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Summary

The main object of this paper is to consider hypothesis testing in elliptical measurement
error models. Bartlett corrected likelihood ratio statistics are considered for several
hypotheses of interest. The corrections are obtaines by computing directly expected
values of the statistics, without the need of computing cumulants, as is usually the case
when deriving such corrections. Orthogonal parametrizations are also derived which
are crucial in obtaining the main results.

1. Introduction

We consider the simple regression model with additive measurement errors specified
by the equations

(1.1) Yij = aj + Bjzi; + eij

and

(1.2) Xij = @5 + w4,

i=1,...,n;and j =1,...,k. When the z;; are considered fixed (parameters), then

the functional model follows. When the z;; are random variables, then the structural
model follows. In this paper, we consider the structural model situation. In this
situation, the model (1.1)-(1.2) can be written (Arellano-Valle and Bolfarine, 1995) as

where Zz'j = (Y;’j,Xij),, ry = (xij,eij,uij)’, a; = (O[j,())l and Bj = [bj 12], with bj =
(B;,1)" and I,, being the identity matrix of dimension m. Thus, it follows from (1.3)
that the distribution of Z;; is determined by the distribution of r;;. In the literature,
it is typically considered that the random vectors r;; = (x5, €55, ui;), i =1,...,n4,j =
1,...,k, are independent and ry; ~ N3(n;,€};), where

g Jgj 0 0
(1.4) n=1_0 and Q=0 o 0 |,
0 0 0 o
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so that Z; ~ N3(p;,E;), where

(1.5) 5 2 2 2 302
—a. +Bm. = [ TP J) d E.ZB.Q.B,:<J$J ¢j 79 >7

p’] a; + ]77] ( s an j I8 ﬁjo—ij Ua%j + 0—121,]'

as can be seen, for example, in Wong (1991). Note that p; = p(;) and ¥ = X;(8;),

where

(1.6) 0.7' = (O‘ﬁMﬂiﬁagﬁazj:azj:ﬁj),:

j=1,...,k, so that the model parameter is given by 8 = (#7,...,8,)". The simple case
with & = 1 is considered, for example, in Fuller (1987), Wong (1989), Bolfarine and
Cordani (1993) and Arellano-Valle and Bolfarine (1995), among others.

The main object of this paper is to consider inference for model parameters under
the elliptical models and testing hypotheses of interest using the likelihood ratio statis-
tics, where Bartlett type corrections are considered for the testing statistics. As in
Arellano-Valle and Bolfarine (1995, 1996), the approach followed is based on the direct
evaluation of the expected value of the likelihood ratio statistics and differs from the
approch considered in Lawley (1956), which is based on asymptotic expansions of the
likelihood function. The approach allows the generalization of some results in Wong
(1991) to a class of distributions more general than the normal distributions which
is the elliptical family of distributions (see Fang et al., 1990). In the literature it is
typicall to consider two versions of the elliptical model, known as the dependent and
independent models.

In dependent elliptical models, it is considered that the observed data follows jointly
an elliptical distribution as considered, for example, in Zellner (1976), Anderson et al.
(1986) and Arellano-Valle and Bolfarine (1996), among others. In these works it is
shown that the inference under the normal model typically also holds under depen-
dent elliptical models, so that such procedures are robust with respect to this type of
nonnormality. In particular, it is shown that, under dependent elliptical models, the
maximum likelihood estimators (MLE) for location (scale) parameters are the same
(proportional) that the corresponding estimators by using the normal model.

In independent elliptical models, it is considered that the observations are inde-
pendent and follows elliptical marginal distributions. This is the approach followed,
for example, in Tyler (1983), Lange et al. (1989) and Kano, Berkane and Bentler
(1993). Under this approach, inference is typically based on asymptotic results and
one important aspect of these models is that they can be robust with respect outlying
observations. In the context of hypothesis testing, it is well known that some tests
which rely on asymptotic distributions such as the likelihood ratio, score and Wald
statistics present some limitations for smal sample size. However, when the regular-
ity conditions are valid the aproximation of the distributions of such statistics by the
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reference chisquare distribution can be improved in models with continuous sample dis-
tributions. This improved is typically achieved by multiplying the statistics by Bartlett
type (Cordeiro, 1983) correction factors. The correction factors are typically fucntions
of the cumulants of the logarithm of the likelihood function and its derivation typically
involve great amount of algebraic manipulations.

The paper is organized as follows. Section 2 presents a description of some ex-
tensions of the normal model by considering elliptical distributions. Dependent and
independent versions of the elliptical model are considered. In each case, the maximum
likelihood estimators are derived and some relations of the estimators with the normal
case are considered. Section 3 is devoted to the derivation of the Fisher information
matrix for each model. Using the information matrices, orthogonal parametrizations
are also obtained in each case. By using properties of the Wishart distribution, the
distribution of the sample variances are obtained which are used in deriving Bartlett
correction for the likelihood ratio statistics. Section 4 is devoted to the derivations of
the likelihood ratio statistics and its Bartlett corrected versions.

2. Elliptical measurement error models

In this paper, it is considered that, in (1.3), ryj,...,r,;; are uncorrelated, j =
1,...,k, and that ri; ~ El3(n;,Qj;6), i = 1,...,n;, with 5; and €Q; being as in
(1.4). Thus, we are considering that ry; is elliptically distributed with parameters 9,
and €2; and characteristic function of the form exp(it'n;)¢(t'Q;t), t € R?, so that
Elr;;] = m; and Var[r;;] = 6Q; when they exists, where 6 = —2¢'(0) (0 = 1 for
the normal model). We assume in the sequel that r;; has density function, which
has the form [€Q;|*2h(s)((r;; —n;)'Q; ' (rij —n;)), where h,) denotes a p-dimensional
spherical density generator (see Fang et al., 1990). Now, from the assumptions on the
r;; and properties of the elliptical distributions, it follows that Z;; ~ FEl, (p,j, 35 ),
j=1,...,k, where p; and X; are as in (1.5). Notice that the above results represents
the distribution of the observed data associated with the j-th population. In order
to specify the joint distribution associated with the k populations, we consider three
different specifications for the joint distribution of the random vectors r;;, ¢ = 1,...,n;,
j =1,...,k, within the class of the elliptical distributions. Thus, denoting by

!/

(2.1) i) = (v, .., rnjj)', j=1,...;k and r,=(r(y),...,rp),
the following situations are considered:

(A) r,~ El?,n(n*; Q*? ¢)7

(B) r*~EZ§}iI)(m,ﬂ*;¢) — () %“Ezglnj(n(j),nu);d)),j: ok,
(C) 1.~ Bl (n,,Q;6) +— 1) ~ Bl (0, Qi 0), 5=1....k,



where n = ny + ... +ng, 0, = (n’(l),...,n’(k))’ and Q, = diag(Qq),...,Qu), with
Ny = 1o, ®n; and Q) =1, @ Q;, j =1,..., k, and where 5; and €; are as in(1.3).
Moreover, ® denotes the usual Kronecker product, diag(A,, ..., A,) denotes a diagonal
matrix, where the elements A,,..., A, are matrices of appropriate dimensions, and
1,, denotes the m-dimensional vector of ones. We call attention to the fact that the
random vectors r(),...,r) are not independent under situation (A), while they are
independent under situations (B) and (C). Moreover, for each j = 1,..., k, the random
vectors 7;1,...,7,;; are not independent under situation (A) and (B), while they are
independent under situation (C). It is also worth noticing that under normality the
three specifications coincide. Moreover, for £ = 1 (one population), specifications (A)
and (B) coincide with the dependent elliptical model and specification (C) becomes the
independent elliptical model, which are defined in Arellano-Valle and Bolfarine (1996).

In matrix notation, we can represent the model corresponding to the observations
from the j-th population as

Zi) =1, ®a;+ (I, ® Bj)r(,

j =1,...,k, where r(;) is as in (2.1) and a; and B; as in (1.3). Similarly, we can
represent the model corresponding to the observations from the k£ populations of size
n=mny+...ng as

Z,=a,+B,r,,

where Z, = (Z’(l), . Z’(k))’, a. = (1, ®aj,..., 1, ®a;)’, B, = Diag(l,,®By,..., 1, ®

By), and r, being as in (2.1). Thus, from the properties of the elliptical family of
distributions it follows for the different specifications that:

7 ind
(B) 2. ~El(é,2 (D5 9) > Z >~E1(27;]< 0 S0 0);
(C) Z NElQn (M*,E*,Qb) NElZn( a¢)

where n = ny + ...+ ng, p, = (u’(l),...,p,’(k))’ and X, = diag(Z(l),...,E(k)), with
[ll(]) = 1nj ®[l,] and 2(g) = Inj X 2]’, ] = ]_, .. .,]{I, where [I,J = [.1,(0]) and Zj = 2(0])
are as in (1.5), so that g, = p,(0) and X, = X,(0), where 8 = (0, ...,60,)" wiht
0; being as in (1.6). Now, under the existence of a density function, it follows that
the likelihood function under elliptical models with specfications (A), (B) and (C) are
given, respectively, by:

(A) f(z.0) = [P hiny (20 — )" B, (2 — )),
(B) f(z:l6) = Il [B|” /2h2n>(( () — 1) S (26) = Biy);
(C) fl(zd0) = TIIoi 1L |25 2hey (Zw #,,)’E l(zm u_,))



where hp is an spherical density in R”, which is independent of 6.
In the sequel, we assume that the relation (see (1.5))

(2.2) 0; — (u(0;), %(8;)),

j=1,...,k, is one to one, which implies that in (A), (B) and (C) the elliptical model
is identifiable (Arellano-Valle and Bolfarine, 1996). However, as the normal model,
we need an additional condition on 6;, j = 1,...,k, in order to make the relation
(2.2) one to one under the elliptical models. Under the normality assumption, Wong
(1991) consider that the ratio A, = o7 /o7, is known, while Bolfarine and Cordani
(1993) consider that the ratio A,; = 02;/0%; is known, with k = 1. Considering the
normal model with £ = 1, these cases are unified in Arellano-Valle and Bolfarine (1995)
and extend to elliptical models in Arellano-Valle and Bolfarine (1996). Thus, noting
that the indentification of an elliptical model under the three specifications depends
on the identification for each one of the subpopulations, which is identifiable for both
cases, when the ratio \.; is known or when A,; is known, j = 1,...,k, it follows that
these conditions implies also the identifiability of the elliptical model under the three
specifications.

It is assumed also that the density generator functions ), h,(an) and h2), under
specifications (A), (B) and (C), respectively, are decreasing and continuosly diferen-
tiable in the interval (0, 00).

Under the above assumptions, the following results are considered, which are relate
with the maximun likelihood estimators (MLE) under the elliptical models (A), (B)
and (C).

Proposition 2.1 Let (f1;,%;) be the MLE of (p;,%;), j = 1,...,k, under the model
(A) or (B) or (C). Then, if the relation (2.2) is one to one, the MLE, say éj, of 6;,

j=1,...,k, are the solution to the equations
(2.5) p(;) =p; and X(8;) =3,
j=1,... k.

Proof: Follows from the invariance property of the MLE.

Proposition 2.2 Let consider the elliptical models (A) and (B). Then, the MLE of p,
and 3; are given by

(23) il,j = Zj and ﬁ:j = Cij,

-

j=1,...,k, where

x\ 0

| G qU)
J) and S; = (SY,Y S%%Y)
j

SO SO
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are the sample mean vector and sample covariance matriz, respectively, corresponding
to the j-th population,

2n ;
w I case (A),
n
C;, = 2. .
g = in case (B),
u
(2n5)

with uf, being the mazimum of the function up/Zh(p) (u), u>0.

Proof: From Proposition 1 in Anderson et al. (1986) it follows that

(24) il,y = ﬂjN and ﬁ]j = Cjﬁ:jN;
where (£, ¥,n) is the MLE of (7, 2;), under the normal model. Since (f;y, i) =
(Z;,S;), j=1,...,k, we have the proof.

Note that in the special case where h,)(u) = k(p, v){v + u} %", corresponding to
the Student-¢ distribution with v degrees of freedom, we have that up, = p, for all
v>0.

Proposition 2.3 Consider now model (C). Then, the MLE of p; and X; are given by
the solution to the equations

A~

n; mj
(25) > wey(diy)(Zi — ;) =0 and Y wey(dij)(Zij — ;) (Zi — ;)" = %5,
1=1

i=1
j=1,....k, where d;; = (Z;; — pj)ﬁ:].*l(zij — fl,j)’ and we)(u) = —2h’(2)(u)/h(2) (u).

Proof: Is direct from the derivate of the log-likelihood function of the model (C) with
respect to (u;,3;5), 7 =1,...,k, (see Section 3).

Note that under specification (C) no closed form are available for the MLE. Thus,
in this case the MLEs have to be computed numerically from the equantions (2.5).

One important result relates inference in the elliptical context with results under
normality. As such, if X ~ El,(0,1,; ¢) with P(X = 0) = 0 and 6(X) is an statistics
such that 6(aX) £ 6(X), for all @ > 0, then (see Fang et al., 1990) §(X) £ §(Z), where
Z ~ N,(0,I,) and X £ Y mean that both X and Y have the same distribution.

3. Information matrix and orthogonal parameterization

In this section we consider the information matrix under the three specifications
considered in the previous section. By making used these results, orthogonal param-
eterizations (Cox and Reid, 1987) and the MLE these orthogonal parameters are also



considered. The notation and some results given in Arellano-Valle and Bolfarine (1995,
1996) are used.

Let L = L(0) be the log-likelihood function, where @ is as in the previous section.
Then, under these three specifications L can be written as

j=1(—5) log | 2] +log £ (| T4 %), in case (A),
L=q X (=%) log %] + £ log g (I T ), in case (B), ,
j=1(=%) log || + 357 3532 log h(]|Ty5]*),  in case (C),

where T, = £7%(Z, — ), Tgj) = 35,24 — ;) and Ty = 37%(Zy; — ;) with

IT.[]* = ZIIT II* = ZZIITWII2

j=1li=1

Thus, denoting by 6,;, i =1,...,5 the i-th component of 8; in (1.6), it follows that

—%mz-—@) + Wen (TP 2G5, incase (A),
OL " Tyl
% = —21757“(2] ) + Wgn] (JIT | )#, in case (B),
nj o Tij 2 .
(B2 + £ Wo (T )22, in case (C),
where
N 7 2 B 0 NP O 41
(®) du h(u) 06, 06 = 90,
with AT, oM o,
ij By —1/2 I w—1/2 —1/2
I = I — T B ‘72 T,
00, 6, "’ I W 00, 7
[=1,...,5,5=1,...,k. By considering this notation, we obtain the following results.

Proposition 3.1 Let K = K(@) be the information matriz under the three elliptical
models (A), (B) and (C). Then, it follows that

(3.1) K = diag(Ky,...,Ky),

where K; = ((Hl(n)z)) l,m=1,...,5, with

(32) =0 1)8“-"2 1Ok, 2,

0X; 0%;
, a2, 2)tr(T! ]2 L
o p aol] O p(p +2) ( Jir

790, aem])



pn; 1
+_
2 {p(p +2)

),

9%y (s2 L 0%

0%,
2 >t
a(2,2) — tr 7

700,

where
a(r, s) = E[(We(|[T[1*)"]IT|[*],

r,s = ]_, 27 r 2 S, U)Zth/ T ~ Elp(oaIPJ ¢) a’nd

2n, in case (A),
p =21 2n;, in case (B),
2, in case (C).

Proof: Since, f<;§],)n = E[(0L/00,;)(0L/00,,;)], the proof follows from the fact that the
distributions of the vectors T\, T;), T;; are symmetric and by using standard properties

of the elliptical distributions (see Arellano-Valle and Bolfarine, 1996).

To simplify the derivation of some statistical procedures, we consider in the fol-
lowing an orthogonal reparameterization (in the sense of Cox and Reid, 1987), which

is such that in (3.2) Hl(75) = k3, = 0, I # 5. Under normality, orthogonal parameter-
ization was obtained by Wong (1989,1991) when A.; is known and by Bolfarine and
Cordani (1993) when A;; is known. A unified treatment and the extension for elliptical
models is considered in Arellano-Valle and Bolfarine (1995) and Arellano-Valle and
Bolfarine (1996), respectively. Thus, as in Arellano-Valle and Bolfarine (1995, 1996),
this parameterization can be written as @, = (¢'Lj, ¢iqj)’, where

(33) ¢Lj = (lej; ¢2j)l and ¢S] (¢377 ¢4]7 ﬁj)
with
O1j = Bt b2 = Hajs B35 = O (NajBj+AajAejtAeg),  Gaj = 0y; and  ds; = G,

j=1,...,k. Thus, from (1.5) we have that p;, = u(¢,;) = ¢,, and

O ]ﬁgaﬁz ) A i kmown,

s\ ot Brsi+ Nebs Bi(6s5 — Aeyous) L
(87 + A)™ <5J(¢3j ej¢4j) J¢3j]+ B éllj] )’ if Aej 15 known,

so that, under both identifiability conditions,

(3.4) 25| = h3j¢u;-

= 29’(4553') =



Proposition 3.2 Let K = K(@) be the information matriz under the orthogonal pa-
rameterization given in (3.3). Then, K = K(@) is as in (3.1), with

K; = diag(Ky;, Ks;),
where Kp; and Kg; are the information submatrices corresponding to the parameter
vectors @p; and g, respectively, and are given by

4 1
K =-a(2,1)(—X%;) 1,
L= (2, 1)( " i)

and Kg; = ((Kjlm)) l,m =3,4,5, with

p{”*ﬁiﬁ; a(2,2) - P Lm =34

M = (p+2) (2 2)( ) 17 lam:5; ’
0, [=3,4, m=5o0rl=5 m=34,

where §;; =1, if i = j and zero otherwise, a(r,s) and p are as in Proposition 3.1, and

Ps if Agj is known,
0_2 o A:l:] ¢4]
ﬂj - ﬂz‘l‘)\e]’ 2 - -
(7(253;/\6]_%) P3ida5, if Aej 1S known.

Proof: See Arellano-Valle and Bolfarine (1996).

In particular, for the Student-t model with v degrees of freedom and generador
density function given by h,(u) = k(p, v){v+u}~“)/? it follows that (see Arellano-
Valle and Bolfarine, 1996)

pv +p) plp+2)(v+p)
2v+p+2) 2v+p+2)

With these expressions, the information matrices can be easily obtained for the Student-
t model under specifications (A), (B) and (C).

a(2,1) =

and «a(2,2) =

Proposition 3.3 Let (i, 3 i), be the MLE of (p;,3;), j = 1,...,k, under an ellip-
tical model. Then, if Aej or Ay is known the MLE of ¢LJ = (¢1j,¢2j)’ and @p; =

(¢35, Paj, ;) are given by ¢9J i, ¢ly = a,;(3;)Sa;(3;), | = 3,4, and f; is the
solution to the equation az;(3;)’ 23a4] (ﬁ]) =0,5=1,...,k, where

(Agj +1)71/2 <)"”)J\ +ﬁ1> ,if Agj is known,
_ —wiHj

az; = ﬁ
(87 + Aej) ™ 1/2 < J ) , if Aej is known,



and

(A, +1)71/2 <(1)> : if Auj is known,

(67 + Aej) L2 <—lﬂ> . if Aej is known.
j

Moreover, under the models (A) and (B) it follows that

a4j =

b= o0 =Y, 6o = =Xy, iy = o = cjay(B)'S;a(B)), 1= 3,4,

and
Xe; 41, 59 . i

. A (5t— )—S(]-) , if Agj is known,

B = Y= (‘)w] 0 () ) )

J j SY]Y—)\ejs)gX'F{(SY]Y_();e)js)gx)z-i"l)\ejsij}l/z, if Aej 18 known,

25
YX

J = 1,...,k, where ¢; is as in Proposition 2.2 and ¢l]}f, [l =1,...,4, and ﬂJN are the
likelihood estimators of ¢y, | = 1,...,4, and (;, respectively, under the normal model.

Proof: Follows from Propositions 2.1 and 2.2 and by using the fact that, under the
orthogonal parameterization (3.4), diag(ds;, #3;) = A;X;A%L j=1,...,k, where A} =
(asj,a4;), (see Arellano-Valle and Bolfarine, 1995 and 1996).

4. Bartlett corrected statistics

In this section we consider likelihood ratio statistics for testing hypothesis of interest
related to the models (A) and (B) considered in the previous sections. Under the null
hypothesis we consider Bartlett type corrections for improving the approximation to
the chisquare distribution. The likelihood ratio statistics is denoted by G and its
expected value under null hypothesis by Ey[G], which will be obtained by computing
the expected value of G directly by using the properties of the digamma function and
the following result.

Lemma 4.1 Let V' ~ Gamma(a,b) be the Gamma distribution with parameters a and
b. Then, it follows that

(4.1) Eflog(V)] = ¥(a) — log(b),

where V(.) is the digamma function. Moreover,

42 V() oy = = {2+ g+ 0 )

10



and

(4.3)

n—k—1 n—k n, 1 6(k+1)(k+2)+1 Ly
\II(T)wL\I/( 5 )—2log(§)——g{2k+3+ 6n +0(n )},
where nj is the size of the j-th population, j =1,...,k and n =ny + ...+ n.

We will also make use of the orthogonal parameterization ¢ = (¢, ..., @), where
¢; isasin (3.3), j = 1,..., k. Thus, the likelihood ratio statistics can be write as
(4.4) G =2{L(¢) - L(9)},

where (;S and q~5 are the maximum likelihood estimators under the unrestricted are
restricted model by considering H, respectively. Moreover, the corrected version of G
is given by

G*=(1+d)7'G,
where d is the Bartlett correction factor, which is defined in Cordeiro (1983).

Proposition 4.1 Consider the elliptical models (A) and (B) under the identifiability
conditions Aej or Agj known, j = 1,..., k. Then, under the null hypothesis Hy : 3; =
Boj, with By; being known, j = 1,...,k, it follows that G = Gy and G* = (14+dy) 'Gy,
where Gy and dy are the likelihood ratio statistics and the respective Bartlett correction
factor under normality, which are given by

k

(4.5) GN_Z”J {z:’,yzzﬂ} and dN:Zk: 5

37945 j=1 2nsk

with qgf;f and qu;f being the unrestricted and resticted mazximun likelihood estimators of
¢ij, | = 3,4, respectively, under the normal model.

Proof: As in the unrestricted case (see (2.4) in Proposition 2.2), the restricted max-
imum likelihood estimators of p; and X; under the elliptical models (A) and (B) are
given by p,] = Z and E = ¢;j2nj, J = 1,..., k, where ,u, and EN are the respective
restricted maximum hkehhood estimator under normahty and ¢; is as in Proposition
2.2. Considering these results and the fact that L(¢) = L(u(¢), 3X(¢)), from (4.4) it
follows that in both models, (A) and (B), the likelihood ratio statistics G is such that

(4.6) Gzinﬂog{@”}:injlog{glm}:GN.
j=1

D271 R Py

Thus, the expresion given in (4.5) for G = Gy follows by considering (3.4) and the
Proposition 3.3. On the other hand, considering (4.1) and (4.2), Arellano-Valle and
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Bolfarine (1996) (see also Arellano-Valle and Bolfarine, 1995) show that, under H,,

¢3y¢4y) nj—1 nj —2 5 -2
Eg[njlo {¢3J¢) }]:nj{\ll( 5 )—\If( 5 )}:1—1-2—nj+0(nj )

from where it follows that

k
5
EyGy =k +3 5 —+0(n?),

j=1 4"
with n, = min;<j<x{n;}. Thus, the corrected likelihood ratio statistics is given by
G* =Gy = (1 +dy)"'Gy, with dy = X5, (5/2n;k).

It is important to note that the above result agrees with the results in Wong (1991),
Who consider the normal model under the identifiability assumptions A.; = 1, j =
, k. However, Wong (1991) consider the approach introduced in Lawley (1956)

Notice also that under the indetifiability assumptions A;;, j = 1,...,k, known,

it follows that (see Arellano-Valle and Bolfarine, 1995) ¢f; = qgﬁ = SO /(M + 1),
j=1,...,k, so that

(4.6) Gy =3 n, 1Og{zay}

Jj=1 35

The same result follows when we consider the indentifiability assumptions A,; and

2 _ ; ; IN _ AN _ 2
Ouj = O'OJ, known, j = 1,...,k, since in such case we have that ¢;; = ¢5; = oy,

j=1,..., k. From this result and from the fact that, under normality (see Arellano-
Valle, 1995),

AN
n.? ¢3J Xn -2 and nj ¢ Xn —1»
¢s3; I ¢35 g

j=1,...,k, we obtain the following Corollary.

Corollary 4.1 Under ellzptzcal models (A) and (B) and the conditions \; and o; =
05, known, j = 1,...,k, it follows that G = Gy is given by (4.6) and G* = (1 +
dy) ‘G, where dN and Hy are as in Proposition 4.1.

Similar results were obtained by Wong (1991) under normality and the identifiability
condition which specifies that A\.; = 1 and agj, j=1,..., k, known by using the approch
introduced in Lawley (1956).

In the following, we consider hypothesis testing for the null hypotheses
(4.7) Hy:%; =%

12



j=1,...,k, and

(48) HO : [l,] =N, Zj = E,

j = 1,....k, where p = p(¢,) and T = X(¢y), with ¢, = (¢1,¢,)" and ¢g =
(¢37¢47ﬁ),'

Proposition 4.2 Let consider the null hypothesis given by (4.7). Then, under the
elliptical model (A) with the identifiability conditions A.; or Ay known, j =1,... k,
it follows that G* = (1 + dy)~'Gy, where

GN_Zn]log{¢év¢4} and dy = {Ek:3—7— (k+1)(k+2)+1},

= 3j Y44 ( glnﬂ n
withn =ny + ...+ ng.

Proof. Under the null hypothesis (4.7), the model (A) yields to restricted maximum
likelihood given by fi; = Z; and Y= (2n/uy,)) XN, where

- 1k
EN = —ZNanj.
niD

Thus, as in (4.6), G = Gy = Y njlog{|En|/|Zn;|}, where, from (3.4), [Ey| =
HNGY and Zy; = ¢3J¢4j, j = 1,..., k. Moreover, under normality and H,, we have
that ﬁ]j = Sj ”fl\(j WQ(nj - ]_, TL_IE), ] = 1, Ceey k, so that 2]\7 ~ Wg(n—k, n_IE), where
Wy (m, M) denotes the p-dimensional Wishart distribution with m degrees of fredoom
and dispersion matrix M. Thus, from the properties of the Wishart distribution (see
Muirhead, 1982) and from (4.1) to (4.3) it follows, after some algebraic manipulations,
that

6(k+1)(k+2)+1

BlG) - a(k - 1+ {3 2 S 14D

6% n

}+0(n),
from where we obtain the corrected statistics G* = (1 + dy) 'Gy, which is closer to

the Xg(k_l)fdistribution than the distribution of the uncorrected statistics G.

Proposition 4.3 Lets consider the null hypothesis given by (4.8). Then, under the
elliptical model (A) with the identifiability conditions Ae; or Ay known, j =1,... k,
it follows that G* = (1 + dy) 'Gy, where Gy is as in Proposition 4.2 and

37 P11
b= T ")



Proof: Is analogouos to the proof of Proposition 4.2, but in this case the maximum
likelihood estimators of p and X under H, are given, respectively, by p = Z and
2 = (2n/ufy,)) X, where

_ 12 _ ~ 4
Z = g Z’ﬂij and ZN = E Z Z(Z” — Z)(Z” — Z),
7=1

Notice that, under normality, Xy ~ Wa(n—1, %E) Thus, as in the proof of Proposition
4.2, from the properties of the Wishar distribution and the digamma function it follows

that k
BfGa] =5k~ 1)+ 5 {3 -

=11

%} +0(n,?).

5. Final conclusions

In this paper three different extensions the additive normal models are considering
by replacing the usual normal model by the more general class of the elliptical distri-
butions. By using orthogonal parametrizations and properties of the distribution of
the sample variances, Bartlett corrected likelihood ratio statistics are obtained for the
testing of some null hypothesis. Wong (1991) derived such correted statistics for the
case of the normal model by using expansions of the likelihood function and comput-
ing cummulants up to 4th order. Our approach is different from the one considered in
Wong (1991) and we just have to directly compute expected values of the likelihood
ratio statistics and properties of the sample variances under the normal model and
using invariance properties of the likelihood ratio statistics as considered in Anderson
et al. (1986).
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