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Summary

The main objet of this paper is to onsider hypothesis testing in elliptial measurement

error models. Bartlett orreted likelihood ratio statistis are onsidered for several

hypotheses of interest. The orretions are obtaines by omputing diretly expeted

values of the statistis, without the need of omputing umulants, as is usually the ase

when deriving suh orretions. Orthogonal parametrizations are also derived whih

are ruial in obtaining the main results.

1. Introdution

We onsider the simple regression model with additive measurement errors spei�ed

by the equations

(1:1) Y

ij

= �

j

+ �

j

x

ij

+ e

ij

and

(1:2) X

ij

= x

ij

+ u

ij

;

i = 1; : : : ; n

j

and j = 1; : : : ; k. When the x

ij

are onsidered �xed (parameters), then

the funtional model follows. When the x

ij

are random variables, then the strutural

model follows. In this paper, we onsider the strutural model situation. In this

situation, the model (1.1)-(1.2) an be written (Arellano-Valle and Bolfarine, 1995) as

(1:3) Z

ij

= a

j

+B

j

r

ij

;

where Z

ij

= (Y

ij

; X

ij

)

0

; r

ij

= (x

ij

; e

ij

; u

ij

)

0

; a

j

= (�

j

; 0)

0

and B

j

= [b

j

I

2

℄; with b

j

=

(�

j

; 1)

0

and I

m

being the identity matrix of dimension m. Thus, it follows from (1.3)

that the distribution of Z

ij

is determined by the distribution of r

ij

. In the literature,

it is typially onsidered that the random vetors r

ij

= (x

ij

; e

ij

; u

ij

)

0

; i = 1; : : : ; n

j

; j =

1; : : : ; k, are independent and r

ij

� N

3

(��

�

j

;






j

); where

(1:4) ��

�

j

=

0

B

�

�

xj

0

0

1

C

A

and 






j

=

0

B

�

�

2

xj

0 0

0 �

2

ej

0

0 0 �

2

uj

1

C

A
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so that Z

ij

� N

3

(��

�

j

;��

�

j

); where

(1:5)

��

�

j

= a

j

+B

j

��

�

j

=

�

�

j

+ �

j

�

xj

�

xj

�

and ��

�

j

= B

j








j

B

0

j

=

�

�

2

j

�

2

xj

+ �

2

ej

�

j

�

2

xj

�

j

�

2

xj

�

2

xj

+ �

2

uj

�

;

as an be seen, for example, in Wong (1991). Note that ��

�

j

= ��

�

(��

�

j

) and ��

�

= ��

�

j

(��

�

j

);

where

(1:6) ��

�

j

= (�

j

; �

xj

; �

2

xj

; �

2

ej

; �

2

uj

; �

j

)

0

;

j = 1; : : : ; k; so that the model parameter is given by ��

�

= (��

�

0

1

; : : : ; ��

�

0

k

)

0

: The simple ase

with k = 1 is onsidered, for example, in Fuller (1987), Wong (1989), Bolfarine and

Cordani (1993) and Arellano-Valle and Bolfarine (1995), among others.

The main objet of this paper is to onsider inferene for model parameters under

the elliptial models and testing hypotheses of interest using the likelihood ratio statis-

tis, where Bartlett type orretions are onsidered for the testing statistis. As in

Arellano-Valle and Bolfarine (1995, 1996), the approah followed is based on the diret

evaluation of the expeted value of the likelihood ratio statistis and di�ers from the

approh onsidered in Lawley (1956), whih is based on asymptoti expansions of the

likelihood funtion. The approah allows the generalization of some results in Wong

(1991) to a lass of distributions more general than the normal distributions whih

is the elliptial family of distributions (see Fang et al., 1990). In the literature it is

typiall to onsider two versions of the elliptial model, known as the dependent and

independent models.

In dependent elliptial models, it is onsidered that the observed data follows jointly

an elliptial distribution as onsidered, for example, in Zellner (1976), Anderson et al.

(1986) and Arellano-Valle and Bolfarine (1996), among others. In these works it is

shown that the inferene under the normal model typially also holds under depen-

dent elliptial models, so that suh proedures are robust with respet to this type of

nonnormality. In partiular, it is shown that, under dependent elliptial models, the

maximum likelihood estimators (MLE) for loation (sale) parameters are the same

(proportional) that the orresponding estimators by using the normal model.

In independent elliptial models, it is onsidered that the observations are inde-

pendent and follows elliptial marginal distributions. This is the approah followed,

for example, in Tyler (1983), Lange et al. (1989) and Kano, Berkane and Bentler

(1993). Under this approah, inferene is typially based on asymptoti results and

one important aspet of these models is that they an be robust with respet outlying

observations. In the ontext of hypothesis testing, it is well known that some tests

whih rely on asymptoti distributions suh as the likelihood ratio, sore and Wald

statistis present some limitations for smal sample size. However, when the regular-

ity onditions are valid the aproximation of the distributions of suh statistis by the
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referene hisquare distribution an be improved in models with ontinuous sample dis-

tributions. This improved is typially ahieved by multiplying the statistis by Bartlett

type (Cordeiro, 1983) orretion fators. The orretion fators are typially funtions

of the umulants of the logarithm of the likelihood funtion and its derivation typially

involve great amount of algebrai manipulations.

The paper is organized as follows. Setion 2 presents a desription of some ex-

tensions of the normal model by onsidering elliptial distributions. Dependent and

independent versions of the elliptial model are onsidered. In eah ase, the maximum

likelihood estimators are derived and some relations of the estimators with the normal

ase are onsidered. Setion 3 is devoted to the derivation of the Fisher information

matrix for eah model. Using the information matries, orthogonal parametrizations

are also obtained in eah ase. By using properties of the Wishart distribution, the

distribution of the sample varianes are obtained whih are used in deriving Bartlett

orretion for the likelihood ratio statistis. Setion 4 is devoted to the derivations of

the likelihood ratio statistis and its Bartlett orreted versions.

2. Elliptial measurement error models

In this paper, it is onsidered that, in (1.3), r

1j

; : : : ; r

n

j

j

are unorrelated, j =

1; : : : ; k; and that r

ij

� El

3

(��

�

j

;


j

;�); i = 1; : : : ; n

j

, with ��

�

j

and 






j

being as in

(1.4). Thus, we are onsidering that r

ij

is elliptially distributed with parameters ��

�

j

and 


j

and harateristi funtion of the form exp(it

0

��

�

j

)�(t

0




j

t), t 2 R

3

, so that

E[r

ij

℄ = ��

�

j

and V ar[r

ij

℄ = Æ


j

when they exists, where Æ = �2�

0

(0) (Æ = 1 for

the normal model). We assume in the sequel that r

ij

has density funtion, whih

has the form j


j

j

�1=2

h

(3)

((r

ij

� ��

�

j

)

0




�1

j

(r

ij

� ��

�

j

)); where h

(p)

denotes a p-dimensional

spherial density generator (see Fang et al., 1990). Now, from the assumptions on the

r

ij

and properties of the elliptial distributions, it follows that Z

ij

� El

2

(��

�

j

;�

j

;�);

j = 1; : : : ; k; where ��

�

j

and �

j

are as in (1.5). Notie that the above results represents

the distribution of the observed data assoiated with the j-th population. In order

to speify the joint distribution assoiated with the k populations, we onsider three

di�erent spei�ations for the joint distribution of the random vetors r

ij

; i = 1; : : : ; n

j

;

j = 1; : : : ; k; within the lass of the elliptial distributions. Thus, denoting by

(2:1) r

(j)

= (r

0

1j

; : : : ; r

0

n

j

j

)

0

; j = 1; : : : ; k and r

�

= (r

0

(1)

; : : : ; r

0

(k)

)

0

;

the following situations are onsidered:

(A) r

�

� El

3n

(��

�

�

;


�

;�);

(B) r

�

� El

(I)

3n

(��

�

�

;


�

;�)  ! r

(j)

ind

� El

3n

j

(��

�

(j)

;


(j)

;�); j = 1 : : : ; k;

(C) r

�

� El

(II)

3n

(��

�

�

;


�

;�)  ! r

(j)

� El

(I)

3n

j

(��

�

(j)

;


(j)

;�); j = 1 : : : ; k;
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where n = n

1

+ : : : + n

k

; ��

�

�

= (��

�

0

(1)

; : : : ; ��

�

0

(k)

)

0

and 


�

= diag(


(1)

; : : : ;


(k)

); with

��

�

(j)

= 1

n

j


 ��

�

j

and 


(j)

= I

n

j





j

; j = 1; : : : ; k; and where ��

�

j

and 


j

are as in(1.3).

Moreover, 
 denotes the usual Kroneker produt, diag(A

1

; : : : ;A

p

) denotes a diagonal

matrix, where the elements A

1

; : : : ;A

p

are matries of appropriate dimensions, and

1

m

denotes the m-dimensional vetor of ones. We all attention to the fat that the

random vetors r

(1)

; : : : ; r

(k)

are not independent under situation (A), while they are

independent under situations (B) and (C). Moreover, for eah j = 1; : : : ; k; the random

vetors r

j1

; : : : ; r

n

j

j

are not independent under situation (A) and (B), while they are

independent under situation (C). It is also worth notiing that under normality the

three spei�ations oinide. Moreover, for k = 1 (one population), spei�ations (A)

and (B) oinide with the dependent elliptial model and spei�ation (C) beomes the

independent elliptial model, whih are de�ned in Arellano-Valle and Bolfarine (1996).

In matrix notation, we an represent the model orresponding to the observations

from the j-th population as

Z

(j)

= 1

n

j


 a

j

+ (I

n

j


B

j

)r

(j)

;

j = 1; : : : ; k; where r

(j)

is as in (2.1) and a

j

and B

j

as in (1.3). Similarly, we an

represent the model orresponding to the observations from the k populations of size

n = n

1

+ : : : n

k

as

Z

�

= a

�

+B

�

r

�

;

where Z

�

= (Z

0

(1)

; : : : ;Z

0

(k)

)

0

; a

�

= (1

0

n

1


a

0

1

; : : : ; 1

0

n

k


a

0

k

)

0

;B

�

= Diag(I

n

1


B

1

; : : : ; I

n

k




B

k

); and r

�

being as in (2.1). Thus, from the properties of the elliptial family of

distributions it follows for the di�erent spei�ations that:

(A) Z

�

� El

2n

(��

�

�

;�

�

;�);

(B) Z

�

� El

(I)

2n

j

(��

�

�

;�

�

;�)  ! Z

(j)

ind

� El

2n

j

(��

�

(j)

;�

(j)

;�);

(C) Z

�

� El

(II)

2n

(��

�

�

;�

�

;�)  ! Z

(j)

� El

(I)

2n

j

(��

�

(j)

;�

(j)

;�);

where n = n

1

+ : : : + n

k

; ��

�

�

= (��

�

0

(1)

; : : : ; ��

�

0

(k)

)

0

and �

�

= diag(�

(1)

; : : : ;�

(k)

); with

��

�

(j)

= 1

n

j


 ��

�

j

and �

(j)

= I

n

j


 �

j

; j = 1; : : : ; k; where ��

�

j

= ��

�

(��

�

j

) and �

j

= �(��

�

j

)

are as in (1.5), so that ��

�

�

= ��

�

�

(��

�

) and �

�

= �

�

(��

�

); where ��

�

= (��

�

0

1

; : : : ; ��

�

0

k

)

0

wiht

��

�

j

being as in (1.6). Now, under the existene of a density funtion, it follows that

the likelihood funtion under elliptial models with spe�ations (A), (B) and (C) are

given, respetively, by:

(A) f(z

�

j��

�

) = j�

�

j

�1=2

h

(2n)

((z

�

� ��

�

�

)

0

�

�1

�

(z

�

� ��

�

�

));

(B) f(z

�

j��

�

) =

Q

k

j=1

j�

(j)

j

�1=2

h

(2n

j

)

((z

(j)

� ��

�

(j)

)

0

�

�1

(j)

(z

(j)

� ��

�

(j)

));

(C) f(z

�

j��

�

) =

Q

k

j=1

Q

n

j

i=1

j�

j

j

�1=2

h

(2)

((z

ij

� ��

�

j

)

0

�

�1

j

(z

ij

� ��

�

j

));
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where h

(p)

is an spherial density in <

p

; whih is independent of ��

�

:

In the sequel, we assume that the relation (see (1.5))

(2:2) ��

�

j

! (��

�

(��

�

j

);�(��

�

j

));

j = 1; : : : ; k; is one to one, whih implies that in (A), (B) and (C) the elliptial model

is identi�able (Arellano-Valle and Bolfarine, 1996). However, as the normal model,

we need an additional ondition on ��

�

j

; j = 1; : : : ; k; in order to make the relation

(2.2) one to one under the elliptial models. Under the normality assumption, Wong

(1991) onsider that the ratio �

e

j

= �

2

e

j

=�

2

uj

is known, while Bolfarine and Cordani

(1993) onsider that the ratio �

xj

= �

2

xj

=�

2

uj

is known, with k = 1: Considering the

normal model with k = 1; these ases are uni�ed in Arellano-Valle and Bolfarine (1995)

and extend to elliptial models in Arellano-Valle and Bolfarine (1996). Thus, noting

that the indenti�ation of an elliptial model under the three spei�ations depends

on the identi�ation for eah one of the subpopulations, whih is identi�able for both

ases, when the ratio �

ej

is known or when �

xj

is known, j = 1; : : : ; k; it follows that

these onditions implies also the identi�ability of the elliptial model under the three

spei�ations.

It is assumed also that the density generator funtions h

(2n)

, h

(2n

j

)

and h

(2)

, under

spei�ations (A), (B) and (C), respetively, are dereasing and ontinuosly diferen-

tiable in the interval (0;1).

Under the above assumptions, the following results are onsidered, whih are relate

with the maximun likelihood estimators (MLE) under the elliptial models (A), (B)

and (C).

Proposition 2.1 Let (

^

��

�

j

;

^

�

j

) be the MLE of (��

�

j

;�

j

); j = 1; : : : ; k; under the model

(A) or (B) or (C). Then, if the relation (2.2) is one to one, the MLE, say

^

��

�

j

; of ��

�

j

;

j = 1; : : : ; k; are the solution to the equations

(2:5) ��

�

(

^

��

�

j

) =

^

��

�

j

and �(

^

��

�

j

) =

^

�

j

;

j = 1; : : : ; k:

Proof: Follows from the invariane property of the MLE.

Proposition 2.2 Let onsider the elliptial models (A) and (B). Then, the MLE of ��

�

j

and �

j

are given by

(2:3)

^

��

�

j

=

�

Z

j

and

^

�

j

= 

j

S

j

;

j = 1; : : : ; k; where

�

Z

j

=

�

�

Y

j

�

X

j

�

and S

j

=

 

S

(j)

Y Y

S

(j)

Y X

S

(j)

XY

S

(j)

XX

!

5



are the sample mean vetor and sample ovariane matrix, respetively, orresponding

to the j-th population,



j

=

8

>

<

>

:

2n

u

�

(2n)

; in ase (A),

2n

j

u

�

(2n

j

)

; in ase (B),

with u

�

(p)

being the maximum of the funtion u

p=2

h

(p)

(u), u > 0.

Proof: From Proposition 1 in Anderson et al. (1986) it follows that

(2:4)

^

��

�

j

=

^

��

�

jN

and

^

�

j

= 

j

^

�

jN

;

where (

^

��

�

jN

;

^

�

jN

) is the MLE of (��

�

j

;�

j

); under the normal model. Sine (

^

��

�

jN

;

^

�

jN

) =

(

�

Z

j

;S

j

); j = 1; : : : ; k; we have the proof.

Note that in the speial ase where h

(p)

(u) = k(p; �)f� + ug

�

�+p

2

; orresponding to

the Student-t distribution with � degrees of freedom, we have that u

�

(p)

= p, for all

� > 0.

Proposition 2.3 Consider now model (C). Then, the MLE of ��

�

j

and �

j

are given by

the solution to the equations

(2:5)

n

j

X

i=1

w

(2)

(d

ij

)(Z

ij

�

^

��

�

j

) = 0 and

n

j

X

i=1

w

(2)

(d

ij

)(Z

ij

�

^

��

�

j

)(Z

ij

�

^

��

�

j

)

0

= n

j

^

�

j

;

j = 1; : : : ; k; where d

ij

= (Z

ij

�

^

��

�

j

)

^

�

�1

j

(Z

ij

�

^

��

�

j

)

0

and w

(2)

(u) = �2h

0

(2)

(u)=h

(2)

(u):

Proof: Is diret from the derivate of the log-likelihood funtion of the model (C) with

respet to (��

�

j

;�

j

); j = 1; : : : ; k; (see Setion 3).

Note that under spei�ation (C) no losed form are available for the MLE. Thus,

in this ase the MLEs have to be omputed numerially from the equantions (2.5).

One important result relates inferene in the elliptial ontext with results under

normality. As suh, if X � El

p

(0; I

p

;�) with P (X = 0) = 0 and Æ(X) is an statistis

suh that Æ(aX)

d

= Æ(X), for all a > 0, then (see Fang et al., 1990) Æ(X)

d

= Æ(Z); where

Z � N

p

(0; I

p

) and X

d

= Y mean that both X and Y have the same distribution.

3. Information matrix and orthogonal parameterization

In this setion we onsider the information matrix under the three spei�ations

onsidered in the previous setion. By making used these results, orthogonal param-

eterizations (Cox and Reid, 1987) and the MLE these orthogonal parameters are also
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onsidered. The notation and some results given in Arellano-Valle and Bolfarine (1995,

1996) are used.

Let L = L(��

�

) be the log-likelihood funtion, where ��

�

is as in the previous setion.

Then, under these three spei�ations L an be written as

L =

8

>

>

<

>

>

:

P

k

j=1

(�

n

j

2

) log j�

j

j+ log f(jjT

�

jj

2

); in ase (A),

P

k

j=1

(�

n

j

2

) log j�

j

j+

P

k

j=1

log g(jjT

(j)

jj

2

); in ase (B),

P

k

j=1

(�

n

j

2

) log j�

j

j+

P

k

j=1

P

n

j

i=1

log h(jjT

ij

jj

2

); in ase (C),

;

where T

�

= �

�1=2

�

(Z

�

���

�

�

), T

(j)

= �

�1=2

(j)

(Z

(j)

���

�

(j)

) and T

ij

= �

�1=2

j

(Z

ij

���

�

j

); with

jjT

�

jj

2

=

k

X

j=1

jjT

(j)

jj

2

=

k

X

j=1

n

j

X

i=1

jjT

ij

jj

2

:

Thus, denoting by �

ij

; i = 1; : : : ; 5 the i-th omponent of ��

�

j

in (1.6), it follows that

�L

��

lj

=

8

>

>

>

>

<

>

>

>

>

:

�

n

j

2

tr(�

�1

j

��

j

��

lj

) +W

(2n)

(jjT

�

jj

2

)

�jjT

�

jj

2

��

lj

; in ase (A),

�

n

j

2

tr(�

�1

j

��

j

��

lj

) +W

(2n

j

)

(jjT

(j)

jj

2

)

�jjT

(j)

jj

2

��

lj

; in ase (B),

�

n

j

2

tr(�

�1

j

��

��

lj

) +

P

n

j

i=1

W

(2)

(jjT

ij

jj

2

)

�jjT

ij

jj

2

��

lj

; in ase (C),

where

W

(p)

(u) =

�logh

(p)

(u)

�u

=

h

0

(u)

h(u)

and

�jjT

�

jj

2

��

lj

=

�jjT

(j)

jj

2

��

lj

=

n

j

X

i=1

�jjT

ij

jj

2

��

lj

with

�jjT

ij

jj

2

��

lj

= �2

���

�

0

j

�

lj

�

�1=2

j

T

ij

�T

0

ij

�

�1=2

j

��

j

��

lj

�

�1=2

j

T

ij

;

l = 1; : : : ; 5; j = 1; : : : ; k. By onsidering this notation, we obtain the following results.

Proposition 3.1 Let K = K(��

�

) be the information matrix under the three elliptial

models (A), (B) and (C). Then, it follows that

(3:1) K = diag(K

1

; : : : ;K

k

);

where K

j

= ((�

(j)

l;m

)); l; m = 1; : : : ; 5, with

(3:2) �

(j)

l;m

=

4n

j

p

a(2; 1)

���

�

0

j

���

�

lj

�

�1

j

���

�

j

��

mj

+

2n

j

p(p+ 2)

a

(

2; 2)tr(�

�1

j

��

j

��

lj

�

�1

j

��

j

��

mj

)

7



+

pn

j

2

f

1

p(p+ 2)

a(2; 2)�

1

4

gtr(�

�1

j

��

j

��

lj

)tr(�

�1

j

��

j

��

mj

);

where

a(r; s) = E[(W

(p)

(jjTjj

2

))

r

jjTjj

2s

℄;

r; s = 1; 2; r � s; with T � El

p

(00

0

; I

p

;�) and

p =

8

>

<

>

:

2n; in ase (A),

2n

j

; in ase (B),

2; in ase (C).

Proof: Sine, �

(j)

l;m

= E[(�L=��

lj

)(�L=��

mj

)℄; the proof follows from the fat that the

distributions of the vetors T

�

;T

(j)

;T

ij

are symmetri and by using standard properties

of the elliptial distributions (see Arellano-Valle and Bolfarine, 1996).

To simplify the derivation of some statistial proedures, we onsider in the fol-

lowing an orthogonal reparameterization (in the sense of Cox and Reid, 1987), whih

is suh that in (3.2) �

(j)

l;5

= �

l;�

j

= 0; l 6= 5: Under normality, orthogonal parameter-

ization was obtained by Wong (1989,1991) when �

ej

is known and by Bolfarine and

Cordani (1993) when �

xj

is known. A uni�ed treatment and the extension for elliptial

models is onsidered in Arellano-Valle and Bolfarine (1995) and Arellano-Valle and

Bolfarine (1996), respetively. Thus, as in Arellano-Valle and Bolfarine (1995, 1996),

this parameterization an be written as ��

�

j

= (��

�

0

Lj

; ��

�

0

Sj

)

0

; where

(3:3) ��

�

Lj

= (�

1j

; �

2j

)

0

and ��

�

Sj

= (�

3j

; �

4j

; �

j

)

0

;

with

�

1j

= �

j

+�

j

�

xj

; �

2j

= �

xj

; �

3j

= �

2

uj

(�

xj

�

2

j

+�

xj

�

ej

+�

ej

); �

4j

= �

2

uj

and �

5j

= �

j

;

j = 1; : : : ; k: Thus, from (1.5) we have that ��

�

j

= ��

�

(��

�

Lj

) = ��

�

Lj

and

�

j

= �

j

(��

�

Sj

) =

8

>

>

>

<

>

>

>

:

(�

x

j

+ 1)

�1

�

�

3j

+ (�

xj

�

j

)

2

�

4j

(�

xj

+ 1)�

xj

�

j

�

4j

(�

xj

+ 1)�

x

j

�

j

�

4j

(�

xj

+ 1)

2

�

4j

�

; if �

xj

is known,

(�

2

j

+ �

ej

)

�1

�

�

2

j

�

3j

+ �

2

ej

�

4j

�

j

(�

3j

� �

ej

�

4j

)

�

j

(�

3j

� �

ej

�

4j

) �

3j

+ �

2

j

�

4j

�

; if �

ej

is known,

so that, under both identi�ability onditions,

(3:4) j�

j

j = �

3j

�

4j

:

8



Proposition 3.2 Let K = K(��

�

) be the information matrix under the orthogonal pa-

rameterization given in (3.3). Then, K = K(��

�

) is as in (3.1), with

K

j

= diag(K

Lj

;K

Sj

);

where K

Lj

and K

Sj

are the information submatries orresponding to the parameter

vetors ��

�

Lj

and ��

�

Sj

, respetively, and are given by

K

Lj

=

4

p

a(2; 1)(

1

n

j

�

j

)

�1

;

and K

Sj

= ((�

(j)

l;m

)); l; m = 3; 4; 5, with

�

(j)

l;m

=

8

>

>

>

<

>

>

>

:

p

2

f

p+4Æ

lm

p

2

(p+2)

a(2; 2)�

1

4

g(

�

lj

�

mj

n

j

)

�1

; l; m = 3; 4

4

p(p+2)

a(2; 2)(

�

2

�

j

n

j

)

�1

; l; m = 5,

0; l = 3; 4; m = 5 or l = 5, m = 3; 4,

;

where Æ

ij

= 1; if i = j and zero otherwise, a(r; s) and p are as in Proposition 3.1, and

�

2

�

j

=

8

>

<

>

:

�

3j

�

2

x

j

�

4j

; if �

xj

is known,

(

�

2

j

+�

ej

�

3j

��

ej

�

4j

)

2

�

3j

�

4j

; if �

ej

is known.

Proof: See Arellano-Valle and Bolfarine (1996).

In partiular, for the Student-t model with � degrees of freedom and generador

density funtion given by h

(p)

(u) = k(p; �)f�+ug

�(�+p)=2)

; it follows that (see Arellano-

Valle and Bolfarine, 1996)

a(2; 1) =

p(� + p)

2(� + p+ 2)

and a(2; 2) =

p(p+ 2)(� + p)

2(� + p+ 2)

:

With these expressions, the informationmatries an be easily obtained for the Student-

t model under spei�ations (A), (B) and (C).

Proposition 3.3 Let (

^

��

�

j

;

^

�

j

); be the MLE of (��

�

j

;�

j

); j = 1; : : : ; k; under an ellip-

tial model. Then, if �

ej

or �

xj

is known the MLE of ��

�

Lj

= (�

1j

; �

2j

)

0

and ��

�

Ej

=

(�

3j

; �

4j

; �

j

)

0

are given by

^

��

�

Lj

=

^

��

�

j

;

^

�

lj

= a

lj

(

^

�

j

)

0

^

�

j

a

lj

(

^

�

j

); l = 3; 4; and

^

�

j

is the

solution to the equation a

3j

(

^

�

j

)

0

^

�

j

a

4j

(

^

�

j

) = 0; j = 1; : : : ; k; where

a

3j

=

8

>

>

>

<

>

>

>

:

(�

xj

+ 1)

�1=2

�

�

xj

+ 1

��

x

j

�

j

�

; if �

xj

is known,

(�

2

j

+ �

ej

)

�1=2

�

�

j

�

e

j

�

; if �

ej

is known,

9



and

a

4j

=

8

>

>

>

<

>

>

>

:

(�

x

j

+ 1)

�1=2

�

0

1

�

; if �

xj

is known,

(�

2

j

+ �

ej

)

�1=2

�

1

��

j

�

; if �

ej

is known.

Moreover, under the models (A) and (B) it follows that

^

�

1j

=

^

�

N

1j

=

�

Y

j

;

^

�

2j

=

^

�

N

2j

=

�

X

j

;

^

�

lj

= 

j

^

�

N

lj

= 

j

a

lj

(

^

�

j

)

0

S

j

a

lj

(

^

�

j

); l = 3; 4;

and

^

�

j

=

^

�

N

j

=

8

>

>

<

>

>

:

(

�

x

j

+1

�

x

j

)

S

(j)

Y X

S

(j)

XX

; if �

xj

is known,

S

(j)

Y Y

��

ej

S

(j)

XX

+f(S

(j)

Y Y

��

ej

S

(j)

XX

)

2

+4�

ej

S

(j)

Y X

g

1=2

2S

(j)

Y X

; if �

ej

is known,

j = 1; : : : ; k; where 

j

is as in Proposition 2.2 and

^

�

N

lj

; l = 1; : : : ; 4; and

^

�

N

j

are the

likelihood estimators of �

lj

; l = 1; : : : ; 4; and �

j

; respetively, under the normal model.

Proof: Follows from Propositions 2.1 and 2.2 and by using the fat that, under the

orthogonal parameterization (3.4), diag(�

3j

; �

3j

) = A

j

�

j

A

0

j

; j = 1; : : : ; k; where A

0

j

=

(a

3j

; a

4j

); (see Arellano-Valle and Bolfarine, 1995 and 1996).

4. Bartlett orreted statistis

In this setion we onsider likelihood ratio statistis for testing hypothesis of interest

related to the models (A) and (B) onsidered in the previous setions. Under the null

hypothesis we onsider Bartlett type orretions for improving the approximation to

the hisquare distribution. The likelihood ratio statistis is denoted by G and its

expeted value under null hypothesis by E

0

[G℄, whih will be obtained by omputing

the expeted value of G diretly by using the properties of the digamma funtion and

the following result.

Lemma 4.1 Let V � Gamma(a; b) be the Gamma distribution with parameters a and

b: Then, it follows that

(4:1) E[log(V )℄ = 	(a)� log(b);

where 	(:) is the digamma funtion. Moreover,

(4:2) 	

�

n

j

� 1

2

�

� log

n

j

2

= �

1

n

j

n

2 +

11

6n

j

+O(n

�2

j

)

o

10



and

(4:3)

	

�

n� k � 1

2

�

+	

�

n� k

2

�

� 2 log(

n

2

) = �

1

n

n

2k+ 3+

6(k + 1)(k + 2) + 1

6n

+O(n

�2

)

o

;

where n

j

is the size of the j-th population, j = 1; : : : ; k and n = n

1

+ : : :+ n

k

.

We will also make use of the orthogonal parameterization ��

�

= (��

�

0

1

; : : : ; ��

�

0

k

)

0

; where

��

�

j

is as in (3.3), j = 1; : : : ; k. Thus, the likelihood ratio statistis an be write as

(4:4) G = 2fL(

^

��

�

)� L(

~

��

�

)g;

where

^

��

�

and

~

��

�

are the maximum likelihood estimators under the unrestrited are

restrited model by onsidering H

0

, respetively. Moreover, the orreted version of G

is given by

G

�

= (1 + d)

�1

G;

where d is the Bartlett orretion fator, whih is de�ned in Cordeiro (1983).

Proposition 4.1 Consider the elliptial models (A) and (B) under the identi�ability

onditions �

ej

or �

xj

known, j = 1; : : : ; k: Then, under the null hypothesis H

0

: �

j

=

�

0j

, with �

0j

being known, j = 1; : : : ; k; it follows that G = G

N

and G

�

= (1+d

N

)

�1

G

N

;

where G

N

and d

N

are the likelihood ratio statistis and the respetive Bartlett orretion

fator under normality, whih are given by

(4:5) G

N

=

k

X

j=1

n

j

log

n

~

�

N

3j

~

�

N

4j

^

�

N

3j

^

�

N

4j

o

and d

N

=

k

X

j=1

5

2n

j

k

:

with

^

�

N

lj

and

~

�

N

lj

being the unrestrited and restited maximun likelihood estimators of

�

lj

; l = 3; 4; respetively, under the normal model.

Proof: As in the unrestrited ase (see (2.4) in Proposition 2.2), the restrited max-

imum likelihood estimators of ��

�

j

and �

j

under the elliptial models (A) and (B) are

given by

~

��

�

j

=

�

Z

j

and

~

�

j

= 

j

~

�

Nj

; j = 1; : : : ; k; where

~

��

�

j

and

~

�

N

j

are the respetive

restrited maximum likelihood estimator under normality and 

j

is as in Proposition

2.2. Considering these results and the fat that L(��

�

) = L(��

�

(��

�

);�(��

�

)); from (4.4) it

follows that in both models, (A) and (B), the likelihood ratio statistis G is suh that

(4:6) G =

k

X

j=1

n

j

log

n

j

~

�

j

j

j

^

�

j

j

o

=

k

X

j=1

n

j

log

n

j

~

�

Nj

j

j

^

�

Nj

j

o

= G

N

:

Thus, the expresion given in (4.5) for G = G

N

follows by onsidering (3.4) and the

Proposition 3.3. On the other hand, onsidering (4.1) and (4.2), Arellano-Valle and

11



Bolfarine (1996) (see also Arellano-Valle and Bolfarine, 1995) show that, under H

0

,

E

0

h

n

j

log

n

~

�

N

3j

~

�

N

4j

)

^

�

N

3j

^

�

4j

)

N

oi

= n

j

n

	

�

n

j

� 1

2

�

� 	

�

n

j

� 2

2

�o

= 1 +

5

2n

j

+O(n

�2

j

);

from where it follows that

E

0

[G

N

℄ = k +

k

X

j=1

5

2n

j

+O(n

�2

�

);

with n

�

= min

1�j�k

fn

j

g: Thus, the orreted likelihood ratio statistis is given by

G

�

= G

�

N

= (1 + d

N

)

�1

G

N

; with d

N

=

P

k

j=1

(5=2n

j

k):

It is important to note that the above result agrees with the results in Wong (1991),

who onsider the normal model under the identi�ability assumptions �

ej

= 1, j =

1; : : : ; k: However, Wong (1991) onsider the approah introdued in Lawley (1956).

Notie also that under the indeti�ability assumptions �

xj

, j = 1; : : : ; k, known,

it follows that (see Arellano-Valle and Bolfarine, 1995)

~

�

N

4j

=

^

�

N

4j

= S

(j)

XX

=(�

xj

+ 1);

j = 1; : : : ; k; so that

(4:6) G

N

=

k

X

j=1

n

j

log

n

~

�

N

3j

^

�

N

3j

o

:

The same result follows when we onsider the indenti�ability assumptions �

xj

and

�

2

uj

= �

2

0j

; known, j = 1; : : : ; k; sine in suh ase we have that

~

�

N

4j

=

^

�

N

4j

= �

2

0j

;

j = 1; : : : ; k: From this result and from the fat that, under normality (see Arellano-

Valle, 1995),

n

j

^

�

N

3j

�

3j

� �

2

n

j

�2

and n

j

~

�

N

3j

�

3j

� �

2

n

j

�1

;

j = 1; : : : ; k; we obtain the following Corollary.

Corollary 4.1 Under elliptial models (A) and (B) and the onditions �

xj

and �

2

uj

=

�

2

0j

; known, j = 1; : : : ; k; it follows that G = G

N

is given by (4.6) and G

�

= (1 +

d

N

)

�1

G

N

; where d

N

and H

0

are as in Proposition 4.1.

Similar results were obtained by Wong (1991) under normality and the identi�ability

ondition whih spei�es that �

ej

= 1 and �

2

0j

, j = 1; : : : ; k, known by using the approh

introdued in Lawley (1956).

In the following, we onsider hypothesis testing for the null hypotheses

(4:7) H

0

: �

j

= �

12



j = 1; : : : ; k; and

(4:8) H

0

: ��

�

j

= ��

�

; �

j

= �;

j = 1; : : : ; k, where ��

�

= ��

�

(��

�

L

) and � = �(��

�

S

), with ��

�

L

= (�

1

; �

2

)

0

and ��

�

S

=

(�

3

; �

4

; �)

0

.

Proposition 4.2 Let onsider the null hypothesis given by (4.7). Then, under the

elliptial model (A) with the identi�ability onditions �

ej

or �

xj

known, j = 1; : : : ; k;

it follows that G

�

= (1 + d

N

)

�1

G

N

; where

G

N

=

k

X

j=1

n

j

log

n

~

�

N

3

~

�

N

4

^

�

N

3j

^

�

N

4j

o

and d

N

=

1

18(k � 1)

n

k

X

j=1

37

n

j

�

6(k + 1)(k + 2) + 1

n

o

;

with n = n

1

+ : : :+ n

k

.

Proof. Under the null hypothesis (4.7), the model (A) yields to restrited maximum

likelihood given by

~

��

�

j

=

�

Z

j

and

~

� = (2n=u

�

(2n)

)

~

�

N

; where

~

�

N

=

1

n

k

X

j=1

n

j

S

n

j

:

Thus, as in (4.6), G = G

N

=

P

k

i=1

n

j

logfj

~

�

N

j=j

^

�

Nj

jg; where, from (3.4), j

~

�

N

j =

~

�

N

3

~

�

N

4

and

^

�

Nj

=

^

�

N

3j

^

�

N

4j

; j = 1; : : : ; k: Moreover, under normality and H

0

; we have

that

^

�

j

= S

j

ind:

� W

2

(n

j

�1; n

�1

�); j = 1; : : : ; k; so that

~

�

N

� W

2

(n�k; n

�1

�); where

W

p

(m;M) denotes the p-dimensional Wishart distribution with m degrees of fredoom

and dispersion matrix M: Thus, from the properties of the Wishart distribution (see

Muirhead, 1982) and from (4.1) to (4.3) it follows, after some algebrai manipulations,

that

E

0

[G℄ = 3(k � 1) +

1

6

n

k

X

j=1

37

n

j

�

6(k + 1)(k + 2) + 1

n

o

+O(n

�2

�

);

from where we obtain the orreted statistis G

�

= (1 + d

N

)

�1

G

N

; whih is loser to

the �

2

3(k�1)

{distribution than the distribution of the unorreted statistis G:

Proposition 4.3 Lets onsider the null hypothesis given by (4.8). Then, under the

elliptial model (A) with the identi�ability onditions �

ej

or �

xj

known, j = 1; : : : ; k;

it follows that G

�

= (1 + d

N

)

�1

G

N

; where G

N

is as in Proposition 4.2 and

d

N

=

37

30(k � 1)

n

k

X

j=1

1

n

j

�

1

n

o

:
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Proof: Is analogouos to the proof of Proposition 4.2, but in this ase the maximum

likelihood estimators of ��

�

and � under H

0

are given, respetively, by

~

��

�

=

�

Z and

~

� = (2n=u

�

(2n)

)

~

�

N

; where

�

Z =

1

n

n

X

j=1

n

j

�

Z

j

and

~

�

N

=

1

n

k

X

j=1

n

j

X

i=1

(Z

ij

�

�

Z)(Z

ij

�

�

Z)

0

:

Notie that, under normality,

~

�

N

� W

2

(n�1;

1

n

�): Thus, as in the proof of Proposition

4.2, from the properties of the Wishar distribution and the digamma funtion it follows

that

E

0

[G

N

℄ = 5(k � 1) +

37

6

n

k

X

j=1

1

n

j

�

1

n

o

+O(n

�2

�

):

5. Final onlusions

In this paper three di�erent extensions the additive normal models are onsidering

by replaing the usual normal model by the more general lass of the elliptial distri-

butions. By using orthogonal parametrizations and properties of the distribution of

the sample varianes, Bartlett orreted likelihood ratio statistis are obtained for the

testing of some null hypothesis. Wong (1991) derived suh orreted statistis for the

ase of the normal model by using expansions of the likelihood funtion and omput-

ing ummulants up to 4th order. Our approah is di�erent from the one onsidered in

Wong (1991) and we just have to diretly ompute expeted values of the likelihood

ratio statistis and properties of the sample varianes under the normal model and

using invariane properties of the likelihood ratio statistis as onsidered in Anderson

et al. (1986).
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