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Summary

The main obje
t of this paper is to 
onsider hypothesis testing in ellipti
al measurement

error models. Bartlett 
orre
ted likelihood ratio statisti
s are 
onsidered for several

hypotheses of interest. The 
orre
tions are obtaines by 
omputing dire
tly expe
ted

values of the statisti
s, without the need of 
omputing 
umulants, as is usually the 
ase

when deriving su
h 
orre
tions. Orthogonal parametrizations are also derived whi
h

are 
ru
ial in obtaining the main results.

1. Introdu
tion

We 
onsider the simple regression model with additive measurement errors spe
i�ed

by the equations

(1:1) Y

ij

= �

j

+ �

j

x

ij

+ e

ij

and

(1:2) X

ij

= x

ij

+ u

ij

;

i = 1; : : : ; n

j

and j = 1; : : : ; k. When the x

ij

are 
onsidered �xed (parameters), then

the fun
tional model follows. When the x

ij

are random variables, then the stru
tural

model follows. In this paper, we 
onsider the stru
tural model situation. In this

situation, the model (1.1)-(1.2) 
an be written (Arellano-Valle and Bolfarine, 1995) as

(1:3) Z

ij

= a

j

+B

j

r

ij

;

where Z

ij

= (Y

ij

; X

ij

)

0

; r

ij

= (x

ij

; e

ij

; u

ij

)

0

; a

j

= (�

j

; 0)

0

and B

j

= [b

j

I

2

℄; with b

j

=

(�

j

; 1)

0

and I

m

being the identity matrix of dimension m. Thus, it follows from (1.3)

that the distribution of Z

ij

is determined by the distribution of r

ij

. In the literature,

it is typi
ally 
onsidered that the random ve
tors r

ij

= (x

ij

; e

ij

; u

ij

)

0

; i = 1; : : : ; n

j

; j =

1; : : : ; k, are independent and r

ij

� N

3

(��

�

j

;






j

); where

(1:4) ��

�

j

=

0

B

�

�

xj

0

0

1

C

A

and 






j

=

0

B

�

�

2

xj

0 0

0 �

2

ej

0

0 0 �

2

uj

1

C

A

;

1



so that Z

ij

� N

3

(��

�

j

;��

�

j

); where

(1:5)

��

�

j

= a

j

+B

j

��

�

j

=

�

�

j

+ �

j

�

xj

�

xj

�

and ��

�

j

= B

j








j

B

0

j

=

�

�

2

j

�

2

xj

+ �

2

ej

�

j

�

2

xj

�

j

�

2

xj

�

2

xj

+ �

2

uj

�

;

as 
an be seen, for example, in Wong (1991). Note that ��

�

j

= ��

�

(��

�

j

) and ��

�

= ��

�

j

(��

�

j

);

where

(1:6) ��

�

j

= (�

j

; �

xj

; �

2

xj

; �

2

ej

; �

2

uj

; �

j

)

0

;

j = 1; : : : ; k; so that the model parameter is given by ��

�

= (��

�

0

1

; : : : ; ��

�

0

k

)

0

: The simple 
ase

with k = 1 is 
onsidered, for example, in Fuller (1987), Wong (1989), Bolfarine and

Cordani (1993) and Arellano-Valle and Bolfarine (1995), among others.

The main obje
t of this paper is to 
onsider inferen
e for model parameters under

the ellipti
al models and testing hypotheses of interest using the likelihood ratio statis-

ti
s, where Bartlett type 
orre
tions are 
onsidered for the testing statisti
s. As in

Arellano-Valle and Bolfarine (1995, 1996), the approa
h followed is based on the dire
t

evaluation of the expe
ted value of the likelihood ratio statisti
s and di�ers from the

appro
h 
onsidered in Lawley (1956), whi
h is based on asymptoti
 expansions of the

likelihood fun
tion. The approa
h allows the generalization of some results in Wong

(1991) to a 
lass of distributions more general than the normal distributions whi
h

is the ellipti
al family of distributions (see Fang et al., 1990). In the literature it is

typi
all to 
onsider two versions of the ellipti
al model, known as the dependent and

independent models.

In dependent ellipti
al models, it is 
onsidered that the observed data follows jointly

an ellipti
al distribution as 
onsidered, for example, in Zellner (1976), Anderson et al.

(1986) and Arellano-Valle and Bolfarine (1996), among others. In these works it is

shown that the inferen
e under the normal model typi
ally also holds under depen-

dent ellipti
al models, so that su
h pro
edures are robust with respe
t to this type of

nonnormality. In parti
ular, it is shown that, under dependent ellipti
al models, the

maximum likelihood estimators (MLE) for lo
ation (s
ale) parameters are the same

(proportional) that the 
orresponding estimators by using the normal model.

In independent ellipti
al models, it is 
onsidered that the observations are inde-

pendent and follows ellipti
al marginal distributions. This is the approa
h followed,

for example, in Tyler (1983), Lange et al. (1989) and Kano, Berkane and Bentler

(1993). Under this approa
h, inferen
e is typi
ally based on asymptoti
 results and

one important aspe
t of these models is that they 
an be robust with respe
t outlying

observations. In the 
ontext of hypothesis testing, it is well known that some tests

whi
h rely on asymptoti
 distributions su
h as the likelihood ratio, s
ore and Wald

statisti
s present some limitations for smal sample size. However, when the regular-

ity 
onditions are valid the aproximation of the distributions of su
h statisti
s by the
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referen
e 
hisquare distribution 
an be improved in models with 
ontinuous sample dis-

tributions. This improved is typi
ally a
hieved by multiplying the statisti
s by Bartlett

type (Cordeiro, 1983) 
orre
tion fa
tors. The 
orre
tion fa
tors are typi
ally fu
ntions

of the 
umulants of the logarithm of the likelihood fun
tion and its derivation typi
ally

involve great amount of algebrai
 manipulations.

The paper is organized as follows. Se
tion 2 presents a des
ription of some ex-

tensions of the normal model by 
onsidering ellipti
al distributions. Dependent and

independent versions of the ellipti
al model are 
onsidered. In ea
h 
ase, the maximum

likelihood estimators are derived and some relations of the estimators with the normal


ase are 
onsidered. Se
tion 3 is devoted to the derivation of the Fisher information

matrix for ea
h model. Using the information matri
es, orthogonal parametrizations

are also obtained in ea
h 
ase. By using properties of the Wishart distribution, the

distribution of the sample varian
es are obtained whi
h are used in deriving Bartlett


orre
tion for the likelihood ratio statisti
s. Se
tion 4 is devoted to the derivations of

the likelihood ratio statisti
s and its Bartlett 
orre
ted versions.

2. Ellipti
al measurement error models

In this paper, it is 
onsidered that, in (1.3), r

1j

; : : : ; r

n

j

j

are un
orrelated, j =

1; : : : ; k; and that r

ij

� El

3

(��

�

j

;


j

;�); i = 1; : : : ; n

j

, with ��

�

j

and 






j

being as in

(1.4). Thus, we are 
onsidering that r

ij

is ellipti
ally distributed with parameters ��

�

j

and 


j

and 
hara
teristi
 fun
tion of the form exp(it

0

��

�

j

)�(t

0




j

t), t 2 R

3

, so that

E[r

ij

℄ = ��

�

j

and V ar[r

ij

℄ = Æ


j

when they exists, where Æ = �2�

0

(0) (Æ = 1 for

the normal model). We assume in the sequel that r

ij

has density fun
tion, whi
h

has the form j


j

j

�1=2

h

(3)

((r

ij

� ��

�

j

)

0




�1

j

(r

ij

� ��

�

j

)); where h

(p)

denotes a p-dimensional

spheri
al density generator (see Fang et al., 1990). Now, from the assumptions on the

r

ij

and properties of the ellipti
al distributions, it follows that Z

ij

� El

2

(��

�

j

;�

j

;�);

j = 1; : : : ; k; where ��

�

j

and �

j

are as in (1.5). Noti
e that the above results represents

the distribution of the observed data asso
iated with the j-th population. In order

to spe
ify the joint distribution asso
iated with the k populations, we 
onsider three

di�erent spe
i�
ations for the joint distribution of the random ve
tors r

ij

; i = 1; : : : ; n

j

;

j = 1; : : : ; k; within the 
lass of the ellipti
al distributions. Thus, denoting by

(2:1) r

(j)

= (r

0

1j

; : : : ; r

0

n

j

j

)

0

; j = 1; : : : ; k and r

�

= (r

0

(1)

; : : : ; r

0

(k)

)

0

;

the following situations are 
onsidered:

(A) r

�

� El

3n

(��

�

�

;


�

;�);

(B) r

�

� El

(I)

3n

(��

�

�

;


�

;�)  ! r

(j)

ind

� El

3n

j

(��

�

(j)

;


(j)

;�); j = 1 : : : ; k;

(C) r

�

� El

(II)

3n

(��

�

�

;


�

;�)  ! r

(j)

� El

(I)

3n

j

(��

�

(j)

;


(j)

;�); j = 1 : : : ; k;
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where n = n

1

+ : : : + n

k

; ��

�

�

= (��

�

0

(1)

; : : : ; ��

�

0

(k)

)

0

and 


�

= diag(


(1)

; : : : ;


(k)

); with

��

�

(j)

= 1

n

j


 ��

�

j

and 


(j)

= I

n

j





j

; j = 1; : : : ; k; and where ��

�

j

and 


j

are as in(1.3).

Moreover, 
 denotes the usual Krone
ker produ
t, diag(A

1

; : : : ;A

p

) denotes a diagonal

matrix, where the elements A

1

; : : : ;A

p

are matri
es of appropriate dimensions, and

1

m

denotes the m-dimensional ve
tor of ones. We 
all attention to the fa
t that the

random ve
tors r

(1)

; : : : ; r

(k)

are not independent under situation (A), while they are

independent under situations (B) and (C). Moreover, for ea
h j = 1; : : : ; k; the random

ve
tors r

j1

; : : : ; r

n

j

j

are not independent under situation (A) and (B), while they are

independent under situation (C). It is also worth noti
ing that under normality the

three spe
i�
ations 
oin
ide. Moreover, for k = 1 (one population), spe
i�
ations (A)

and (B) 
oin
ide with the dependent ellipti
al model and spe
i�
ation (C) be
omes the

independent ellipti
al model, whi
h are de�ned in Arellano-Valle and Bolfarine (1996).

In matrix notation, we 
an represent the model 
orresponding to the observations

from the j-th population as

Z

(j)

= 1

n

j


 a

j

+ (I

n

j


B

j

)r

(j)

;

j = 1; : : : ; k; where r

(j)

is as in (2.1) and a

j

and B

j

as in (1.3). Similarly, we 
an

represent the model 
orresponding to the observations from the k populations of size

n = n

1

+ : : : n

k

as

Z

�

= a

�

+B

�

r

�

;

where Z

�

= (Z

0

(1)

; : : : ;Z

0

(k)

)

0

; a

�

= (1

0

n

1


a

0

1

; : : : ; 1

0

n

k


a

0

k

)

0

;B

�

= Diag(I

n

1


B

1

; : : : ; I

n

k




B

k

); and r

�

being as in (2.1). Thus, from the properties of the ellipti
al family of

distributions it follows for the di�erent spe
i�
ations that:

(A) Z

�

� El

2n

(��

�

�

;�

�

;�);

(B) Z

�

� El

(I)

2n

j

(��

�

�

;�

�

;�)  ! Z

(j)

ind

� El

2n

j

(��

�

(j)

;�

(j)

;�);

(C) Z

�

� El

(II)

2n

(��

�

�

;�

�

;�)  ! Z

(j)

� El

(I)

2n

j

(��

�

(j)

;�

(j)

;�);

where n = n

1

+ : : : + n

k

; ��

�

�

= (��

�

0

(1)

; : : : ; ��

�

0

(k)

)

0

and �

�

= diag(�

(1)

; : : : ;�

(k)

); with

��

�

(j)

= 1

n

j


 ��

�

j

and �

(j)

= I

n

j


 �

j

; j = 1; : : : ; k; where ��

�

j

= ��

�

(��

�

j

) and �

j

= �(��

�

j

)

are as in (1.5), so that ��

�

�

= ��

�

�

(��

�

) and �

�

= �

�

(��

�

); where ��

�

= (��

�

0

1

; : : : ; ��

�

0

k

)

0

wiht

��

�

j

being as in (1.6). Now, under the existen
e of a density fun
tion, it follows that

the likelihood fun
tion under ellipti
al models with spe
�
ations (A), (B) and (C) are

given, respe
tively, by:

(A) f(z

�

j��

�

) = j�

�

j

�1=2

h

(2n)

((z

�

� ��

�

�

)

0

�

�1

�

(z

�

� ��

�

�

));

(B) f(z

�

j��

�

) =

Q

k

j=1

j�

(j)

j

�1=2

h

(2n

j

)

((z

(j)

� ��

�

(j)

)

0

�

�1

(j)

(z

(j)

� ��

�

(j)

));

(C) f(z

�

j��

�

) =

Q

k

j=1

Q

n

j

i=1

j�

j

j

�1=2

h

(2)

((z

ij

� ��

�

j

)

0

�

�1

j

(z

ij

� ��

�

j

));
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where h

(p)

is an spheri
al density in <

p

; whi
h is independent of ��

�

:

In the sequel, we assume that the relation (see (1.5))

(2:2) ��

�

j

! (��

�

(��

�

j

);�(��

�

j

));

j = 1; : : : ; k; is one to one, whi
h implies that in (A), (B) and (C) the ellipti
al model

is identi�able (Arellano-Valle and Bolfarine, 1996). However, as the normal model,

we need an additional 
ondition on ��

�

j

; j = 1; : : : ; k; in order to make the relation

(2.2) one to one under the ellipti
al models. Under the normality assumption, Wong

(1991) 
onsider that the ratio �

e

j

= �

2

e

j

=�

2

uj

is known, while Bolfarine and Cordani

(1993) 
onsider that the ratio �

xj

= �

2

xj

=�

2

uj

is known, with k = 1: Considering the

normal model with k = 1; these 
ases are uni�ed in Arellano-Valle and Bolfarine (1995)

and extend to ellipti
al models in Arellano-Valle and Bolfarine (1996). Thus, noting

that the indenti�
ation of an ellipti
al model under the three spe
i�
ations depends

on the identi�
ation for ea
h one of the subpopulations, whi
h is identi�able for both


ases, when the ratio �

ej

is known or when �

xj

is known, j = 1; : : : ; k; it follows that

these 
onditions implies also the identi�ability of the ellipti
al model under the three

spe
i�
ations.

It is assumed also that the density generator fun
tions h

(2n)

, h

(2n

j

)

and h

(2)

, under

spe
i�
ations (A), (B) and (C), respe
tively, are de
reasing and 
ontinuosly diferen-

tiable in the interval (0;1).

Under the above assumptions, the following results are 
onsidered, whi
h are relate

with the maximun likelihood estimators (MLE) under the ellipti
al models (A), (B)

and (C).

Proposition 2.1 Let (

^

��

�

j

;

^

�

j

) be the MLE of (��

�

j

;�

j

); j = 1; : : : ; k; under the model

(A) or (B) or (C). Then, if the relation (2.2) is one to one, the MLE, say

^

��

�

j

; of ��

�

j

;

j = 1; : : : ; k; are the solution to the equations

(2:5) ��

�

(

^

��

�

j

) =

^

��

�

j

and �(

^

��

�

j

) =

^

�

j

;

j = 1; : : : ; k:

Proof: Follows from the invarian
e property of the MLE.

Proposition 2.2 Let 
onsider the ellipti
al models (A) and (B). Then, the MLE of ��

�

j

and �

j

are given by

(2:3)

^

��

�

j

=

�

Z

j

and

^

�

j

= 


j

S

j

;

j = 1; : : : ; k; where

�

Z

j

=

�

�

Y

j

�

X

j

�

and S

j

=

 

S

(j)

Y Y

S

(j)

Y X

S

(j)

XY

S

(j)

XX

!

5



are the sample mean ve
tor and sample 
ovarian
e matrix, respe
tively, 
orresponding

to the j-th population,




j

=

8

>

<

>

:

2n

u

�

(2n)

; in 
ase (A),

2n

j

u

�

(2n

j

)

; in 
ase (B),

with u

�

(p)

being the maximum of the fun
tion u

p=2

h

(p)

(u), u > 0.

Proof: From Proposition 1 in Anderson et al. (1986) it follows that

(2:4)

^

��

�

j

=

^

��

�

jN

and

^

�

j

= 


j

^

�

jN

;

where (

^

��

�

jN

;

^

�

jN

) is the MLE of (��

�

j

;�

j

); under the normal model. Sin
e (

^

��

�

jN

;

^

�

jN

) =

(

�

Z

j

;S

j

); j = 1; : : : ; k; we have the proof.

Note that in the spe
ial 
ase where h

(p)

(u) = k(p; �)f� + ug

�

�+p

2

; 
orresponding to

the Student-t distribution with � degrees of freedom, we have that u

�

(p)

= p, for all

� > 0.

Proposition 2.3 Consider now model (C). Then, the MLE of ��

�

j

and �

j

are given by

the solution to the equations

(2:5)

n

j

X

i=1

w

(2)

(d

ij

)(Z

ij

�

^

��

�

j

) = 0 and

n

j

X

i=1

w

(2)

(d

ij

)(Z

ij

�

^

��

�

j

)(Z

ij

�

^

��

�

j

)

0

= n

j

^

�

j

;

j = 1; : : : ; k; where d

ij

= (Z

ij

�

^

��

�

j

)

^

�

�1

j

(Z

ij

�

^

��

�

j

)

0

and w

(2)

(u) = �2h

0

(2)

(u)=h

(2)

(u):

Proof: Is dire
t from the derivate of the log-likelihood fun
tion of the model (C) with

respe
t to (��

�

j

;�

j

); j = 1; : : : ; k; (see Se
tion 3).

Note that under spe
i�
ation (C) no 
losed form are available for the MLE. Thus,

in this 
ase the MLEs have to be 
omputed numeri
ally from the equantions (2.5).

One important result relates inferen
e in the ellipti
al 
ontext with results under

normality. As su
h, if X � El

p

(0; I

p

;�) with P (X = 0) = 0 and Æ(X) is an statisti
s

su
h that Æ(aX)

d

= Æ(X), for all a > 0, then (see Fang et al., 1990) Æ(X)

d

= Æ(Z); where

Z � N

p

(0; I

p

) and X

d

= Y mean that both X and Y have the same distribution.

3. Information matrix and orthogonal parameterization

In this se
tion we 
onsider the information matrix under the three spe
i�
ations


onsidered in the previous se
tion. By making used these results, orthogonal param-

eterizations (Cox and Reid, 1987) and the MLE these orthogonal parameters are also

6




onsidered. The notation and some results given in Arellano-Valle and Bolfarine (1995,

1996) are used.

Let L = L(��

�

) be the log-likelihood fun
tion, where ��

�

is as in the previous se
tion.

Then, under these three spe
i�
ations L 
an be written as

L =

8

>

>

<

>

>

:

P

k

j=1

(�

n

j

2

) log j�

j

j+ log f(jjT

�

jj

2

); in 
ase (A),

P

k

j=1

(�

n

j

2

) log j�

j

j+

P

k

j=1

log g(jjT

(j)

jj

2

); in 
ase (B),

P

k

j=1

(�

n

j

2

) log j�

j

j+

P

k

j=1

P

n

j

i=1

log h(jjT

ij

jj

2

); in 
ase (C),

;

where T

�

= �

�1=2

�

(Z

�

���

�

�

), T

(j)

= �

�1=2

(j)

(Z

(j)

���

�

(j)

) and T

ij

= �

�1=2

j

(Z

ij

���

�

j

); with

jjT

�

jj

2

=

k

X

j=1

jjT

(j)

jj

2

=

k

X

j=1

n

j

X

i=1

jjT

ij

jj

2

:

Thus, denoting by �

ij

; i = 1; : : : ; 5 the i-th 
omponent of ��

�

j

in (1.6), it follows that

�L

��

lj

=

8

>

>

>

>

<

>

>

>

>

:

�

n

j

2

tr(�

�1

j

��

j

��

lj

) +W

(2n)

(jjT

�

jj

2

)

�jjT

�

jj

2

��

lj

; in 
ase (A),

�

n

j

2

tr(�

�1

j

��

j

��

lj

) +W

(2n

j

)

(jjT

(j)

jj

2

)

�jjT

(j)

jj

2

��

lj

; in 
ase (B),

�

n

j

2

tr(�

�1

j

��

��

lj

) +

P

n

j

i=1

W

(2)

(jjT

ij

jj

2

)

�jjT

ij

jj

2

��

lj

; in 
ase (C),

where

W

(p)

(u) =

�logh

(p)

(u)

�u

=

h

0

(u)

h(u)

and

�jjT

�

jj

2

��

lj

=

�jjT

(j)

jj

2

��

lj

=

n

j

X

i=1

�jjT

ij

jj

2

��

lj

with

�jjT

ij

jj

2

��

lj

= �2

���

�

0

j

�

lj

�

�1=2

j

T

ij

�T

0

ij

�

�1=2

j

��

j

��

lj

�

�1=2

j

T

ij

;

l = 1; : : : ; 5; j = 1; : : : ; k. By 
onsidering this notation, we obtain the following results.

Proposition 3.1 Let K = K(��

�

) be the information matrix under the three ellipti
al

models (A), (B) and (C). Then, it follows that

(3:1) K = diag(K

1

; : : : ;K

k

);

where K

j

= ((�

(j)

l;m

)); l; m = 1; : : : ; 5, with

(3:2) �

(j)

l;m

=

4n

j

p

a(2; 1)

���

�

0

j

���

�

lj

�

�1

j

���

�

j

��

mj

+

2n

j

p(p+ 2)

a

(

2; 2)tr(�

�1

j

��

j

��

lj

�

�1

j

��

j

��

mj

)
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+

pn

j

2

f

1

p(p+ 2)

a(2; 2)�

1

4

gtr(�

�1

j

��

j

��

lj

)tr(�

�1

j

��

j

��

mj

);

where

a(r; s) = E[(W

(p)

(jjTjj

2

))

r

jjTjj

2s

℄;

r; s = 1; 2; r � s; with T � El

p

(00

0

; I

p

;�) and

p =

8

>

<

>

:

2n; in 
ase (A),

2n

j

; in 
ase (B),

2; in 
ase (C).

Proof: Sin
e, �

(j)

l;m

= E[(�L=��

lj

)(�L=��

mj

)℄; the proof follows from the fa
t that the

distributions of the ve
tors T

�

;T

(j)

;T

ij

are symmetri
 and by using standard properties

of the ellipti
al distributions (see Arellano-Valle and Bolfarine, 1996).

To simplify the derivation of some statisti
al pro
edures, we 
onsider in the fol-

lowing an orthogonal reparameterization (in the sense of Cox and Reid, 1987), whi
h

is su
h that in (3.2) �

(j)

l;5

= �

l;�

j

= 0; l 6= 5: Under normality, orthogonal parameter-

ization was obtained by Wong (1989,1991) when �

ej

is known and by Bolfarine and

Cordani (1993) when �

xj

is known. A uni�ed treatment and the extension for ellipti
al

models is 
onsidered in Arellano-Valle and Bolfarine (1995) and Arellano-Valle and

Bolfarine (1996), respe
tively. Thus, as in Arellano-Valle and Bolfarine (1995, 1996),

this parameterization 
an be written as ��

�

j

= (��

�

0

Lj

; ��

�

0

Sj

)

0

; where

(3:3) ��

�

Lj

= (�

1j

; �

2j

)

0

and ��

�

Sj

= (�

3j

; �

4j

; �

j

)

0

;

with

�

1j

= �

j

+�

j

�

xj

; �

2j

= �

xj

; �

3j

= �

2

uj

(�

xj

�

2

j

+�

xj

�

ej

+�

ej

); �

4j

= �

2

uj

and �

5j

= �

j

;

j = 1; : : : ; k: Thus, from (1.5) we have that ��

�

j

= ��

�

(��

�

Lj

) = ��

�

Lj

and

�

j

= �

j

(��

�

Sj

) =

8

>

>

>

<

>

>

>

:

(�

x

j

+ 1)

�1

�

�

3j

+ (�

xj

�

j

)

2

�

4j

(�

xj

+ 1)�

xj

�

j

�

4j

(�

xj

+ 1)�

x

j

�

j

�

4j

(�

xj

+ 1)

2

�

4j

�

; if �

xj

is known,

(�

2

j

+ �

ej

)

�1

�

�

2

j

�

3j

+ �

2

ej

�

4j

�

j

(�

3j

� �

ej

�

4j

)

�

j

(�

3j

� �

ej

�

4j

) �

3j

+ �

2

j

�

4j

�

; if �

ej

is known,

so that, under both identi�ability 
onditions,

(3:4) j�

j

j = �

3j

�

4j

:
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Proposition 3.2 Let K = K(��

�

) be the information matrix under the orthogonal pa-

rameterization given in (3.3). Then, K = K(��

�

) is as in (3.1), with

K

j

= diag(K

Lj

;K

Sj

);

where K

Lj

and K

Sj

are the information submatri
es 
orresponding to the parameter

ve
tors ��

�

Lj

and ��

�

Sj

, respe
tively, and are given by

K

Lj

=

4

p

a(2; 1)(

1

n

j

�

j

)

�1

;

and K

Sj

= ((�

(j)

l;m

)); l; m = 3; 4; 5, with

�

(j)

l;m

=

8

>

>

>

<

>

>

>

:

p

2

f

p+4Æ

lm

p

2

(p+2)

a(2; 2)�

1

4

g(

�

lj

�

mj

n

j

)

�1

; l; m = 3; 4

4

p(p+2)

a(2; 2)(

�

2

�

j

n

j

)

�1

; l; m = 5,

0; l = 3; 4; m = 5 or l = 5, m = 3; 4,

;

where Æ

ij

= 1; if i = j and zero otherwise, a(r; s) and p are as in Proposition 3.1, and

�

2

�

j

=

8

>

<

>

:

�

3j

�

2

x

j

�

4j

; if �

xj

is known,

(

�

2

j

+�

ej

�

3j

��

ej

�

4j

)

2

�

3j

�

4j

; if �

ej

is known.

Proof: See Arellano-Valle and Bolfarine (1996).

In parti
ular, for the Student-t model with � degrees of freedom and generador

density fun
tion given by h

(p)

(u) = k(p; �)f�+ug

�(�+p)=2)

; it follows that (see Arellano-

Valle and Bolfarine, 1996)

a(2; 1) =

p(� + p)

2(� + p+ 2)

and a(2; 2) =

p(p+ 2)(� + p)

2(� + p+ 2)

:

With these expressions, the informationmatri
es 
an be easily obtained for the Student-

t model under spe
i�
ations (A), (B) and (C).

Proposition 3.3 Let (

^

��

�

j

;

^

�

j

); be the MLE of (��

�

j

;�

j

); j = 1; : : : ; k; under an ellip-

ti
al model. Then, if �

ej

or �

xj

is known the MLE of ��

�

Lj

= (�

1j

; �

2j

)

0

and ��

�

Ej

=

(�

3j

; �

4j

; �

j

)

0

are given by

^

��

�

Lj

=

^

��

�

j

;

^

�

lj

= a

lj

(

^

�

j

)

0

^

�

j

a

lj

(

^

�

j

); l = 3; 4; and

^

�

j

is the

solution to the equation a

3j

(

^

�

j

)

0

^

�

j

a

4j

(

^

�

j

) = 0; j = 1; : : : ; k; where

a

3j

=

8

>

>

>

<

>

>

>

:

(�

xj

+ 1)

�1=2

�

�

xj

+ 1

��

x

j

�

j

�

; if �

xj

is known,

(�

2

j

+ �

ej

)

�1=2

�

�

j

�

e

j

�

; if �

ej

is known,
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and

a

4j

=

8

>

>

>

<

>

>

>

:

(�

x

j

+ 1)

�1=2

�

0

1

�

; if �

xj

is known,

(�

2

j

+ �

ej

)

�1=2

�

1

��

j

�

; if �

ej

is known.

Moreover, under the models (A) and (B) it follows that

^

�

1j

=

^

�

N

1j

=

�

Y

j

;

^

�

2j

=

^

�

N

2j

=

�

X

j

;

^

�

lj

= 


j

^

�

N

lj

= 


j

a

lj

(

^

�

j

)

0

S

j

a

lj

(

^

�

j

); l = 3; 4;

and

^

�

j

=

^

�

N

j

=

8

>

>

<

>

>

:

(

�

x

j

+1

�

x

j

)

S

(j)

Y X

S

(j)

XX

; if �

xj

is known,

S

(j)

Y Y

��

ej

S

(j)

XX

+f(S

(j)

Y Y

��

ej

S

(j)

XX

)

2

+4�

ej

S

(j)

Y X

g

1=2

2S

(j)

Y X

; if �

ej

is known,

j = 1; : : : ; k; where 


j

is as in Proposition 2.2 and

^

�

N

lj

; l = 1; : : : ; 4; and

^

�

N

j

are the

likelihood estimators of �

lj

; l = 1; : : : ; 4; and �

j

; respe
tively, under the normal model.

Proof: Follows from Propositions 2.1 and 2.2 and by using the fa
t that, under the

orthogonal parameterization (3.4), diag(�

3j

; �

3j

) = A

j

�

j

A

0

j

; j = 1; : : : ; k; where A

0

j

=

(a

3j

; a

4j

); (see Arellano-Valle and Bolfarine, 1995 and 1996).

4. Bartlett 
orre
ted statisti
s

In this se
tion we 
onsider likelihood ratio statisti
s for testing hypothesis of interest

related to the models (A) and (B) 
onsidered in the previous se
tions. Under the null

hypothesis we 
onsider Bartlett type 
orre
tions for improving the approximation to

the 
hisquare distribution. The likelihood ratio statisti
s is denoted by G and its

expe
ted value under null hypothesis by E

0

[G℄, whi
h will be obtained by 
omputing

the expe
ted value of G dire
tly by using the properties of the digamma fun
tion and

the following result.

Lemma 4.1 Let V � Gamma(a; b) be the Gamma distribution with parameters a and

b: Then, it follows that

(4:1) E[log(V )℄ = 	(a)� log(b);

where 	(:) is the digamma fun
tion. Moreover,

(4:2) 	

�

n

j

� 1

2

�

� log

n

j

2

= �

1

n

j

n

2 +

11

6n

j

+O(n

�2

j

)

o
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and

(4:3)

	

�

n� k � 1

2

�

+	

�

n� k

2

�

� 2 log(

n

2

) = �

1

n

n

2k+ 3+

6(k + 1)(k + 2) + 1

6n

+O(n

�2

)

o

;

where n

j

is the size of the j-th population, j = 1; : : : ; k and n = n

1

+ : : :+ n

k

.

We will also make use of the orthogonal parameterization ��

�

= (��

�

0

1

; : : : ; ��

�

0

k

)

0

; where

��

�

j

is as in (3.3), j = 1; : : : ; k. Thus, the likelihood ratio statisti
s 
an be write as

(4:4) G = 2fL(

^

��

�

)� L(

~

��

�

)g;

where

^

��

�

and

~

��

�

are the maximum likelihood estimators under the unrestri
ted are

restri
ted model by 
onsidering H

0

, respe
tively. Moreover, the 
orre
ted version of G

is given by

G

�

= (1 + d)

�1

G;

where d is the Bartlett 
orre
tion fa
tor, whi
h is de�ned in Cordeiro (1983).

Proposition 4.1 Consider the ellipti
al models (A) and (B) under the identi�ability


onditions �

ej

or �

xj

known, j = 1; : : : ; k: Then, under the null hypothesis H

0

: �

j

=

�

0j

, with �

0j

being known, j = 1; : : : ; k; it follows that G = G

N

and G

�

= (1+d

N

)

�1

G

N

;

where G

N

and d

N

are the likelihood ratio statisti
s and the respe
tive Bartlett 
orre
tion

fa
tor under normality, whi
h are given by

(4:5) G

N

=

k

X

j=1

n

j

log

n

~

�

N

3j

~

�

N

4j

^

�

N

3j

^

�

N

4j

o

and d

N

=

k

X

j=1

5

2n

j

k

:

with

^

�

N

lj

and

~

�

N

lj

being the unrestri
ted and resti
ted maximun likelihood estimators of

�

lj

; l = 3; 4; respe
tively, under the normal model.

Proof: As in the unrestri
ted 
ase (see (2.4) in Proposition 2.2), the restri
ted max-

imum likelihood estimators of ��

�

j

and �

j

under the ellipti
al models (A) and (B) are

given by

~

��

�

j

=

�

Z

j

and

~

�

j

= 


j

~

�

Nj

; j = 1; : : : ; k; where

~

��

�

j

and

~

�

N

j

are the respe
tive

restri
ted maximum likelihood estimator under normality and 


j

is as in Proposition

2.2. Considering these results and the fa
t that L(��

�

) = L(��

�

(��

�

);�(��

�

)); from (4.4) it

follows that in both models, (A) and (B), the likelihood ratio statisti
s G is su
h that

(4:6) G =

k

X

j=1

n

j

log

n

j

~

�

j

j

j

^

�

j

j

o

=

k

X

j=1

n

j

log

n

j

~

�

Nj

j

j

^

�

Nj

j

o

= G

N

:

Thus, the expresion given in (4.5) for G = G

N

follows by 
onsidering (3.4) and the

Proposition 3.3. On the other hand, 
onsidering (4.1) and (4.2), Arellano-Valle and

11



Bolfarine (1996) (see also Arellano-Valle and Bolfarine, 1995) show that, under H

0

,

E

0

h

n

j

log

n

~

�

N

3j

~

�

N

4j

)

^

�

N

3j

^

�

4j

)

N

oi

= n

j

n

	

�

n

j

� 1

2

�

� 	

�

n

j

� 2

2

�o

= 1 +

5

2n

j

+O(n

�2

j

);

from where it follows that

E

0

[G

N

℄ = k +

k

X

j=1

5

2n

j

+O(n

�2

�

);

with n

�

= min

1�j�k

fn

j

g: Thus, the 
orre
ted likelihood ratio statisti
s is given by

G

�

= G

�

N

= (1 + d

N

)

�1

G

N

; with d

N

=

P

k

j=1

(5=2n

j

k):

It is important to note that the above result agrees with the results in Wong (1991),

who 
onsider the normal model under the identi�ability assumptions �

ej

= 1, j =

1; : : : ; k: However, Wong (1991) 
onsider the approa
h introdu
ed in Lawley (1956).

Noti
e also that under the indeti�ability assumptions �

xj

, j = 1; : : : ; k, known,

it follows that (see Arellano-Valle and Bolfarine, 1995)

~

�

N

4j

=

^

�

N

4j

= S

(j)

XX

=(�

xj

+ 1);

j = 1; : : : ; k; so that

(4:6) G

N

=

k

X

j=1

n

j

log

n

~

�

N

3j

^

�

N

3j

o

:

The same result follows when we 
onsider the indenti�ability assumptions �

xj

and

�

2

uj

= �

2

0j

; known, j = 1; : : : ; k; sin
e in su
h 
ase we have that

~

�

N

4j

=

^

�

N

4j

= �

2

0j

;

j = 1; : : : ; k: From this result and from the fa
t that, under normality (see Arellano-

Valle, 1995),

n

j

^

�

N

3j

�

3j

� �

2

n

j

�2

and n

j

~

�

N

3j

�

3j

� �

2

n

j

�1

;

j = 1; : : : ; k; we obtain the following Corollary.

Corollary 4.1 Under ellipti
al models (A) and (B) and the 
onditions �

xj

and �

2

uj

=

�

2

0j

; known, j = 1; : : : ; k; it follows that G = G

N

is given by (4.6) and G

�

= (1 +

d

N

)

�1

G

N

; where d

N

and H

0

are as in Proposition 4.1.

Similar results were obtained by Wong (1991) under normality and the identi�ability


ondition whi
h spe
i�es that �

ej

= 1 and �

2

0j

, j = 1; : : : ; k, known by using the appro
h

introdu
ed in Lawley (1956).

In the following, we 
onsider hypothesis testing for the null hypotheses

(4:7) H

0

: �

j

= �
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j = 1; : : : ; k; and

(4:8) H

0

: ��

�

j

= ��

�

; �

j

= �;

j = 1; : : : ; k, where ��

�

= ��

�

(��

�

L

) and � = �(��

�

S

), with ��

�

L

= (�

1

; �

2

)

0

and ��

�

S

=

(�

3

; �

4

; �)

0

.

Proposition 4.2 Let 
onsider the null hypothesis given by (4.7). Then, under the

ellipti
al model (A) with the identi�ability 
onditions �

ej

or �

xj

known, j = 1; : : : ; k;

it follows that G

�

= (1 + d

N

)

�1

G

N

; where

G

N

=

k

X

j=1

n

j

log

n

~

�

N

3

~

�

N

4

^

�

N

3j

^

�

N

4j

o

and d

N

=

1

18(k � 1)

n

k

X

j=1

37

n

j

�

6(k + 1)(k + 2) + 1

n

o

;

with n = n

1

+ : : :+ n

k

.

Proof. Under the null hypothesis (4.7), the model (A) yields to restri
ted maximum

likelihood given by

~

��

�

j

=

�

Z

j

and

~

� = (2n=u

�

(2n)

)

~

�

N

; where

~

�

N

=

1

n

k

X

j=1

n

j

S

n

j

:

Thus, as in (4.6), G = G

N

=

P

k

i=1

n

j

logfj

~

�

N

j=j

^

�

Nj

jg; where, from (3.4), j

~

�

N

j =

~

�

N

3

~

�

N

4

and

^

�

Nj

=

^

�

N

3j

^

�

N

4j

; j = 1; : : : ; k: Moreover, under normality and H

0

; we have

that

^

�

j

= S

j

ind:

� W

2

(n

j

�1; n

�1

�); j = 1; : : : ; k; so that

~

�

N

� W

2

(n�k; n

�1

�); where

W

p

(m;M) denotes the p-dimensional Wishart distribution with m degrees of fredoom

and dispersion matrix M: Thus, from the properties of the Wishart distribution (see

Muirhead, 1982) and from (4.1) to (4.3) it follows, after some algebrai
 manipulations,

that

E

0

[G℄ = 3(k � 1) +

1

6

n

k

X

j=1

37

n

j

�

6(k + 1)(k + 2) + 1

n

o

+O(n

�2

�

);

from where we obtain the 
orre
ted statisti
s G

�

= (1 + d

N

)

�1

G

N

; whi
h is 
loser to

the �

2

3(k�1)

{distribution than the distribution of the un
orre
ted statisti
s G:

Proposition 4.3 Lets 
onsider the null hypothesis given by (4.8). Then, under the

ellipti
al model (A) with the identi�ability 
onditions �

ej

or �

xj

known, j = 1; : : : ; k;

it follows that G

�

= (1 + d

N

)

�1

G

N

; where G

N

is as in Proposition 4.2 and

d

N

=

37

30(k � 1)

n

k

X

j=1

1

n

j

�

1

n

o

:
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Proof: Is analogouos to the proof of Proposition 4.2, but in this 
ase the maximum

likelihood estimators of ��

�

and � under H

0

are given, respe
tively, by

~

��

�

=

�

Z and

~

� = (2n=u

�

(2n)

)

~

�

N

; where

�

Z =

1

n

n

X

j=1

n

j

�

Z

j

and

~

�

N

=

1

n

k

X

j=1

n

j

X

i=1

(Z

ij

�

�

Z)(Z

ij

�

�

Z)

0

:

Noti
e that, under normality,

~

�

N

� W

2

(n�1;

1

n

�): Thus, as in the proof of Proposition

4.2, from the properties of the Wishar distribution and the digamma fun
tion it follows

that

E

0

[G

N

℄ = 5(k � 1) +

37

6

n

k

X

j=1

1

n

j

�

1

n

o

+O(n

�2

�

):

5. Final 
on
lusions

In this paper three di�erent extensions the additive normal models are 
onsidering

by repla
ing the usual normal model by the more general 
lass of the ellipti
al distri-

butions. By using orthogonal parametrizations and properties of the distribution of

the sample varian
es, Bartlett 
orre
ted likelihood ratio statisti
s are obtained for the

testing of some null hypothesis. Wong (1991) derived su
h 
orreted statisti
s for the


ase of the normal model by using expansions of the likelihood fun
tion and 
omput-

ing 
ummulants up to 4th order. Our approa
h is di�erent from the one 
onsidered in

Wong (1991) and we just have to dire
tly 
ompute expe
ted values of the likelihood

ratio statisti
s and properties of the sample varian
es under the normal model and

using invarian
e properties of the likelihood ratio statisti
s as 
onsidered in Anderson

et al. (1986).
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