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Abstrat. In this work we study the existene and some properties of solitary wave

solutions for an interation equation between a long internal wave and a short surfae

wave in a two layer uid. We obtain the existene of solitary wave solutions using

the onentration ompatness method developed by P. L. Lions. We also show

that solutions of the minimization problem are analyti and they are translations

of the symmetri dereasing rearrangement of themself.

1. INTRODUCTION

In this �rst work we will study the existene and some properties of solitary

wave solutions for an interation equation between a long internal wave and a

short surfae wave in a two layer uid when the uid depth of the lower layer

is suÆiently large in omparison with the wavelength of the internal wave. The

uids are assumed with di�erent densities, invisid and inompressible, and their

motions to be two-dimensional and irrotational. If the short wave term is denoted

by u = u(x; t) : R�R ! C and the long wave term by v = v(x; t) : R�R ! R, the

phenomena of interation is desribed by the following nonlinear oupled system

(see [FO℄),
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t
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;

u(x; 0) = u

0

(x); v(x; 0) = v

0

(x);

(1.1)
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where �; � are positive onstants,  2 R and D = H�

x

, is a linear di�erential

operator representing the dispersion of the internal wave. Here H denotes the

Hilbert transform de�ned by

Hf(x) = p:v:

1

�

Z

f(y)

y � x

dy

therefore, D is the multiplier with Fourier operator de�ned as



Dv(�) = j�jbv(�).

The system (1.1) has been onsidered under various settings. For example,

Funakoshi and Oikawa ([FO℄) have omputed numerial solitary wave solutions.

Bekiranov, Ogawa and Pone ([BOP℄) proved well-posedness theory of (1.1) in

H

s

(R)�H

s�

1

2

(R) based on the tehniques introdued by Bourgain ([Bu1℄, [Bu2℄).

More preisely, if jj < 1 and s = 0, then for any (u

0

; v

0

) 2 H

s

(R) � H

s�

1

2

(R)

there exists T > 0 suh that the initial value problem (1.1) admits a unique

solution (u(t); v(t)) 2 C([0; T );H

s

(R) � H

s�

1

2

(R)). Moreover, for T > 0 the

map (u

0

; v

0

) ! (u(t); v(t)) is Lipshitz ontinuous from H

s

(R) � H

s�

1

2

(R) to

C([0; T );H

s

(R) � H

s�

1

2

(R)). For the ase jj = 1, we get the same results as

above, but for s > 0. We note that T = 1 if s = 1, as a onsequene of the

relations (1.2) and (1.3) below.

We note that for any s = 0, the solution of Shr�odinger part u preserves its

L

2

(R) � norm, i.e., if

H(u) =

Z

R

ju(x)j

2

dx � kuk

2

(1.2)

then for any 0 < t < T , H(u(t)) = H(u

0

). Moreover, we have the onservations

of momentum, and energy:

G(u; v) � Im

Z

R

u(x)u

x

(x) dx� kvk

2

; for s =

1

2

;

E(u; v) � ku

x

k

2

+ �

Z

R

v(x)ju(x)j

2

dx�

�

2�

kD

1=2

vk

2

; for s = 1;

(1.3)

The purpose in this paper is to show the existene of solitary wave solutions for

(1.1) of the form

�

u(x; t) = e

i!t

�

0

(x� t);

v(x; t) =  (x� t);

(1.4)

where �

0

: R ! C ,  : R ! R, are smooth funtions suh that for eah n 2 N ,

j�

(n)

0

(�)j ! 0, and  

(n)

(�)! 0, as j�j ! 1,  > 0 and ! 2 R. Substituting (u; v)
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as above in (1.1) we obtain the oupled system of equations

�

�

00

0

� !�

0

� i�

0

0

= � �

0

H 

0

�  = � j�

0

j

2

(1.5)

where "

0

" =

d

d�

, � = x � t. Now, if we onsider �

0

(�) = e

i�=2

�(�), for � real-

valued, and replae it in (1.5) we �nally obtain the pseudo-di�erential system

�

�

00

� �� = � �

H 

0

�  = ��

2

;

(1.6)

where � = ! �



2

4

. We show the existene of smooth real solutions (�;  ) of (1.6)

using the Conentration Compatness Method developed by P. L. Lions ([CL℄,

[L1℄, [L2℄). More preisely, we onsider the family of minimization problems

I

�

= inf fV (f; g) : (f; g) 2 H

1

(R) �H

1

2

(R) and F (f; g) = �g; (1.7)

where � > 0 and the funtionals V and F are de�ned as,

V (f; g) =

1

2

Z

R

[(f

0

(x))

2

� (D

1

2

g(x))

2

+ �f

2

(x) + g

2

(x)℄dx (1.8)

and

F (f; g) =

Z

R

f

2

(x)g(x)dx:

Now, if we denote the set of minimizers for I

�

by G

�

, namely,

G

�

= f(f; g) : (f; g) 2 H

1

(R) �H

1

2

(R); V (f; g) = I

�

and F (f; g) = �g (1.8a)

then, Theorem 2.5 below shows that for eah  < 0, � > 0 and  > 0 we have that

G

�

6= ;, and therefore eah element of G

�

, after multipliation by a onstant, is a

solution of (1.6). In other words, we haraterize solutions of system (1.6) as the

Euler -Lagrange equation for the onstrained minimization problem (1.7).

The variational formulation of solutions for (1.6) ombined with the theory

of symmetri dereasing rearrangements (see Appendix) allows us to show the

existene of solitary wave solutions (�;  ), suh that � and � are even and

dereasing positive funtions (see Theorem 3.2 below). Moreover, using the reent

theory for analytiity of solitary waves setting in Li and Bona ([LB℄) we show

the analytiity and the stritly dereasing of � and � (see, Theorem 3.3 and

Theorem 3.4 below).
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Another onsequene of our approah is related with the orbital stability theory

in H

1

(R) �H

1

2

(R) of the solitary waves de�ned in (1.4) for the assoiated initial

value problem (1.1). In fat, in the study of the stability of solitary wave solutions

for general model of evolution equations (see for example, [A℄,[B℄, [Bo℄, [GSS1℄,

[GSS2℄, [W℄), is neessary to determine the spetral struture of a linear operator

assoiated with the solitary waves. To be more preise, in our ase is neessary to

show that the operator L de�ned as

L =

�

�

d

2

d�

2

+ � + � ��

�� �D + 

�

has exatly one negative eigenvalue of multipliity one, that zero is a single eigen-

value with eigenfuntion (�

0

;  

0

), and that the rest of the spetrum is positive.

The existene of a unique negative single eigenvalue for L is showed in Theorem

2.7 below. To this end the variational haraterization of the solitary waves is

strongly employed. Other properties required for L as well as the stability theory

will be onsidered elsewhere.

In omparison with system (1.1), we onsider it for the ase  = 0, namely,

�

iu

t

+ u

xx

= �vu;

v

t

= �(juj

2

)

x

:

(1.9)

This is the most typial ase in the theory of wave interation and it ours when

the uid depth is suÆiently small in omparison with the wavelength of the

internal wave. System (1.9) has been onsidered under various settings, see for

example, Benney ([B1℄,[B2℄), Bekiranov-Ogawa-Pone ([BOP℄), Grimshaw ([G℄),

Lauren�ot ([L℄), Ma ([Ma℄) and Tsutsumi-Hatano ([TH℄). In the partiular ase of

the existene and stability theory of solitary wave solutions, the results are more

de�nitive, in the sense that solitary waves for (1.9) ( = 0 in (1.6)) are unique (up

to translations) and may be omputed expliitly as

(

�(�) =

q

2�

��

seh(

p

��)

 (�) = �

�



�

2

(�);

(1.10)

and the orbital stability of (�;  ) in (1.10) with regard to the assoiated initial

value problem (1.9) was showed by Lauren�ot ([L℄) in H

1

(R) � L

2

(R). Thus, it

suggests that the analytial solutions for (1.6) are of exponential type and that

for  small enough, these are orbitally stable. In fat, using the impliit funtion

theorem and perturbation theory of linear operators, we will show in a future
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work that the last onjeture is true, but unfortunately expliit solutions have

been arduous to �nd.

The plan of this paper is as follows. In setion 2, we use the Conentration

Compatness Method to prove existene of solitary wave solutions of equation

(1.1) and we obtain some properties of the solutions of system (1.6). In setion 3,

we show the evenness and analytiity of solitary wave solutions. In the Appendix,

we briey review some of the main fats about the theory of symmetri dereasing

rearrangements of funtions neessary in the development of our work.

Notations. Throughout this paper we will denote by

b

f the Fourier transform

of f , de�ned as

b

f(�) =

R

R

f(x)e

�i�x

dx. jf j

L

p

denotes the L

p

(R) norm of f ,

1 5 p 5 1. In partiular, j � j

L

2

= k � k and j � j

L

1

= j � j

1

. We denote by

H

s

(R) the Sobolev spae of all f (tempered distributions) for whih the norm

kfk

2

s

=

R

R

(1 + j�j

2

)

s

j

b

f(�)j

2

d� is �nite. The produt norm in H

s

(R) � H

r

(R) is

denoted by k � k

s�r

. J

s

= (1� �

2

x

)

s=2

and D

s

= (��

2

x

)

s=2

are the Bessel and Riesz

potential of order �s, respetively, and are de�ned by

d

J

s

f(�) = (1 + �

2

)

s=2

b

f(�)

and

d

D

s

f(�) = j�j

s

b

f(�). S(R) is the Shwartz lass in R, and [T;W ℄ = TW�WT is

the ommutator of the operators T and W . In partiular, [H; f ℄g = H(fg)� fHg

in whih f is regarded as a multipliation operator.

2. EXISTENCE OF SOLITARY WAVE SOLUTIONS

In this setion we give a proof of existene of solitary wave solutions for system

(1.6) using the Conentration Compatness Method introdued by P.L. Lions (see

[L1℄, [L2℄). We all f(f

n

; g

n

)g

n=1

in H

1

(R)�H

1

2

(R) a minimizing sequene for I

�

if it satis�es

(

F (f

n

; g

n

) = �; for all n; and

lim

n!1

V (f

n

; g

n

) = I

�

:

Considering  < 0, � > 0 and  > 0, we have the following Lemmas.

Lemma 2.1. For all � > 0 we have that I

�

de�ned in (1.7) satis�es

0 < I

�

<1;

and eah minimizing sequene is bounded.

Proof. Sine F (f; g) = � and jf j

1

� kfk

1

, from Cauhy-Shwartz inequality it

follows,

� =

Z

R

f

2

(x)g(x)dx � jf j

1

kfkkgk � kfk

2

1

kgk

1

2

� k(f; g)k

3

1�

1

2

:
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Now,

V (f; g) =

1

2

kf

0

k

2

+

�

2

kfk

2

�



2

kD

1

2

gk

2

+



2

kgk

2

�

1

2

minf1; �gkfk

2

1

+

1

2

minf�; gkgk

2

1

2

� C

1

kfk

2

1

+ C

2

kgk

2

1

2

� minfC

1

; C

2

gk(f; g)k

2

1�

1

2

= C

3

k(f; g)k

2

1�

1

2

:

Then,

V (f; g) � C�

2

3

> 0

and therefore I

�

> 0.

Now, let f(f

n

; g

n

)g

n=1

be a minimizing sequene for (1.7), then for n large

C

3

k(f

n

; g

n

)k

2

1�

1

2

� V (f

n

; g

n

) < I

�

+ 1

therefore, there exists M > 0 suh that k(f

n

; g

n

)k

1�

1

2

�M for all n. �

In order to show the existene of solutions of equation (1.6) we will prove that

a minimizing sequene for problem (1.7) onverges (modulo translations) to a

funtion in H

1

(R) �H

1

2

(R) satisfying the onstraint F (f; g) = �. To do this, the

next result is essential in our work.

Lemma 2.2. Let f�

n

g

n�1

be a sequene of non-negative funtions in L

1

(R) sat-

isfying

R

R

�

n

(x)dx = � for all n and some � > 0. Then there exists a subsequene

f�

n

k

g

k�1

satisfying one of the following three onditions:

(1) (Compatness) there are y

k

2 R for k = 1; 2; :::, suh that �

n

k

(� + y

k

) is

tight, i.e. for any � > 0, there is R > 0 large enough suh that

Z

jx�y

k

j�R

�

n

k

(x) dx � �� �;

(2) (Vanishing) for any R > 0, lim

k!1

sup

y2R

R

jx�yj�R

�

n

k

(x)dx = 0;

(3) (Dihotomy) there exists ~� 2 (0; �) suh that for any � > 0, there exists

k

0

� 1 and �

1

k

; �

2

k

2 L

1

(R), �

1

k

; �

2

k

� 0 suh that for k � k

0

,

8

>

<

>

:

j�

n

k

� (�

1

k

+ �

2

k

)j

L

1

� �;

j

R

R

�

1

k

dx� ~�j � �; j

R

R

�

2

k

dx� (�� ~�)j � �;

supp �

1

k

\ supp �

2

k

= 0=; dist(supp �

1

k

; supp �

2

k

)!1 as k!1:
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Remark: In Lemma 2.2 above, the ondition

R

R

�

n

(x) dx = � an be replaed

by

R

R

�

n

(x) dx = �

n

where �

n

! � > 0. It is enough to replae �

n

by �

n

=�

n

and

apply the Lemma.

Proof. See Lemma I.1 in Lions [L1℄. �

The following Lemma is a onsequene of Lemma I.1 in Lions [L2℄, but we

repeat its proof here for the reader's onveniene.

Lemma 2.3. Let f(f

n

; g

n

)g

n=1

be a bounded sequene in H

1

(R) �H

1

2

(R). As-

sume that for some R > 0,

Q

n

(R) � sup

y2R

Z

y+R

y�R

jf

n

j

2

dx! 0

as n!1. Then,

Z

R

f

2

n

(x)g

n

(x) dx! 0 as n!1:

Proof. Initially from H�older's inequality and from the embeddingH

1

2

(R) ,! L

p

(R),

p � 2, we have, for C > 0

Z

R

jf

n

j

2

jg

n

j dx �

�

Z

R

jf

n

j

3

dx

�

2

3

�

Z

R

jg

n

j

3

dx

�

1

3

� Ckg

n

k

1

2

jf

n

j

2

L

3

: (2.1)

Now, from the embedding of W

1;1

(
) into L

3

2

(
), there is a onstant C

1

=

C

1

(R) > 0 suh that

Z

y+R

y�R

jf

n

j

3

dx � C

1

�

Z

y+R

y�R

jf

n

j

2

+ j(f

2

n

)

0

j dx

�

3

2

5 C

1

�

Q

n

(R) + 2M [Q

n

(R℄

1

2

�

1

2

�

2

Z

y+R

y�R

jf

n

j

2

dx+

Z

y+R

y�R

jf

0

n

j

2

dx

�

� C

2

Æ

1

2

n

�

Z

y+R

y�R

jf

n

j

2

+ jf

0

n

j

2

dx

�

(2.2)

with Æ

n

! 0 as n ! 1. Then overing R by intervals of radius R in suh way

that any point of R is ontained in at most 2 intervals, we dedue from (2.2) that

Z

R

jf

n

j

3

dx � C

2

kf

n

k

2

1

Æ

1

2

n

� C

3

Æ

1

2

n

=) lim

n!1

Z

R

jf

n

j

3

dx = 0:

Hene, from (2.1), (2.2) and Lemma 2.1, the Lemma follows. �
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Lemma 2.4. Let ' : R ! R be a C

1

funtion with '

0

2 L

1

(R). Then the

operator [J

1

2

; '℄ maps L

2

(R) into L

2

(R) with

k[J

1

2

; '℄fk � Cj'

0

j

1

kfk (2.3)

where C is a positive onstant.

Proof. We note initially that for I the identity operator on L

2

(R),

[J

1

2

; '℄ = [I + (J

1

2

� I); '℄ = [J

1

2

� I; '℄ � [S; '℄

where S has symbol s(�) = (1 + �

2

)

1

4

� 1, that is,



Sf(�) = s(�)

^

f(�). Thus

S =

d

dx

W =W

d

dx

where W is a Fourier multiplier operator with symbol w(�) =

s(�)

i�

, for � 6= 0

and w(0) = 0. Sine s(0) = 0 and s is di�erentiable in � = 0 we have that w is

ontinuous in � = 0 and therefore bounded in R. Moreover w is C

1

in R. Then,

W is a bounded operator in L

2

(R) and for eah j � 0, we have

sup

�2R

j�j

j

�

�

�

d

j

d�

j

w(�)

�

�

�

<1:

Therefore, from Theorem 35 in Coifman-Meyer [CM℄, we have

k[W;'℄f

0

k � Cj'

0

j

1

kfk (2.3a)

with C > 0 independent of ' and f . Hene (2.3) follows from the relation

k[S; '℄fk = kW

d

dx

('f)� 'W

d

dx

fk

� kW ('

0

f)k+ k[W;'℄f

0

k;

together with the fat that W is bounded in L

2

(R) and (2.3a). �

Now we establish the main result of this setion,
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Theorem 2.5. Let �; �; �;  > 0,  < 0, and let � be any positive number. Then

the set G

�

de�ned in (1.8a) is nonempty. Hene, there is a solution of problem

(1.7), and therefore there exists a non-trivial solution of problem (1.6). Thus

the equation (1.1) has solitary-wave solutions orresponding to phase ! and wave

speed .

Proof. Let f(f

n

; g

n

)g

n=1

be a minimizing sequene for problem (1.7) and onsider

the funtion

�

n

(x) = jf

n

(x)j

2

+ jf

0

n

(x)j

2

+ jJ

1

2

g

n

(x)j

2

:

Let �

n

=

R

R

�

n

(x) dx. Sine �

n

= kf

n

k

2

1

+ kg

n

k

2

1

2

� k(f

n

; g

n

)k

2

1�

1

2

, we have that

�

n

is bounded and �

n

� �

2

3

(see proof of Lemma 2.1). We suppose that �

n

! �

as n ! 1. In order to prove Theorem 2.5 we apply Lemma 2.2 to the sequene

f�

n

g

n=1

, after ruling out the possibilities of Vanishing and Dihotomy. Suppose

there is a subsequene f�

n

k

g

k�1

of f�

n

g

n=1

whih satis�es either Vanishing or

Dihotomy. If Vanishing ours, then for any R > 0

lim

k!1

sup

y2R

Z

y+R

y�R

�

n

k

(x) dx = 0;

then

lim

k!1

Q

n

k

(R) = 0;

so, by Lemma 2.3

lim

k!1

Z

R

f

2

n

k

(x)g

n

k

(x)dx = 0:

But this is a ontradition, sine F (f

n

k

; g

n

k

) = � > 0.

If Dihotomy ours, there is � 2 (0; �) suh that for every � > 0 there exist

k

0

� 1 and �

1

k

, �

2

k

� 0 suh that for k � k

0

,

8

>

<

>

:

j�

n

k

� (�

1

k

+ �

2

k

)j

L

1

� �

j

R

R

�

1

k

dx� �j � �; j

R

R

�

2

k

dx� (�� �)j < �;

supp �

1

k

\ supp �

2

k

= 0= dist(supp �

1

k

; supp �

2

k

)!1 as k!1:

(2.4)

Moreover, we may assume that the supports of �

1

k

and �

2

k

are separated sine

follows

�

supp �

1

k

� (y

k

�R

0

; y

k

+R

0

)

supp �

2

k

� (�1; y

k

� 2R

k

) [ (y

k

+ 2R

k

;+1)

(2.5)
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for some �xed R

0

> 0, a sequene fy

k

g

k=1

� R and R

k

! 1, as k ! 1 (see

Lions [L1℄).

Now denoting by h

n

k

= (f

n

k

; g

n

k

) we obtain splitting funtions h

1

n

k

and h

2

n

k

of

h

n

k

. Let '; � 2 C

1

(R) with 0 � '; � � 1 be suh that �(x) = 1, for jxj � 1 and

�(x) = 0 for jxj � 2, '(x) = 0 for jxj � 1 and '(x) = 1 for jxj � 2.

Denote by �

k

(x) = �(

x�y

k

R

1

) and '

k

(x) = '(

x�y

k

R

k

), for x 2 R, where R

1

> R

0

is

hosen large enough suh that

�

�

�

Z

R

j�

k

f

n

k

j

2

+ j(�

k

f

n

k

)

0

j

2

+ jJ

1

2

(�

k

g

n

k

)j

2

� �

1

k

dx

�

�

�

� � (2.6)

and

�

�

�

Z

R

j'

k

f

n

k

j

2

+ j('

k

f

n

k

)

0

j

2

+ jJ

1

2

('

k

g

n

k

)j

2

� �

2

k

dx

�

�

�

� �: (2.7)

To see that this is possible, from (2.4) and (2.5), we have initially that

Z

jx�y

k

j�R

0

j�

n

k

� �

1

k

j dx � �;

Z

jx�y

k

j�2R

k

j�

n

k

� �

2

k

j dx � �

Z

R

0

�jx�y

k

j�2R

k

�

n

k

dx � �: (2.8)

Now, sine

kJ

1

2

(�

k

g

n

k

)k

2

= k�

k

J

1

2

g

n

k

k

2

+ k[J

1

2

; �

k

℄g

n

k

k

2

+ 2

Z

R

�

k

J

1

2

(g

n

k

)[J

1

2

; �

k

℄g

n

k

dx

we have from Lemma 2.4, Lemma 2.1 and Cauhy-Shwarz inequality that the last

two terms in the right hand side of last equality an be estimated as

k[J

1

2

; �

k

℄g

n

k

k

2

+ 2

�

�

�

Z

R

�

k

J

1

2

(g

n

k

)[J

1

2

; �

k

℄g

n

k

dx

�

�

�

5 C(j�

0

k

j

2

1

kg

n

k

k

2

) + 2j�

0

k

j

1

kJ

1

2

g

n

k

kkg

n

k

k

5 C

1

�

j�

0

j

2

1

R

2

1

+

j�

0

j

1

R

1

�

�

C

2

R

1

;
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for large R

1

. It follows then from (2.8) that

�

�

�

Z

R

�

1

k

dx�

Z

R

j�

k

f

n

k

j

2

+ j(�

k

f

n

k

)

0

j

2

+ jJ

1

2

(�

k

g

n

k

)j

2

dx

�

�

�

=

�

�

�

Z

R

�

1

k

dx�

Z

R

j�

k

f

n

k

j

2

+ j(�

k

f

n

k

)

0

j

2

+ j�

k

J

1

2

g

n

k

j

2

dx

�

Z

R

j[J

1

2

; �

k

℄g

n

k

j

2

+ 2�

k

J

1

2

(g

n

k

)[J

1

2

; �

k

℄g

n

k

dx

�

�

�

�

�

�

�

Z

R

j�

k

f

n

k

j

2

+ j(�

k

f

n

k

)

0

j

2

+ j�

k

J

1

2

g

n

k

j

2

� �

1

k

dx

�

�

�

+

C

2

R

1

� j

Z

jx�y

k

j�R

0

jf

n

k

j

2

+ jf

0

n

k

j

2

+ jJ

1

2

g

n

k

j

2

� �

1

k

dx

�

�

�

+

Z

R

0

�jx�y

k

j�2R

1

j�

k

f

n

k

j

2

+ j(�

k

f

n

k

)

0

j

2

+ j�

k

J

1

2

g

n

k

j

2

dx+

C

2

R

1

�

Z

jx�y

k

j�R

0

j�

n

k

� �

1

k

j dx+ 2(j�

k

j

2

1

+ j�

0

k

j

2

1

)

Z

R

0

�jx�y

k

j�2R

1

�

n

k

dx+

C

2

R

1

� �+ 2

�

j�j

2

1

+

j�

0

j

2

1

R

2

1

�

�+

C

2

R

1

= O(�)

if R

1

is large enough. Therefore we obtain (2.6). Similarly we have that (2.7) is

satis�ed.

Thus if we set,

�

h

1

k

= �

k

h

n

k

;

h

2

k

= '

k

h

n

k

and we de�ne,

w

k

= h

n

k

� (h

1

k

+ h

2

k

)

we have that h

1

k

;h

2

k

; w

k

2 H

1

(R)�H

1

2

(R). Now, sine

R

R

j�

3

k

f

2

n

k

g

n

k

jdx is bounded,

there exists a subsequene of fh

1

k

g

k=1

, still denoted by fh

1

k

g, for whih there is

k

0

> 0 and � 2 R suh that for all k � k

0

�

�

�

Z

R

�

3

k

f

2

n

k

g

n

k

dx� �

�

�

�

� �: (2.9)

Moreover, sine for �

k

= 1� �

k

� '

k

k�

k

f

k

k

2

1

� 2

�

j�

k

j

2

1

+ j�

0

k

j

2

1

�

Z

R

1

�jx�y

k

j�2R

k

�

n

k

(x) dx = O(�)
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and

k�

k

g

n

k

k

2

1

2

� 2k[J

1

2

; �

k

℄g

n

k

k

2

+ 2

Z

R

1

�jx�y

k

j�2R

k

�

2

k

(x)(J

1

2

g

n

k

(x))

2

dx

� Cj�

0

k

j

2

1

kg

n

k

k

2

+ 2j�

k

j

2

1

Z

R

1

�jx�y

k

j�2R

k

�

n

k

dx

� C

1

�

j�

0

j

2

1

R

2

1

+

j'

0

j

2

1

R

2

k

�

+ C

2

� = O(�);

we have that kw

k

k

1�

1

2

= O(�). Therefore, it follows from (2.9) that for k � k

0

�

�

�

Z

R

'

3

k

f

3

n

k

g

n

k

dx� (�� �)

�

�

�

< �; (2.10)

in fat, from Cauhy-Shwarz inequality and Sobolev embedding, we have for

k = k

0

�

�

�

Z

R

'

3

k

f

3

n

k

g

n

k

dx� (�� �)

�

�

�

�

�

�

�

Z

R

f

2

n

k

g

n

k

('

3

k

+ �

3

k

� 1) dx

�

�

�

+ �

�

Z

R

j�

k

j

3

jf

2

n

k

g

n

k

j dx+ 3

Z

R

j�

k

j

2

jf

n

k

j

2

jg

n

k

j dx+ 3

Z

R

j�

k

jjf

n

k

j

2

jg

n

k

j dx+ �

� j�

k

f

n

k

j

2

L

4

k�

k

g

n

k

k+ 3j�

k

f

n

k

j

2

L

4

kg

n

k

k+ 3k�

k

g

n

k

kjf

n

k

j

2

L

4

+ �

� C

1

kw

k

k

3

1�

1

2

+ C

2

kw

k

k

2

1�

1

2

+ C

3

kw

k

k

1�

1

2

+ � = O(�):

Now, denoting w

k

= (a

k

; b

k

) we have from (1.8) that

V (h

n

k

) = V (w

n

k

+ h

1

k

+ h

2

k

) = V (w

n

k

) + V (h

1

k

) + V (h

2

k

) + J

1

+ J

2

(2.11)

where,

J

1

=

Z

R

a

0

k

(�

k

f

n

k

)

0

+ (a

0

k

+ (�

k

f

n

k

)

0

)('

k

f

n

k

)

0

+�a

k

�

k

f

n

k

+ �(a

k

+ �

k

f

n

k

)'

k

f

n

k

dx

and

J

2

=�

Z

R

D

1

2

(b

k

)D

1

2

(�

k

g

n

k

) + (D

1

2

b

k

+D

1

2

(�

k

g

n

k

))D

1

2

('

k

g

n

k

) dx

�

Z

R

(b

k

+ �

k

g

n

k

)'

k

g

n

k

+ b

k

�

k

g

n

k

dx:
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Next we estimate eah term integral in J

i

. In fat, from Cauhy-Shwarz inequality

it follows that

J

1

� Ckw

k

k

1�

1

2

kh

k

k

1�

1

2

= O(�) (2.12)

where C = C(�; ') > 0. With regard to J

2

we have �rst that

Z

R

D

1

2

b

k

D

1

2

(�

k

g

n

k

) dx � kD

1

2

b

k

k

�

k(D

1

2

� J

1

2

)�

k

g

n

k

k+ kJ

1

2

(�

k

g

n

k

)k

�

� Ckw

k

k

1�

1

2

�

k�

k

g

n

k

k+ k[J

1

2

; �

k

℄g

n

k

k+ k�

k

J

1

2

g

n

k

k

�

� Ckw

k

k

1�

1

2

�

kg

n

k

k+ j�

0

k

j

1

kg

n

k

k+ kJ

1

2

g

n

k

k

�

= O(�);

(2.13)

where we used that (J

1

2

�D

1

2

) 2 B(L

2

(R); L

2

(R)) and Lemma 2.4. Similarly we

have

Z

R

D

1

2

(b

k

)D

1

2

('

k

g

n

k

) dx = O(�): (2.14)

Now, let n

k

be �xed and onsider fp

j

g

j=1

� S(R) suh that, p

j

! g

n

k

, as j !1,

in H

1

2

(R). Then, from Lemma 2.4, �

k

p

j

! �

k

g

n

k

and '

k

p

j

! '

k

g

n

k

, as j ! 1,

in H

1

2

(R). Thus,

Z

R

D

1

2

(�

k

p

j

)D

1

2

('

k

p

j

) dx �!

Z

R

D

1

2

(�

k

g

n

k

)D

1

2

('

k

g

n

k

) dx; as j !1:

Now, sine D = H�

x

and the supports of �

k

, '

k

are disjoints, we have that

Z

R

D

1

2

(�

k

p

j

)D

1

2

('

k

p

j

) dx =

Z

R

'

k

p

j

D(�

k

p

j

) dx =

Z

R

'

k

p

j

([H; �

k

℄p

0

j

+H(�

0

k

p

j

)) dx

5 k'

k

p

j

k

�

k[H; �

k

℄p

0

j

k+ k�

0

k

p

j

k

�

5 C

j�

0

j

1

R

1

kp

j

k

2

;

where in the last inequality we used the Calderon Commutator Theorem ([C℄).

Therefore, letting j !1 in the last inequality, we have �nally that

Z

R

D

1

2

(�

k

g

n

k

)D

1

2

('

k

g

n

k

) dx 5 C

j�

0

j

1

R

1

kg

n

k

k

2

= O(�): (2.15)



14

Thus from (2.13), (2.14), (2.15) and Lemma 2.1 it follows that

J

2

5 C

1

�+ 

Z

R

jb

k

('

k

+ �

k

)g

n

k

j dx � C

1

�+ C

2

kw

k

kkg

n

k

k = O(�): (2.16)

Therefore, sine V (w

k

) � Ckw

k

k

2

1�

1

2

, it follows from (2.11), (2.12) and (2.16) that

V (h

n

k

) = V (h

1

k

) + V (h

2

k

) + O(�);

thus

I

�

= lim inf

n

V (h

n

k

) � lim inf

n

V (h

1

k

) + lim inf

n

V (h

2

k

) +O(�): (2.17)

Now, if

Z

R

�

3

k

f

2

n

k

g

n

k

dx! � = 0;

then from (2.10) for � small we have that if k is large enough, F (h

2

k

) >

�

2

. Let k

be �xed and onsider d

k

> 0 suh that

Z

R

d

3

k

'

3

k

f

3

n

k

g

n

k

dx = �;

therefore F (d

k

h

2

k

) = �. Moreover,

jd

k

� 1j =

j�

1

3

� F (h

2

k

)

1

3

j

F (h

2

k

)

1

3

�

2

�

j�

1

3

� F (h

2

k

)

1

3

j � C

1

�

with C

1

independent of h

2

k

and �. Hene, b

k

! 1, as k!1, and

I

�

� V (d

k

h

2

k

) = d

2

k

V (h

2

k

) = V (h

2

k

) +O(�): (2.18)

Now, from (2.6) and (2.4) it follows that,

lim inf V (h

1

k

) � C

2

lim inf kh

1

k

k

2

1�

1

2

= C

2

lim inf (k�

k

f

n

k

k

2

1

+ k�

k

g

n

k

k

2

1

2

)

� C

2

lim inf j�

1

k

j

L

1

+ O(�) � C

2

�+O(�);

and therefore, from (2.17) and (2.18)

I

�

� C

2

�+ I

�

+ O(�):
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Finally, letting �! 0 in the last relation leads to the ontradition I

�

� C

2

�+ I

�

.

If, on the other hand,

R

R

�

3

k

f

3

n

k

g

n

k

dx ! � 6= 0, we an assume without loss of

generality that 0 < � < �, and using the same last proedure, together with (2.4)

and (2.7), we an prove that

I

�

� I

�

+ I

���

+O(�)

and let �! 0 to obtain

I

�

� I

�

+ I

���

:

But, for � > 0, I

��

= �

2

3

I

�

. Therefore, if we write � = ��, we have then

I

�

� I

��

+ I

(1��)�

= (�

2

3

+ (1� �)

2

3

)I

�

> I

�

another ontradition. Thus the ase of Dihotomy annot our.

Sine Vanishing and Dihotomy have been ruled out, it follows from Lemma

2.2 that there is a sequene fy

k

g

k=1

� R suth that for any � > 0, there are R > 0

large and k

0

> 0 suh that for k � k

0

Z

jx�y

k

j�R

�

n

k

(x) dx � �� �;

Z

jx�y

k

j�R

�

n

k

(x) dx � �;

and

�

�

�

Z

jx�y

k

j�R

f

2

n

k

g

n

k

dx

�

�

�

� jg

n

k

j

L

3

�

Z

jx�y

k

j�R

jf

n

k

j

3

dx

�

2

3

� Ckg

n

k

k

1

2

jf

n

k

j

2

3

1

�

Z

jx�y

k

j�R

�

n

k

(x) dx

�

2

3

= O(�):

Then it follows that

�

�

�

Z

jx�y

k

j�R

f

2

n

k

g

n

k

dx� �

�

�

�

� �: (2.19)

Letting

e

h

n

k

(x) = (

e

f

n

k

(x); eg

n

k

(x)) � (f

n

k

(x � y

k

); g

n

k

(x � y

k

)), we have that

f

e

h

n

k

g

k=1

is bounded inH

1

(R)�H

1

2

(R) and therefore f

e

h

n

k

g

k=1

(or a subsequene)

onverges weakly in H

1

(R) �H

1

2

(R) to a vetor-funtion

e

h = (f

0

; g

0

). It follows

then from (2.19) that for k = k

0

,

� �

Z

R

�R

e

f

2

n

k

(x)eg

n

k

(x) dx � �� �: (2.20)
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Now, sineH

1

([�R;R℄) andH

1

2

([�R;R℄) are ompatly embedded in L

2

([�R;R℄),

we have from Cauhy-Shwarz inequality that

�

�

�

Z

R

�R

e

f

2

n

k

(x)eg

n

k

(x) dx�

Z

R

�R

f

2

0

(x)g

0

(x) dx

�

�

�

� j

e

f

n

k

+ f

0

j

1

keg

n

k

kk

e

f

n

k

� f

0

k

L

2

(�R;R)

+ k

e

f

n

k

k

2

1

keg

n

k

� g

0

k

L

2

(�R;R)

� C

�

k

e

f

n

k

� f

0

k

L

2

(�R;R)

+ keg

n

k

� g

0

k

L

2

(�R;R)

�

! 0; as k !1;

and therefore, from (2.20)

� �

Z

R

�R

f

2

0

(x)g

0

(x) dx � �� �:

Thus for � =

1

j

, j 2 N , there exists R

j

> j suh that

� �

Z

R

j

�R

j

f

2

0

(x)g

0

(x) dx � ��

1

j

and onsequently as j ! 1, we have �nally that F (f

0

; g

0

) = �. Furthermore,

from the weak lower semiontinuity of V and invariane of V by translations, we

have

I

�

= lim inf

n!1

V (

e

f

n

k

; eg

n

k

) � V (f

0

; g

0

) � I

�

:

Thus the vetor-funtion

e

h = (f

0

; g

0

) solves the variational problem (1.7) and

therefore there exists K > 0 (Lagrange multiplier) suh that,

�

�f

00

0

+ �f

0

= Kf

0

g

0

�Dg

0

+ g

0

= Kf

2

0

:

(2.21)

Therefore, onsidering (�;  ) = (�K

q

2

��

f

0

;�

2K

�

g

0

) it follows from (2.21) that

(�;  ) solves the problem (1.6). Thus, Theorem 2.5 is proved. �

Remark: We note from (2.21) that (�

+

;  ) = (K

q

2

��

f

0

;�

2K

�

g

0

) is also a

solution of (1.6).
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Corollary 2.6. If (f

0

; g

0

) is a minimum for problem I

1

, then (f

0

; g

0

) is a minimum

for the unonstrained funtional

T (f; g) =

V (f; g)

(F (f; g))

2=3

: (2.22)

Proof. It follows immediatly from Theorem 2.5. �

Corollary 2.6 allows to obtain some properties on the struture of the spetrum

of the linear operator, L, assoiated with (1.6) for � = 2�, de�ned by

L =

�

�

d

2

d�

2

+ � + � ��

�� �D + 

�

; (2.23)

more preisely we have,

Theorem 2.7. The operator L given by (2.23) has exatly one negative eigenvalue

of multipliity one.

Proof. Let

e

f = (f

0

; g

0

) be a minimum for problem I

1

, then from Corollary 2.6 the

seond variation of T at

e

f is nonnegative, i.e. for all

e

h 2 C

1

0

(R)�C

1

0

(R) we have

that

P(

e

h) =

d

2

d�

2

T (

e

f+ �

e

h)

�

�

�

�=0

= 0:

Hene, denoting by (�;  ) = �

2K

�

(f

0

; g

0

), where K > 0 is the Lagrange multiplier

assoiated with the onstrained problem I

1

, we have expliitly that

P(

e

h) = L

e

h+

1

3K

3

<

�

�� 

�

2

�

2

�

;

e

h >

�

�� 

�

2

�

2

�

:

Therefore, P is a nonnegative operator. Sine P = L+R, where R is a rank-one

operator, it follows from the min-max priniple (see [RS℄) that L has at most one

negative eigenvalue. In order to show that there is exatly one negative eigenvalue,

again by min-max priniple, it is suÆient to �nd one diretion

e

h suh that <

L

e

h;

e

h >< 0. In fat, for

e

h =

�

�

 

�

it follows from (1.6) that

< L

e

h;

e

h > =

Z

R

�(��+ � + � )� dx+

Z

R

 (�D + ) dx+ 2�

Z

R

�

2

 dx

=

3�

2

Z

R

�

2

 dx < 0

where in the last inequality we use that

R

R

f

2

0

g

0

dx > 0. This shows the Theorem.

�
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3. EVENNESS AND ANALYTICITY

OF SOLITARY WAVE SOLUTIONS

In this setion we establish some properties of the solutions of system (1.6) for

 < 0, and �; �; �;  > 0. The �rst property is onerning the sign of  and it

an be dedued studying the kernel assoiated with the seond equation in (1.6).

Indeed, we observe that if  satis�es

H 

0

�  = ��

2

;

then, for � =

�



> 0, the Fourier transform implies that

b

 (�) =

�



1

j�j+ �



�

2

(�) =

�





K

�

(�)



�

2

(�) =

�



\

K

�

� �

2

(�); (3.1)

where the kernel K

�

is the following even funtion,

K

�

(x) =

1

�

Z

1

0

e

�x�

�

2

+ �

2

d�; for x > 0:

Note that K

�

2 C

1

(R � f0g) \ L

1

(R). Therefore, from (3.1)  satis�es the

following onvolution equation

 (x) =

�



K

�

� �

2

(x): (3.2)

Sine K

�

(x) is a positive kernel, it follows immediately from (3.2) that

 (x) < 0 for all x 2 R: (3.3)

provided that (�;  ) is a nontrivial solution of (1.6).

Now we show that the sign of � an also be determined expliitly as follows.

Theorem 3.1. If (f

0

; g

0

) is a minimum for problem I

�

then so is (jf

0

j; g

0

). There-

fore there exists a onstant K > 0 suh that, (�;  ) = (�K

q

2

��

f

0

;�K

2

�

g

0

) is a

solution of (1.6). Moreover, we have that �(x) > 0 for all x 2 R or �(x) < 0 for

all x 2 R.

Proof. A bootstrapping argument shows that if (f

0

; g

0

) 2 H

1

(R) � H

1

2

(R) is a

solution of (2.21) then (f

0

; g

0

) 2 H

1

(R)�H

1

(R). Now, from Theorem A.2 (Ap-

pendix) it follows that jf

0

j 2 H

1

(R) and

R

R

j

d

dx

f

0

(x)k

2

dx =

R

R

j

d

dx

jf

0

j(x)k

2

dx,

and so

I

�

= V (f

0

; g

0

) = V (jf

0

j; g

0

):
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Sine F (jf

0

j; g

0

) = F (f

0

; g

0

) = �, then we obtain that (jf

0

j; g

0

) 2 G

�

. From (2.21)

it follows that K =

2

3�

V (f

0

; g

0

) =

2

3�

V (jf

0

j; g

0

), then for T � �

d

2

dx

2

� 2Kg

0

we

have

�

T (jf

0

j) = ��jf

0

j

T (f

0

) = ��f

0

:

Sine jf

0

(x)j > 0 for all x 2 R, it follows from Sturm-Liouville Theory that �� is

the least eigenvalue of T and therefore is simple. Hene there exists a � 2 R�f0g

suh that f

0

= �jf

0

j and the proof is omplete. �

The following result asserts that there is at least one solitary wave solution of

system (1.6), (�;  ) , suh that �;� are even and dereasing funtions. To see

this, we use the theory of symmetri dereasing rearrangements of funtions on

R (see Riesz [R℄, Brasamp, Lieb and Luttinger [BLL℄, Hardy, Littlewood and

Polya [HLP℄, Kawohl [K℄, and Friedman and MLeod [FM℄). Initially, we see that

if (f; g) 2 G

�

and (f

1

; g

1

) 2 G

�

for �;� > 0, then

V (f

1

; g

1

) =

�

�

�

�

2=3

V (f; g): (3.4)

Indeed, for a =

�

�

�

�

1=3

the relations

�

F (af; ag) = a

3

F (f; g) =

�

�

� = �

V (af; ag) = a

2

V (f; g) = V (f

1

; g

1

);

and

�

F (a

�1

f

1

; a

�1

g

1

) = a

�3

F (f; g) = a

�3

� = �

V (a

�1

f

1

; a

�1

g

1

) = a

�2

V (f

1

; g

1

) = V (f; g);

shows (3.4).

Theorem 3.2. Let  < 0, and �; �; �;  > 0. Then there is a solution (�;  ) of

(1.6) suh that � and � are even dereasing positive funtions.

Proof. Let (f

0

; g

0

) 2 G

�

. From Theorem 3.1 we an assume f

0

(x) > 0 for all

x 2 R. Let (f

�

0

; g

�

0

) be the symmetri dereasing rearrangements of f

0

and g

0

respetively and � =

R

R

(f

�

0

)

2

g

�

0

dx. Then from Theorem A.1 (Appendix) we have

that

� =

Z

R

f

2

0

g

0

dx 5

Z

R

(f

2

0

)

�

g

�

0

dx =

Z

R

(f

2

0

)

�

g

�

0

dx = �:
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Now, we see that � = �. Let (f

1

; g

1

) 2 G

�

, then from (3.4) and Theorems A.1

and A.2 we have that

V (f

�

0

; g

�

0

) 5 V (f

0

; g

0

) =

�

�

�

�

2=3

V (f

1

; g

1

)

5 V (f

1

; g

1

) 5 V (f

�

0

; g

�

0

) (3.5)

where the last inequality holds sine F (f

�

0

; g

�

0

) = �. Then from (3.5) we obtain

8

<

:

�

�

�

�

2=3

V (f

1

; g

1

) = V (f

1

; g

1

)

V (f

0

; g

0

) = V (f

�

0

; g

�

0

):

Hene � = � and (f

�

0

; g

�

0

) 2 G

�

. Thus there existsK =

2

3�

V (f

0

; g

0

) =

2

3�

V (f

�

0

; g

�

0

) >

0 suh that

(�;  ) = (K

r

2

��

f

�

0

;�

2K

�

g

�

0

)

is solution of (1.6). This shows the Theorem. �

We ontinue the analysis of the solitary-wave solutions of the equation (1.6).

Let (�;  ) be a solution of (1.6). Interest now fouses on the analytiity and

the stritly dereasing of � and � . The idea is based on the reent theory for

analytiity of solitary-wave solutions of model equations for long waves worked

out by Li and Bona ([LB℄). This theory onsist in demostrating that the Fourier

transform of

b

� and

b

 has exponential deay at �1. Then, the Paley-Wiener

Theorem assures that � and  has an analyti extension to a strip in the omplex

plane whih is symmetri about the real axis. In our situation, it is shown that

this strip an be hoosen equal for � and  .

Theorem 3.3. For (�;  ) a solitary-wave solution of (1.6), we have:

(i) there is a onstant �

0

> 0 suh that

sup

�2R

e

�j�j

j

b

�(�)j <1; sup

�2R

e

�j�j

j

b

 (�)j <1 (3.6)

for any � with 0 < � < �

0

.

(ii) there are funtions �(z) and 	(z) that are de�ned and analyti on the open

strip fz 2 C : jIm(z)j < �

0

g suh that

�(x) = �(x); 	(x) =  (x)
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for all x 2 R.

Proof. (i) If (�;  ) is a solution of (1.6) then from (3.2) the funtion

b'(�) =

r

�

�

b

�(�) (3.7)

solves the equation

(��

2

+ 1)b'(�) =

�

jj

(

b

K

�

�



'

2

) � b'(�) (3.8)

where � =

1

�

. Now, when 0 5 k 5 1, (3.8) an be used to onlude that

j�

k

b'(�)j =

�

jj

j�j

k

1 + ��

2

�

�

�

Z

R

b'(� � x)

1

jxj+ �



'

2

(x) dx

�

�

�

5

�

jj

j�j

k

1 + ��

2

(jb'j � jb'j � jb'j)(�)

5

�

jj

1

�

k=2

(k + 1)

k�1

(jb'j � jb'j � jb'j)(�):

Therefore, using indution and Young's inequality we obtain

j�

k

b'(�)j 5

�

jj

kb'k

2

�

k=2

(k + 1)

k�1

jb'j

3([k=2℄2+1)�2

L

1

; (3.9)

for any � 2 R and any integer k = 0 (see Theorem 2 in [LB℄). ([k=2℄ denotes the

greatest integer less than or equal to k=2). Now, onsider the sequene

a

k

=

1

k!�

k=2

(k + 1)

k�1

jb'(�)j

3(k+1)

L

1

(3.10)

for k = 0; 1; 2; :::. Sine the ratio

a

k+1

a

k

takes the form

a

k+1

a

k

=

1

�

1=2

(1 +

1

k + 1

)

k

jb'(�)j

3

L

1

;

then lim

k!1

a

k+1

a

k

=

ejb'(�)j

3

L

1

�

1=2

. Hene the power series

P

1

k=0

a

k

�

k

onverges for j�j <

�

1=2

ejb'(�)j

3

L

1

� �

0

. Then, from (3.9) and (3.10), for any � 2 R, we have

e

�j�j

jb'(�)j =

1

X

k=0

�

k

j�j

k

k!

jb'(�)j

5

�

jj

kb'(�)k

2

jb'(�)j

2

L

1

1

X

k=0

�

k

k!�

k=2

(k + 1)

k�1

jb'(�)j

3(k+1)

L

1

=

�

jj

kb'(�)k

2

jb'(�)j

2

L

1

1

X

k=0

a

k

�

k

<1; (3.11)
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provided that j�j < �

0

. Thus the funtion e

�j�j

j

b

�(�)j is uniformly bounded for

suh �'s.

Now, onsider 0 < � < �

0

and let � < �

1

< �

0

. Then, from (3.2) and (3.11) we

have

e

�j�j

j

b

 (�)j =

�

jj

e

�j�j

1 + �j�j

j



�

2

(�)j 5

�

jj

e

�j�j

j



�

2

(�)j 5

�

jj

Z

R

e

�j��xj

e

�jxj

j

b

�(� � x)jj

b

�(x)j dx

5

�

jj

sup

x2R

�

e

�jxj

j

b

�(x)j

�

Z

R

e

�j��xj

j

b

�(� � x)j dx

=

�

jj

sup

x2R

�

e

�jxj

j

b

�(x)j

�

Z

R

e

�(�

1

��)j��xj

e

�

1

j��xj

j

b

�(� � x)j dx

5

�

jj

sup

x2R

�

e

�jxj

j

b

�(x)j

�

sup

x2R

�

e

�

1

jxj

j

b

�(x)j

�

Z

R

e

�(�

1

��)jxj

dx <1;

whih ompletes the proof of (3.6).

(ii) Let � lie in the open interval (0; �

0

). Choose �

1

> 0 satisfying 0 < � < �

1

<

�

0

. Then for b'

1

(�) �

b

�(�) and b'

2

(�) �

b

 (�) we have that

Z

R

e

2�j�j

jb'

i

(�)j

2

d� 5 sup

�2R

�

e

�

1

j�j

jb'

i

(�)j

�

2

Z

R

e

�2(�

1

��)j�j

d� <1:

Therefore from Paley-Wiener Theorem ([PW℄, [RS1℄) the funtions

�(z) =

Z

R

b

�(�)e

iz�

d�; 	(z) =

Z

R

b

 (�)e

iz�

d�

are well-de�ned and analyti on fz 2 C : jIm(z)j < �

0

g. Finally, Planherel's

Theorem implies that �(x) = �(x) and 	(x) =  (x) for any x 2 R. �

An immediate onsequene of the analytiity established in Theorem 3.3 is the

existene of solitary-wave solutions of (1.6) that are stritly dereasing. Indeed,

we have two di�erent proofs of this fat.

Theorem 3.4. Let  < 0, and �; �; �;  > 0. Then there exists a solution of (1.6),

(�;  ), suh that � and � are even and stritly dereasing positive funtions.

Proof. Let (�;  ) be a solution of (1.6) given for Theorem 3.2. Then � and � 

are even and dereasing positive funtions.

Now, with regard to the strit dereasing we have:

First proof: Let 0 < � < sup

x2R

�(x). Then from Theorem 3.4 we have that in

any bounded set B � R, there is at most a �nite number of points x 2 B suh
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that �(x) = �. Therefore, sine � is dereasing, the set fx 2 R

+

: �(x) = �g is a

point-set; hene � is stritly dereasing. Similar result is obtained for � .

Seond proof: Sine K

0

�

2 L

1

(R) it follows from (3.2) that



�

 

0

(x) = K

0

�

� �

2

(x) = lim

�!0

Z

jx�yj>�

K

0

�

(x� y)�

2

(y) dy: (3.12)

Sine K

0

�

is odd, we obtain for x > 0

Z

1

x+�

K

0

�

(x�y)�

2

(2x�y) dy =

Z

x��

�1

K

0

�

(x�(2x��))�

2

(�) d� = �

Z

x��

�1

K

0

�

(x��)�

2

(�) d�;

therefore, from (3.12) it follows that



�

 

0

(x) = lim

�!0

Z

1

x+�

K

0

�

(x� y)[�

2

(y)� �

2

(2x� y)℄ dy: (3.13)

Finally, sine � is even and dereasing positive funtion, we have that if x > 0

and y > x the funtion y ! �

2

(2x� y) has its graph as the reetion of the graph

of �

2

j

(�1;x)

with respet to the vertial straight line rossing by x. Therefore,

�

2

(y) 5 �

2

(2x � y) for all y > x and so there exists an interval I � (x;1) suh

that �

2

(y) + Æ < �

2

(2x � y) for all y 2 I and some Æ > 0. Thus from (3.13) we

have that for x > 0



�

 

0

(x) < 0:

Finally, from the �rst equation in (1.6) it follows that �

0

(x) < 0 for all x > 0. This

shows the Theorem. �

Finally, ombining properties of the theory of symmetri dereasing rearrange-

ments and analytiity, we obtain that for eah element (f; g) of G

�

, their ompo-

nents are even, up translations, and stritly dereasing positive funtions.

Theorem 3.5. Let  < 0, and �;  > 0. Then for eah (f; g) 2 G

�

we have that

f(x) = f

�

(x+ r); g(x) = g

�

(x+ r) for all x 2 R

and some r 2 R, where f

�

and g

�

are the symmetri dereasing rearrangements

of f and g respetively.

Proof. Let (f; g) 2 G

�

. Then f and g satisfy the equation

�

�f

00

+ �f = 2Kfg

�Dg + g = Kf

2

(3.14)
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for K > 0. Therefore it follows that V

1

(f) �

1

2

R

R

[(f

0

(x))

2

+ �f

2

(x)℄dx = K� and

V

2

(g) �

1

2

R

R

[�(D

1

2

g(x))

2

+ g

2

(x)℄dx =

K

2

�. Hene,

V (f; g) = V

1

(f) + V

2

(g) =

3

2

V

1

(f):

Now, from the proof of Theorem 3.2 we have that (f

�

; g

�

) 2 G

�

. Hene (f

�

; g

�

)

satis�es (3.14) and onsequently we have that V (f

�

; g

�

) =

3

2

V

1

(f

�

). Using the

fats that V (f; g) = V (f

�

; g

�

) and

R

R

jf(x)j

2

dx =

R

R

jf

�

(x)j

2

dx, we onlude that

Z

R

�

�

�

d

dx

f(x)

�

�

�

2

dx =

Z

R

�

�

�

d

dx

f

�

(x)

�

�

�

2

dx:

Then, sine f 2 H

1

(R) and it is analyti in R (Theorem 3.3), it follows from

Corollary A.4 (Appendix) that

f(x) = f

�

(x� r)

for all x 2 R and some r 2 R. Finally, sine (f

r

(�); g

r

(�)) = (f(�+ r); g(�+ r)) is

solution of (3.14) we obtain that g

r

is even and from the seond proof of Theorem

3.4, g

0

r

(x) < 0 for x > 0, and thus

g(x) = g

�

(x� r):

This shows the Theorem. �

APPENDIX: PROPERTIES ON SYMMETRIC

DECREASING REARRANGEMENTS

In this Appendix, we ollet some fats about the symmetri dereasing re-

arrangement of a funtion in R. The results mentioned here in one or higher

dimensions an be found in the papers of Riesz [R℄, Brasamp, Lieb and Luttinger

[BLL℄ and in the books of Hardy, Littlewood and Polya [HLP℄ and Kawohl [K℄.

Let

S = ff : R ! [0;1℄ j f(x) 5 f(y) if jxj = jyj g

be the even dereasing funtions. Let f be a nonnegative measurable funtion

on R, let 


y

(f) = fxj f(x) = yg and M

y

(f) = m(


y

(f)), where m denotes the

Lebesgue measure. Assume that M

a

(f) < 1 for some a < 1. If f

�

is another

funtion on R with the same properties as f and, additionally,

8

>

<

>

:

(a) f

�

(x) = f

�

(�x); for all x

(b) 0 < x < y =) f

�

(x) = f

�

(y);

() M

y

(f

�

) =M

y

(f); for all y > 0;
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then f

�

is alled a symmetri dereasing rearrangement of f .

Remark: (1) if g and h are two symmetri dereasing rearrangements of f , then

g(x) = h(x) a:e:

(2) If � is the harateristi funtion of a measurable set in R, we de�ne �

�

by

�

�

(x) =

�

1 if 2jxj 5

R

�

0 otherwise:

Therefore �

�

2 S and if � 2 L

1

(R) then j�j

L

1

= j�

�

j

L

1

. For a general funtion,

f : R ! [0;1℄, let

�

y

(x) =

�

1 if x 2 


y

(f)

0 otherwise:

Then is easy to see that f(x) =

R

1

0

�

y

(x) dy. This implies that

f

�

(x) =

Z

1

0

�

�

y

(x) dy; (A1)

is a symmetri dereasing rearrangement of f . Also we note (see Kawohl [K℄) that

if M

a

(f) <1 for all a > 0 and we de�ne




�

y

(f) =

�

fx 2 Rj jxj 5

1

2

m(


y

(f))g if 


y

(f) 6= ;

; if 


y

(f) = ;;

alled the symmetri rearrangement of 


y

(f), then

f

�

(x) � sup fy 2 Rj x 2 


�

y

(f) g (A2)

is a symmetri dereasing rearrangement of f . Consequently, if f is ontinuous

then by Remark (1) f

�

an be found using (A1) or (A2). The fat thatM

a

(f) <1

implies that f

�

(x) <1, for all x 6= 0.

(3) If f : R ! C we de�ne

f

�

= jf j

�

:

Therefore, for all y, m(


y

(f

�

)) = m(


y

(jf j)).

(4) Sine in the following Theorems we deal with integrals, by Remark (1), f

�

is unique for our purposes.

Now we ollet in a single Theorem various properties of the symmetri de-

reasing rearrangement.
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Theorem A.1.

(i) For all p 2 [1;1℄, jf

�

j

L

p

= jf j

L

p

.

(ii) For all r > 0, (f

r

)

�

= (f

�

)

r

pointwise.

(iii) If f; g 2 L

2

(R)

�

�

�

Z

R

f(x)g(x) dx

�

�

�

5

Z

R

f

�

(x)g

�

(x) dx:

(iv) The Inequaltity of Riesz: Let f

1

; :::; f

n

be measurable funtions on R suh

that m(


y

(f

i

)) <1 for all y > 0 and all 1 5 i 5 n. Then

j(f

1

� f

2

� ::: � f

n

)(0)j 5 [(f

�

1

) � (f

�

2

) � ::: � (f

�

n

)℄(0)

in the sense that if the right-hand side is �nite, then the left-hand side exists and

the inequality holds.

Proof. It is easy to hek (i) and (ii). For (iii) see Kawohl ([K℄) and (iv) see Riesz

([R℄) and Brasamp, Lieb and Luttinger ([BLL℄). �

The following result is essential in this work, and the idea of the proof is based

on Lemma 3.5 in Albert, Bona and Saut [ABS℄.

Theorem A.2.

(i) If f 2 H

1

(R) then jf j; f

�

2 H

1

(R) and

Z

R

�

�

�

d

dx

f(x)

�

�

�

2

dx =

Z

R

�

�

�

d

dx

jf j(x)

�

�

�

2

dx;

Z

R

�

�

�

d

dx

f(x)

�

�

�

2

dx =

Z

R

�

�

�

d

dx

f

�

(x)

�

�

�

2

dx:

(ii) If f 2 H

1

2

(R) then jf j; f

�

2 H

1

2

(R) and

Z

R

jD

1

2

f(x)j

2

dx =

Z

R

jD

1

2

jf j(x)j

2

dx;

Z

R

jD

1

2

f(x)j

2

dx =

Z

R

jD

1

2

f

�

(x)j

2

dx

Proof. The aÆrmation (ii) is Lemma 3.4 and lemma 3.5 in [ABS℄. Now, for (i),

we �rst show that jf j 2 H

1

(R). Let � > 0, and de�ne the funtion N

�

(x) by



N

�

(�) =

1

� + �

2

:

Then N

�

(x) > 0 for all x 2 R and N

�

2 S \ L

p

(R) for every p 2 [1;1℄. In

fat, the Residue Theorem shows that N

�

(x) =

e

�

p

�jxj

2

p

�

. Now, if g = jf j then

N

�

� g(x) = N

�

� f(x) for all x 2 R and every � > 0. Therefore,

Z

R

1

� + �

2

jbg(�)j

2

d� =

Z

R

g(x)(N

�

� g)(x) dx =

Z

R

f(x)(N

�

� f)(x) dx

=

Z

R

1

� + �

2

j

b

f(�)j

2

d�:
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Sine

R

R

jbg(�)j

2

d� =

R

R

j

b

f(�)j

2

d� by Parseval's identity, it follows that

Z

R

�

h

1�

�

� + �

2

i

j

b

f(�)j

2

d� =

Z

R

�

h

1�

�

� + �

2

i

jbg(�)j

2

d�:

Sine lim

�!1

�

h

1 �

�

�+�

2

i

= �

2

, taking the limit as � ! 1 on both sides of the

preeding inequality and using the Monotone Convergene Theorem gives

Z

R

j�j

2

j

b

f(�)j

2

d� =

Z

R

j�j

2

jbg(�)j

2

d�;

whih together with (i) in Theorem A.1 shows that jf j 2 H

1

(R).

For the other aÆrmation we note initially that sine N

�

�

= N

�

then for g =

jf j

�

= f

�

the inequaltiy of Riesz gives

Z

R

1

� + �

2

jbg(�)j

2

d� =

Z

R

g(x)(N

�

� g)(x) dx =

Z

R

f(x)(N

�

� f)(x) dx:

Also, by Parseval's identity

R

R

j



f

�

(�)j

2

d� =

R

R

j

b

f(�)j

2

d�. The result then follows

exatly as in the preeding proof . �

The next result is disussed in Kawohl ([K℄) and Friedman and MLeod ([FM℄),

here we establish it in the ase of R.

Theorem A.3. Let f be Lipshitz ontinuous on R, with

df

dx

2 L

p

(R) for some

1 < p <1. Let

m = ess inf f; M = ess sup f:

If m(fx : f(x) = tg) = 0 for all m < t < M and f 2 C

1

in the set fx : m <

f(x) < Mg then the strit equality in

Z

R

�

�

�

d

dx

f(x)

�

�

�

p

dx =

Z

R

�

�

�

d

dx

f

�

(x)

�

�

�

p

dx

holds only if f = f

�

modulo translations.

An immediate onsequene of Theorem A.3 is the following result used in our

work.

Corollary A.4. Let f 2 H

s

(R) for some s > 3=2. If f is analyti on R then the

strit equality in

Z

R

�

�

�

d

dx

f(x)

�

�

�

2

dx =

Z

R

�

�

�

d

dx

f

�

(x)

�

�

�

2

dx

holds only if f = f

�

modulo translations.

Remark: We all a funtion f analyti on R if there exist a onstant � > 0 and

a funtion F (z) de�ned and analyti on the open strip fz 2 C : jIm(z)j < � g

suh that F (x) = f(x) for all x 2 R.
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