
Maximal semigroups in semi-simple Lie groups

Luiz A. B. San Martin

�

Instituto de Matem�ati
a

Universidade Estadual de Campinas

Cx.Postal 6065

13081-970 Campinas SP, Brasil

Abstra
t

The maximal semigroups with non-empty interior in a semi-simple Lie

group with �nite 
enter are 
hara
terized as 
ompression semigroups of subsets

in the 
ag manifolds of the group. For this purpose a 
onvexity theory, 
alled

here B-
onvexity, based on the open Bruhat 
ells is developed. It turns out

that a semigroup with nonempty interior is maximal if and only if it is the


ompression semigroup of the interior of a B-
onvex set.
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1 Introdu
tion

The purpose of this paper is to 
hara
terize the maximal semigroups with nonempty

interior in semi-simple Lie groups with �nite 
enter. The prin
ipal result is Theorem

5.4 whi
h gives a pre
ise des
ription of the maximal semigroups through their a
tions

on the 
ag manifolds of the group.

When studying semigroups embedded into groups many di�erent questions have

a natural formulation and solution by means of the knowledge of the maximal semi-

groups on a spe
i�
 group. This makes the problem of determine the maximal

semigroups one of the major problems in the theory of semigroups. For semigroups
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in Lie groups J. Lawson [7℄, appealing to the Levi de
omposition of a Lie algebra,

divided the task of 
lassifying { or at least understanding { the maximal semigroups,

by 
onsidering two main 
lasses namely the semigroups of solvable type and those

of semi-simple type, a

ording to the kind of Lie group 
ontaining them. In order

to understand the maximal semigroups in a general Lie group G it is required to

have a 
lassi�
ation of these two types, and then mix them up in G. In [7℄ Lawson

himself provided a 
lassi�
ation of the maximal semigroups with nonempty inte-

rior in solvable groups: There is a one-to-one 
orresponden
e between the maximal

subsemigroups and the half-spa
es in the Lie algebra bounded by a hyperplane sub-

algebra. Thus for solvable groups the maximal semigroups have an algebrai
 nature.

This 
lassi�
ation is extended to 
ompa
t extensions of solvable groups in [7℄ (see

also Hilgert and Neeb [5℄), and to semigroups in latti
es of solvable groups (see do

Ro
io and San Martin [10℄).

In a semi-simple Lie group G with �nite 
enter it was proved in San Martin

and Tonelli [13℄ that any maximal semigroup S � G with nonempty interior is a


ompression semigroup of a subset C of one of the minimal 
ag manifolds of G:

S = S

C

= fg 2 G : gC � Cg:

However in order to have a 
omplete pi
ture of the maximal semigroups in G it is

required to �nd the appropriate family of sets C su
h that S

C

is indeed maximal.

In [13℄ this was made only for the real rank one simple Lie groups. This paper pro-

vides the appropriate sets for general semi-simple groups, generalizing the rank one


ase. The approa
h is through a 
onvexity theory for subsets of the 
ag manifolds.

Pre
isely, we say that a subset of a 
ag manifold is B-
onvex if it is the interse
tion

of the open Bruhat 
ells 
ontaining it. This notion of 
onvexity is formally de�ned

by a 
onvex hull operator on subsets. This operator in turn 
omes from a duality

operator mapping subsets of a 
ag manifold into subsets of the dual 
ag manifold.

On
e this 
onvexity theory is settled we prove that a semigroup with nonvoid inte-

rior in G is maximal if and only if it is the 
ompression semigroup of the interior of

a B-
onvex set in a minimal 
ag manifold. This same 
hara
terization also holds for

partial maximal semigroups in the following sense: From [13℄ we know that there are

di�erent 
lasses of semigroups with nonempty interior in a semi-simple Lie group,

namely, one 
lass for ea
h 
ag manifold of the group (see Se
tion 4 below). A par-

tial maximal semigroup (�-maximal in the text) is a semigroup whi
h is maximal

within the 
lass given by a 
ag manifold. These partial maximal semigroups are also

des
ribed by 
ompression and B-
onvexity, but now on the 
ag manifolds di�erent

from the minimal ones.
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Some simple examples show that the B-
onvex sets may be rather arbitrary

subsets. For instan
e for a real rank one group any subset of the 
ag manifold

is B-
onvex. Although in general B-
onvexity may be a stronger property, this

shows the existen
e of a great profusion of non
onjugate maximal semigroups in

semi-simple groups, making it hard { if feasible { to have a 
lassi�
ation of them.

There is anything one 
an do about this. It is in the realm of the stru
ture of

semi-simple Lie groups. However a further development of the theory of B-
onvex

sets may provide de
isive tools in the investigation and appli
ation of the theory of

semigroups.

2 Preliminaries

In this se
tion we set the notations and basi
 fa
ts about semi-simple Lie algebras

and the asso
iated 
ag manifolds whi
h are used throughout the paper.

Let g be a non
ompa
t semi-simple Lie algebra. We �rst make some standard


hoi
es in g. Let � be a Cartan involution of g and g = k� s the asso
iated Cartan

de
omposition with k standing for the subalgebra of �-�xed points. Sele
t a maximal

abelian subalgebra a � s and let � stand for the set of restri
ted roots of the pair

(g; a). For a root � 2 � its root spa
e is denoted by g

�

. Choose a simple system of

roots � � � and denote by �

+

the set of positive roots spanned by �. We let a

+

stand for the Weyl 
hamber asso
iated to �

+

and

n

�

=

X

�2�

�

g

�

for the nilpotent subalgebras asso
iated with �

+

and �

�

= ��

+

respe
tively. De-

note by m be the 
entralizer of a in k.

The subalgebra p = m � a � n

+

is the standard minimal paraboli
 subalgebra

of g. More generally, if � 6= � is a subset of � we denote by p

�

the paraboli


subalgebra

p

�

= n

�

(�)� p:

Here n

�

(�) is the subalgebra spanned by the root spa
es g

��

, � 2 h�i, where h�i

is the set of positive roots generated by �. Of 
ourse, p = p

;

.

Let G be a Lie group with Lie algebra g. We assume always that G has �nite


enter. In this 
ase the subgroup K = exp k is 
ompa
t. For g 2 G and X 2 g

we put g � X for the adjoint a
tion of g in X. The paraboli
 subgroup P

�

is the
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normalizer of p

�

in G:

P

�

= fg 2 G : g � p

�

= p

�

g:

Its Lie algebra is p

�

. The 
ag manifold B

�

= G=P

�

is realized as the set fg � p

�

:

g 2 Gg of paraboli
 subalgebras 
onjugate to p

�

. Alternatively, let n

+

�

stand for the

nilpotent radi
al (nilradi
al) of p

�

. Expli
itly, n

+

�

=

P

�

g

�

with the sum extended

through the positive roots outside h�i. It is well known that the normalizer of n

+

�

in g and G are p

�

and P

�

respe
tively. Hen
e B

�

is realized also as the subset

fg � n

�

: g 2 Gg of subalgebras 
onjugate to n

+

�

.

From these standard 
onstru
tions the set of 
ag manifolds be
ome parameter-

ized by the proper subsets of the �xed simple system of roots �. If �

1

� �

2

are

subsets of � then P

�

1

� P

�

2

so there is a natural �bration B

�

1

! B

�

2

given by

gP

�

1

! gP

�

2

. The maximal 
ag manifold B

;

�bers over all B

�

. It will be de-

noted simply by B . We denote these �brations by �, indistin
tly of the spe
i�
 
ag

manifolds. If they are to be emphasized the proje
tion is written �

�

1

�

2

: B

�

1

! B

�

2

.

In the sequel it will be required the notion of the 
ag manifold dual to B

�

: Let

W be the Weyl group of G and denote by w

0

2 W its prin
ipal involution, that is,

the element of maximal length as a produ
t of re
e
tions with respe
t to the simple

roots in �. Alternatively w

0

is the only element of W su
h that w

0

(�) = ��. It

is well known that w

0

= �� where � is an involutive automorphism of the Dynkin

diagram asso
iated with �. For the sake of simpli
ity we put �

�

= � (�), if � � �.

The 
ag manifold B

�

�

is said to be dual to B

�

. This notion is independent of the


hoi
e of �.

Put N

�

= exp n

�

. The de
omposition of B

�

into the N

�

-orbits is the Bruhat

de
omposition of B

�

. These orbits are given by N

�

w � p

�

, with w 2 W, so that

its number is jW=W

�

j where W

�

stands for the subgroup of W generated by the

re
e
tions with respe
t to the simple roots in �. Just one of these orbits is open

and dense in B

�

, namely N

�

� p

�

. We refer to this orbit as an open (Bruhat)


ell in B

�

. This open 
ell has an alternative des
ription through in
iden
e with

a nilpotent subalgebra, whi
h will be largely used in the sequel. Let 


�

be the

nilpotent subalgebra spanned by the root spa
es 
omplementary to p

�

in g:




�

=

X

�

g

�

with the sum extended through the negative roots outside �h�i. Sin
e the Cartan

involution � takes a root � into ��, it follows that 


�

= �

�

n

+

�

�

. However, n

�

=

� (n

+

) and n

+

normalizes n

+

�

hen
e 


�

is normalized by n

�

and thus by N

�

.
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Lemma 2.1 For a paraboli
 subalgebra q 2 B

�

the following statements are equiv-

alent:

1. q belongs to the open 
ell N

�

� p

�

,

2. q \ 


�

= 0 and

3. n \ 


�

= 0 where n is the nil radi
al of q.

Proof: Take w 2 W with w � p

�

6= p

�

. Sin
e w inter
hanges root spa
es we have

that dim (w � p

�

\ 


�

) � 1. Now N

�

normalizes 


�

. Hen
e

N

�

� (w � p

�

\ 


�

) � 


�

therefore any q 2 N

�

w � p

�

has nontrivial interse
tion with 


�

. On the other hand

if q = n � p

�

with n 2 N

�

then q \ 


�

= 0 for otherwise n

�1

� (q \ 


�

) = p \ 


�

would have positive dimension. This shows the equivalen
e between the �rst two

statements.

The last equivalen
e follows the same way from the fa
t that w � n

+

�

\ 


�

6= 0 if

w � p

�

6= p

�

(see [14, Prop. 1.1.2.13℄). 2

In the sequel we say that a subset � 2 B

�

is an open 
ell if � = g (N

�

� p

�

) for

some g 2 G. Of 
ourse any su
h open 
ell is the open orbit of a group 
onjugate to

N

�

. By the above lemma an open 
ell is realized as the set of paraboli
 subalgebras

q 2 B

�

whi
h have null interse
tion with a 
onjugate of 


�

. Now we re
ognize the

set of 
onjugates of 


�

as the 
ag B

�

�

dual to B

�

. In fa
t, sin
e 


�

= �

�

n

+

�

�

it is

the nilradi
al of the paraboli
 subalgebra � (p

�

). Hen
e the 
onjugates of 


�

are in

one-to-one 
orresponden
e with a 
ag manifold B

�

0

. To see that �

0

= �

�

observe

that the restri
tion of w

0

� to a is the involution �. Hen
e w

0

� (p

�

) = p

�

�

. This

shows that the set of 
onjugates of � (p

�

) is B

�

�

and thus this is the 
ag manifold

of the 
onjugates of 


�

.

Notation: The set of open Bruhat 
ells in B

�

is denoted by B

�

and its bije
tion with

B

�

�

by x 2 B

�

�

7! �

x

2 B

�

. The 
omplement of �

x

is denoted with �

x

= B

�

n �

x

.

It follows from the de�nitions that if g 2 G and x 2 B

�

�

then g�

x

= �

gx

and

g�

x

= �

gx

. Also, any proje
tion � : B

�

! B

�

0

is equivariant so that � (�) 2 B

�

0

if

� is an open 
ell in B

�

.

From Lemma 2.1 it follows that if p 2 B

�

and q 2 B

�

�

then p 2 �

q

if and only if

n (p) \ n (q) = 0 where n (p) stands for the nilradi
al of p. This implies at on
e the

following statement.
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Proposition 2.2 Let x 2 B

�

and y 2 B

��

. Then x 2 �

y

if and only if y 2 �

x

.

In the sequel we say that an element in g (respe
tively in G) is split-regular if

it is 
onjugate to some H 2 a

+

(respe
tively h 2 A

+

= exp a

+

). More generally,

X 2 g will be said to be �-regular if it is 
onjugate to H 2 
l (a

+

) su
h that

� = f� 2 � : � (H) = 0g:

Analogously, g 2 G is �-regular if g = expX with X a �-regular element of the

Lie algebra. Of 
ourse split-regularity and ;-regularity are the same thing. If h 2 G

is �

0

-regular then for any 
ag manifold B

�

, with �

0

� � there exists x 2 B

�

and

� 2 B

�

with x 2 � and su
h that h

i

y ! x for all y 2 �. When this holds we say

that x is the attra
tor of h and � its stable manifold. In parti
ular split-regular

elements have attra
tors and stable manifolds in any 
ag manifold. We denote by

� (h) the stable manifold of the regular element h.

More generally for a split-regular h its set of �xed-points in the maximal 
ag

manifold B is in bije
tion withW. These �xed-points are the same for every element

in the Weyl 
hamber A

+


ontaining h. Hen
e ea
h Weyl 
hamber settles a bije
tion

of W with a subset of B . Sometimes it is 
onvenient to emphasize whi
h subset of

B is being 
onsidered. We do this by putting a subs
ript A

+

. Thus W

A

+

stands

for the Weyl group viewed as the subset of A

+

-�xed points in B . For h 2 A

+

a

�xed-point b is related to some w 2 W under the bije
tion. When this is the 
ase

we say that b is the �xed-point of type w of h.

The following lemma shows that for any pair (x; �) with x 2 � one 
an �nd

a regular element having x as attra
tor and � as stable manifold. It will be used

frequently in the study of maximal semigroups.

Lemma 2.3 Take � 2 B

�

and x 2 �. Then there is a �-regular element h 2 G

su
h that x is its attra
tor and � = � (h).

Proof: Let b

0

be the base point of B

�

= G=P

�

and � = N

�

b

0

. If �

0

� � then b

0

is

the attra
tor for any �

0

-regular element in the 
losure of the Weyl 
hamber A

+

and

� is the stable manifold. Given x 2 � there exists n 2 N

�

su
h that x = nb

0

. So

that if h 2 
lA

+

is �

0

-regular then h

1

= nhn

�1

has x as attra
tor and � as stable

manifold. This shows the lemma for this spe
i�
 �. Sin
e G is transitive on B

�

the

lemma follows by 
onjugation with arbitrary g 2 G. 2
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3 B-
onvexity

Roughly speaking a subset C of a 
ag manifold B

�

is said to be B-
onvex provided C

is the interse
tion of the open Bruhat 
ells 
ontaining it. This 
on
ept of 
onvexity

is easier to develop with the aid of a 
onvex hull operator on subsets of the 
ag

manifolds and a duality operator

�

that assigns to a subset C of a 
ag B

�

a subset

C

�

of the dual 
ag manifold B

�

�

. Pre
isely,

C

�

= fx 2 B

�

�

: C � �

x

g: (1)

Of 
ourse this duality operator 
an be de�ned also for a subset D � B

�

�

giving rise

to its dual D

�

� B

�

. Hen
e it makes sense to write C

��

, whi
h is 
ontained in B

�

.

We put 
o

B

(C) = C

��

and 
all this subset the B-
onvex hull of C.

A

ordingly C is said to be B-
onvex if C = 
o

B

(C).

Following Goodman and Polla
k [3℄ a 
onvex hull operator 
o (�) deserving this

name must satisfy:

1. C � 
o (C) for any subset C,

2. 
o (�) is the identity on singletons,

3. 
o (�) is in
reasing with respe
t to in
lusion of sets, and

4. 
o (�) is idempotent.

Let us dis
uss brie
y these properties for the B-
onvex hull operator. For the

�rst one we distinguish the 
ases where C

�

is empty or not. Clearly the dual ;

�

of

the empty set is the whole dual 
ag manifold so that 
o

B

(C) = C

��

= B

�

if C � B

�

and C

�

= ;. Hen
e C � 
o

B

(C) in this 
ase. On the other hand a nonempty

subset C is said to be admissible if C

�

6= ;, i.e., if C � �

y

for some y 2 B

�

�

. For

an admissible C its B-
onvex hull is seen to be the interse
tion of the open 
ells


ontaining it. In fa
t, C

��

= fy 2 B

�

: C

�

� �

y

g. By Proposition 2.2, x 2 �

y

if

and only if y 2 �

x

. Sin
e C

�

6= ;, it follows that y 2 C

��

if and only if y 2 �

x

for

all x 2 C

�

. But any Bruhat 
ell 
ontaining C is �

x

for some x 2 C

�

, so that for an

admissible subset there is the alternative de�nition


o

B

(C) =

\

f� 2 B

�

: C � �g: (2)

Of 
ourse this implies that C � 
o

B

(C). Furthermore we note that if C is B-
onvex

then either C = ;; B

�

or C is admissible, for otherwise 
o

B

(C) = B

�

.
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Sin
e it is irrelevant to our purposes here we do not dwell on the B-
onvexity of

the singletons. We just note that if x; y 2 B

�

then there exists � 2 B

�

with x =2 �

and y 2 � so that fyg is indeed B-
onvex. Finally the last two of the above listed

properties follow from the following statements about the duality operator:

Proposition 3.1 For a 
ag manifold B

�

it holds:

1. If C

1

� C

2

� B

�

then C

�

1

� C

�

2

.

2. Let C � B

�

. Then C

�

is B-
onvex in B

�

�

.

Proof:

1. Assuming that C

1

� C

2

, take x 2 C

�

2

. Then C

2

� �

x

so that C

1

� �

x

. This

implies that x 2 C

�

1

.

2. If C is not admissible then C

�

= ;; B

�

�

so that its B-
onvexity is trivial.

Assuming that C

�

6= ; we must 
he
k that C

�

= (C

�

)

��

. The in
lusion

C

�

� (C

�

)

��

is equivalent C

�

� 
o

B

(C

�

), showed above. On the other hand

take y 2 (C

�

)

��

. Then x 2 �

y

for every x 2 C

��

. In parti
ular x 2 �

y

for all

x 2 C be
ause C is 
ontained in C

��

. But this means that y 2 C

�

, showing

that (C

�

)

��

� C

�

.

2

From this proposition we get easily the following properties of the operator


o

B

(�):

Proposition 3.2 For a 
ag manifold B

�

it holds:

1. If C

1

� C

2

then 
o

B

(C

1

) � 
o

B

(C

2

).

2. If C � B

�

then 
o

B

(C) � 
o

B

(
o

B

(C)).

Proof: The se
ond statement is a 
onsequen
e of the �rst one and the in
lusion

C � 
o

B

(C). The �rst property follows immediately from 1. in the previous propo-

sition. 2
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3.1 Examples

The examples below illustrates that the B-
onvex sets may be either rather arbitrary

sets or sets whi
h resemble the standard 
onvex sets in aÆne spa
es or in Riemannian

manifolds.

1. In 
ase g is a Lie algebra with real rank one there is just one 
ag manifold B

whi
h is di�eomorphi
 to a sphere in some dimension. The Bruhat de
ompo-

sition of B has two 
omponents the open one and its 
omplement whi
h is a

singleton. Thus B 
onsists of the subsets B nfxg, x 2 B . Therefore any subset

of B is B-
onvex.

2. Let g = sl (n;R). The 
ag manifolds are the standard manifolds of 
ags

of subspa
es in R

n

. In parti
ular the Grassmannians, in
luding the proje
-

tive spa
e, are 
ag manifolds of Lie groups asso
iated with sl (n;R). Let us

fo
us attention to the Grassmannians Gr

k

(n) of k-dimensional subspa
es of

R

n

. A dire
t 
he
k at the isotropy subalgebras of the Sl (n;R)-a
tion on the

Grasssmannians shows that the dual of Gr

k

(n) is the Grassmannian Gr

n�k

(n)

of subspa
es having 
omplementary dimension. In more 
on
rete terms this

duality is given by in
iden
e between k-dimensional and (n� k)-dimensional

subspa
es of R

n

. Indeed an open 
ell is the stable manifold of the attra
tor

for the a
tion of a split regular element h in the group. In the present 
ase

h is a diagonalizable matrix in Sl (n;R) having positive and distin
t eigenval-

ues. If fe

1

; : : : ; e

n

g is a basis of eigenve
tors of h then the subspa
e spanned

by fe

1

; : : : ; e

k

g is the attra
tor of h in Gr

k

(n). Its stable manifold is easily

seen to be the open and dense subset of k-dimensional subspa
es transversal

to spanfe

k+1

; : : : ; e

n

g. This implies that for ea
h U 2 Gr

n�k

(n) its asso
iated

open 
ell is

�

U

= fV 2 Gr

k

(n) : V \ U = 0g;

while �

U

is the set of k-dimensional subspa
es meeting U nontrivially. It

follows that ; 6= C � Gr

k

(n) is admissible if and only if there is a (n� k)-

dimensional subspa
e U su
h that V \ U = 0 for all V 2 C. Note that as

in the 
ase of rank one groups there are rather arbitrary B-
onvex subsets in

the Grassmannians. In fa
t, for any admissible D � Gr

n�k

(n), its dual D

�

is

B-
onvex in G

k

(n).

For k = 1 we 
an single out a ni
e 
lass of B-
onvex sets, namely the 
lassi
al


onvex subsets in the proje
tive spa
e P

n�1

: Let W � R

n

be a pointed 
onvex

9




one and denote by

�

W the set of lines in P

n�1


ontained in W . Sin
e W is

pointed

�

W is admissible. Also, W is the interse
tion of the half-spa
es in R

n


ontaining it. Hen
e

�

W is B-
onvex in P

n�1

. Of 
ourse not every B-
onvex set

is 
onstru
ted this way from a 
onvex 
one.

3. We 
ontinue with g = sl (n;R). Let r = (r

1

< � � � < r

m

) be a sequen
e of

integers with 1 � r

1

and r

m

� n� 1 and denote by F (r) the manifold of 
ags

(V

1

� � � � � V

m

)

of subspa
es of R

n

with dimV

i

= r

i

. Put �r = (n� r

1

< � � � < n� r

m

). Then

F (�r) is the 
ag manifold dual to F (r). As in the Grassmannian 
ase this 
an

be seen either by looking at the isotropy subalgebras or by verifying dire
tly

that the open 
ells are given by in
iden
e between the subspa
es in a 
ag.

Indeed, if U = (U

1

� � � � � U

m

) 2 F (�r) then

�

U

= f(V

1

� � � � � V

m

) : V

i

\ U

i

= 0; i = 1; : : : ; mg

is an open 
ell in F (r).

3.2 Topology

Up to this point we have 
onsidered B-
onvexity for arbitrary subsets of the 
ag

manifolds, looking at the in
iden
e of paraboli
 subalgebras only. Now we 
onsider

some topologi
al properties of the duality and B-
onvex hull operators.

Sin
e a 
ag manifold B

�

is a homogenous spa
e of G, it is endowed with the

quotient topology, rendering it a 
ompa
t metrizable spa
e. This topology is given

also by the embedding B

�

in a Grassmannian, either by identifying it with the

subalgebras 
onjugate to p

�

or to n

+

�

. Here the topology in a Grassmannian is the

standard one. A basi
 property of this topology is: Let L be a ve
tor spa
e with

dimL = n. Denote by Gr

k

(L) the Grassmannian of k-dimensional subspa
es of L.

Suppose that �

0

2 Gr

k

(L) and �

0

2 Gr

n�k

(L) are transversal, i.e., �

0

\�

0

= 0. Then

there are neighborhoods A 3 � and B 3 � in Gr

k

(L) and Gr

n�k

(L), respe
tively,

su
h that � \ � = 0 for all � 2 A and � 2 B.

Now re
all that an open 
ell �

q

, q 2 B

�

�

, is the set of paraboli
 subalgebras in

B

�

whi
h are transversal to the nilradi
al n (q) of q. Sin
e the dimension of n (q)


omplements the dimension of any p 2 B

�

, the above transversality property implies

the

10



Lemma 3.3 Let x

0

2 B

�

and y

0

2 B

�

�

be su
h that y

0

2 �

x

0

and x

0

2 �

y

0

. Then

there are neighborhoods U 3 x and V 3 y in B

�

and B

�

�

respe
tively su
h that

x 2 �

y

and y 2 �

x

, for all x 2 U and y 2 V .

Another basi
 property of the topology in the 
ag manifolds is related to se-

quen
es in the 
omplements �

y

of the open 
ells �

y

:

Lemma 3.4 Let y

j

2 B

�

�

be a sequen
e with limy

j

= y. If x 2 �

y

then there is a

sequen
e x

j

2 �

y

j

su
h that limx

j

= x.

Proof: By transitivity of G in B

�

�

there exists a sequen
e g

j

2 G with g

j

! 1 and

su
h that y

j

= g

j

y. The required sequen
e is x

j

= g

j

x. In fa
t, x

j

2 �

y

j

= g

j

�

y

and

x

j

! x. 2

From these lemmas we get the following topologi
al properties of the duality

operator whi
h are basi
 for the study of maximal semigroups.

Proposition 3.5 Suppose that C � B

�

is 
ompa
t and admissible. Then C

�

is

open.

Proof: Suppose that C 6= ; 6= C

�

and take x 2 C and y 2 C

�

. From Lemma 3.3

above there are neighborhoods U

x

3 x and V

x

3 y su
h that z 2 �

w

for all z 2 U

x

and w 2 V

x

. By 
ompa
tness there is a �nite 
overing

C � U

x

1

[ � � � [ U

x

l

:

Then V = V

x

1

\ � � � \ V

x

l

is a neighborhood of y 
ontained in C

�

. 2

Proposition 3.6 Suppose that C � B

�

is admissible and intC 6= ;. Then 
l (C

�

) �

�

x

for all x 2 intC. Hen
e 
l (C

�

) � (intC)

�

and 
l (C

�

) is admissible.

Proof: Take x 2 intC. Let y 2 
l (C

�

) and y

j

2 C

�

be su
h that limy

j

= y. We

must 
he
k that x 2 �

y

. Suppose to the 
ontrary that x 2 �

y

. Then by Lemma 3.4

there is a sequen
e x

j

2 �

y

j

with limx

j

= x. This implies that x

j

2 intC for large

j. But this 
ontradi
ts the fa
t that y

j

2 C

�

� (intC)

�

. 2

Proposition 3.7 Let C � B

�

be open and su
h that 
lC is admissible. Then C

�

is


losed and int (C

�

) = (
lC)

�

.

11



Proof: Sin
e C is open, Proposition 3.6 implies that 
l (C

�

) � C

�

so that C

�

is 
losed. Furthermore Proposition 3.1 implies that (
lC)

�

� C

�

. But (
lC)

�

is

open hen
e (
lC)

�

� int (C

�

). For the reverse in
lusion suppose that there exists

x 2 int (C

�

) n (
lC)

�

. Then x 2 �

y

for some y 2 
lC. Take a sequen
e y

j

2 C su
h

that limy

j

= y. By Lemma 3.4 there exists a sequen
e x

j

2 �

y

j

with limx

j

= x.

Hen
e, for large j, x

j

2 int (C

�

) � C

�

and x

j

2 �

y

j

with y

j

2 C, whi
h is a 
ontra-

di
tion. 2

Applying this proposition twi
e we get the following information about the B-


onvex hull of a 
losed subset.

Proposition 3.8 Let C � B

�

be 
losed admissible subset with intC 6= ;. Then


o

B

(C) is 
losed and has nonempty interior

int (
o

B

(C)) = (
l (C

�

))

�

:

Proof: Proposition 3.5 implies that C

�

is open hen
e 
o

B

(C) = C

��

is 
losed. The

above proposition applied to C

�

implies that

int (C

��

) = (
l (C

�

))

�

:

This open set is not empty be
ause 
l (C

�

) is admissible as follows from Proposition

3.6. 2

3.3 Invarian
e

The relevan
e of B-
onvexity for semigroups in G stays in the following invarian
e

properties of the dual and the B-
onvex hull operators.

Proposition 3.9 Let g 2 G and C � B

�

. Then (gC)

�

= g (C

�

).

Proof: Take a paraboli
 subalgebra p 2 C

�

and denote by n its nilradi
al. By

de�nition q\ n = 0 for every paraboli
 subalgebra q 2 C. Now g � n is the nilradi
al

of g � p, and

g � q \ g � n = g � (q \ n) = 0

if q 2 C. This implies that g � p 2 (gC)

�

and hen
e that g (C

�

) � (gC)

�

. Applying

this in
lusion to gC and g

�1

we have g

�1

((gC)

�

) � C

�

so that (gC)

�

� g (C

�

),


on
luding the proof. 2
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Corollary 3.10 Let g 2 G and C � B

�

be su
h that gC � C. Then g

�1

(C

�

) � C

�

.

Proof: By Proposition 3.2 (gC)

�

� C

�

. Hen
e by the above proposition g (C

�

) � C

�

whi
h is equivalent to g

�1

(C

�

) � C

�

. 2

Corollary 3.11 Let g 2 G and C � B

�

. Then g (
o

B

(C)) = 
o

B

(gC). Therefore

gC is B-
onvex if C is B-
onvex.

Proof: Follows from the proposition and the equality 
o

B

(C) = C

��

. 2

We 
an state now that the B-
onvex hull operator maps invariant subsets into

invariant subsets. This will be essential in the des
ription of maximal semigroups.

Proposition 3.12 Let g 2 G and C � B

�

be su
h that gC � C. Then g (
o

B

(C)) �


o

B

(C).

Proof: Follows immediately from the previous 
orollary and Proposition 3.2. 2

Finally we have the following lo
alization type property of the B-
onvex sets:

Proposition 3.13 The family of open B-
onvex sets is a basis for the topology of

B

�

.

Proof: Let C � B

�

�

be a 
ompa
t admissible subset with intC 6= ;. From the

previous se
tion we know that C

�

is open and its 
losure is admissible. Clearly C

�

is an open B-
onvex set. From it we generate a basis for the open sets in B

�

. First

take x 2 C

�

and an open 
ell � � 
lC

�

. By Lemma 2.3 there exists a split-regular

h 2 G su
h that x is its attra
tor and � = � (h). The sequen
e h

k


ontra
ts � into

x as k ! +1. Sin
e 
l (C

�

) is a 
ompa
t subset of �, the 
ontra
tion is uniform

in 
l (C

�

). This means that for any neighborhood U of x there exists a k

0

> 0 su
h

that h

k

C

�

� U for k � k

0

. This shows that the open B-
onvex sets form a basis for

the neighborhoods of x. The 
orollary follows then by transitivity of G and the fa
t

that g 2 G maps B-
onvex sets into B-
onvex sets. 2
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4 Semigroups

In this se
tion we 
onsider the a
tion on the 
ag manifolds of semigroups in semi-

simple Lie groups. We 
omplement the results of San Martin [11℄ and San Martin

and Tonelli [13℄, paving the way for the 
hara
terization of the maximal semigroups.

4.1 Topologi
al introdu
tion

Before looking at the semigroup a
tions on the 
ag manifolds we re
all some termi-

nology of topologi
al nature whi
h hold in a more general 
ontext. In this subse
tion

we let G be a topologi
al group a
ting 
ontinuously in a 
ompa
t topologi
al spa
e

M . Let S � G be a semigroup with intS 6= ;.

Its a
tion on M indu
es the pre-order relation x � y if y 2 
l (Sx), x; y 2 M .

Let � be the equivalen
e relation asso
iated with �, namely x � y if x � y and

y � x. The pre-order in M indu
es a partial order in the quotient M= � whi
h is

also denoted by �.

A 
ontrol set for S inM is an equivalen
e 
lass D of � having the property that

there exists x 2 D and g 2 intS with gx = x. Given a 
ontrol set D the �xed-point

set

D

0

= fx 2 D : 9g 2 intS; gx = xg

is known to be open and dense in D. It is named the 
ore or set of transitivity of

D (see [13℄). This se
ond name 
omes from the fa
t that for every x; y 2 D

0

there

exists g 2 S su
h that gx = y. We denote by D (S) the set of 
ontrol sets of S. It is

partially ordered by � in M= �. In 
ase M is 
ompa
t there are invariant 
ontrol

sets. These are the 
ontrol sets whi
h are maximal with respe
t to �. They are


losed subsets of M . The same way there are minimal 
ontrol sets. They are open

and 
oin
ide with the 
ores of the invariant 
ontrol sets of the inverse semigroup

S

�1

= fg

�1

: g 2 Sg.

The domain of attra
tion A (D) of a 
ontrol set D is de�ned by

A (D) = fx 2M : 9g 2 S; gx 2 Dg:

For a subset C 
ontained in M we denote by S

C

its 
ompression semigroup in G:

S

C

= fg 2 G : gC � Cg:

A qui
k glan
e at this expression is enough to show that if C = 
l (intC) then

S

C

= S

int(C)

. We refer to Colonius and Kliemann [2℄ for a detailed development of

these 
on
epts in the 
ontext of 
ontrol systems.
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4.2 Flag manifolds

We return here to the 
ag manifold setting with S a semigroup with nonvoid interior

in the semi-simple group G.

Consider for a moment the maximal 
ag manifold B = B

;

. From [13℄ we know

that for ea
h w 2 W there exists a 
ontrol set D (w) su
h that x 2 D (w)

0

if and

only x is the w-�xed point for some split-regular h 2 intS. Moreover, any 
ontrol

set D is D (w) for some w 2 W. The assignment w 7! D (w) permits to single

out, from S, a 
ag manifold B (S) as follows: Take a split-regular h 2 intS and

denote by A

+

= exp a

+

the Weyl 
hamber 
ontaining h. Re
all that we write W

A

+

to emphasize the bije
tion of W with subsets of B . Let 1 2 W

A

+

be the identity.

Then the 
ontrol set D (1) is the only invariant 
ontrol set in B . The same way the


ontrol set D (w

0

) is the only minimal 
ontrol set in B where w

0

is the prin
ipal

involution of W.

The subset W

A

+

(S) = fw 2 W : D (w) = D (1)g is a paraboli
 subgroup of

W

A

+

, that is, it is generated by the re
e
tions with respe
t to the simple roots in

a proper subset � (S) � �. Here � is the simple system of roots asso
iated with

a

+

. We put B (S) = B

�(S)

. A de
isive property of this spe
ial 
ag manifold is that

the invariant 
ontrol set of S on it is an admissible subset, i.e., is 
ontained in open

Bruhat 
ells. Pre
isely,

Proposition 4.1 With the above notations let C � B (S) be the invariant 
ontrol

set. Then C is 
ontained in the stable manifold � (h) for any split-regular h 2 intS.

Moreover if � � �(S) and � : B

�

! B (S) is the 
anoni
al �bration then �

�1

(C)

is the invariant 
ontrol set for S in B

�

.

Proof: See Proposition 4.8 and Theorem 4.3 in [13℄. 2

In the sequel we say that the semigroup is of type � if � (S) = �, i.e., B (S) = B

�

.

We emphasize that any proper semigroup with nonempty interior is of type � for

some �. Furthermore if S � T are semigroups with nonempty interior then any


ontrol set of S is 
ontained in just one 
ontrol set of T , and T is of type �

0

� � if

S is of type �.

Another information provided by the subgroup W

A

+


on
erns the number of


ontrol sets in the 
ag manifold B

�

. It is given by the order of the double 
oset

spa
eW

A

+

nW=W

�

, whereW

�

is the paraboli
 subgroup generated by the re
e
tions

in �.
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For a semigroup of type � its invariant 
ontrol set in B

�

is an admissible subset

whi
h is the 
losure of its interior. The next proposition 
omplements this statement

by showing that every subset of B

�

having these properties is the invariant 
ontrol

set of some semigroup of type �.

Proposition 4.2 Suppose that the admissible subset C � B

�

satis�es C = 
l (intC).

Then the 
ompression semigroup

S

C

= fg 2 G : gC � Cg

has nonempty interior. Moreover C is the invariant 
ontrol set of S

C

in B

�

, C

0

=

intC and S

C

is of type �.

Proof: Take x 2 intC and let � be an open 
ell 
ontaining C. By Lemma 2.3 there

exists a split-regular h 2 G su
h that x is its attra
tor and � = � (h). The sequen
e

h

k


ontra
ts � into x as k! +1. Sin
e C is a 
ompa
t subset of �, the 
ontra
tion

is uniform in C. This means that for any neighborhood U of x there exists k

0

> 0

su
h that h

k

C � U for k � k

0

. In parti
ular if we take U � C we �nd that g = h

k

0

belongs to S

C

. Furthermore the subset ff : f (C) � Ug is open in the 
ompa
t-open

topology on the 
ontinuous maps of B

�

. By the 
ontinuity of the G-a
tion we have

then that g 2 intS

C

showing the �rst part of the proposition.

For the se
ond statement note that C is invariant under S

C

. Moreover, we found

a split-regular g 2 intS having x as attra
tor for arbitrary x 2 intC. This implies

that C is the invariant 
ontrol set of S

C

be
ause the 
ore of the invariant 
ontrol

set 
ontains the attra
tors for the split-regular elements in intS. 2

5 Maximal semigroups

A subsemigroup S of a group L is said to maximal if it is not a group and there

is no semigroup T 6= L 
ontaining S properly. A well known fa
t in the theory of

subsemigroups of topologi
al groups is that any semigroup with interior points is


ontained in a maximal semigroup, whi
h by for
e is 
losed. See Hilgert, Hofmann

and Lawson [4℄ for a proof using the Lemma of Zorn.

For semigroups with nonempty interior in semi-simple Lie groups we 
an enlarge

the notion of maximality by taking into a

ount the type of the semigroup. As

before let G be a semi-simple Lie group.
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De�nition 5.1 We say that a semigroup S � G with intS 6= ; is �-maximal or

maximal with respe
t to B

�

if it is of type � and is not properly 
ontained in any

semigroup of type �.

It will be proved below that the �-maximal semigroups are essentially the 
om-

pression semigroups of the B-
onvex sets in B

�

. Before providing the proof for this

fa
t we make the following remarks:

Let S be a �-maximal semigroup and denote by C its invariant 
ontrol set in

B

�

. Sin
e C is S-invariant if follows that S � S

C

where S

C

is the 
ompression

semigroup

S

C

= fg 2 G : gC � Cg:

By Proposition 4.2, S

C

is of type �. This shows that if S is �-maximal then S is the


ompression semigroup of its invariant 
ontrol set in B

�

. Suppose there is �

0

6= �


ontaining � properly and let � : B

�

! B

�

0

. Then � (C) is admissible in B

�

0

.

Moreover int (� (C)) is dense in � (C) be
ause � is an open map. Hen
e S

�(C)

is of

type �

0

by Proposition 4.2. Sin
e � is equivariant under the a
tions of G in B

�

and

B

�

0

it follows that S � S

�(C)

. This in
lusion is proper. In fa
t, the invariant 
ontrol

set of S

�(C)

in B

�

is �

�1

(� (C)) be
ause S

�(C)

is of type �

0

. But C is admissible

hen
e C 6= �

�1

(� (C)) so that �

�1

(� (C)) 
annot be the invariant 
ontrol set of S in

B

�

. This shows that any semigroup of type � is 
ontained properly in a semigroup

of type �

0

� � if � 6= �

0

. In parti
ular a �-maximal semigroup is not maximal

unless � is maximal in �, that is, the 
omplement of a singleton. In this 
ase B

�

is

a minimal 
ag manifold.

Conversely, if � is maximal and S is a �-maximal semigroup then S is maximal.

In fa
t, if T � S and T 6= S then T is of type �

0

� �. Sin
e S is �-maximal this

implies that �

0

6= �, but then T 
an not be a proper semigroup.

Now, thanks to the invarian
e of the B-
onvex hull of a subset it follows easily

that a �-maximal semigroup is the 
ompression semigroup of a B-
onvex set in B

�

:

Proposition 5.2 Suppose that S is a �-maximal semigroup and denote by C its

invariant 
ontrol set in B

�

. Put K = 
l (int (
o

B

(C))). Then C = K and

S = S

C

= fg 2 G : gC � Cg:

Proof: If g 2 S then gC � C so that Proposition 3.12 ensures that g (
o

B

(C)) �


o

B

(C). By 
ontinuity gK � K. Hen
e S is 
ontained in the 
ompression semi-

group S

K

of K. By de�nition of a semigroup of type �, C is admissible in B

�

.

This implies that K is 
ontained in an open 
ell � of B

�

. It follows that K is a
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nonempty admissible subset satisfying K = 
l (intK). Therefore Proposition 4.2

implies that S

K

is of type �. Now by assumption S is �-maximal. Hen
e S = S

K

.

Invoking Proposition 4.2 again we have that the invariant 
ontrol set of S

K

is K so

that C = K 
on
luding the proof. 2

This proposition has the following 
onverse whi
h ensures that the 
ompression

semigroup of the interior of a B-
onvex set is maximal.

Proposition 5.3 Let C � B

�

be a proper 
losed B-
onvex set with intC 6= ;. Put

K = 
l (intC). Then the 
ompression semigroup S

K

is �-maximal.

Proof: By de�nition of B-
onvexity C is admissible. Proposition 3.8 then implies

that K is admissible. Sin
e K = 
l (intK) it follows from Proposition 4.2 that

intS

K

6= ;, S

K

is of type � and K is the invariant 
ontrol set of S

K

. To see

the �-maximality take a semigroup T of type � with S

K

� T . Denote by D the

invariant 
ontrol set of T in B

�

. From S

K

� T it follows that K � D. Now, S

K

is a 
ompression semigroup and D is T -invariant. Hen
e it is enough to show that

K = D to get T � S

K

and thus S

K

= T .

We prove �rst that D � 
o

B

(K). Suppose to the 
ontrary that there exists

y 2 D n 
o

B

(K). By de�nition of B-
onvexity there exists an open 
ell � 2 B

�

su
h that K � � and y =2 �. Take x 2 intK. From Lemma 2.3 there is a split-

regular h 2 G su
h that x is its attra
tor and � = � (h). Arguing as in the proof of

Proposition 4.2 we 
an assume, after substituting h by some of its powers h

p

, p � 1,

that h 2 intS

K

.

The limit y

0

= lim

j!+1

h

j

y is a �xed point of h di�erent from the attra
tor x

be
ause y =2 � (h). Sin
e h 2 intS

K

there exists a 
ontrol set, say E, of S

K

su
h

that y

0

2 E

0

. The fa
t that y

0

is not the attra
tor of h implies that E 6= K. On the

other hand h 2 T , y 2 D and D is 
losed and T -invariant. Hen
e y

0

2 D. But E is

entirely 
ontained in a 
ontrol set of T . Therefore E � D.

Now, both S

K

and T are of type � so that they have the same number of 
ontrol

sets in B

�

. Sin
e any 
ontrol set of S

K

is 
ontained in a 
ontrol set of T , the existen
e

of E 6= K with K;E � D is a 
ontradi
tion. This shows that D � 
o

B

(K).

Therefore intD � int (
o

B

(K)). But int (
o

B

(K)) = intC by Proposition 3.8.

On the other hand D = 
l (intD) be
ause it is the invariant 
ontrol set of a semi-

group with nonvoid interior. Hen
e D � 
l (intC) = K. This implies that T = S

K

,

showing that S

K

is �-maximal. 2
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We summarize the previous remarks and the above two propositions in the fol-

lowing �nal 
hara
terization of maximal semigroups in semi-simple Lie groups.

Theorem 5.4 A semigroup S is �-maximal if and only if there is a B-
onvex set

C with intC 6= ; su
h that S = S

K

, the 
ompression semigroup of K = 
l (intC). In

this 
ase K is the invariant 
ontrol set of S in B

�

and 
o

B

(K) � C.

A semigroup S is maximal if and only if B

�

is a minimal 
ag manifold and S is

�-maximal.

6 Mis
ellanea

In this se
tion we prove further results about maximal semigroups and provide some

examples.

6.1 Duality and minimal 
ontrol set

Sin
e a �-maximal semigroup S is the 
ompression semigroup of its invariant 
ontrol

set C every obje
t related to S is in prin
iple obtained from C. We indi
ate here how

the 
ontrol sets of S on the 
ag manifolds are obtained from C, determining in detail

the minimal 
ontrol set from the duality operator. The minimal 
ontrol set is the


ore of the invariant 
ontrol set of S

�1

= fg

�1

: g 2 Sg so we start by dis
ussing this

semigroup. Clearly S

�1

has nonvoid interior if and only if intS 6= ;. A 
onsequen
e

of Corollary 4.6 in [13℄ is that B (S

�1

) is the 
ag manifold dual to B (S). Sin
e there

are impre
isions in the statement and in the proof of that 
orollary we o�er here a

version of it.

Proposition 6.1 Take a split-regular h 2 intS and let A

+

= exp a

+

be the Weyl


hamber 
ontaining h. Then

W

A

�

�

S

�1

�

=W

A

+

(S) (3)

where A

�

= (A

+

)

�1

.

Proof: Let b

0

be the attra
tor of h and w

0

the prin
ipal involution with respe
t to

a

+

. We have w

0

A

+

= A

�

and that w

0

b

0

is the repeller of h that is the attra
tor of

h

�1

. Let C and C

�

be the invariant 
ontrol set for S and S

�1

in B , respe
tively.

By de�nition w 2 W

A

+

(S) if and only if D (w) = C. This means that wb

0

2 C
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be
ause wb

0

is the w-�xed-point of h and hen
e wb

0

2 D (w). By Theorem 4.5 in [13℄

D (ww

0

) = D (w

0

). In fa
t, this theorem ensures that W

A

+

(S)ww

0

= W

A

+

(S)w

0

is a 
onsequen
e of w 2 W

A

+

(S). Sin
e w

0

is the prin
ipal involution D (w

0

) is the

minimal 
ontrol set, whi
h is given by C

�

0

. Then we get from D (ww

0

) = D (w

0

)

that ww

0

b

0

2 C

�

. On the other hand ww

0

b

0

= w (w

0

b

0

) is the w-�xed point for h

�1

be
ause w

0

b

0

is its attra
tor. Hen
e ww

0

b

0

2 C

�

implies that w 2 W

A

�

(S

�1

).

Therefore we have W

A

+

(S) � W

A

�

(S

�1

). The reverse in
lusion follows from

this after remarking that S = (S

�1

)

�1

and A

+

= (A

�

)

�1

. 2

From this proposition we 
an de�ne B (S) and B (S

�1

) by taking the same Weyl


hamber A

+

as referen
e. In doing this it emerges that B (S

�1

) is the dual of B (S).

Take a split-regular h 2 intS and assume without loss of generality that h 2 A

+

.

If � is the asso
iated simple system of roots thenW

A

+

(S) is generated by re
e
tions

with respe
t to the subset � (S) � �. By formula (3) W

A

�

(S

�1

) is generated by

the same set of re
e
tions. However by de�nition of W

A

�

(S

�1

) we must look the

generators of this subgroup in the subsets of ��. This is of 
ourse ��. Hen
e the

paraboli
 subalgebra asso
iated to W

a

�

(S

�1

) is

p

�

�

= p+ n

+

(�) (4)

where n

+

(�) is the subalgebra spanned by g

�

with � 2 �h��i = h�i and p is the

standard minimal paraboli
 subalgebra. Then B (S

�1

) = G=P

�

�

. Now w

0

(��) =

�� and w

0

p

�

�

= p

��

where

p

��

= p+ n

�

(��)

and n

�

(��) is spanned by g

��

with � 2 h��i. Hen
e B (S

�1

) = B

�(�)

the dual of

B (S) = B

�

. Summarizing

Proposition 6.2 The 
ag B (S

�1

) is the dual to B (S).

Returning to the maximal semigroups suppose that S is �-maximal. Then S

�1

is �

�

-maximal. In fa
t, by Proposition 6.2, S

�1

is of type �

�

. If T � S

�1

is a

semigroup of type �

�

then S � T

�1

and T

�1

is of type �. Hen
e S = T

�1

showing

that S

�1

is �

�

-maximal. With this in mind we 
an des
ribe S

�1

as a 
ompression

semigroup.

Proposition 6.3 Let S be a �-maximal semigroup and denote by C its invariant


ontrol set in B

�

. Then the invariant 
ontrol set of S

�1

in B

�

�

is 
l (C

�

). Moreover

S

�1

is the 
ompression semigroup S


l(C

�

)

.
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Proof: From the S-invarian
e of C it follows that C

�

is invariant under S

�1

(see Corollary 3.10). Hen
e 
l (C

�

) is S

�1

-invariant so that S � S


l(C

�

)

. But


l (C

�

) = (intC)

�

hen
e by Theorem 5.4, S


l(C

�

)

is �

�

-maximal. The equality

S

�1

= S


l(C

�

)

follows then by the �

�

-maximality of S

�1

. 2

This proposition allows the determination of the minimal 
ontrol sets of the

maximal semigroup S = S

C

. In fa
t, in any 
ag manifold the minimal 
ontrol

set of S is the set of transitivity of the invariant 
ontrol set of S

�1

. Keeping the

above notations, the invariant 
ontrol set of S

�1

in B

�

�

is D = 
l (C

�

) and its

set of transitivity is D

0

= int (
l (C

�

)), whi
h 
ontains C

�

densely. Moreover, let

� : B ! B

�

�

be the �bration from the maximal 
ag manifold. Then �

�1

(D) is the

invariant 
ontrol set for S

�1

in B and its 
ore �

�1

(D

0

) (see Proposition 4.1). Also,

if B

�

0

is any 
ag manifold, the proje
tion �

�

0

: B ! B

�

0

maps 
ontrol sets and their


ores into 
ontrol sets and 
ores respe
tively. Hen
e the minimal 
ontrol set for S

in B

�

0

is �

�

0

(�

�1

(D

0

)). Sin
e the proje
tions between the 
ag manifolds and their

inverse images preserve 
losures and interiors of subsets we get the minimal 
ontrol

set as the interior of the 
losure of �

�

0

(�

�1

(C

�

)).

The subset �

�

0

(�

�1

(C

�

)) is easily des
ribed in terms of in
iden
e of paraboli


subalgebras and their nilradi
als: Think of a point x 2 B

�

�

as being the nilradi
al

of the 
orresponding paraboli
 subalgebra. Viewing the elements of B as minimal

paraboli
 subalgebras the �ber �

�1

fxg is the set of minimal paraboli
 subalgebras


ontaining x. On the other hand, if y 2 B then �

�

0

(y) is the only paraboli
 subalge-

bra in B

�

0


ontaining y. Hen
e the paraboli
 subalgebras in �

�

0

(�

�1

fxg) 
ontain x.

Re
ipro
ally if z 2 B

�

0

is a paraboli
 subalgebra 
ontaining x then there is a minimal

paraboli
 subalgebra y 2 �

�1

�

0

fzg 
ontaining x so that z 2 �

�

0

(�

�1

fxg). Therefore

�

�

0

(�

�1

fxg) is the set of paraboli
 subalgebras in B

�

0


ontaining the nilradi
al x.

Thus from the previous paragraph we 
an state:

Proposition 6.4 Let S = S

C

be a �-maximal semigroup. Given a 
ag B

�

0

denote

by C

�

the set of paraboli
 subalgebras in B

�

0


ontaining the nilradi
al of the paraboli


subalgebras in C

�

� B

�

�

. Then the minimal 
ontrol set of S in B

�

0

is int

�


l

�

C

�

��

.

We mention by pass that the other 
ontrol sets, or more pre
isely their 
ores, are

determined from the invariant and the minimal 
ontrol sets. This is true not only

for maximal semigroups but for an arbitrary semigroup S with nonvoid interior.

The idea is that for any 
ontrol D of S there is a 
ontrol set D

�

of S

�1

su
h that

(D

�

)

0

= D

0

. The interse
tion of their domains of attra
tion (under the a
tions of S

and S

�1

respe
tively) is D

0

. Now in [12℄ it was proved that the domain of attra
tion
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of a 
ontrol set D (w) of S is built from the minimal 
ontrol set and an algebrai


property of w, namely its minimal de
omposition as produ
t of simple re
e
tions.

In a symmetri
 way the domain of attra
tion of D (w)

�

depends only on w and

the minimal 
ontrol set of S

�1

, that is, the invariant 
ontrol set of S. With this


onstru
tion it is possible to des
ribe the 
ores of the 
ontrol sets by in
iden
e of

paraboli
 subalgebras. Sin
e this is not spe
i�
 for maximal semigroups we leave

outside the details.

6.2 Maximal semigroups 
ontaining a given semigroup

As mentioned above any semigroup with nonvoid interior in a topologi
al group is


ontained in a maximal one. This very general fa
t 
an be improved in our 
ontext

by means of Theorem 5.4. Starting with a semigroup S of type � let C be its

invariant 
ontrol set in B

�

. Then 
o

B

(C) is S-invariant and the arguments in the

proof of Proposition 5.2 ensure that S is 
ontained in the �-maximal semigroup S

K

where K = 
l (int (
o

B

(C))). Also, if � � �

0

then the proje
tion � : B

�

! B

�

0

is de�ned and the same argument applied to � (C) instead of C shows that S is


ontained in a �

0

-maximal semigroup. In parti
ular we re
over the general result

that there exists a maximal semigroup 
ontaining S.

In general a semigroup S of type � 
an be 
ontained in several �

0

-maximal semi-

groups if � � �

0

, a

ording to the B-
onvex sets left invariant by S. The following

statement shows that sometimes there is uniqueness of the maximal semigroup 
on-

taining S.

Proposition 6.5 Let S = S

C

be a �-maximal semigroup with C = 
l (intC) a B-


onvex set. Suppose that for � � �

0

, � (C) is B-
onvex in B

�

0

. Then S

�(C)

is the

only �

0

-maximal semigroup 
ontaining S.

Proof: From Theorem 5.4 it follows that C is the invariant 
ontrol set of S in B

�

hen
e the S-invariant 
ontrol set in B

�

0

is � (C). In parti
ular � (C) is S-invariant

so that S � S

�(C)

. By assumption � (C) is B-
onvex. Moreover, int (� (C)) is dense

in � (C) be
ause � is an open map. Applying Theorem 5.4 again it follows that S

�(C)

is indeed �

0

-maximal. Now let T be a �

0

-maximal semigroup 
ontaining S. The

the invariant 
ontrol set of T in B

�

0

, say D, 
ontains � (C). Of 
ourse T = S

�(C)

if

D = � (C). On the other hand the arguments in the proof of Proposition 5.3 show

that D 6= � (C) 
ontradi
ts the assumption that T is of type �

0

. 2
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6.3 Examples

6.3.1 Total positivity

A square matrix with real entries is said to be totally positive provided its minors of

all orders are nonnegative numbers. It is well known that the set of totally positive

matri
es in Sl (n;R) is a semigroup with nonvoid interior. We 
onsider here the

maximality properties of a semigroup slightly larger than T : An n � n matrix is

said to be sign-regular if for every k = 1; : : : ; n � 1, its minors of order k have the

same sign. The semigroup

�

T of sign-regular matri
es 
learly 
ontains T . It is a


ompression semigroup as shows the following 
onstru
tions.

Let �

k

=

V

k

R

n

be the k-fold exterior produ
t of R

n

. The Grassmannian Gr

k

(n)

embeds into the proje
tive spa
e of �

k

as the set of lines spanned by the de
om-

posable elements. Analogously the Grassmannian Gr

+

k

(n) of oriented k-dimensional

subspa
es, whi
h is a two-fold 
overing of Gr

k

(n) embeds in a sphere of �

k

. For

g 2 Sl (n;R) denote also by g the indu
ed linear map of �

k

. Both Grassmannians

Gr

k

(n) and Gr

+

k

(n) are invariant under g 2 Sl (n;R).

Let �

1

= fe

1

; : : : ; e

n

g be the standard basis of R

n

and �

k

= fe

I

= e

i

1

^ � � � ^ e

i

k

g

where I = (i

1

< � � � < i

k

) the basis indu
ed in �

k

. This basis is orthonormal with

respe
t to the inner produ
t h�; �i in �

k


oming from the standard inner produ
t in

R

n

. The positive orthant in �

k

is determined by the inequalities he

I

; �i � 0. We

denote by O

k

its interse
tion with the oriented Grassmannian Gr

+

k

(n):

O

k

= fv 2 Gr

+

k

(n) : hv; e

I

i � 0 for all Ig:

Consider the 
ompression semigroup

T

k

= fg 2 Sl (n;R) : gO

k

� O

k

g:

Sin
e the k-minors of g are the entries hge

I

; e

J

i of the matrix of g

k

with respe
t to

�

k

, it follows that g 2 T

k

if and only if all its minors of order k are nonnegative.

Hen
e

T = T

1

\ � � � \ T

n�1

:

Put C

k

= � (O

k

) where � : Gr

+

k

(n)! Gr

k

(n) is the 
anoni
al proje
tion and set

�

T

k

= fg 2 Sl (n;R) : gC

k

� C

k

g:

It is easily 
he
ked that g 2

�

T

k

if and only if either g 2 T

k

or all the k-minors of g

are negative. Hen
e

�

T =

�

T

1

\ � � � \

�

T

n�1

:

Now we verify that C

k

is B-
onvex. This will be a 
onsequen
e of
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Lemma 6.6 For V =2 int (C

k

) let V

?

be its ortho
omplement in R

n

. Then V

?

=2 C

�

k

,

i.e., there exists W 2 C

k

with dim

�

W \ V

?

�

� 1.

Proof: Take a basis fv

1

; : : : ; v

k

g of V and let v = v

1

^ � � � ^ v

k

be the asso
iated

de
omposable ve
tor in �

k

.

If V is in the boundary of C

k

then hv; e

I

i = 0 for some basi
 element e

I

=

e

i

1

^ � � � ^ e

i

k

. Put E

I

= spanfe

i

1

; : : : ; e

i

k

g. Then hv; e

I

i = 0 is equivalent to

dim

�

E

I

\ V

?

�

� 1. Sin
e E

I

2 C

k

this shows the lemma in 
ase V 2 C

k

.

Assume that V =2 C

k

and 
onsider the 
ontinuous map

f

v

: w 2 Gr

+

k

(n) 7�! hv; wi 2 R:

By de�nition of C

k

it follows that v =2 �O

k

so that there are indi
es I, J su
h that

hv; e

I

i > 0 and hv; e

J

i < 0. Let A be the subgroup of diagonal matri
es with pos-

itive eigenvalues. This subgroup is 
onne
ted and leaves invariant the orthant O

k

.

Moreover it is easy to �nd g; h 2 A and z 2 O

k

su
h that g

i

z ! e

I

and h

i

z ! e

J

as

i! +1. Hen
e f

v

assumes positive and negative values in Az, implying that there

is w = w

1

^ � � � ^ w

k

in O

k

su
h that hv; wi = 0. Put W = spanfw

1

; : : : ; w

k

g. Then

hv; wi = 0 means that dim

�

W \ V

?

�

� 1. Sin
e W 2 C

k

this shows the lemma. 2

This lemma shows immediately that if an (n� k)-dimensional subspa
e U be-

longs to C

�

k

then its ortho
omplement U

?

belongs to int (C

k

). Re
ipro
ally, take

V;W 2 int (C

k

) and 
hoose bases fv

1

; : : : ; v

k

g and fw

1

; : : : ; w

k

g of V and W respe
-

tively su
h that v = v

1

^ � � � ^ v

k

and w = w

1

^ � � � ^ w

k

are in int (O

k

). Then

hv; wi > 0 be
ause O

k

is in an orthant de�ned by an orthonormal basis. Hen
e

V \W

?

= 0 = W \ V

?

so that V

?

;W

?

2 C

�

k

. Therefore

C

�

k

= fV

?

: V 2 int (C

k

)g:

The above lemma also shows that V =2 C

��

k

if V =2 C

k

so that C

k

= C

��

k

is B-
onvex.

Therefore,

Proposition 6.7

�

T

k

is maximal for all k = 1; : : : ; n� 1.

We leave aside further dis
ussions about the semigroup

�

T , but mention that a

similar approa
h shows for any sequen
e r = (r

1

< � � � < r

m

), the semigroup

�

T

r

=

�

T

r

1

\ � � � \

�

T

r

m

is maximal with respe
t to F (r). In parti
ular

�

T is maximal with respe
t to the

maximal 
ag manifold.

We refer to Ando [1℄ for a survey about totally positivity matri
es. See also

Lusztig [8℄ and referen
es therein for a generalization to semi-simple groups.
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6.3.2 A 
lass of 
ompression semigroups

The following example is a parti
ular instan
e of the 
ompression semigroups 
on-

sidered by Hilgert and Neeb [6℄. Let Q be a quadrati
 form in R

n

with matrix

�

1

k�k

0

0 �1

(n�k)�(n�k)

�

Denote by � the 
orresponding nondegenerate bilinear form. Let C � Gr

k

(n) be

the set of subspa
es where Q is positive semi-de�nite and 
onsider the 
ompression

semigroup S

C

as a subsemigroup of Sl (n;R). The 
ontinuity of Q ensures that

C = 
l (intC). Moreover, let U 2 Gr

n�k

(n) be su
h Q is negative de�nite on U .

Then Q is negative de�nite in any subspa
e of U . This implies that V \ U = 0 for

all V 2 C. Hen
e C � �

U

so that C is admissible and U 2 C

�

. Therefore S

C

has

nonempty interior and is of type Gr

k

(n).

Denote by D � Gr

n�k

(n) the set of subspa
es where Q is negative de�nite. We

have just seen that D � C

�

or equivalently C � D

�

. We 
laim that C = D

�

. To


he
k this use the well known fa
t that ifW � R

n

is a subspa
e with dimW � n�k

and su
h that Q is negative de�nite in W then it extends to a subspa
e U � W

with dimU = n� k and Q negative de�nite in U .

Now suppose that there exists V 2 D

�

su
h that Q is not positive semi-de�nite

in V . Then there is a subspa
e W � V where Q is negative de�nite. Sin
e W

extends to an element of D this 
ontradi
ts the fa
t that V is transversal to every

element of D. Hen
e D

�

� C and C = D

�

.

Therefore C is B-
onvex whi
h implies that S

C

is maximal of type Gr

k

(n), and

hen
e maximal in Sl (n;R).

6.4 Remarks and questions

Although Theorem 5.4 gives an exa
t 
hara
terization of the maximal semigroups in

terms of B-
onvexity it is far from of being 
on
lusive for the full understanding of the

maximal semigroups. Spe
ially in what 
on
erns spe
i�
 
lasses of semigroups, like

e.g. 
onne
ted semigroups, in�nitesimally generated semigroups, et
. For deeper

insights into the maximal semigroups our results must be followed by a further

development of the geometry of the B-
onvex sets and their 
ompression semigroups.

Below we list some natural questions and remarks pointing to this dire
tion.

1. From the work of Lawson [7℄ one knows that a maximal semigroup S in a

solvable group G is total in the sense that G = S[S

�1

. This property does not
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hold for semigroups in semi-simple groups be
ause of the existen
e of an open

set of 
ompa
t elements. However one 
an ask whether a maximal semigroup

is total with respe
t to a 
ag manifold B

�

, in the sense that B

�

is the union

of the S-
ontrol sets. With this kind of totality the a
tion of S on the 
ag

manifold is 
ompletely 
lear sin
e one knows the a
tion inside the 
ontrol sets.

At this regard we mention that under totality the proof Proposition 5.3 would

be simpli�ed. In fa
t, the main point there is to show that a point outside the

invariant 
ontrol set is in the domain of attra
tion of another 
ontrol set.

2. If S is 
onne
ted then its invariant 
ontrol set (in any homogeneous spa
e

of G) is 
onne
ted. This suggests to investigate the 
ompression semigroups

S

C

with C 
onvex and 
onne
ted. In general S

C

is not 
onne
ted. This is

shown for instan
e by the 
ompression semigroup in Sl (2;R) of an interval in

the proje
tive line P

1

. It has two 
onne
ted 
omponents �Sl

+

(2;R), where

Sl

+

(2;R) is the semigroup of 2 � 2 matri
es with positive entries. However

Sl

+

(2;R) is 
onne
ted and maximal with this property. Similar fa
ts may

o

ur in general: There might be a 
lass of 
onne
ted B-
onvex sets whi
h are

invariant 
ontrol sets of semigroups whi
h are maximal with the property of

being 
onne
ted. This development 
ertainly goes through the study of the


onne
ted B-
onvex sets and the B-
onvex hull of 
onne
ted sets, whi
h in

general may not be 
onne
ted. Of 
ourse the same kind of questions make

sense for �-maximal semigroups.

3. Similar remarks apply to the in�nitesimally generated semigroups. Here one

of the basi
 questions seems to be 
hara
terization of the maximal semigroups

(and 
orresponding B-
onvex sets) whose tangent wedge generate a semigroup

with same invariant 
ontrol set (see D. Mittenhuber [9℄).

4. It looks like that Proposition 6.5 
an be improved by showing that the pro-

je
tion of a B-
onvex set is B-
onvex, at least for large 
lasses of B-
onvex

sets.
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