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Abstra
t. In this work we study the existen
e and some properties of solitary wave

solutions for an intera
tion equation between a long internal wave and a short surfa
e

wave in a two layer 
uid. We obtain the existen
e of solitary wave solutions using

the 
on
entration 
ompa
tness method developed by P. L. Lions. We also show

that solutions of the minimization problem are analyti
 and they are translations

of the symmetri
 de
reasing rearrangement of themself.

1. INTRODUCTION

In this �rst work we will study the existen
e and some properties of solitary

wave solutions for an intera
tion equation between a long internal wave and a

short surfa
e wave in a two layer 
uid when the 
uid depth of the lower layer

is suÆ
iently large in 
omparison with the wavelength of the internal wave. The


uids are assumed with di�erent densities, invis
id and in
ompressible, and their

motions to be two-dimensional and irrotational. If the short wave term is denoted

by u = u(x; t) : R�R ! C and the long wave term by v = v(x; t) : R�R ! R, the

phenomena of intera
tion is des
ribed by the following nonlinear 
oupled system

(see [FO℄),
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iu

t

+ u

xx

= �vu;

v

t

+ 
Dv

x

= �(juj
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)

x

;

u(x; 0) = u

0

(x); v(x; 0) = v

0

(x);

(1.1)
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where �; � are positive 
onstants, 
 2 R and D = H�

x

, is a linear di�erential

operator representing the dispersion of the internal wave. Here H denotes the

Hilbert transform de�ned by

Hf(x) = p:v:

1

�

Z

f(y)

y � x

dy

therefore, D is the multiplier with Fourier operator de�ned as




Dv(�) = j�jbv(�).

The system (1.1) has been 
onsidered under various settings. For example,

Funakoshi and Oikawa ([FO℄) have 
omputed numeri
al solitary wave solutions.

Bekiranov, Ogawa and Pon
e ([BOP℄) proved well-posedness theory of (1.1) in

H

s

(R)�H

s�

1

2

(R) based on the te
hniques introdu
ed by Bourgain ([Bu1℄, [Bu2℄).

More pre
isely, if j
j < 1 and s = 0, then for any (u

0

; v

0

) 2 H

s

(R) � H

s�

1

2

(R)

there exists T > 0 su
h that the initial value problem (1.1) admits a unique

solution (u(t); v(t)) 2 C([0; T );H

s

(R) � H

s�

1

2

(R)). Moreover, for T > 0 the

map (u

0

; v

0

) ! (u(t); v(t)) is Lips
hitz 
ontinuous from H

s

(R) � H

s�

1

2

(R) to

C([0; T );H

s

(R) � H

s�

1

2

(R)). For the 
ase j
j = 1, we get the same results as

above, but for s > 0. We note that T = 1 if s = 1, as a 
onsequen
e of the

relations (1.2) and (1.3) below.

We note that for any s = 0, the solution of S
hr�odinger part u preserves its

L

2

(R) � norm, i.e., if

H(u) =

Z

R

ju(x)j

2

dx � kuk

2

(1.2)

then for any 0 < t < T , H(u(t)) = H(u

0

). Moreover, we have the 
onservations

of momentum, and energy:

G(u; v) � Im

Z

R

u(x)u

x

(x) dx� kvk

2

; for s =

1

2

;

E(u; v) � ku

x

k

2

+ �

Z

R

v(x)ju(x)j

2

dx�

�


2�

kD

1=2

vk

2

; for s = 1;

(1.3)

The purpose in this paper is to show the existen
e of solitary wave solutions for

(1.1) of the form

�

u(x; t) = e

i!t

�

0

(x� 
t);

v(x; t) =  (x� 
t);

(1.4)

where �

0

: R ! C ,  : R ! R, are smooth fun
tions su
h that for ea
h n 2 N ,

j�

(n)

0

(�)j ! 0, and  

(n)

(�)! 0, as j�j ! 1, 
 > 0 and ! 2 R. Substituting (u; v)
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as above in (1.1) we obtain the 
oupled system of equations

�

�

00

0

� !�

0

� i
�

0

0

= � �

0


H 

0

� 
 = � j�

0

j

2

(1.5)

where "

0

" =

d

d�

, � = x � 
t. Now, if we 
onsider �

0

(�) = e

i
�=2

�(�), for � real-

valued, and repla
e it in (1.5) we �nally obtain the pseudo-di�erential system

�

�

00

� �� = � �


H 

0

� 
 = ��

2

;

(1.6)

where � = ! �




2

4

. We show the existen
e of smooth real solutions (�;  ) of (1.6)

using the Con
entration Compa
tness Method developed by P. L. Lions ([CL℄,

[L1℄, [L2℄). More pre
isely, we 
onsider the family of minimization problems

I

�

= inf fV (f; g) : (f; g) 2 H

1

(R) �H

1

2

(R) and F (f; g) = �g; (1.7)

where � > 0 and the fun
tionals V and F are de�ned as,

V (f; g) =

1

2

Z

R

[(f

0

(x))

2

� 
(D

1

2

g(x))

2

+ �f

2

(x) + 
g

2

(x)℄dx (1.8)

and

F (f; g) =

Z

R

f

2

(x)g(x)dx:

Now, if we denote the set of minimizers for I

�

by G

�

, namely,

G

�

= f(f; g) : (f; g) 2 H

1

(R) �H

1

2

(R); V (f; g) = I

�

and F (f; g) = �g (1.8a)

then, Theorem 2.5 below shows that for ea
h 
 < 0, � > 0 and 
 > 0 we have that

G

�

6= ;, and therefore ea
h element of G

�

, after multipli
ation by a 
onstant, is a

solution of (1.6). In other words, we 
hara
terize solutions of system (1.6) as the

Euler -Lagrange equation for the 
onstrained minimization problem (1.7).

The variational formulation of solutions for (1.6) 
ombined with the theory

of symmetri
 de
reasing rearrangements (see Appendix) allows us to show the

existen
e of solitary wave solutions (�;  ), su
h that � and � are even and

de
reasing positive fun
tions (see Theorem 3.2 below). Moreover, using the re
ent

theory for analyti
ity of solitary waves setting in Li and Bona ([LB℄) we show

the analyti
ity and the stri
tly de
reasing of � and � (see, Theorem 3.3 and

Theorem 3.4 below).
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Another 
onsequen
e of our approa
h is related with the orbital stability theory

in H

1

(R) �H

1

2

(R) of the solitary waves de�ned in (1.4) for the asso
iated initial

value problem (1.1). In fa
t, in the study of the stability of solitary wave solutions

for general model of evolution equations (see for example, [A℄,[B℄, [Bo℄, [GSS1℄,

[GSS2℄, [W℄), is ne
essary to determine the spe
tral stru
ture of a linear operator

asso
iated with the solitary waves. To be more pre
ise, in our 
ase is ne
essary to

show that the operator L de�ned as

L =

�

�

d

2

d�

2

+ � + � ��

�� �
D + 


�

has exa
tly one negative eigenvalue of multipli
ity one, that zero is a single eigen-

value with eigenfun
tion (�

0

;  

0

), and that the rest of the spe
trum is positive.

The existen
e of a unique negative single eigenvalue for L is showed in Theorem

2.7 below. To this end the variational 
hara
terization of the solitary waves is

strongly employed. Other properties required for L as well as the stability theory

will be 
onsidered elsewhere.

In 
omparison with system (1.1), we 
onsider it for the 
ase 
 = 0, namely,

�

iu

t

+ u

xx

= �vu;

v

t

= �(juj

2

)

x

:

(1.9)

This is the most typi
al 
ase in the theory of wave intera
tion and it o

urs when

the 
uid depth is suÆ
iently small in 
omparison with the wavelength of the

internal wave. System (1.9) has been 
onsidered under various settings, see for

example, Benney ([B1℄,[B2℄), Bekiranov-Ogawa-Pon
e ([BOP℄), Grimshaw ([G℄),

Lauren�
ot ([L℄), Ma ([Ma℄) and Tsutsumi-Hatano ([TH℄). In the parti
ular 
ase of

the existen
e and stability theory of solitary wave solutions, the results are more

de�nitive, in the sense that solitary waves for (1.9) (
 = 0 in (1.6)) are unique (up

to translations) and may be 
omputed expli
itly as

(

�(�) =

q

2
�

��

se
h(

p

��)

 (�) = �

�




�

2

(�);

(1.10)

and the orbital stability of (�;  ) in (1.10) with regard to the asso
iated initial

value problem (1.9) was showed by Lauren�
ot ([L℄) in H

1

(R) � L

2

(R). Thus, it

suggests that the analyti
al solutions for (1.6) are of exponential type and that

for 
 small enough, these are orbitally stable. In fa
t, using the impli
it fun
tion

theorem and perturbation theory of linear operators, we will show in a future
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work that the last 
onje
ture is true, but unfortunately expli
it solutions have

been arduous to �nd.

The plan of this paper is as follows. In se
tion 2, we use the Con
entration

Compa
tness Method to prove existen
e of solitary wave solutions of equation

(1.1) and we obtain some properties of the solutions of system (1.6). In se
tion 3,

we show the evenness and analyti
ity of solitary wave solutions. In the Appendix,

we brie
y review some of the main fa
ts about the theory of symmetri
 de
reasing

rearrangements of fun
tions ne
essary in the development of our work.

Notations. Throughout this paper we will denote by

b

f the Fourier transform

of f , de�ned as

b

f(�) =

R

R

f(x)e

�i�x

dx. jf j

L

p

denotes the L

p

(R) norm of f ,

1 5 p 5 1. In parti
ular, j � j

L

2

= k � k and j � j

L

1

= j � j

1

. We denote by

H

s

(R) the Sobolev spa
e of all f (tempered distributions) for whi
h the norm

kfk

2

s

=

R

R

(1 + j�j

2

)

s

j

b

f(�)j

2

d� is �nite. The produ
t norm in H

s

(R) � H

r

(R) is

denoted by k � k

s�r

. J

s

= (1� �

2

x

)

s=2

and D

s

= (��

2

x

)

s=2

are the Bessel and Riesz

potential of order �s, respe
tively, and are de�ned by

d

J

s

f(�) = (1 + �

2

)

s=2

b

f(�)

and

d

D

s

f(�) = j�j

s

b

f(�). S(R) is the S
hwartz 
lass in R, and [T;W ℄ = TW�WT is

the 
ommutator of the operators T and W . In parti
ular, [H; f ℄g = H(fg)� fHg

in whi
h f is regarded as a multipli
ation operator.

2. EXISTENCE OF SOLITARY WAVE SOLUTIONS

In this se
tion we give a proof of existen
e of solitary wave solutions for system

(1.6) using the Con
entration Compa
tness Method introdu
ed by P.L. Lions (see

[L1℄, [L2℄). We 
all f(f

n

; g

n

)g

n=1

in H

1

(R)�H

1

2

(R) a minimizing sequen
e for I

�

if it satis�es

(

F (f

n

; g

n

) = �; for all n; and

lim

n!1

V (f

n

; g

n

) = I

�

:

Considering 
 < 0, � > 0 and 
 > 0, we have the following Lemmas.

Lemma 2.1. For all � > 0 we have that I

�

de�ned in (1.7) satis�es

0 < I

�

<1;

and ea
h minimizing sequen
e is bounded.

Proof. Sin
e F (f; g) = � and jf j

1

� kfk

1

, from Cau
hy-S
hwartz inequality it

follows,

� =

Z

R

f

2

(x)g(x)dx � jf j

1

kfkkgk � kfk

2

1

kgk

1

2

� k(f; g)k

3

1�

1

2

:
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Now,

V (f; g) =

1

2

kf

0

k

2

+

�

2

kfk

2

�




2

kD

1

2

gk

2

+




2

kgk

2

�

1

2

minf1; �gkfk

2

1

+

1

2

minf�
; 
gkgk

2

1

2

� C

1

kfk

2

1

+ C

2

kgk

2

1

2

� minfC

1

; C

2

gk(f; g)k

2

1�

1

2

= C

3

k(f; g)k

2

1�

1

2

:

Then,

V (f; g) � C�

2

3

> 0

and therefore I

�

> 0.

Now, let f(f

n

; g

n

)g

n=1

be a minimizing sequen
e for (1.7), then for n large

C

3

k(f

n

; g

n

)k

2

1�

1

2

� V (f

n

; g

n

) < I

�

+ 1

therefore, there exists M > 0 su
h that k(f

n

; g

n

)k

1�

1

2

�M for all n. �

In order to show the existen
e of solutions of equation (1.6) we will prove that

a minimizing sequen
e for problem (1.7) 
onverges (modulo translations) to a

fun
tion in H

1

(R) �H

1

2

(R) satisfying the 
onstraint F (f; g) = �. To do this, the

next result is essential in our work.

Lemma 2.2. Let f�

n

g

n�1

be a sequen
e of non-negative fun
tions in L

1

(R) sat-

isfying

R

R

�

n

(x)dx = � for all n and some � > 0. Then there exists a subsequen
e

f�

n

k

g

k�1

satisfying one of the following three 
onditions:

(1) (Compa
tness) there are y

k

2 R for k = 1; 2; :::, su
h that �

n

k

(� + y

k

) is

tight, i.e. for any � > 0, there is R > 0 large enough su
h that

Z

jx�y

k

j�R

�

n

k

(x) dx � �� �;

(2) (Vanishing) for any R > 0, lim

k!1

sup

y2R

R

jx�yj�R

�

n

k

(x)dx = 0;

(3) (Di
hotomy) there exists ~� 2 (0; �) su
h that for any � > 0, there exists

k

0

� 1 and �

1

k

; �

2

k

2 L

1

(R), �

1

k

; �

2

k

� 0 su
h that for k � k

0

,

8

>

<

>

:

j�

n

k

� (�

1

k

+ �

2

k

)j

L

1

� �;

j

R

R

�

1

k

dx� ~�j � �; j

R

R

�

2

k

dx� (�� ~�)j � �;

supp �

1

k

\ supp �

2

k

= 0=; dist(supp �

1

k

; supp �

2

k

)!1 as k!1:
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Remark: In Lemma 2.2 above, the 
ondition

R

R

�

n

(x) dx = � 
an be repla
ed

by

R

R

�

n

(x) dx = �

n

where �

n

! � > 0. It is enough to repla
e �

n

by �

n

=�

n

and

apply the Lemma.

Proof. See Lemma I.1 in Lions [L1℄. �

The following Lemma is a 
onsequen
e of Lemma I.1 in Lions [L2℄, but we

repeat its proof here for the reader's 
onvenien
e.

Lemma 2.3. Let f(f

n

; g

n

)g

n=1

be a bounded sequen
e in H

1

(R) �H

1

2

(R). As-

sume that for some R > 0,

Q

n

(R) � sup

y2R

Z

y+R

y�R

jf

n

j

2

dx! 0

as n!1. Then,

Z

R

f

2

n

(x)g

n

(x) dx! 0 as n!1:

Proof. Initially from H�older's inequality and from the embeddingH

1

2

(R) ,! L

p

(R),

p � 2, we have, for C > 0

Z

R

jf

n

j

2

jg

n

j dx �

�

Z

R

jf

n

j

3

dx

�

2

3

�

Z

R

jg

n

j

3

dx

�

1

3

� Ckg

n

k

1

2

jf

n

j

2

L

3

: (2.1)

Now, from the embedding of W

1;1

(
) into L

3

2

(
), there is a 
onstant C

1

=

C

1

(R) > 0 su
h that

Z

y+R

y�R

jf

n

j

3

dx � C

1

�

Z

y+R

y�R

jf

n

j

2

+ j(f

2

n

)

0

j dx

�

3

2

5 C

1

�

Q

n

(R) + 2M [Q

n

(R℄

1

2

�

1

2

�

2

Z

y+R

y�R

jf

n

j

2

dx+

Z

y+R

y�R

jf

0

n

j

2

dx

�

� C

2

Æ

1

2

n

�

Z

y+R

y�R

jf

n

j

2

+ jf

0

n

j

2

dx

�

(2.2)

with Æ

n

! 0 as n ! 1. Then 
overing R by intervals of radius R in su
h way

that any point of R is 
ontained in at most 2 intervals, we dedu
e from (2.2) that

Z

R

jf

n

j

3

dx � C

2

kf

n

k

2

1

Æ

1

2

n

� C

3

Æ

1

2

n

=) lim

n!1

Z

R

jf

n

j

3

dx = 0:

Hen
e, from (2.1), (2.2) and Lemma 2.1, the Lemma follows. �
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Lemma 2.4. Let ' : R ! R be a C

1

fun
tion with '

0

2 L

1

(R). Then the

operator [J

1

2

; '℄ maps L

2

(R) into L

2

(R) with

k[J

1

2

; '℄fk � Cj'

0

j

1

kfk (2.3)

where C is a positive 
onstant.

Proof. We note initially that for I the identity operator on L

2

(R),

[J

1

2

; '℄ = [I + (J

1

2

� I); '℄ = [J

1

2

� I; '℄ � [S; '℄

where S has symbol s(�) = (1 + �

2

)

1

4

� 1, that is,




Sf(�) = s(�)

^

f(�). Thus

S =

d

dx

W =W

d

dx

where W is a Fourier multiplier operator with symbol w(�) =

s(�)

i�

, for � 6= 0

and w(0) = 0. Sin
e s(0) = 0 and s is di�erentiable in � = 0 we have that w is


ontinuous in � = 0 and therefore bounded in R. Moreover w is C

1

in R. Then,

W is a bounded operator in L

2

(R) and for ea
h j � 0, we have

sup

�2R

j�j

j

�

�

�

d

j

d�

j

w(�)

�

�

�

<1:

Therefore, from Theorem 35 in Coifman-Meyer [CM℄, we have

k[W;'℄f

0

k � Cj'

0

j

1

kfk (2.3a)

with C > 0 independent of ' and f . Hen
e (2.3) follows from the relation

k[S; '℄fk = kW

d

dx

('f)� 'W

d

dx

fk

� kW ('

0

f)k+ k[W;'℄f

0

k;

together with the fa
t that W is bounded in L

2

(R) and (2.3a). �

Now we establish the main result of this se
tion,
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Theorem 2.5. Let �; �; �; 
 > 0, 
 < 0, and let � be any positive number. Then

the set G

�

de�ned in (1.8a) is nonempty. Hen
e, there is a solution of problem

(1.7), and therefore there exists a non-trivial solution of problem (1.6). Thus

the equation (1.1) has solitary-wave solutions 
orresponding to phase ! and wave

speed 
.

Proof. Let f(f

n

; g

n

)g

n=1

be a minimizing sequen
e for problem (1.7) and 
onsider

the fun
tion

�

n

(x) = jf

n

(x)j

2

+ jf

0

n

(x)j

2

+ jJ

1

2

g

n

(x)j

2

:

Let �

n

=

R

R

�

n

(x) dx. Sin
e �

n

= kf

n

k

2

1

+ kg

n

k

2

1

2

� k(f

n

; g

n

)k

2

1�

1

2

, we have that

�

n

is bounded and �

n

� �

2

3

(see proof of Lemma 2.1). We suppose that �

n

! �

as n ! 1. In order to prove Theorem 2.5 we apply Lemma 2.2 to the sequen
e

f�

n

g

n=1

, after ruling out the possibilities of Vanishing and Di
hotomy. Suppose

there is a subsequen
e f�

n

k

g

k�1

of f�

n

g

n=1

whi
h satis�es either Vanishing or

Di
hotomy. If Vanishing o

urs, then for any R > 0

lim

k!1

sup

y2R

Z

y+R

y�R

�

n

k

(x) dx = 0;

then

lim

k!1

Q

n

k

(R) = 0;

so, by Lemma 2.3

lim

k!1

Z

R

f

2

n

k

(x)g

n

k

(x)dx = 0:

But this is a 
ontradi
tion, sin
e F (f

n

k

; g

n

k

) = � > 0.

If Di
hotomy o

urs, there is � 2 (0; �) su
h that for every � > 0 there exist

k

0

� 1 and �

1

k

, �

2

k

� 0 su
h that for k � k

0

,

8

>

<

>

:

j�

n

k

� (�

1

k

+ �

2

k

)j

L

1

� �

j

R

R

�

1

k

dx� �j � �; j

R

R

�

2

k

dx� (�� �)j < �;

supp �

1

k

\ supp �

2

k

= 0= dist(supp �

1

k

; supp �

2

k

)!1 as k!1:

(2.4)

Moreover, we may assume that the supports of �

1

k

and �

2

k

are separated sin
e

follows

�

supp �

1

k

� (y

k

�R

0

; y

k

+R

0

)

supp �

2

k

� (�1; y

k

� 2R

k

) [ (y

k

+ 2R

k

;+1)

(2.5)
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for some �xed R

0

> 0, a sequen
e fy

k

g

k=1

� R and R

k

! 1, as k ! 1 (see

Lions [L1℄).

Now denoting by h

n

k

= (f

n

k

; g

n

k

) we obtain splitting fun
tions h

1

n

k

and h

2

n

k

of

h

n

k

. Let '; � 2 C

1

(R) with 0 � '; � � 1 be su
h that �(x) = 1, for jxj � 1 and

�(x) = 0 for jxj � 2, '(x) = 0 for jxj � 1 and '(x) = 1 for jxj � 2.

Denote by �

k

(x) = �(

x�y

k

R

1

) and '

k

(x) = '(

x�y

k

R

k

), for x 2 R, where R

1

> R

0

is


hosen large enough su
h that

�

�

�

Z

R

j�

k

f

n

k

j

2

+ j(�

k

f

n

k

)

0

j

2

+ jJ

1

2

(�

k

g

n

k

)j

2

� �

1

k

dx

�

�

�

� � (2.6)

and

�

�

�

Z

R

j'

k

f

n

k

j

2

+ j('

k

f

n

k

)

0

j

2

+ jJ

1

2

('

k

g

n

k

)j

2

� �

2

k

dx

�

�

�

� �: (2.7)

To see that this is possible, from (2.4) and (2.5), we have initially that

Z

jx�y

k

j�R

0

j�

n

k

� �

1

k

j dx � �;

Z

jx�y

k

j�2R

k

j�

n

k

� �

2

k

j dx � �

Z

R

0

�jx�y

k

j�2R

k

�

n

k

dx � �: (2.8)

Now, sin
e

kJ

1

2

(�

k

g

n

k

)k

2

= k�

k

J

1

2

g

n

k

k

2

+ k[J

1

2

; �

k

℄g

n

k

k

2

+ 2

Z

R

�

k

J

1

2

(g

n

k

)[J

1

2

; �

k

℄g

n

k

dx

we have from Lemma 2.4, Lemma 2.1 and Cau
hy-S
hwarz inequality that the last

two terms in the right hand side of last equality 
an be estimated as

k[J

1

2

; �

k

℄g

n

k

k

2

+ 2

�

�

�

Z

R

�

k

J

1

2

(g

n

k

)[J

1

2

; �

k

℄g

n

k

dx

�

�

�

5 C(j�

0

k

j

2

1

kg

n

k

k

2

) + 2j�

0

k

j

1

kJ

1

2

g

n

k

kkg

n

k

k

5 C

1

�

j�

0

j

2

1

R

2

1

+

j�

0

j

1

R

1

�

�

C

2

R

1

;
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for large R

1

. It follows then from (2.8) that

�

�

�

Z

R

�

1

k

dx�

Z

R

j�

k

f

n

k

j

2

+ j(�

k

f

n

k

)

0

j

2

+ jJ

1

2

(�

k

g

n

k

)j

2

dx

�

�

�

=

�

�

�

Z

R

�

1

k

dx�

Z

R

j�

k

f

n

k

j

2

+ j(�

k

f

n

k

)

0

j

2

+ j�

k

J

1

2

g

n

k

j

2

dx

�

Z

R

j[J

1

2

; �

k

℄g

n

k

j

2

+ 2�

k

J

1

2

(g

n

k

)[J

1

2

; �

k

℄g

n

k

dx

�

�

�

�

�

�

�

Z

R

j�

k

f

n

k

j

2

+ j(�

k

f

n

k

)

0

j

2

+ j�

k

J

1

2

g

n

k

j

2

� �

1

k

dx

�

�

�

+

C

2

R

1

� j

Z

jx�y

k

j�R

0

jf

n

k

j

2

+ jf

0

n

k

j

2

+ jJ

1

2

g

n

k

j

2

� �

1

k

dx

�

�

�

+

Z

R

0

�jx�y

k

j�2R

1

j�

k

f

n

k

j

2

+ j(�

k

f

n

k

)

0

j

2

+ j�

k

J

1

2

g

n

k

j

2

dx+

C

2

R

1

�

Z

jx�y

k

j�R

0

j�

n

k

� �

1

k

j dx+ 2(j�

k

j

2

1

+ j�

0

k

j

2

1

)

Z

R

0

�jx�y

k

j�2R

1

�

n

k

dx+

C

2

R

1

� �+ 2

�

j�j

2

1

+

j�

0

j

2

1

R

2

1

�

�+

C

2

R

1

= O(�)

if R

1

is large enough. Therefore we obtain (2.6). Similarly we have that (2.7) is

satis�ed.

Thus if we set,

�

h

1

k

= �

k

h

n

k

;

h

2

k

= '

k

h

n

k

and we de�ne,

w

k

= h

n

k

� (h

1

k

+ h

2

k

)

we have that h

1

k

;h

2

k

; w

k

2 H

1

(R)�H

1

2

(R). Now, sin
e

R

R

j�

3

k

f

2

n

k

g

n

k

jdx is bounded,

there exists a subsequen
e of fh

1

k

g

k=1

, still denoted by fh

1

k

g, for whi
h there is

k

0

> 0 and � 2 R su
h that for all k � k

0

�

�

�

Z

R

�

3

k

f

2

n

k

g

n

k

dx� �

�

�

�

� �: (2.9)

Moreover, sin
e for �

k

= 1� �

k

� '

k

k�

k

f

k

k

2

1

� 2

�

j�

k

j

2

1

+ j�

0

k

j

2

1

�

Z

R

1

�jx�y

k

j�2R

k

�

n

k

(x) dx = O(�)
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and

k�

k

g

n

k

k

2

1

2

� 2k[J

1

2

; �

k

℄g

n

k

k

2

+ 2

Z

R

1

�jx�y

k

j�2R

k

�

2

k

(x)(J

1

2

g

n

k

(x))

2

dx

� Cj�

0

k

j

2

1

kg

n

k

k

2

+ 2j�

k

j

2

1

Z

R

1

�jx�y

k

j�2R

k

�

n

k

dx

� C

1

�

j�

0

j

2

1

R

2

1

+

j'

0

j

2

1

R

2

k

�

+ C

2

� = O(�);

we have that kw

k

k

1�

1

2

= O(�). Therefore, it follows from (2.9) that for k � k

0

�

�

�

Z

R

'

3

k

f

3

n

k

g

n

k

dx� (�� �)

�

�

�

< �; (2.10)

in fa
t, from Cau
hy-S
hwarz inequality and Sobolev embedding, we have for

k = k

0

�

�

�

Z

R

'

3

k

f

3

n

k

g

n

k

dx� (�� �)

�

�

�

�

�

�

�

Z

R

f

2

n

k

g

n

k

('

3

k

+ �

3

k

� 1) dx

�

�

�

+ �

�

Z

R

j�

k

j

3

jf

2

n

k

g

n

k

j dx+ 3

Z

R

j�

k

j

2

jf

n

k

j

2

jg

n

k

j dx+ 3

Z

R

j�

k

jjf

n

k

j

2

jg

n

k

j dx+ �

� j�

k

f

n

k

j

2

L

4

k�

k

g

n

k

k+ 3j�

k

f

n

k

j

2

L

4

kg

n

k

k+ 3k�

k

g

n

k

kjf

n

k

j

2

L

4

+ �

� C

1

kw

k

k

3

1�

1

2

+ C

2

kw

k

k

2

1�

1

2

+ C

3

kw

k

k

1�

1

2

+ � = O(�):

Now, denoting w

k

= (a

k

; b

k

) we have from (1.8) that

V (h

n

k

) = V (w

n

k

+ h

1

k

+ h

2

k

) = V (w

n

k

) + V (h

1

k

) + V (h

2

k

) + J

1

+ J

2

(2.11)

where,

J

1

=

Z

R

a

0

k

(�

k

f

n

k

)

0

+ (a

0

k

+ (�

k

f

n

k

)

0

)('

k

f

n

k

)

0

+�a

k

�

k

f

n

k

+ �(a

k

+ �

k

f

n

k

)'

k

f

n

k

dx

and

J

2

=�

Z

R


D

1

2

(b

k

)D

1

2

(�

k

g

n

k

) + 
(D

1

2

b

k

+D

1

2

(�

k

g

n

k

))D

1

2

('

k

g

n

k

) dx

�

Z

R


(b

k

+ �

k

g

n

k

)'

k

g

n

k

+ 
b

k

�

k

g

n

k

dx:
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Next we estimate ea
h term integral in J

i

. In fa
t, from Cau
hy-S
hwarz inequality

it follows that

J

1

� Ckw

k

k

1�

1

2

kh

k

k

1�

1

2

= O(�) (2.12)

where C = C(�; ') > 0. With regard to J

2

we have �rst that

Z

R

D

1

2

b

k

D

1

2

(�

k

g

n

k

) dx � kD

1

2

b

k

k

�

k(D

1

2

� J

1

2

)�

k

g

n

k

k+ kJ

1

2

(�

k

g

n

k

)k

�

� Ckw

k

k

1�

1

2

�

k�

k

g

n

k

k+ k[J

1

2

; �

k

℄g

n

k

k+ k�

k

J

1

2

g

n

k

k

�

� Ckw

k

k

1�

1

2

�

kg

n

k

k+ j�

0

k

j

1

kg

n

k

k+ kJ

1

2

g

n

k

k

�

= O(�);

(2.13)

where we used that (J

1

2

�D

1

2

) 2 B(L

2

(R); L

2

(R)) and Lemma 2.4. Similarly we

have

Z

R

D

1

2

(b

k

)D

1

2

('

k

g

n

k

) dx = O(�): (2.14)

Now, let n

k

be �xed and 
onsider fp

j

g

j=1

� S(R) su
h that, p

j

! g

n

k

, as j !1,

in H

1

2

(R). Then, from Lemma 2.4, �

k

p

j

! �

k

g

n

k

and '

k

p

j

! '

k

g

n

k

, as j ! 1,

in H

1

2

(R). Thus,

Z

R

D

1

2

(�

k

p

j

)D

1

2

('

k

p

j

) dx �!

Z

R

D

1

2

(�

k

g

n

k

)D

1

2

('

k

g

n

k

) dx; as j !1:

Now, sin
e D = H�

x

and the supports of �

k

, '

k

are disjoints, we have that

Z

R

D

1

2

(�

k

p

j

)D

1

2

('

k

p

j

) dx =

Z

R

'

k

p

j

D(�

k

p

j

) dx =

Z

R

'

k

p

j

([H; �

k

℄p

0

j

+H(�

0

k

p

j

)) dx

5 k'

k

p

j

k

�

k[H; �

k

℄p

0

j

k+ k�

0

k

p

j

k

�

5 C

j�

0

j

1

R

1

kp

j

k

2

;

where in the last inequality we used the Calderon Commutator Theorem ([C℄).

Therefore, letting j !1 in the last inequality, we have �nally that

Z

R

D

1

2

(�

k

g

n

k

)D

1

2

('

k

g

n

k

) dx 5 C

j�

0

j

1

R

1

kg

n

k

k

2

= O(�): (2.15)



14

Thus from (2.13), (2.14), (2.15) and Lemma 2.1 it follows that

J

2

5 C

1

�+ 


Z

R

jb

k

('

k

+ �

k

)g

n

k

j dx � C

1

�+ C

2

kw

k

kkg

n

k

k = O(�): (2.16)

Therefore, sin
e V (w

k

) � Ckw

k

k

2

1�

1

2

, it follows from (2.11), (2.12) and (2.16) that

V (h

n

k

) = V (h

1

k

) + V (h

2

k

) + O(�);

thus

I

�

= lim inf

n

V (h

n

k

) � lim inf

n

V (h

1

k

) + lim inf

n

V (h

2

k

) +O(�): (2.17)

Now, if

Z

R

�

3

k

f

2

n

k

g

n

k

dx! � = 0;

then from (2.10) for � small we have that if k is large enough, F (h

2

k

) >

�

2

. Let k

be �xed and 
onsider d

k

> 0 su
h that

Z

R

d

3

k

'

3

k

f

3

n

k

g

n

k

dx = �;

therefore F (d

k

h

2

k

) = �. Moreover,

jd

k

� 1j =

j�

1

3

� F (h

2

k

)

1

3

j

F (h

2

k

)

1

3

�

2

�

j�

1

3

� F (h

2

k

)

1

3

j � C

1

�

with C

1

independent of h

2

k

and �. Hen
e, b

k

! 1, as k!1, and

I

�

� V (d

k

h

2

k

) = d

2

k

V (h

2

k

) = V (h

2

k

) +O(�): (2.18)

Now, from (2.6) and (2.4) it follows that,

lim inf V (h

1

k

) � C

2

lim inf kh

1

k

k

2

1�

1

2

= C

2

lim inf (k�

k

f

n

k

k

2

1

+ k�

k

g

n

k

k

2

1

2

)

� C

2

lim inf j�

1

k

j

L

1

+ O(�) � C

2

�+O(�);

and therefore, from (2.17) and (2.18)

I

�

� C

2

�+ I

�

+ O(�):
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Finally, letting �! 0 in the last relation leads to the 
ontradi
tion I

�

� C

2

�+ I

�

.

If, on the other hand,

R

R

�

3

k

f

3

n

k

g

n

k

dx ! � 6= 0, we 
an assume without loss of

generality that 0 < � < �, and using the same last pro
edure, together with (2.4)

and (2.7), we 
an prove that

I

�

� I

�

+ I

���

+O(�)

and let �! 0 to obtain

I

�

� I

�

+ I

���

:

But, for � > 0, I

��

= �

2

3

I

�

. Therefore, if we write � = ��, we have then

I

�

� I

��

+ I

(1��)�

= (�

2

3

+ (1� �)

2

3

)I

�

> I

�

another 
ontradi
tion. Thus the 
ase of Di
hotomy 
annot o

ur.

Sin
e Vanishing and Di
hotomy have been ruled out, it follows from Lemma

2.2 that there is a sequen
e fy

k

g

k=1

� R suth that for any � > 0, there are R > 0

large and k

0

> 0 su
h that for k � k

0

Z

jx�y

k

j�R

�

n

k

(x) dx � �� �;

Z

jx�y

k

j�R

�

n

k

(x) dx � �;

and

�

�

�

Z

jx�y

k

j�R

f

2

n

k

g

n

k

dx

�

�

�

� jg

n

k

j

L

3

�

Z

jx�y

k

j�R

jf

n

k

j

3

dx

�

2

3

� Ckg

n

k

k

1

2

jf

n

k

j

2

3

1

�

Z

jx�y

k

j�R

�

n

k

(x) dx

�

2

3

= O(�):

Then it follows that

�

�

�

Z

jx�y

k

j�R

f

2

n

k

g

n

k

dx� �

�

�

�

� �: (2.19)

Letting

e

h

n

k

(x) = (

e

f

n

k

(x); eg

n

k

(x)) � (f

n

k

(x � y

k

); g

n

k

(x � y

k

)), we have that

f

e

h

n

k

g

k=1

is bounded inH

1

(R)�H

1

2

(R) and therefore f

e

h

n

k

g

k=1

(or a subsequen
e)


onverges weakly in H

1

(R) �H

1

2

(R) to a ve
tor-fun
tion

e

h = (f

0

; g

0

). It follows

then from (2.19) that for k = k

0

,

� �

Z

R

�R

e

f

2

n

k

(x)eg

n

k

(x) dx � �� �: (2.20)
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Now, sin
eH

1

([�R;R℄) andH

1

2

([�R;R℄) are 
ompa
tly embedded in L

2

([�R;R℄),

we have from Cau
hy-S
hwarz inequality that

�

�

�

Z

R

�R

e

f

2

n

k

(x)eg

n

k

(x) dx�

Z

R

�R

f

2

0

(x)g

0

(x) dx

�

�

�

� j

e

f

n

k

+ f

0

j

1

keg

n

k

kk

e

f

n

k

� f

0

k

L

2

(�R;R)

+ k

e

f

n

k

k

2

1

keg

n

k

� g

0

k

L

2

(�R;R)

� C

�

k

e

f

n

k

� f

0

k

L

2

(�R;R)

+ keg

n

k

� g

0

k

L

2

(�R;R)

�

! 0; as k !1;

and therefore, from (2.20)

� �

Z

R

�R

f

2

0

(x)g

0

(x) dx � �� �:

Thus for � =

1

j

, j 2 N , there exists R

j

> j su
h that

� �

Z

R

j

�R

j

f

2

0

(x)g

0

(x) dx � ��

1

j

and 
onsequently as j ! 1, we have �nally that F (f

0

; g

0

) = �. Furthermore,

from the weak lower semi
ontinuity of V and invarian
e of V by translations, we

have

I

�

= lim inf

n!1

V (

e

f

n

k

; eg

n

k

) � V (f

0

; g

0

) � I

�

:

Thus the ve
tor-fun
tion

e

h = (f

0

; g

0

) solves the variational problem (1.7) and

therefore there exists K > 0 (Lagrange multiplier) su
h that,

�

�f

00

0

+ �f

0

= Kf

0

g

0

�
Dg

0

+ 
g

0

= Kf

2

0

:

(2.21)

Therefore, 
onsidering (�;  ) = (�K

q

2

��

f

0

;�

2K

�

g

0

) it follows from (2.21) that

(�;  ) solves the problem (1.6). Thus, Theorem 2.5 is proved. �

Remark: We note from (2.21) that (�

+

;  ) = (K

q

2

��

f

0

;�

2K

�

g

0

) is also a

solution of (1.6).
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Corollary 2.6. If (f

0

; g

0

) is a minimum for problem I

1

, then (f

0

; g

0

) is a minimum

for the un
onstrained fun
tional

T (f; g) =

V (f; g)

(F (f; g))

2=3

: (2.22)

Proof. It follows immediatly from Theorem 2.5. �

Corollary 2.6 allows to obtain some properties on the stru
ture of the spe
trum

of the linear operator, L, asso
iated with (1.6) for � = 2�, de�ned by

L =

�

�

d

2

d�

2

+ � + � ��

�� �
D + 


�

; (2.23)

more pre
isely we have,

Theorem 2.7. The operator L given by (2.23) has exa
tly one negative eigenvalue

of multipli
ity one.

Proof. Let

e

f = (f

0

; g

0

) be a minimum for problem I

1

, then from Corollary 2.6 the

se
ond variation of T at

e

f is nonnegative, i.e. for all

e

h 2 C

1

0

(R)�C

1

0

(R) we have

that

P(

e

h) =

d

2

d�

2

T (

e

f+ �

e

h)

�

�

�

�=0

= 0:

Hen
e, denoting by (�;  ) = �

2K

�

(f

0

; g

0

), where K > 0 is the Lagrange multiplier

asso
iated with the 
onstrained problem I

1

, we have expli
itly that

P(

e

h) = L

e

h+

1

3K

3

<

�

�� 

�

2

�

2

�

;

e

h >

�

�� 

�

2

�

2

�

:

Therefore, P is a nonnegative operator. Sin
e P = L+R, where R is a rank-one

operator, it follows from the min-max prin
iple (see [RS℄) that L has at most one

negative eigenvalue. In order to show that there is exa
tly one negative eigenvalue,

again by min-max prin
iple, it is suÆ
ient to �nd one dire
tion

e

h su
h that <

L

e

h;

e

h >< 0. In fa
t, for

e

h =

�

�

 

�

it follows from (1.6) that

< L

e

h;

e

h > =

Z

R

�(��+ � + � )� dx+

Z

R

 (�
D + 
) dx+ 2�

Z

R

�

2

 dx

=

3�

2

Z

R

�

2

 dx < 0

where in the last inequality we use that

R

R

f

2

0

g

0

dx > 0. This shows the Theorem.

�
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3. EVENNESS AND ANALYTICITY

OF SOLITARY WAVE SOLUTIONS

In this se
tion we establish some properties of the solutions of system (1.6) for


 < 0, and �; �; �; 
 > 0. The �rst property is 
on
erning the sign of  and it


an be dedu
ed studying the kernel asso
iated with the se
ond equation in (1.6).

Indeed, we observe that if  satis�es


H 

0

� 
 = ��

2

;

then, for � =

�





> 0, the Fourier transform implies that

b

 (�) =

�




1

j�j+ �




�

2

(�) =

�







K

�

(�)




�

2

(�) =

�




\

K

�

� �

2

(�); (3.1)

where the kernel K

�

is the following even fun
tion,

K

�

(x) =

1

�

Z

1

0

e

�x�

�

2

+ �

2

d�; for x > 0:

Note that K

�

2 C

1

(R � f0g) \ L

1

(R). Therefore, from (3.1)  satis�es the

following 
onvolution equation

 (x) =

�




K

�

� �

2

(x): (3.2)

Sin
e K

�

(x) is a positive kernel, it follows immediately from (3.2) that

 (x) < 0 for all x 2 R: (3.3)

provided that (�;  ) is a nontrivial solution of (1.6).

Now we show that the sign of � 
an also be determined expli
itly as follows.

Theorem 3.1. If (f

0

; g

0

) is a minimum for problem I

�

then so is (jf

0

j; g

0

). There-

fore there exists a 
onstant K > 0 su
h that, (�;  ) = (�K

q

2

��

f

0

;�K

2

�

g

0

) is a

solution of (1.6). Moreover, we have that �(x) > 0 for all x 2 R or �(x) < 0 for

all x 2 R.

Proof. A bootstrapping argument shows that if (f

0

; g

0

) 2 H

1

(R) � H

1

2

(R) is a

solution of (2.21) then (f

0

; g

0

) 2 H

1

(R)�H

1

(R). Now, from Theorem A.2 (Ap-

pendix) it follows that jf

0

j 2 H

1

(R) and

R

R

j

d

dx

f

0

(x)k

2

dx =

R

R

j

d

dx

jf

0

j(x)k

2

dx,

and so

I

�

= V (f

0

; g

0

) = V (jf

0

j; g

0

):
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Sin
e F (jf

0

j; g

0

) = F (f

0

; g

0

) = �, then we obtain that (jf

0

j; g

0

) 2 G

�

. From (2.21)

it follows that K =

2

3�

V (f

0

; g

0

) =

2

3�

V (jf

0

j; g

0

), then for T � �

d

2

dx

2

� 2Kg

0

we

have

�

T (jf

0

j) = ��jf

0

j

T (f

0

) = ��f

0

:

Sin
e jf

0

(x)j > 0 for all x 2 R, it follows from Sturm-Liouville Theory that �� is

the least eigenvalue of T and therefore is simple. Hen
e there exists a � 2 R�f0g

su
h that f

0

= �jf

0

j and the proof is 
omplete. �

The following result asserts that there is at least one solitary wave solution of

system (1.6), (�;  ) , su
h that �;� are even and de
reasing fun
tions. To see

this, we use the theory of symmetri
 de
reasing rearrangements of fun
tions on

R (see Riesz [R℄, Bras
amp, Lieb and Luttinger [BLL℄, Hardy, Littlewood and

Polya [HLP℄, Kawohl [K℄, and Friedman and M
Leod [FM℄). Initially, we see that

if (f; g) 2 G

�

and (f

1

; g

1

) 2 G

�

for �;� > 0, then

V (f

1

; g

1

) =

�

�

�

�

2=3

V (f; g): (3.4)

Indeed, for a =

�

�

�

�

1=3

the relations

�

F (af; ag) = a

3

F (f; g) =

�

�

� = �

V (af; ag) = a

2

V (f; g) = V (f

1

; g

1

);

and

�

F (a

�1

f

1

; a

�1

g

1

) = a

�3

F (f; g) = a

�3

� = �

V (a

�1

f

1

; a

�1

g

1

) = a

�2

V (f

1

; g

1

) = V (f; g);

shows (3.4).

Theorem 3.2. Let 
 < 0, and �; �; �; 
 > 0. Then there is a solution (�;  ) of

(1.6) su
h that � and � are even de
reasing positive fun
tions.

Proof. Let (f

0

; g

0

) 2 G

�

. From Theorem 3.1 we 
an assume f

0

(x) > 0 for all

x 2 R. Let (f

�

0

; g

�

0

) be the symmetri
 de
reasing rearrangements of f

0

and g

0

respe
tively and � =

R

R

(f

�

0

)

2

g

�

0

dx. Then from Theorem A.1 (Appendix) we have

that

� =

Z

R

f

2

0

g

0

dx 5

Z

R

(f

2

0

)

�

g

�

0

dx =

Z

R

(f

2

0

)

�

g

�

0

dx = �:
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Now, we see that � = �. Let (f

1

; g

1

) 2 G

�

, then from (3.4) and Theorems A.1

and A.2 we have that

V (f

�

0

; g

�

0

) 5 V (f

0

; g

0

) =

�

�

�

�

2=3

V (f

1

; g

1

)

5 V (f

1

; g

1

) 5 V (f

�

0

; g

�

0

) (3.5)

where the last inequality holds sin
e F (f

�

0

; g

�

0

) = �. Then from (3.5) we obtain

8

<

:

�

�

�

�

2=3

V (f

1

; g

1

) = V (f

1

; g

1

)

V (f

0

; g

0

) = V (f

�

0

; g

�

0

):

Hen
e � = � and (f

�

0

; g

�

0

) 2 G

�

. Thus there existsK =

2

3�

V (f

0

; g

0

) =

2

3�

V (f

�

0

; g

�

0

) >

0 su
h that

(�;  ) = (K

r

2

��

f

�

0

;�

2K

�

g

�

0

)

is solution of (1.6). This shows the Theorem. �

We 
ontinue the analysis of the solitary-wave solutions of the equation (1.6).

Let (�;  ) be a solution of (1.6). Interest now fo
uses on the analyti
ity and

the stri
tly de
reasing of � and � . The idea is based on the re
ent theory for

analyti
ity of solitary-wave solutions of model equations for long waves worked

out by Li and Bona ([LB℄). This theory 
onsist in demostrating that the Fourier

transform of

b

� and

b

 has exponential de
ay at �1. Then, the Paley-Wiener

Theorem assures that � and  has an analyti
 extension to a strip in the 
omplex

plane whi
h is symmetri
 about the real axis. In our situation, it is shown that

this strip 
an be 
hoosen equal for � and  .

Theorem 3.3. For (�;  ) a solitary-wave solution of (1.6), we have:

(i) there is a 
onstant �

0

> 0 su
h that

sup

�2R

e

�j�j

j

b

�(�)j <1; sup

�2R

e

�j�j

j

b

 (�)j <1 (3.6)

for any � with 0 < � < �

0

.

(ii) there are fun
tions �(z) and 	(z) that are de�ned and analyti
 on the open

strip fz 2 C : jIm(z)j < �

0

g su
h that

�(x) = �(x); 	(x) =  (x)
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for all x 2 R.

Proof. (i) If (�;  ) is a solution of (1.6) then from (3.2) the fun
tion

b'(�) =

r

�

�

b

�(�) (3.7)

solves the equation

(��

2

+ 1)b'(�) =

�

j
j

(

b

K

�

�




'

2

) � b'(�) (3.8)

where � =

1

�

. Now, when 0 5 k 5 1, (3.8) 
an be used to 
on
lude that

j�

k

b'(�)j =

�

j
j

j�j

k

1 + ��

2

�

�

�

Z

R

b'(� � x)

1

jxj+ �




'

2

(x) dx

�

�

�

5

�

j
j

j�j

k

1 + ��

2

(jb'j � jb'j � jb'j)(�)

5

�

j
j

1

�

k=2

(k + 1)

k�1

(jb'j � jb'j � jb'j)(�):

Therefore, using indu
tion and Young's inequality we obtain

j�

k

b'(�)j 5

�

j
j

kb'k

2

�

k=2

(k + 1)

k�1

jb'j

3([k=2℄2+1)�2

L

1

; (3.9)

for any � 2 R and any integer k = 0 (see Theorem 2 in [LB℄). ([k=2℄ denotes the

greatest integer less than or equal to k=2). Now, 
onsider the sequen
e

a

k

=

1

k!�

k=2

(k + 1)

k�1

jb'(�)j

3(k+1)

L

1

(3.10)

for k = 0; 1; 2; :::. Sin
e the ratio

a

k+1

a

k

takes the form

a

k+1

a

k

=

1

�

1=2

(1 +

1

k + 1

)

k

jb'(�)j

3

L

1

;

then lim

k!1

a

k+1

a

k

=

ejb'(�)j

3

L

1

�

1=2

. Hen
e the power series

P

1

k=0

a

k

�

k


onverges for j�j <

�

1=2

ejb'(�)j

3

L

1

� �

0

. Then, from (3.9) and (3.10), for any � 2 R, we have

e

�j�j

jb'(�)j =

1

X

k=0

�

k

j�j

k

k!

jb'(�)j

5

�

j
j

kb'(�)k

2

jb'(�)j

2

L

1

1

X

k=0

�

k

k!�

k=2

(k + 1)

k�1

jb'(�)j

3(k+1)

L

1

=

�

j
j

kb'(�)k

2

jb'(�)j

2

L

1

1

X

k=0

a

k

�

k

<1; (3.11)
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provided that j�j < �

0

. Thus the fun
tion e

�j�j

j

b

�(�)j is uniformly bounded for

su
h �'s.

Now, 
onsider 0 < � < �

0

and let � < �

1

< �

0

. Then, from (3.2) and (3.11) we

have

e

�j�j

j

b

 (�)j =

�

j
j

e

�j�j

1 + �j�j

j




�

2

(�)j 5

�

j
j

e

�j�j

j




�

2

(�)j 5

�

j
j

Z

R

e

�j��xj

e

�jxj

j

b

�(� � x)jj

b

�(x)j dx

5

�

j
j

sup

x2R

�

e

�jxj

j

b

�(x)j

�

Z

R

e

�j��xj

j

b

�(� � x)j dx

=

�

j
j

sup

x2R

�

e

�jxj

j

b

�(x)j

�

Z

R

e

�(�

1

��)j��xj

e

�

1

j��xj

j

b

�(� � x)j dx

5

�

j
j

sup

x2R

�

e

�jxj

j

b

�(x)j

�

sup

x2R

�

e

�

1

jxj

j

b

�(x)j

�

Z

R

e

�(�

1

��)jxj

dx <1;

whi
h 
ompletes the proof of (3.6).

(ii) Let � lie in the open interval (0; �

0

). Choose �

1

> 0 satisfying 0 < � < �

1

<

�

0

. Then for b'

1

(�) �

b

�(�) and b'

2

(�) �

b

 (�) we have that

Z

R

e

2�j�j

jb'

i

(�)j

2

d� 5 sup

�2R

�

e

�

1

j�j

jb'

i

(�)j

�

2

Z

R

e

�2(�

1

��)j�j

d� <1:

Therefore from Paley-Wiener Theorem ([PW℄, [RS1℄) the fun
tions

�(z) =

Z

R

b

�(�)e

iz�

d�; 	(z) =

Z

R

b

 (�)e

iz�

d�

are well-de�ned and analyti
 on fz 2 C : jIm(z)j < �

0

g. Finally, Plan
herel's

Theorem implies that �(x) = �(x) and 	(x) =  (x) for any x 2 R. �

An immediate 
onsequen
e of the analyti
ity established in Theorem 3.3 is the

existen
e of solitary-wave solutions of (1.6) that are stri
tly de
reasing. Indeed,

we have two di�erent proofs of this fa
t.

Theorem 3.4. Let 
 < 0, and �; �; �; 
 > 0. Then there exists a solution of (1.6),

(�;  ), su
h that � and � are even and stri
tly de
reasing positive fun
tions.

Proof. Let (�;  ) be a solution of (1.6) given for Theorem 3.2. Then � and � 

are even and de
reasing positive fun
tions.

Now, with regard to the stri
t de
reasing we have:

First proof: Let 0 < � < sup

x2R

�(x). Then from Theorem 3.4 we have that in

any bounded set B � R, there is at most a �nite number of points x 2 B su
h



23

that �(x) = �. Therefore, sin
e � is de
reasing, the set fx 2 R

+

: �(x) = �g is a

point-set; hen
e � is stri
tly de
reasing. Similar result is obtained for � .

Se
ond proof: Sin
e K

0

�

2 L

1

(R) it follows from (3.2) that




�

 

0

(x) = K

0

�

� �

2

(x) = lim

�!0

Z

jx�yj>�

K

0

�

(x� y)�

2

(y) dy: (3.12)

Sin
e K

0

�

is odd, we obtain for x > 0

Z

1

x+�

K

0

�

(x�y)�

2

(2x�y) dy =

Z

x��

�1

K

0

�

(x�(2x��))�

2

(�) d� = �

Z

x��

�1

K

0

�

(x��)�

2

(�) d�;

therefore, from (3.12) it follows that




�

 

0

(x) = lim

�!0

Z

1

x+�

K

0

�

(x� y)[�

2

(y)� �

2

(2x� y)℄ dy: (3.13)

Finally, sin
e � is even and de
reasing positive fun
tion, we have that if x > 0

and y > x the fun
tion y ! �

2

(2x� y) has its graph as the re
e
tion of the graph

of �

2

j

(�1;x)

with respe
t to the verti
al straight line 
rossing by x. Therefore,

�

2

(y) 5 �

2

(2x � y) for all y > x and so there exists an interval I � (x;1) su
h

that �

2

(y) + Æ < �

2

(2x � y) for all y 2 I and some Æ > 0. Thus from (3.13) we

have that for x > 0




�

 

0

(x) < 0:

Finally, from the �rst equation in (1.6) it follows that �

0

(x) < 0 for all x > 0. This

shows the Theorem. �

Finally, 
ombining properties of the theory of symmetri
 de
reasing rearrange-

ments and analyti
ity, we obtain that for ea
h element (f; g) of G

�

, their 
ompo-

nents are even, up translations, and stri
tly de
reasing positive fun
tions.

Theorem 3.5. Let 
 < 0, and �; 
 > 0. Then for ea
h (f; g) 2 G

�

we have that

f(x) = f

�

(x+ r); g(x) = g

�

(x+ r) for all x 2 R

and some r 2 R, where f

�

and g

�

are the symmetri
 de
reasing rearrangements

of f and g respe
tively.

Proof. Let (f; g) 2 G

�

. Then f and g satisfy the equation

�

�f

00

+ �f = 2Kfg

�
Dg + 
g = Kf

2

(3.14)
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for K > 0. Therefore it follows that V

1

(f) �

1

2

R

R

[(f

0

(x))

2

+ �f

2

(x)℄dx = K� and

V

2

(g) �

1

2

R

R

[�
(D

1

2

g(x))

2

+ 
g

2

(x)℄dx =

K

2

�. Hen
e,

V (f; g) = V

1

(f) + V

2

(g) =

3

2

V

1

(f):

Now, from the proof of Theorem 3.2 we have that (f

�

; g

�

) 2 G

�

. Hen
e (f

�

; g

�

)

satis�es (3.14) and 
onsequently we have that V (f

�

; g

�

) =

3

2

V

1

(f

�

). Using the

fa
ts that V (f; g) = V (f

�

; g

�

) and

R

R

jf(x)j

2

dx =

R

R

jf

�

(x)j

2

dx, we 
on
lude that

Z

R

�

�

�

d

dx

f(x)

�

�

�

2

dx =

Z

R

�

�

�

d

dx

f

�

(x)

�

�

�

2

dx:

Then, sin
e f 2 H

1

(R) and it is analyti
 in R (Theorem 3.3), it follows from

Corollary A.4 (Appendix) that

f(x) = f

�

(x� r)

for all x 2 R and some r 2 R. Finally, sin
e (f

r

(�); g

r

(�)) = (f(�+ r); g(�+ r)) is

solution of (3.14) we obtain that g

r

is even and from the se
ond proof of Theorem

3.4, g

0

r

(x) < 0 for x > 0, and thus

g(x) = g

�

(x� r):

This shows the Theorem. �

APPENDIX: PROPERTIES ON SYMMETRIC

DECREASING REARRANGEMENTS

In this Appendix, we 
olle
t some fa
ts about the symmetri
 de
reasing re-

arrangement of a fun
tion in R. The results mentioned here in one or higher

dimensions 
an be found in the papers of Riesz [R℄, Bras
amp, Lieb and Luttinger

[BLL℄ and in the books of Hardy, Littlewood and Polya [HLP℄ and Kawohl [K℄.

Let

S = ff : R ! [0;1℄ j f(x) 5 f(y) if jxj = jyj g

be the even de
reasing fun
tions. Let f be a nonnegative measurable fun
tion

on R, let 


y

(f) = fxj f(x) = yg and M

y

(f) = m(


y

(f)), where m denotes the

Lebesgue measure. Assume that M

a

(f) < 1 for some a < 1. If f

�

is another

fun
tion on R with the same properties as f and, additionally,

8

>

<

>

:

(a) f

�

(x) = f

�

(�x); for all x

(b) 0 < x < y =) f

�

(x) = f

�

(y);

(
) M

y

(f

�

) =M

y

(f); for all y > 0;
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then f

�

is 
alled a symmetri
 de
reasing rearrangement of f .

Remark: (1) if g and h are two symmetri
 de
reasing rearrangements of f , then

g(x) = h(x) a:e:

(2) If � is the 
hara
teristi
 fun
tion of a measurable set in R, we de�ne �

�

by

�

�

(x) =

�

1 if 2jxj 5

R

�

0 otherwise:

Therefore �

�

2 S and if � 2 L

1

(R) then j�j

L

1

= j�

�

j

L

1

. For a general fun
tion,

f : R ! [0;1℄, let

�

y

(x) =

�

1 if x 2 


y

(f)

0 otherwise:

Then is easy to see that f(x) =

R

1

0

�

y

(x) dy. This implies that

f

�

(x) =

Z

1

0

�

�

y

(x) dy; (A1)

is a symmetri
 de
reasing rearrangement of f . Also we note (see Kawohl [K℄) that

if M

a

(f) <1 for all a > 0 and we de�ne




�

y

(f) =

�

fx 2 Rj jxj 5

1

2

m(


y

(f))g if 


y

(f) 6= ;

; if 


y

(f) = ;;


alled the symmetri
 rearrangement of 


y

(f), then

f

�

(x) � sup fy 2 Rj x 2 


�

y

(f) g (A2)

is a symmetri
 de
reasing rearrangement of f . Consequently, if f is 
ontinuous

then by Remark (1) f

�


an be found using (A1) or (A2). The fa
t thatM

a

(f) <1

implies that f

�

(x) <1, for all x 6= 0.

(3) If f : R ! C we de�ne

f

�

= jf j

�

:

Therefore, for all y, m(


y

(f

�

)) = m(


y

(jf j)).

(4) Sin
e in the following Theorems we deal with integrals, by Remark (1), f

�

is unique for our purposes.

Now we 
olle
t in a single Theorem various properties of the symmetri
 de-


reasing rearrangement.
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Theorem A.1.

(i) For all p 2 [1;1℄, jf

�

j

L

p

= jf j

L

p

.

(ii) For all r > 0, (f

r

)

�

= (f

�

)

r

pointwise.

(iii) If f; g 2 L

2

(R)

�

�

�

Z

R

f(x)g(x) dx

�

�

�

5

Z

R

f

�

(x)g

�

(x) dx:

(iv) The Inequaltity of Riesz: Let f

1

; :::; f

n

be measurable fun
tions on R su
h

that m(


y

(f

i

)) <1 for all y > 0 and all 1 5 i 5 n. Then

j(f

1

� f

2

� ::: � f

n

)(0)j 5 [(f

�

1

) � (f

�

2

) � ::: � (f

�

n

)℄(0)

in the sense that if the right-hand side is �nite, then the left-hand side exists and

the inequality holds.

Proof. It is easy to 
he
k (i) and (ii). For (iii) see Kawohl ([K℄) and (iv) see Riesz

([R℄) and Bras
amp, Lieb and Luttinger ([BLL℄). �

The following result is essential in this work, and the idea of the proof is based

on Lemma 3.5 in Albert, Bona and Saut [ABS℄.

Theorem A.2.

(i) If f 2 H

1

(R) then jf j; f

�

2 H

1

(R) and

Z

R

�

�

�

d

dx

f(x)

�

�

�

2

dx =

Z

R

�

�

�

d

dx

jf j(x)

�

�

�

2

dx;

Z

R

�

�

�

d

dx

f(x)

�

�

�

2

dx =

Z

R

�

�

�

d

dx

f

�

(x)

�

�

�

2

dx:

(ii) If f 2 H

1

2

(R) then jf j; f

�

2 H

1

2

(R) and

Z

R

jD

1

2

f(x)j

2

dx =

Z

R

jD

1

2

jf j(x)j

2

dx;

Z

R

jD

1

2

f(x)j

2

dx =

Z

R

jD

1

2

f

�

(x)j

2

dx

Proof. The aÆrmation (ii) is Lemma 3.4 and lemma 3.5 in [ABS℄. Now, for (i),

we �rst show that jf j 2 H

1

(R). Let � > 0, and de�ne the fun
tion N

�

(x) by




N

�

(�) =

1

� + �

2

:

Then N

�

(x) > 0 for all x 2 R and N

�

2 S \ L

p

(R) for every p 2 [1;1℄. In

fa
t, the Residue Theorem shows that N

�

(x) =

e

�

p

�jxj

2

p

�

. Now, if g = jf j then

N

�

� g(x) = N

�

� f(x) for all x 2 R and every � > 0. Therefore,

Z

R

1

� + �

2

jbg(�)j

2

d� =

Z

R

g(x)(N

�

� g)(x) dx =

Z

R

f(x)(N

�

� f)(x) dx

=

Z

R

1

� + �

2

j

b

f(�)j

2

d�:
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Sin
e

R

R

jbg(�)j

2

d� =

R

R

j

b

f(�)j

2

d� by Parseval's identity, it follows that

Z

R

�

h

1�

�

� + �

2

i

j

b

f(�)j

2

d� =

Z

R

�

h

1�

�

� + �

2

i

jbg(�)j

2

d�:

Sin
e lim

�!1

�

h

1 �

�

�+�

2

i

= �

2

, taking the limit as � ! 1 on both sides of the

pre
eding inequality and using the Monotone Convergen
e Theorem gives

Z

R

j�j

2

j

b

f(�)j

2

d� =

Z

R

j�j

2

jbg(�)j

2

d�;

whi
h together with (i) in Theorem A.1 shows that jf j 2 H

1

(R).

For the other aÆrmation we note initially that sin
e N

�

�

= N

�

then for g =

jf j

�

= f

�

the inequaltiy of Riesz gives

Z

R

1

� + �

2

jbg(�)j

2

d� =

Z

R

g(x)(N

�

� g)(x) dx =

Z

R

f(x)(N

�

� f)(x) dx:

Also, by Parseval's identity

R

R

j




f

�

(�)j

2

d� =

R

R

j

b

f(�)j

2

d�. The result then follows

exa
tly as in the pre
eding proof . �

The next result is dis
ussed in Kawohl ([K℄) and Friedman and M
Leod ([FM℄),

here we establish it in the 
ase of R.

Theorem A.3. Let f be Lips
hitz 
ontinuous on R, with

df

dx

2 L

p

(R) for some

1 < p <1. Let

m = ess inf f; M = ess sup f:

If m(fx : f(x) = tg) = 0 for all m < t < M and f 2 C

1

in the set fx : m <

f(x) < Mg then the stri
t equality in

Z

R

�

�

�

d

dx

f(x)

�

�

�

p

dx =

Z

R

�

�

�

d

dx

f

�

(x)

�

�

�

p

dx

holds only if f = f

�

modulo translations.

An immediate 
onsequen
e of Theorem A.3 is the following result used in our

work.

Corollary A.4. Let f 2 H

s

(R) for some s > 3=2. If f is analyti
 on R then the

stri
t equality in

Z

R

�

�

�

d

dx

f(x)

�

�

�

2

dx =

Z

R

�

�

�

d

dx

f

�

(x)

�

�

�

2

dx

holds only if f = f

�

modulo translations.

Remark: We 
all a fun
tion f analyti
 on R if there exist a 
onstant � > 0 and

a fun
tion F (z) de�ned and analyti
 on the open strip fz 2 C : jIm(z)j < � g

su
h that F (x) = f(x) for all x 2 R.



28

REFERENCES

[A℄ J.P. Albert, Positivity properties and stability of solitary wave solutions of model equa-

tions for long waves, Comm. Partial Di�erential Equations 17 (1992), 1{22.

[ABS℄ J.P. Albert, J. L. Bona and J.-C. Saut, Model equations for waves in strati�ed 
uids,

Pro
. So
. Lond. A 453 (1997), 1233{1260.

[BOP℄ D. Bekiranov, T. Ogawa and G. Pon
e, On the well-posedness of Benney's intera
tion

equation of short and long waves, Advan
es Di�. Equations, in press.

[BOP℄ D. Bekiranov, T. Ogawa and G. Pon
e, Intera
tion equation for short and long disper-

sive waves, J. Fun
t. Anal. 158 (1998), 357-388.

[B℄ T. B. Benjamin, The Stability of solitary waves, Pro
. Roy. So
. London A 338 (1972),

153-183.

[Be1℄ D. J. Benney, Signi�
ant intera
tions between small and large s
ale surfa
e waves,

Stud. Appl. Math. 55 (1976), 93-106.

[Be2℄ D. J. Benney, A general theory for intera
tions equation between short and long waves,

Stud. Appl. Math. 56 (1977), 81-94.

[Bo℄ J. L. Bona, On the stability theory of solitary waves, Pro
. Roy. So
. London A 344

(1975), 363{374.

[Bu1℄ J. Bourgain, Fourier restri
tion phenomena for 
ertain latti
e subsets and appli
ations

to nonlinear evolution equations. I S
hr�odinger equations, Geometri
 and Fun
t. Anal.

3 (1993), 107{156.

[Bu2℄ J. Bourgain, Fourier restri
tion phenomena for 
ertain latti
e subsets and appli
ations

to nonlinear evolution equations. II The KdV equation, Geometri
 and Fun
t. Anal. 3

(1993), 209{262.

[BLL℄ H.J. Bras
amp. E.H. Lied, and J.M. Luttinger, A general rearrangement inequality for

multiple integral, J. Fun
t. Anal. 17 (1974), 227{237.

[C℄ A.P. Calderon, Commutators of singular integral operators, Pro
. Nat. A
ad. S
. USA,

53 (1965), 1092{1099.

[CL℄ T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear

S
hr�odinger equations, Comm. Math. Phys. 85 (1982), 549{561.

[CM℄ R. Coifman and Y. Meyer, Au del�a des op�erateurs pseudo-di��erentiels, Asterisque no.

57, So
i�et�e Math�ematique de Fran
e, Paris, 1978.

[FM℄ A. Friedman and B. M
Leod, Stri
t inequalities for integrals of de
reasingly rearranged

fun
tions, Pro
. R. So
. Edinbur. 102 A (1986), 277{289.

[FO℄ M. Funakoshi and M. Oikawa, The resonant intera
tion between a long internal gravity

wave and a surfa
e gravity wave pa
ket., J. Phys. So
. Japan 52 (1983), 1982{1995.

[GSS1℄ M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presen
e

of symmetry I., J. Fun
t. Anal. 74 (1987), 160{197.

[GSS2℄ M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presen
e

of symmetry II., J. Fun
t. Anal. 94 (1990), 308{348.

[G℄ R.H.J. Grimshaw, The modulation of an internal gravity-wave pa
ket and the resonan
e

with the mean motion, Stud. Appl. Math. 56 (1977), 241-266.

[HLP℄ G. Hardy, J.E. Littlewood, and G. Polya, Inequalities, Cambridge UP. (1934).

[K℄ B. Kawohl, Rearragements and 
onvexity of level sets in PDE, Le
ture Notes in Math-

emati
s 1150 (1934), Springer-Verlag.

[L℄ Ph. Lauren�
ot, On a nonlinear S
hr�odinger equation arising in the theory of water

waves, Nonlinear Anal. TMA 24 (1995), 509-527.



29

[LB℄ Y. A. Li and J. L. Bona, Anali
yti
ity of solitary-wave solutions of model equations for

long waves, SIAM J. Math. Anal 27 (1996), 725-737.

[L1℄ P.L. Lions, The 
on
entration-
ompa
tness prin
iple in the 
al
ulus of variations. The

lo
ally 
ompa
t 
ase, part 1, Ann. Inst. H. Poin
ar�e, Anal. Non lin�eare 1 (1984), 109{

145.

[L2℄ P.L. Lions, The 
on
entration-
ompa
tness prin
iple in the 
al
ulus of variations. The

lo
ally 
ompa
t 
ase, part 2, Ann. Inst. H. Poin
ar�e, Anal. Non lin�eare 4 (1984), 223{

283.

[M℄ Y-C. Ma, The 
omplete solution of the long-wave-short-wave resonan
e equations, Stud.

Appl. Math. 59 (1978), 201-221.

[RS1℄ S. Reed and B. Simon, Methods of Modern Mathemati
al Physi
s: Fourier Analysis,

Self-Adjointness, AP. V. II (1975).

[RS2℄ S. Reed and B. Simon,Methods of Modern Mathemati
al Physi
s: Analysis of Operator,

AP. V. IV (1975).

[R℄ F. Riesz, Sur une ine'galite' inte'grale, J. LMS 4 (1930), 162-168.

[TH℄ M. Tsutsumi and S. Hatano, Well-posedness of the Cau
hy problem for Benney's �rst

equations of long wave short wave intera
tions, Funk
ialaj Ekva
ioj 37 (1994), 289-316.

[W℄ M. Weinstein, Existen
e and dynami
 stability of solitary-wave solutions of equations

arising in long waves propagation, Comm. P.D.E. 12 (1987), 1133{1173.


