is a ontradition. This shows that D � o

B

(K).

Therefore intD � int (o

B

(K)). But int (o

B

(K)) = intC by Proposition 3.8.

On the other hand D = l (intD) beause it is the invariant ontrol set of a semi-

group with nonvoid interior. Hene D � l (intC) = K. This implies that T = S

K

,

showing that S

K

is �-maximal. 2
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We summarize the previous remarks and the above two propositions in the fol-

lowing �nal haraterization of maximal semigroups in semi-simple Lie groups.

Theorem 5.4 A semigroup S is �-maximal if and only if there is a B-onvex set

C with intC 6= ; suh that S = S

K

, the ompression semigroup of K = l (intC). In

this ase K is the invariant ontrol set of S in B

�

and o

B

(K) � C.

A semigroup S is maximal if and only if B

�

is a minimal ag manifold and S is

�-maximal.

6 Misellanea

In this setion we prove further results about maximal semigroups and provide some

examples.

6.1 Duality and minimal ontrol set

Sine a �-maximal semigroup S is the ompression semigroup of its invariant ontrol

set C every objet related to S is in priniple obtained from C. We indiate here how

the ontrol sets of S on the ag manifolds are obtained from C, determining in detail

the minimal ontrol set from the duality operator. The minimal ontrol set is the

ore of the invariant ontrol set of S

�1

= fg

�1

: g 2 Sg so we start by disussing this

semigroup. Clearly S

�1

has nonvoid interior if and only if intS 6= ;. A onsequene

of Corollary 4.6 in [13℄ is that B (S

�1

) is the ag manifold dual to B (S). Sine there

are impreisions in the statement and in the proof of that orollary we o�er here a

version of it.

Proposition 6.1 Take a split-regular h 2 intS and let A

+

= exp a

+

be the Weyl

hamber ontaining h. Then

W

A

�

�

S

�1

�

=W

A

+

(S) (3)

where A

�

= (A

+

)

�1

.

Proof: Let b

0

be the attrator of h and w

0

the prinipal involution with respet to

a

+

. We have w

0

A

+

= A

�

and that w

0

b

0

is the repeller of h that is the attrator of

h

�1

. Let C and C

�

be the invariant ontrol set for S and S

�1

in B , respetively.

By de�nition w 2 W

A

+

(S) if and only if D (w) = C. This means that wb

0

2 C

19



beause wb

0

is the w-�xed-point of h and hene wb

0

2 D (w). By Theorem 4.5 in [13℄

D (ww

0

) = D (w

0

). In fat, this theorem ensures that W

A

+

(S)ww

0

= W

A

+

(S)w

0

is a onsequene of w 2 W

A

+

(S). Sine w

0

is the prinipal involution D (w

0

) is the

minimal ontrol set, whih is given by C

�

0

. Then we get from D (ww

0

) = D (w

0

)

that ww

0

b

0

2 C

�

. On the other hand ww

0

b

0

= w (w

0

b

0

) is the w-�xed point for h

�1

beause w

0

b

0

is its attrator. Hene ww

0

b

0

2 C

�

implies that w 2 W

A

�

(S

�1

).

Therefore we have W

A

+

(S) � W

A

�

(S

�1

). The reverse inlusion follows from

this after remarking that S = (S

�1

)

�1

and A

+

= (A

�

)

�1

. 2

From this proposition we an de�ne B (S) and B (S

�1

) by taking the same Weyl

hamber A

+

as referene. In doing this it emerges that B (S

�1

) is the dual of B (S).

Take a split-regular h 2 intS and assume without loss of generality that h 2 A

+

.

If � is the assoiated simple system of roots thenW

A

+

(S) is generated by reetions

with respet to the subset � (S) � �. By formula (3) W

A

�

(S

�1

) is generated by

the same set of reetions. However by de�nition of W

A

�

(S

�1

) we must look the

generators of this subgroup in the subsets of ��. This is of ourse ��. Hene the

paraboli subalgebra assoiated to W

a

�

(S

�1

) is

p

�

�

= p+ n

+

(�) (4)

where n

+

(�) is the subalgebra spanned by g

�

with � 2 �h��i = h�i and p is the

standard minimal paraboli subalgebra. Then B (S

�1

) = G=P

�

�

. Now w

0

(��) =

�� and w

0

p

�

�

= p

��

where

p

��

= p+ n

�

(��)

and n

�

(��) is spanned by g

��

with � 2 h��i. Hene B (S

�1

) = B

�(�)

the dual of

B (S) = B

�

. Summarizing

Proposition 6.2 The ag B (S

�1

) is the dual to B (S).

Returning to the maximal semigroups suppose that S is �-maximal. Then S

�1

is �

�

-maximal. In fat, by Proposition 6.2, S

�1

is of type �

�

. If T � S

�1

is a

semigroup of type �

�

then S � T

�1

and T

�1

is of type �. Hene S = T

�1

showing

that S

�1

is �

�

-maximal. With this in mind we an desribe S

�1

as a ompression

semigroup.

Proposition 6.3 Let S be a �-maximal semigroup and denote by C its invariant

ontrol set in B

�

. Then the invariant ontrol set of S

�1

in B

�

�

is l (C

�

). Moreover

S

�1

is the ompression semigroup S

l(C

�

)

.
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Proof: From the S-invariane of C it follows that C

�

is invariant under S

�1

(see Corollary 3.10). Hene l (C

�

) is S

�1

-invariant so that S � S

l(C

�

)

. But

l (C

�

) = (intC)

�

hene by Theorem 5.4, S

l(C

�

)

is �

�

-maximal. The equality

S

�1

= S

l(C

�

)

follows then by the �

�

-maximality of S

�1

. 2

This proposition allows the determination of the minimal ontrol sets of the

maximal semigroup S = S

C

. In fat, in any ag manifold the minimal ontrol

set of S is the set of transitivity of the invariant ontrol set of S

�1

. Keeping the

above notations, the invariant ontrol set of S

�1

in B

�

�

is D = l (C

�

) and its

set of transitivity is D

0

= int (l (C

�

)), whih ontains C

�

densely. Moreover, let

� : B ! B

�

�

be the �bration from the maximal ag manifold. Then �

�1

(D) is the

invariant ontrol set for S

�1

in B and its ore �

�1

(D

0

) (see Proposition 4.1). Also,

if B

�

0

is any ag manifold, the projetion �

�

0

: B ! B

�

0

maps ontrol sets and their

ores into ontrol sets and ores respetively. Hene the minimal ontrol set for S

in B

�

0

is �

�

0

(�

�1

(D

0

)). Sine the projetions between the ag manifolds and their

inverse images preserve losures and interiors of subsets we get the minimal ontrol

set as the interior of the losure of �

�

0

(�

�1

(C

�

)).

The subset �

�

0

(�

�1

(C

�

)) is easily desribed in terms of inidene of paraboli

subalgebras and their nilradials: Think of a point x 2 B

�

�

as being the nilradial

of the orresponding paraboli subalgebra. Viewing the elements of B as minimal

paraboli subalgebras the �ber �

�1

fxg is the set of minimal paraboli subalgebras

ontaining x. On the other hand, if y 2 B then �

�

0

(y) is the only paraboli subalge-

bra in B

�

0

ontaining y. Hene the paraboli subalgebras in �

�

0

(�

�1

fxg) ontain x.

Reiproally if z 2 B

�

0

is a paraboli subalgebra ontaining x then there is a minimal

paraboli subalgebra y 2 �

�1

�

0

fzg ontaining x so that z 2 �

�

0

(�

�1

fxg). Therefore

�

�

0

(�

�1

fxg) is the set of paraboli subalgebras in B

�

0

ontaining the nilradial x.

Thus from the previous paragraph we an state:

Proposition 6.4 Let S = S

C

be a �-maximal semigroup. Given a ag B

�

0

denote

by C

�

the set of paraboli subalgebras in B

�

0

ontaining the nilradial of the paraboli

subalgebras in C

�

� B

�

�

. Then the minimal ontrol set of S in B

�

0

is int

�

l

�

C

�

��

.

We mention by pass that the other ontrol sets, or more preisely their ores, are

determined from the invariant and the minimal ontrol sets. This is true not only

for maximal semigroups but for an arbitrary semigroup S with nonvoid interior.

The idea is that for any ontrol D of S there is a ontrol set D

�

of S

�1

suh that

(D

�

)

0

= D

0

. The intersetion of their domains of attration (under the ations of S

and S

�1

respetively) is D

0

. Now in [12℄ it was proved that the domain of attration
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of a ontrol set D (w) of S is built from the minimal ontrol set and an algebrai

property of w, namely its minimal deomposition as produt of simple reetions.

In a symmetri way the domain of attration of D (w)

�

depends only on w and

the minimal ontrol set of S

�1

, that is, the invariant ontrol set of S. With this

onstrution it is possible to desribe the ores of the ontrol sets by inidene of

paraboli subalgebras. Sine this is not spei� for maximal semigroups we leave

outside the details.

6.2 Maximal semigroups ontaining a given semigroup

As mentioned above any semigroup with nonvoid interior in a topologial group is

ontained in a maximal one. This very general fat an be improved in our ontext

by means of Theorem 5.4. Starting with a semigroup S of type � let C be its

invariant ontrol set in B

�

. Then o

B

(C) is S-invariant and the arguments in the

proof of Proposition 5.2 ensure that S is ontained in the �-maximal semigroup S

K

where K = l (int (o

B

(C))). Also, if � � �

0

then the projetion � : B

�

! B

�

0

is de�ned and the same argument applied to � (C) instead of C shows that S is

ontained in a �

0

-maximal semigroup. In partiular we reover the general result

that there exists a maximal semigroup ontaining S.

In general a semigroup S of type � an be ontained in several �

0

-maximal semi-

groups if � � �

0

, aording to the B-onvex sets left invariant by S. The following

statement shows that sometimes there is uniqueness of the maximal semigroup on-

taining S.

Proposition 6.5 Let S = S

C

be a �-maximal semigroup with C = l (intC) a B-

onvex set. Suppose that for � � �

0

, � (C) is B-onvex in B

�

0

. Then S

�(C)

is the

only �

0

-maximal semigroup ontaining S.

Proof: From Theorem 5.4 it follows that C is the invariant ontrol set of S in B

�

hene the S-invariant ontrol set in B

�

0

is � (C). In partiular � (C) is S-invariant

so that S � S

�(C)

. By assumption � (C) is B-onvex. Moreover, int (� (C)) is dense

in � (C) beause � is an open map. Applying Theorem 5.4 again it follows that S

�(C)

is indeed �

0

-maximal. Now let T be a �

0

-maximal semigroup ontaining S. The

the invariant ontrol set of T in B

�

0

, say D, ontains � (C). Of ourse T = S

�(C)

if

D = � (C). On the other hand the arguments in the proof of Proposition 5.3 show

that D 6= � (C) ontradits the assumption that T is of type �

0

. 2
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6.3 Examples

6.3.1 Total positivity

A square matrix with real entries is said to be totally positive provided its minors of

all orders are nonnegative numbers. It is well known that the set of totally positive

matries in Sl (n;R) is a semigroup with nonvoid interior. We onsider here the

maximality properties of a semigroup slightly larger than T : An n � n matrix is

said to be sign-regular if for every k = 1; : : : ; n � 1, its minors of order k have the

same sign. The semigroup

�

T of sign-regular matries learly ontains T . It is a

ompression semigroup as shows the following onstrutions.

Let �

k

=

V

k

R

n

be the k-fold exterior produt of R

n

. The Grassmannian Gr

k

(n)

embeds into the projetive spae of �

k

as the set of lines spanned by the deom-

posable elements. Analogously the Grassmannian Gr

+

k

(n) of oriented k-dimensional

subspaes, whih is a two-fold overing of Gr

k

(n) embeds in a sphere of �

k

. For

g 2 Sl (n;R) denote also by g the indued linear map of �

k

. Both Grassmannians

Gr

k

(n) and Gr

+

k

(n) are invariant under g 2 Sl (n;R).

Let �

1

= fe

1

; : : : ; e

n

g be the standard basis of R

n

and �

k

= fe

I

= e

i

1

^ � � � ^ e

i

k

g

where I = (i

1

< � � � < i

k

) the basis indued in �

k

. This basis is orthonormal with

respet to the inner produt h�; �i in �

k

oming from the standard inner produt in

R

n

. The positive orthant in �

k

is determined by the inequalities he

I

; �i � 0. We

denote by O

k

its intersetion with the oriented Grassmannian Gr

+

k

(n):

O

k

= fv 2 Gr

+

k

(n) : hv; e

I

i � 0 for all Ig:

Consider the ompression semigroup

T

k

= fg 2 Sl (n;R) : gO

k

� O

k

g:

Sine the k-minors of g are the entries hge

I

; e

J

i of the matrix of g

k

with respet to

�

k

, it follows that g 2 T

k

if and only if all its minors of order k are nonnegative.

Hene

T = T

1

\ � � � \ T

n�1

:

Put C

k

= � (O

k

) where � : Gr

+

k

(n)! Gr

k

(n) is the anonial projetion and set

�

T

k

= fg 2 Sl (n;R) : gC

k

� C

k

g:

It is easily heked that g 2

�

T

k

if and only if either g 2 T

k

or all the k-minors of g

are negative. Hene

�

T =

�

T

1

\ � � � \

�

T

n�1

:

Now we verify that C

k

is B-onvex. This will be a onsequene of
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Lemma 6.6 For V =2 int (C

k

) let V

?

be its orthoomplement in R

n

. Then V

?

=2 C

�

k

,

i.e., there exists W 2 C

k

with dim

�

W \ V

?

�

� 1.

Proof: Take a basis fv

1

; : : : ; v

k

g of V and let v = v

1

^ � � � ^ v

k

be the assoiated

deomposable vetor in �

k

.

If V is in the boundary of C

k

then hv; e

I

i = 0 for some basi element e

I

=

e

i

1

^ � � � ^ e

i

k

. Put E

I

= spanfe

i

1

; : : : ; e

i

k

g. Then hv; e

I

i = 0 is equivalent to

dim

�

E

I

\ V

?

�

� 1. Sine E

I

2 C

k

this shows the lemma in ase V 2 C

k

.

Assume that V =2 C

k

and onsider the ontinuous map

f

v

: w 2 Gr

+

k

(n) 7�! hv; wi 2 R:

By de�nition of C

k

it follows that v =2 �O

k

so that there are indies I, J suh that

hv; e

I

i > 0 and hv; e

J

i < 0. Let A be the subgroup of diagonal matries with pos-

itive eigenvalues. This subgroup is onneted and leaves invariant the orthant O

k

.

Moreover it is easy to �nd g; h 2 A and z 2 O

k

suh that g

i

z ! e

I

and h

i

z ! e

J

as

i! +1. Hene f

v

assumes positive and negative values in Az, implying that there

is w = w

1

^ � � � ^ w

k

in O

k

suh that hv; wi = 0. Put W = spanfw

1

; : : : ; w

k

g. Then

hv; wi = 0 means that dim

�

W \ V

?

�

� 1. Sine W 2 C

k

this shows the lemma. 2

This lemma shows immediately that if an (n� k)-dimensional subspae U be-

longs to C

�

k

then its orthoomplement U

?

belongs to int (C

k

). Reiproally, take

V;W 2 int (C

k

) and hoose bases fv

1

; : : : ; v

k

g and fw

1

; : : : ; w

k

g of V and W respe-

tively suh that v = v

1

^ � � � ^ v

k

and w = w

1

^ � � � ^ w

k

are in int (O

k

). Then

hv; wi > 0 beause O

k

is in an orthant de�ned by an orthonormal basis. Hene

V \W

?

= 0 = W \ V

?

so that V

?

;W

?

2 C

�

k

. Therefore

C

�

k

= fV

?

: V 2 int (C

k

)g:

The above lemma also shows that V =2 C

��

k

if V =2 C

k

so that C

k

= C

��

k

is B-onvex.

Therefore,

Proposition 6.7

�

T

k

is maximal for all k = 1; : : : ; n� 1.

We leave aside further disussions about the semigroup

�

T , but mention that a

similar approah shows for any sequene r = (r

1

< � � � < r

m

), the semigroup

�

T

r

=

�

T

r

1

\ � � � \

�

T

r

m

is maximal with respet to F (r). In partiular

�

T is maximal with respet to the

maximal ag manifold.

We refer to Ando [1℄ for a survey about totally positivity matries. See also

Lusztig [8℄ and referenes therein for a generalization to semi-simple groups.
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6.3.2 A lass of ompression semigroups

The following example is a partiular instane of the ompression semigroups on-

sidered by Hilgert and Neeb [6℄. Let Q be a quadrati form in R

n

with matrix

�

1

k�k

0

0 �1

(n�k)�(n�k)

�

Denote by � the orresponding nondegenerate bilinear form. Let C � Gr

k

(n) be

the set of subspaes where Q is positive semi-de�nite and onsider the ompression

semigroup S

C

as a subsemigroup of Sl (n;R). The ontinuity of Q ensures that

C = l (intC). Moreover, let U 2 Gr

n�k

(n) be suh Q is negative de�nite on U .

Then Q is negative de�nite in any subspae of U . This implies that V \ U = 0 for

all V 2 C. Hene C � �

U

so that C is admissible and U 2 C

�

. Therefore S

C

has

nonempty interior and is of type Gr

k

(n).

Denote by D � Gr

n�k

(n) the set of subspaes where Q is negative de�nite. We

have just seen that D � C

�

or equivalently C � D

�

. We laim that C = D

�

. To

hek this use the well known fat that ifW � R

n

is a subspae with dimW � n�k

and suh that Q is negative de�nite in W then it extends to a subspae U � W

with dimU = n� k and Q negative de�nite in U .

Now suppose that there exists V 2 D

�

suh that Q is not positive semi-de�nite

in V . Then there is a subspae W � V where Q is negative de�nite. Sine W

extends to an element of D this ontradits the fat that V is transversal to every

element of D. Hene D

�

� C and C = D

�

.

Therefore C is B-onvex whih implies that S

C

is maximal of type Gr

k

(n), and

hene maximal in Sl (n;R).

6.4 Remarks and questions

Although Theorem 5.4 gives an exat haraterization of the maximal semigroups in

terms of B-onvexity it is far from of being onlusive for the full understanding of the

maximal semigroups. Speially in what onerns spei� lasses of semigroups, like

e.g. onneted semigroups, in�nitesimally generated semigroups, et. For deeper

insights into the maximal semigroups our results must be followed by a further

development of the geometry of the B-onvex sets and their ompression semigroups.

Below we list some natural questions and remarks pointing to this diretion.

1. From the work of Lawson [7℄ one knows that a maximal semigroup S in a

solvable group G is total in the sense that G = S[S

�1

. This property does not
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hold for semigroups in semi-simple groups beause of the existene of an open

set of ompat elements. However one an ask whether a maximal semigroup

is total with respet to a ag manifold B

�

, in the sense that B

�

is the union

of the S-ontrol sets. With this kind of totality the ation of S on the ag

manifold is ompletely lear sine one knows the ation inside the ontrol sets.

At this regard we mention that under totality the proof Proposition 5.3 would

be simpli�ed. In fat, the main point there is to show that a point outside the

invariant ontrol set is in the domain of attration of another ontrol set.

2. If S is onneted then its invariant ontrol set (in any homogeneous spae

of G) is onneted. This suggests to investigate the ompression semigroups

S

C

with C onvex and onneted. In general S

C

is not onneted. This is

shown for instane by the ompression semigroup in Sl (2;R) of an interval in

the projetive line P

1

. It has two onneted omponents �Sl

+

(2;R), where

Sl

+

(2;R) is the semigroup of 2 � 2 matries with positive entries. However

Sl

+

(2;R) is onneted and maximal with this property. Similar fats may

our in general: There might be a lass of onneted B-onvex sets whih are

invariant ontrol sets of semigroups whih are maximal with the property of

being onneted. This development ertainly goes through the study of the

onneted B-onvex sets and the B-onvex hull of onneted sets, whih in

general may not be onneted. Of ourse the same kind of questions make

sense for �-maximal semigroups.

3. Similar remarks apply to the in�nitesimally generated semigroups. Here one

of the basi questions seems to be haraterization of the maximal semigroups

(and orresponding B-onvex sets) whose tangent wedge generate a semigroup

with same invariant ontrol set (see D. Mittenhuber [9℄).

4. It looks like that Proposition 6.5 an be improved by showing that the pro-

jetion of a B-onvex set is B-onvex, at least for large lasses of B-onvex

sets.
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