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ABSTRACT. In this work we study the existence and some properties of solitary wave
solutions for an interaction equation between a long internal wave and a short surface
wave in a two layer fluid. We obtain the existence of solitary wave solutions using
the concentration compactness method developed by P. L. Lions.
that solutions of the minimization problem are analytic and they are translations

of the symmetric decreasing rearrangement of themself.

1. INTRODUCTION

In this first work we will study the existence and some properties of solitary
wave solutions for an interaction equation between a long internal wave and a
short surface wave in a two layer fluid when the fluid depth of the lower layer
is sufficiently large in comparison with the wavelength of the internal wave. The
fluids are assumed with different densities, inviscid and incompressible, and their
motions to be two-dimensional and irrotational. If the short wave term is denoted
by u = u(z,t) : RxR — C and the long wave term by v = v(z,t) : RxR — R, the
phenomena of interaction is described by the following nonlinear coupled system

(see [FOI),

U + Ugr = QUU,
v+ yDvy = B([uf?)s;
U(.Z‘,O) = ’LL()(.Z‘), 1}(.’13, 0) = Uo(.Z‘),
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We also show
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where «, 3 are positive constants, v € R and D = HJ,, is a linear differential
operator representing the dispersion of the internal wave. Here H denotes the
Hilbert transform defined by

Hf(x) = p.v.% / yf(_—yld

therefore, D is the multiplier with Fourier operator defined as l/?\v(f ) =1&v(§).

The system (1.1) has been considered under various settings. For example,
Funakoshi and Oikawa ([FO]) have computed numerical solitary wave solutions.
Bekiranov, Ogawa and Ponce ([BOP]) proved well-posedness theory of (1.1) in
H*(R) x H*~ 2 (R) based on the techniques introduced by Bourgain ([Bul], [Bu2]).
More precisely, if |y| < 1 and s > 0, then for any (ug,vo) € H*(R) x H*"2(R)
there exists 7' > 0 such that the initial value problem (1.1) admits a unique
solution (u(t),v(t)) € C([0,T); H*(R) x H*~z(R)). Moreover, for T > 0 the
map (ug,vo) — (u(t),v(t)) is Lipschitz continuous from H*(R) x H*"z(R) to
C([0,T); H*(R) x H*"2(R)). For the case |y| = 1, we get the same results as
above, but for s > 0. We note that ' = oo if s = 1, as a consequence of the
relations (1.2) and (1.3) below.

We note that for any s = 0, the solution of Schrodinger part u preserves its
L?(R) — norm, i.e., if

W= [ fulw) de = ul? (12)

then for any 0 < ¢t < T, H(u(t)) = H(up). Moreover, we have the conservations
of momentum, and energy:

— 1
G(u,v) =Im / u(z)ug(z) dr — [jv||?, for s 2 37
R

Bu,0) = lual? + o [ o@lute)? e SR, or s 1
R 26 (1.3)

The purpose in this paper is to show the existence of solitary wave solutions for
(1.1) of the form

u(x, t) = e“po(z — ct),
SN -

where ¢p : R — C, ¥ : R — R, are smooth functions such that for each n € N,
|¢>(()n) (&)] — 0, and ™ (&) — 0, as |[¢| — o0, ¢ > 0 and w € R. Substituting (u,v)



as above in (1.1) we obtain the coupled system of equations

{ 0 —woo — ichy = ahey

1.5
YHY' — cip = B |¢ol? (19

where 77 = L ¢ = ¢ — ct. Now, if we consider ¢o(£) = e*¢/2¢(¢), for ¢ real-

d_§7
valued, and replace it in (1.5) we finally obtain the pseudo-differential system
"o _
o oria o)
YHY' — cp = B¢=,

where 0 = w — %. We show the existence of smooth real solutions (¢, 1) of (1.6)
using the Concentration Compactness Method developed by P. L. Lions ([CL],
[L1], [L2]). More precisely, we consider the family of minimization problems

Iy=inf{V(f,9): (f,9) € H(R) x H?(R) and F(f,g) = A},  (L7)
where A > 0 and the functionals V' and F' are defined as,

1

V(f,9)=3 /R[(f'(a?))2 — (D7 g(x))” + o f*(x) + cg®(@)]dz (1.8)

and

F(f,9) = /sz(x)g(x)dx.

Now, if we denote the set of minimizers for I by G, namely,

Gr={(f,9): (f.9) € H'(R) x H*(R), V(f,g) = I and F(f,g) = A} (1.8a)

then, Theorem 2.5 below shows that for each v < 0, 0 > 0 and ¢ > 0 we have that
Gy # 0, and therefore each element of Gy, after multiplication by a constant, is a
solution of (1.6). In other words, we characterize solutions of system (1.6) as the
Euler -Lagrange equation for the constrained minimization problem (1.7).

The variational formulation of solutions for (1.6) combined with the theory
of symmetric decreasing rearrangements (see Appendix) allows us to show the
existence of solitary wave solutions (¢,v), such that ¢ and —1 are even and
decreasing positive functions (see Theorem 3.2 below). Moreover, using the recent
theory for analyticity of solitary waves setting in Li and Bona ([LB]) we show
the analyticity and the strictly decreasing of ¢ and — (see, Theorem 3.3 and
Theorem 3.4 below).



Another consequence of our approach is related with the orbital stability theory
in H'(R) x Hz(R) of the solitary waves defined in (1.4) for the associated initial
value problem (1.1). In fact, in the study of the stability of solitary wave solutions
for general model of evolution equations (see for example, [A],[B], [Bo], [GSS1],
[GSS2], [W]), is necessary to determine the spectral structure of a linear operator
associated with the solitary waves. To be more precise, in our case is necessary to
show that the operator £ defined as

r— —;5—22+0+a¢ af
ag —vD + ¢

has exactly one negative eigenvalue of multiplicity one, that zero is a single eigen-
value with eigenfunction (¢’,1’), and that the rest of the spectrum is positive.
The existence of a unique negative single eigenvalue for £ is showed in Theorem
2.7 below. To this end the variational characterization of the solitary waves is
strongly employed. Other properties required for £ as well as the stability theory
will be considered elsewhere.

In comparison with system (1.1), we consider it for the case v = 0, namely,

Ut + Ugyr = QUU,
{ ! (1.9)

Vg = ﬁ(|u|2)m

This is the most typical case in the theory of wave interaction and it occurs when
the fluid depth is sufficiently small in comparison with the wavelength of the
internal wave. System (1.9) has been considered under various settings, see for
example, Benney ([B1],[B2]), Bekiranov-Ogawa-Ponce ([BOP]), Grimshaw ([G]),
Laurengot ([L]), Ma ([Ma]) and Tsutsumi-Hatano ([TH]). In the particular case of
the existence and stability theory of solitary wave solutions, the results are more
definitive, in the sense that solitary waves for (1.9) (y = 0in (1.6)) are unique (up
to translations) and may be computed explicitly as

{ H(€) = /%5 sech (/) w10
p(€) = —L¢2(¢),

and the orbital stability of (¢,%) in (1.10) with regard to the associated initial
value problem (1.9) was showed by Laurengot ([L]) in HY(R) x L?(R). Thus, it
suggests that the analytical solutions for (1.6) are of exponential type and that
for v small enough, these are orbitally stable. In fact, using the implicit function
theorem and perturbation theory of linear operators, we will show in a future



5

work that the last conjecture is true, but unfortunately explicit solutions have
been arduous to find.

The plan of this paper is as follows. In section 2, we use the Concentration
Compactness Method to prove existence of solitary wave solutions of equation
(1.1) and we obtain some properties of the solutions of system (1.6). In section 3,
we show the evenness and analyticity of solitary wave solutions. In the Appendix,
we briefly review some of the main facts about the theory of symmetric decreasing
rearrangements of functions necessary in the development of our work.

Notations. Throughout this paper we will denote by ]?the Fourier transform
of f, defined as f = fx f —i% dg. |f|e denotes the LP(R) norm of f,
1<p<oo In partlcular | |L2 = | || and | - [p~ = |+ |co- We denote by
H?*(R) the Sobolev space of all f (tempered distributions) for which the norm
1112 = [i (1+[€[%)%[f(€)[? d¢ is finite. The product norm in H*(R) x H"(R) is
denoted by || - ||sxs- JS = (1—02)%/? and D* = (—0?)*/? are the Bessel and Riesz
potential of order —s, respectively, and are defined by j“’?(ﬁ) = (14 £2)%/2f(¢)
and D#J F(6) = [€]7F(€). S(R) is the Schwartz class in R, and [T, W] = TW —WT is
the commutator of the operators T' and W. In particular, [H, flg = H(fg) — fHyg
in which f is regarded as a multiplication operator.

2. EXISTENCE OF SOLITARY WAVE SOLUTIONS

In this section we give a proof of existence of solitary wave solutions for system
(1.6) using the Concentration Compactness Method introduced by P.L. Lions (see

[L1], [L2]). We call {(fn,gn)},z1 in HY(R) X H = (R) a minimizing sequence for Iy

if it satisfies
F(fn,gn) = A, forall n, and
li_)m V(fn,gn) = Ix.

Considering v < 0, 0 > 0 and ¢ > 0, we have the following Lemmas.
Lemma 2.1. For all A > 0 we have that I defined in (1.7) satisfies

0< Iy < o0,

and each minimizing sequence is bounded.

Proof. Since F(f,g) = X and |f|eo < ||f]|,, from Cauchy-Schwartz inequality it
follows,

/f z)de < |fl | flllgll < /15Nl < N9



Now,

1 o Yoy nl c
V(f,9) = IFI12 + SIFI2 = SID¥ gl + S gl =
= C1|fIIf + Cellgll? = min{Cy, C2}(f, 9)l
= Gill(f 9,

2

. I
min{1, o }H|f[[ + mln{—%c}HgI@

1
2 2
2
1x

[N

Then,
V(f,g) > CA3 >0

and therefore I, > 0.
Now, let {(fn,gn)}n>1 be a minimizing sequence for (1.7), then for n large

C3||(fnygn)||fx% < V(fn,gn) <Iy+1

therefore, there exists M > 0 such that ||(fy, gn)|| <M foralln. W

1x 3
In order to show the existence of solutions of equation (1.6) we will prove that
a minimizing sequence for problem (1.7) converges (modulo translations) to a

function in H(R) x Hz (R) satisfying the constraint F(f,g) = A. To do this, the
next result is essential in our work.

Lemma 2.2. Let {p,},>1 be a sequence of non-negative functions in L*(R) sat-
isfying [, pn(z)dz = X for all n and some X > 0. Then there exists a subsequence
{Pn, }u>1 satisfying one of the following three conditions:

(1) (Compactness) there are y, € R for k = 1,2, ..., such that py, (- + y) s
tight, i.e. for any € > 0, there is R > 0 large enough such that

/ P, (@) dz > X — €
le—yx|<R

(2) (Vanishing) for any R > 0, limg_, o SUP,cg f|w_y|§R P, (z)dz = 0;
(3) (Dichotomy) there exists & € (0,\) such that for any € > 0, there exists
ko > 1 and p}, p2 € LY(R), pi, p2 > 0 such that for k > ko,
ko Pl ko Pl

o, = (p3 + PR |1 < e,
|pr,1€dl'—O~1|§6, |prdeE—()\—O~1)|§6,
supp py. N supp pi =B, dist(supp py, supp pi) — o0 as k — oo.
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Remark: In Lemma 2.2 above, the condition [, p,(z)dz = X can be replaced
by fR pn(x) dz = A, where A\, — A > 0. It is enough to replace p, by p,/A, and
apply the Lemma

Proof. See Lemma 1.1 in Lions [L1]. W

The following Lemma is a consequence of Lemma 1.1 in Lions [L2], but we
repeat its proof here for the reader’s convenience.

Lemma 2.3. Let {(fn,gn)}n>1 be a bounded sequence in H'(R) x Hz(R). As-
sume that for some R > 0,

y+R
cwa>zsup/“ Fal?dz — 0
yeERJy—R

as n — oo. Then,
/f,%(a:)gn(x)dx—)O as n — oo.
R

Proof. Initially from H6lder’s inequality and from the embedding H? (R) < LP(R),
p > 2, we have, for C' >0

[16Pigntar < ([ 15a0de) ([ loaP o) <l i )

Now, from the embedding of W11(Q) into L2 (), there is a constant C; =
C1(R) > 0 such that

y+R
/ FulPde < Oy
Yy

y (
(@

3

[ e 2 0)’

N i y+R y+R
< C(Qu(®) +2MIQuRIE) (2 [ IfuPdet [ 15 d)
y—R y—R
1 y+R
<Cast ([ 1naP 15 do) (2.2
y—R

with d,, — 0 as n — oo. Then covering R by intervals of radius R in such way
that any point of R is contained in at most 2 intervals, we deduce from (2.2) that

n—00

/mﬁmsammﬁsaﬁzénm/mﬁmzo
R

Hence, from (2.1), (2.2) and Lemma 2.1, the Lemma follows. l
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Lemma 2.4. Let ¢ : R — R be a C* function with ¢' € L*°(R). Then the
operator [J2, ] maps L2(R) into L*(R) with

1172, @£l < Cle'|oo I £l (2.3)

where C' is a positive constant.

Proof. We note initially that for I the identity operator on L?(R),
T3 el =1+ (J% = 1), 0] = [J2 = Lp] =[S, ¢]
where S has symbol s(€) = (14 £2)7 — 1, that is, 5’?(5) = 5(&)f(€). Thus

d d
S=—W=W-—
dx dx

where W is a Fourier multiplier operator with symbol w({) = Sgé), for £ # 0
and w(0) = 0. Since s(0) = 0 and s is differentiable in £ = 0 we have that w is
continuous in £ = 0 and therefore bounded in R. Moreover w is C*>° in R. Then,

W is a bounded operator in L?(R) and for each j > 0, we have

i| ¥
sup [¢ @w@)\m.

Therefore, from Theorem 35 in Coifman-Meyer [CM], we have

W, @l f'll < Cle'[oollfl (2.3a)

with C' > 0 independent of ¢ and f. Hence (2.3) follows from the relation
115, 01111 = IW 3 () — oW |
) P = d ¥ ¥ de
< W DI+ 1, el

together with the fact that W is bounded in L?*(R) and (2.3a). B

Now we establish the main result of this section,



Theorem 2.5. Let a,3,0,c> 0,y <0, and let A be any positive number. Then
the set G defined in (1.8a) is nonempty. Hence, there is a solution of problem
(1.7), and therefore there exists a non-trivial solution of problem (1.6). Thus
the equation (1.1) has solitary-wave solutions corresponding to phase w and wave
speed c.

Proof. Let {(fn,gn)}n>1 be a minimizing sequence for problem (1.7) and consider
the function

pu(@) = @ + 1) + 1T ga(@)
Let i = [y pn(@) do. Since i = [1fall? + lgall? = (s ga) 2, » we have that
2 2

[tn, 18 bounded and p,, > AB (see proof of Lemma 2.1). We suppose that p, — p
as n — oo. In order to prove Theorem 2.5 we apply Lemma 2.2 to the sequence
{pn}n>1, after ruling out the possibilities of Vanishing and Dichotomy. Suppose
there is a subsequence {pn, }k>1 of {pn}n>; which satisfies either Vanishing or
Dichotomy. If Vanishing occurs, then for any R > 0

y+R
lim sup/ pn, (z) dz =0,
k—o00 yeR y—R
then
lim @, (R) =0,
k—o0

so, by Lemma 2.3
lim Rf,%k () gn, (z)dz = 0.

k—o00

But this is a contradiction, since F'(fy, ,gn,) = A > 0.
If Dichotomy occurs, there is 7 € (0, ) such that for every € > 0 there exist
ko > 1 and p}, p2 > 0 such that for k& > ko,

i — (Pk + i) < €
fopbde 7l e | fupbde—(u—7) <e, (2.4)
supp pi N supp pi =@  dist(supp p},, supp p2) — 0o as k — oo.

Moreover, we may assume that the supports of pi and pi are separated since
follows
{WW%CQWJMM+%)

(2.5)
supp pz C (=00, yx, — 2Rk) U (yi + 2Ry, +00)
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for some fixed Ry > 0, a sequence {yx}r>; C R and Ry — o0, as k — oo (see
Lions [L1)). -

Now denoting by hy,, = (fn,,9n,) we obtain splitting functions h;, and hZ of
h,, . Let ¢, ¢ € C®°(R) with 0 < ¢, ¢ <1 be such that {(z) =1, for || <1 and
C(xz) =0 for |z| > 2, p(x) =0 for |z| <1 and p(z) =1 for |z| > 2.

Denote by (x(2) = ((5*) and gk (z) = p(*F*), for z € R, where Ry > Ry is

chosen large enough such that

10k 1) P+ 1 g P = o | < « (2.6)

and

[ ot B ot P 4 178 (i) = o da| < e (2.7)

To see that this is possible, from (2.4) and (2.5), we have initially that

1 2
/ Py — il do < e, / |on, — Pl de <€
|z—yr|<Ro |w—yk |>2Ry,

/ Py dz < €. (2.8)
Ro<|z—yr|<2R}

Now, since

174 I = 16T+ 17E el I +2 [ G ) 7 ol

we have from Lemma 2.4, Lemma 2.1 and Cauchy-Schwarz inequality that the last
two terms in the right hand side of last equality can be estimated as

1074 el | +2] [ Gt (@)L el da]

1
< C(ICk 36 llgm %) + 21Ckloo 172 gr, Ml g |

112 !/
<o (195 ey o C2
=C1< R? * R1>—R1’
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for large R;. It follows then from (2.8) that

| [ b= [ 1kt G P+ 1 Gugn )P ]
R R
—| [ ko= [ 16+ VG P 16T g P d
R R
= [ Gl P+ 2607 @) Gl da

1 C
= ‘ /R |Ckfnk|2 + |(Ckfnk),|2 + |CkJ2gnk|2 - P]%; daj‘ + R_i

1
< Foa? + 1 Fi |2 4 175 g, | = o d
|z—yr |<Ro

2 12 L 2 Cs

+ |Ckfnk| +|(Ckfnk) | +|CkJ2.gme| d$+R—

Ro<|z—yr|<2Ry 1
Co
<[ o phlde 200G+ ) [ o i+ 22
|z—yk|<Ro Ro<|z—yr|<2R; 1

12
s C
§e+2(|(|§o+ KR'% )e+R—j = O(e)

if Ry is large enough. Therefore we obtain (2.6). Similarly we have that (2.7) is
satisfied.
Thus if we set,

{ h;, = (yhy,,
hlzc = gpkhnk

and we define,
wi, = hy, — (hy, + hy)

we have that hi, h?, wy, € H'(R)xH ? (R). Now, since [, [(2f2, gn, |dz is bounded,
there exists a subsequence of {hy};>;, still denoted by {h}, for which there is
ko > 0 and 6 € R such that for all k > kg

‘ / Cg’fskgnk dx — 9‘ <e. (2.9)
R
Moreover, since for xi =1 — (& — ©x

el < 2(xell + k) [ o (@) dz = O(0)
Ry <|z—yi |<2Ry
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and
1 1
Ixkgn 13 < 20177, xklgn, |I” + 2/ X (@) (T2 gn, (2))? da
2 Ri<|z—yr|<2Ry
< Clil2 o P + 2l | o
Ri<|z—yr|<2Ry

|C’|C2>O |1,|C2>O
< 12 A R —
—Cl( R R ) Cze = O(e),

we have that [|wg|| , = O(e). Therefore, it follows from (2.9) that for k > ko
| /Rwifi’kgnk de—(A=0)| < e, (2.10)

in fact, from Cauchy-Schwarz inequality and Sobolev embedding, we have for
k = ko

| [ 28 gmdn == 0) < | [ £200 ek + GE - 1) da] +
R R

< [ 0P 1sZ, g+ 3 [ Dl o Plane | da 3 | Dol o Plane o+
R R R

< |kank|%4||ngNk|| + 3|kank|%4||gnk || + 3||ngnk|||ka|.%4 +e
< Cillwil? |, + Collwil? | + Csllwill,, , +e=0(e).
2 2

Now, denoting wy, = (ag, br) we have from (1.8) that
V(hy,,) = V(wn, +hi +hi) = V(wy,)+ V() +V(hE) + Ji+ Jo (2.11)

where,

J1 = /R a;C(Ckfnk)/ + (a’;c + (Ckfnk)/)(gokfnk)/ + aa’k(kfnk + a(ak + Ckfnk)@kfnk dz

and

=

Jo = — 7D% (bk)D% (Ckn,) + ’y(D%bk +D? (Ckgn, ) D

((Pkgnk) dx

c(bk + Ck9ni ) Prgn, + cbrCegn, dx.

J
J
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Next we estimate each term integral in J;. In fact, from Cauchy-Schwarz inequality
it follows that

I = Clwil, Il ., = O() (212)

where C'= C((, ¢) > 0. With regard to Jo we have first that

[ DD G dir < D0l (D% = I8 Ggn |+ 17 Gegn) )
R

< Cllwill, (I|Ckgnk|| + 172, Gl Nl + 116k T2 g |

< Olwell, o 1gnill + 1Ckloo llgni I + IIJankH) O(e),

(2.13)

1><—

where we used that (J2 — D2) € B(L2(R), L?(R)) and Lemma 2.4. Similarly we
have

/D (br)D %gokgnk)d.r:O(e). (2.14)

Now, let ny, be fixed and consider {p;};>; C S(R) such that, p; — gn,, as j — oo,

in H» (R). Then, from Lemma 2.4, (xp; — Ckgn, and @rp; — Qrgn,, as j — 00,
in Hz(R). Thus,

/ D} (Cup;) D¥ (orp;) dw —> / D} (Cogn, VD% (rgn, ) dz, a5 § — 0.
R R

Now, since D = H0,, and the supports of (x, @i are disjoints, we have that

/ D* (Capy) D* (oup;) da = / o0y D(Cepy) dt — / oup; ([, Gelp, + H(Copy) de
R R R

< lloown | (124, GuJo5 | + 1<kms )
[Cloo

=C )2
< oLy

where in the last inequality we used the Calderon Commutator Theorem ([C]).
Therefore, letting j — oo in the last inequality, we have finally that

IC’Ioo

/R D (Gug) D (k) dir < CL= g, | = O(c). (2.15)



Thus from (2.13), (2.14), (2.15) and Lemma 2.1 it follows that

b§0¢+g/waw+gmmwwsaeHMMﬂwmn:0@.
R
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(2.16)

Therefore, since V(wy) < C||lwg||? ., it follows from (2.11), (2.12) and (2.16) that
1x L

V(hy,) = V(hy) + V(hi) + O(e),
thus
I = liminf V (h,,) > liminf V (h}) 4+ liminf V' (h}) + O(e).

Now, if
/R(g ,%kgnk dr — 0 =0,

then from (2.10) for € small we have that if k is large enough, F'(h?) >

be fixed and consider di > 0 such that
/R di(pi 3k9nk dr = A,

therefore F(dphi) = A. Moreover,

A3 — F(h7)s5)
F(h})s

2
dy — 1] = < TN - F(R)F| < Cre

with C; independent of h? and e. Hence, by, — 1, as k — oo, and
I < V(dghi) = diV(hi) = V(hi) + O(e).

Now, from (2.6) and (2.4) it follows that,

(2.17)

A

(2.18)

liminf V (hy) > Cs lim inf ||1a,{,||fxl = Coliminf (||¢e fr, 17 + ICkgn. 1)

> Cy liminf |p| 1 + O(€) > Cofi + O(e),
and therefore, from (2.17) and (2.18)

I > Con+ Iy + Ofe).
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Finally, letting € — 0 in the last relation leads to the contradiction I > Cym+ I.

If, on the other hand, fR G f{kgnk dr — 0 # 0, we can assume without loss of
generality that 0 < # < A, and using the same last procedure, together with (2.4)
and (2.7), we can prove that

In>1Ig+ Ix_g + O(e)

and let € — 0 to obtain
I\ > Ip + In_p.

But, for 7 > 0, I\ = T51,. Therefore, if we write 8 = 7\, we have then
L= I+ Taop = (15 + (1=7)3) [ > I

another contradiction. Thus the case of Dichotomy cannot occur.

Since Vanishing and Dichotomy have been ruled out, it follows from Lemma
2.2 that there is a sequence {yg},>; C R suth that for any € > 0, there are R > 0
large and ko > 0 such that for & > ko

[ m@zuee [ p@di<e
lz—yr|<R lz—yr|>R

and

2
2 3 3
[ s <lonlis( [l lds)
[z—yr|>R [z—yr >R

< Cllgudl, 1t ( [

Py () da:) " = 0(e).
le—yx| 2R

Then it follows that
‘ /| . [ gn, do — )\‘ <e. (2.19)
T—Yr S

Letting hp, (z) = (fn, (¥),Gn, (#)) = (Far(@ = yk), gn (¥ = yi)), we have that
{hy,, }>; is bounded in H*(R)x H 2 (R) and therefore {h,,, },>; (or a subsequence)

converges weakly in HY(R) x Hz(R) to a vector-function h = (fo, go). It follows
then from (2.19) that for k = ko,

R
> / RACIACITEREE (2.20)
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Now, since H([—R, R]) and H? ([—R, R]) are compactly embedded in L2([—R, R)),
we have from Cauchy-Schwarz inequality that

‘/ )Gy (2 dw—/ 3 (@)go(x) dz

S |fn;c + f0|00||gnk||||f’nk - fO“LZ(—R,R) + ||fnk||%||§nk - 90||L2(—R,R)
< C(ank — follL2(=r,R) + 1Gni — 90||L2(—R,R)> — 0, as k— oo,

and therefore, from (2.20)

R
A> / fe(x)go(z)dz > X —e.
-R

Thus for € = %, J € N, there exists R; > j such that

R,

J 1

A > / fe(@)go(w)dz > X — 5
—R;

and consequently as j — oo, we have finally that F'(fo,g0) = A. Furthermore,
from the weak lower semicontinuity of V' and invariance of V' by translations, we
have

Thus the vector-function h = (fy, go) solves the variational problem (1.7) and
therefore there exists K > 0 (Lagrange multiplier) such that,

{ —fo +ofo= K fogo (2.21)

—vDgo + cgo = K f¢.

Therefore, considering (¢, ¢) = (- K, /a—zgfo, —%go) it follows from (2.21) that
(¢, 1) solves the problem (1.6). Thus, Theorem 2.5 is proved. W

Remark: We note from (2.21) that (¢1,¢) = (K,/alﬁfo,—%go) is also a
solution of (1.6).
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Corollary 2.6. If(fo,go) is a minimum for problem Iy, then ( fo, go) is a minimum
for the unconstrained functional

T(f.9) = (2.22)

Proof. 1t follows immediatly from Theorem 2.5. B

Corollary 2.6 allows to obtain some properties on the structure of the spectrum
of the linear operator, £, associated with (1.6) for « = 23, defined by

_ a2

L—("@wtotey o) (2.23)
o —D +c

more precisely we have,

Theorem 2.7. The operator L given by (2.23) has exactly one negative eigenvalue
of multiplicity one.

Proof. Let f= (fo,90) be a minimum for problem I 1, then from Corollary 2.6 the

second variation of T at f is nonnegative, i.e. for all h € C3°(R) x C5° (R) we have
that

- d2 ~
Hence, denoting by (¢, ¢) = —7( fo, go), where K > 0 is the Lagrange multiplier

associated with the constrained problem I;, we have explicitly that

P(h) = £h+3%< <‘;2i¢;‘§> h > @(‘;‘ﬁ)

Therefore, P is a nonnegative operator. Since P = L + R, where R is a rank-one
operator, it follows from the min-max principle (see [RS]) that £ has at most one
negative eigenvalue. In order to show that there is exactly one negative eigenvalue,
again by min-max principle, it is sufficient to find one direction h such that <

Lh,h > < 0. In fact, for h = <ZZ> it follows from (1.6) that

<£E,f1>:/ ¢(—A+a+a¢)¢dm+/ ?,b(—'yD+c)@bdx+2a/ %) da:
R R R
3a
—7/R¢2¢dm< 0

where in the last inequality we use that fR fégodx > 0. This shows the Theorem.
[ |
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3. EVENNESS AND ANALYTICITY
OF SOLITARY WAVE SOLUTIONS

In this section we establish some properties of the solutions of system (1.6) for
v < 0, and o,a,,c > 0. The first property is concerning the sign of i and it
can be deduced studying the kernel associated with the second equation in (1.6).
Indeed, we observe that if ¢ satisfies

THY' — cip = e?,

then, for p = _TC > 0, the Fourier transform implies that

_B_ L S B e < B o
TR PO =CKOPO =K e, ()

»(€)
where the kernel K, is the following even function,

1 o —aT
KM(HZ‘): ; A WdT, f0r$>0.

Note that K, € C*(R — {0}) N L*(R). Therefore, from (3.1) ¢ satisfies the
following convolution equation

P(x) = g K, * ¢*(v). (3.2)

Since K, (x) is a positive kernel, it follows immediately from (3.2) that

P(z) <0 for all z € R. (3.3)

provided that (¢, ) is a nontrivial solution of (1.6).
Now we show that the sign of ¢ can also be determined explicitly as follows.

Theorem 3.1. If(fo, go) is a minimum for problem I then so is (| fo|, go). There-
fore there exists a constant K > 0 such that, (¢,v) = (£K/ a—zﬂfo, ~K2gp) is a

solution of (1.6). Moreover, we have that ¢(x) > 0 for all z € R or ¢(z) < 0 for
all v € R.

Proof. A bootstrapping argument shows that if (fo,g0) € HY(R) x Hz(R) is a
solution of (2.21) then (fo, g0) € H*(R) x H*(R). Now, from Theorem A.2 (Ap-
pendix) it follows that [fo| € HY(R) and [, [-L fo(z)||?de = [, |-L|fol(2)|? du,
and so

Ix =V (fo,90) 2 V(|fol, 90)-
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Since F(|fol, 90) = F(fo,90) = A, then we obtain that (|fo|,go) € Gx. From (2.21)
it follows that K = 2V (fo,90) = &V (|fol,90), then for T = —£, — 2K gy we

have
{ T(fol) = —al fol
T (fo) = —o fo-

Since |fo(x)| > 0 for all z € R, it follows from Sturm-Liouville Theory that —o is
the least eigenvalue of 7" and therefore is simple. Hence there exists a p € R— {0}
such that fo = p|fo| and the proof is complete. B

The following result asserts that there is at least one solitary wave solution of
system (1.6), (¢,%) , such that ¢, —1) are even and decreasing functions. To see
this, we use the theory of symmetric decreasing rearrangements of functions on
R (see Riesz [R], Brascamp, Lieb and Luttinger [BLL], Hardy, Littlewood and
Polya [HLP], Kawohl [K], and Friedman and McLeod [FM]). Initially, we see that
if (f,g9) € Gx and (f1,91) € Ga for A\, A > 0, then

A

Vi =(3) " vine). (3.4

1/3
Indeed, for a = (%) the relations

{ F(af,ag) = a®F(f,9) = 3
V(a’f7 a’g) = G2V(f,g) z V(flvgl)7

and
{ Fla7'fi,a7 g1) =a™PF(f,9) = a A=\

V(a’_lflva_lgl) = a’_zv(fbgl) i V(f7g)7
shows (3.4).

Theorem 3.2. Let v < 0, and o,«, 3,¢c > 0. Then there is a solution (¢,v) of
(1.6) such that ¢ and — are even decreasing positive functions.

Proof. Let (fo,90) € Gx. From Theorem 3.1 we can assume fy(x) > 0 for all
xz € R Let (ff,g5) be the symmetric decreasing rearrangements of fy and g
respectively and A = [, (f¢)?g¢ de. Then from Theorem A.1 (Appendix) we have
that

AzéﬁmM§AMW%M=AMW%WZA
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Now, we see that A = A. Let (f1,91) € Ga, then from (3.4) and Theorems A.1
and A.2 we have that

/
V0 S Vo) = (3) Vi a)
= V(f1,91) = V(5. 95) (3.5)

where the last inequality holds since F'(fj,g3) = A. Then from (3.5) we obtain

2/3
(%) V(f1,91) = V(f1,91)
V(fo,90) = V([5,95)-

Hence A = A and (f§, 9§) € G- Thus there exists K = 5V (fo,90) = =V (f3, 95) >

0 such that
2 2K
(6.1) = (K\| = 5. ~—a7)

is solution of (1.6). This shows the Theorem. W

We continue the analysis of the solitary-wave solutions of the equation (1.6).
Let (¢,1) be a solution of (1.6). Interest now focuses on the analyticity and
the strictly decreasing of ¢ and —1. The idea is based on the recent theory for
analyticity of solitary-wave solutions of model equations for long waves worked
out by Li and Bona ([LB]). This theory consist in demostrating that the Fourier
transform of a; and 7,2 has exponential decay at £o0o. Then, the Paley-Wiener
Theorem assures that ¢ and ¢ has an analytic extension to a strip in the complex
plane which is symmetric about the real axis. In our situation, it is shown that
this strip can be choosen equal for ¢ and 1.

Theorem 3.3. For (¢,v) a solitary-wave solution of (1.6), we have:
(i) there is a constant oy > 0 such that

sup e’ €l p(€)| < oo, supe’¥l|(€)] < oo (3.6)
§ER ¢erR

for any v with 0 < v < 0y.
(ii) there are functions ®(z) and ¥(z) that are defined and analytic on the open
strip {z € C: |Im(z)| < oo } such that
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for all z € R.
Proof. (i) If (¢,%) is a solution of (1.6) then from (3.2) the function

\f (3.7)

solves the equation

(€ + DB(E) = %(f?u )% (6) (35)
where 7 = % Now, when 0 £ k <1, ) can be used to conclude that
k-~ B |§|k o)
- = d
€55(¢)] |,y|1+n§2\/ D |+ 2(2) da
_ Bk

= T+ (1] * 1]+ 12]) ()

1 ~ A~
< Lo+ DF(31 171 < [2D(©)

Therefore, using induction and Young’s inequality we obtain

k-~ < B ||<P||2 E 1)k |5(3(k/21241)~ 2 3.9
|€s0(€)|_||k/2(+) 12 (3.9)

for any ¢ € R and any integer k£ = 0 (see Theorem 2 in [LB]). ([k/2] denotes the
greatest integer less than or equal to k£/2). Now, consider the sequence

1
= g VPO (3.10)
for kK =0,1,2,.... Since the ratio % takes the form
Ok+1 1 L ki3
= 1
g 771/2( + k-|-].) |()0(€)|L17
PP
then klim a’;tl = e'f;f/)l“ . Hence the power series Y -, apv® converges for |v| <
— 00 v
ﬁ = 0¢. Then, from (3.9) and (3.10), for any ¢ € R, we have
Ll
Vg ~ — vrigF
“iae =Y “E )
k=0
B IO < " k-1 3(kt 1
S —1= k+1 %) (k+1)
MGG 1;) e w7z (b + 156

Z apv” < 00, (3.11)
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provided that |v| < 0. Thus the function e”|5||$(£)| is uniformly bounded for
such v’s.

Now, consider 0 < v < 0 and let v < v; < 0p. Then, from (3.2) and (3.11) we
have

i p e ovIel |72 B[ vle—al vlel Tie — A1G
e"Sly(€)] = 1T ] $2(6)] < | K [p2(&)] < M/Re e"p(€ — x)||p(x)| do
/8 vix V|iC—T N
< s (¢ 3a)l) | it = o)l da

= Losup (73()) [ e e ) o

|’Y| TER

< s sup (e”|”||$(3:)|) sug <6”1|”||$(3:)|) / e~ =l gy < o0,
ze R

which completes the proof of (3.6).
(ii) Let v lie in the open interval (0, 0). Choose v; > 0 satisfying 0 < v < 1 <

oo. Then for 3(€) = ¢(&) and Pa(€) = () we have that

2
/ ez”|5||@(§)|2d§ < sup (e”1|§||@(§)|> / e~ 2 =vlEl ge < o,
R €ER

R

Therefore from Paley-Wiener Theorem ([PW], [RS1]) the functions

= [ doeae v = [ leeas

are well-defined and analytic on {z € C : |[Im(z)| < oo }. Finally, Plancherel’s
Theorem implies that ®(x) = ¢(z) and ¥(z) = ¢(x) for any z € R. B

An immediate consequence of the analyticity established in Theorem 3.3 is the
existence of solitary-wave solutions of (1.6) that are strictly decreasing. Indeed,
we have two different proofs of this fact.

Theorem 3.4. Let vy < 0, and o, «, 3,¢ > 0. Then there exists a solution of (1.6),
(¢, 1), such that ¢ and —1p are even and strictly decreasing positive functions.

Proof. Let (¢,1) be a solution of (1.6) given for Theorem 3.2. Then ¢ and —
are even and decreasing positive functions.
Now, with regard to the strict decreasing we have:

First proof: Let 0 < v < sup ¢(x). Then from Theorem 3.4 we have that in
rER
any bounded set B C R, there is at most a finite number of points x € B such



23

that ¢(z) = v. Therefore, since ¢ is decreasing, the set {x € Rt : ¢(x) = v} is a
point-set; hence ¢ is strictly decreasing. Similar result is obtained for —1.
Second proof: Since K,, € L' (R) it follows from (3.2) that

%w'@)sz;*&(x):gg%' K (x—y)¢*(y)dy.  (3.12)
T—y|>e

Since K, is odd, we obtain for z > 0

r—e

/ T KL (o) (20 —y) dy = | me-Ceow@ - [ T KL (e-6)¢2(6) de,
r+te — 00

—00

therefore, from (3.12) it follows that

LY/(@) =lim [ K —p)[#*(y) - 6*(22 — )] dy. (3.13)

/8 e—0 Te
Finally, since ¢ is even and decreasing positive function, we have that if z > 0
and y > x the function y — ¢?(22 — y) has its graph as the reflection of the graph
of ¢>2|(_oo,w) with respect to the vertical straight line crossing by x. Therefore,
#?(y) < ¢*(2x — y) for all y > = and so there exists an interval I C (z,00) such
that ¢2(y) + 0 < ¢*(2z — y) for all y € I and some 6 > 0. Thus from (3.13) we
have that for z > 0

Finally, from the first equation in (1.6) it follows that ¢'(x) < 0 for all z > 0. This
shows the Theorem. B

Finally, combining properties of the theory of symmetric decreasing rearrange-
ments and analyticity, we obtain that for each element (f,g) of G, their compo-
nents are even, up translations, and strictly decreasing positive functions.

Theorem 3.5. Let v <0, and o,c¢ > 0. Then for each (f,g) € G we have that
flx) = f*(x+r), g(z) =g"(x +7r) for allz € R

and some r € R, where f* and g* are the symmetric decreasing rearrangements
of f and g respectively.

Proof. Let (f,g) € Gx. Then f and g satisfy the equation

{ —f"+of=2Kfg

3.14
—yDg + cg = K f? (344
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for K > 0. Therefore it follows that Vi(f) = 3 [5[(f/(2))? + o f2(z)]dz = KX and

Va(g) = 5 R[_’Y(D%Q(CL'))Z + cg?(z)|dz = £\ Hence,
3

V(fig)=Vi(f) + Valg) = §V1(f)-

Now, from the proof of Theorem 3.2 we have that (f*, g*) € Gx. Hence (f*, g*)
satisfies (3.14) and consequently we have that V(f*,¢*) = 2V;(f*). Using the

facts that V(f,g) = V(f*,¢*) and [; |f(z)]?dz = [; |f*(z)|*dz, we conclude that

/R‘d%:f(a:)‘zdx:[g‘%f*(a:)‘zda:.

Then, since f € H*(R) and it is analytic in R (Theorem 3.3), it follows from
Corollary A.4 (Appendix) that

flz) = f*(x—r)

for all z € R and some r € R. Finally, since (f-(-),9-(-)) = (f(- +7),g9(-+ 7)) is
solution of (3.14) we obtain that g, is even and from the second proof of Theorem
3.4, g.(z) <0 for z > 0, and thus

This shows the Theorem. B

APPENDIX: PROPERTIES ON SYMMETRIC
DECREASING REARRANGEMENTS

In this Appendix, we collect some facts about the symmetric decreasing re-
arrangement of a function in R. The results mentioned here in one or higher
dimensions can be found in the papers of Riesz [R], Brascamp, Lieb and Luttinger
[BLL] and in the books of Hardy, Littlewood and Polya [HLP] and Kawohl [K].

Let

S={f:R—=[0,00]|f(z) = f(y) if |z| 2 |y| }
be the even decreasing functions. Let f be a nonnegative measurable function
on R, let Q,(f) = {z| f(x) = y} and M,(f) = m(y(f)), where m denotes the
Lebesgue measure. Assume that M,(f) < oo for some a < oo. If f* is another
function on R with the same properties as f and, additionally,

(a) f*(z) = f*(—x), for all z
b))  O0<z<y= f(z)Z "),
(¢) M, (f*) = My(f), for all y > 0,
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then f* is called a symmetric decreasing rearrangement of f.
Remark: (1) if g and h are two symmetric decreasing rearrangements of f, then

(2) If x is the characteristic function of a measurable set in R, we define x* by

1 if 20z = [x

() =
X' (@) { 0 otherwise.
Therefore x* € S and if x € L*(R) then |x|z1 = |x*|z:. For a general function,
[ iR —[0,00], let
1 if € Q,(f)

Xy() = { 0 otherwise.

Then is easy to see that f(z) = [°

o Xy(z) dy. This implies that

F@=AWQ@®7 (A1)

is a symmetric decreasing rearrangement of f. Also we note (see Kawohl [K]) that
if M, (f) < oo for all @ > 0 and we define

[ {reR||a € Im@y(f)) i Q(H) £0
Q“ﬁ‘{@ it Q,(f) =0,

called the symmetric rearrangement of (0, (f), then

fr(x) =sup{y e Rz € Q(f) } (A2)

is a symmetric decreasing rearrangement of f. Consequently, if f is continuous
then by Remark (1) f* can be found using (A1) or (A2). The fact that M,(f) < oo
implies that f*(x) < oo, for all z # 0.

(3) If f: R — C we define

=11

Therefore, for all y, m(£2, (f*)) = m(2y(|f])).

(4) Since in the following Theorems we deal with integrals, by Remark (1), f*
is unique for our purposes.

Now we collect in a single Theorem various properties of the symmetric de-
creasing rearrangement.
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Theorem A.1.

(i) For all p € [1,00], |f*|ee = |f]Le-

(i1) For all v > 0, (f")* = (f*)" pointwise.
R)

(i14) If f,g € L*(
[ @@ i < [ e i

(iv) The Inequaltity of Riesz: Let f1,..., f,, be measurable functions on R such
that m(§2y(fi)) < oo for ally > 0 and all 1 £ i < n. Then

|((Frx faxoox fa)(O)] = [(F7) * (f2) %o (F2)1(0)

in the sense that if the right-hand side is finite, then the left-hand side exists and
the inequality holds.

Proof. 1t is easy to check (i) and (i7). For (iii) see Kawohl ([K]) and (iv) see Riesz
([R]) and Brascamp, Lieb and Luttinger ([BLL]). B

The following result is essential in this work, and the idea of the proof is based
on Lemma 3.5 in Albert, Bona and Saut [ABS].

Theorem A.2.
() If f € Hl(R) then |f|, f* € Hl(R) and

|Gt @z [ gl s [ | az [ [Lrof

(i) If f € Hz (R) then |f], f* € H2(R) and

D3 2de > | D3 24 D3 2de > | D f*(2)|2d
A| ﬂm|x_4| () d, é| ﬂm|x_4| 7 (@) de

Proof. The affirmation (ii) is Lemma 3.4 and lemma 3.5 in [ABS]. Now, for (i),
we first show that |f| € H'(R). Let v > 0, and define the function N, (z) by
— 1
No(6) = —— .
©- e
Then N,(z) > 0 for all x € R and N, € SN LP(R) for every p € [1,00]. In
fact, the Residue Theorem shows that N, (z) = e Lo Now, if g = |f| then

2V
N, g(z) 2 N, * f(z) for all x € R and every v > 0. Therefore,

| gliera = [ @, )@z [ f@n, e d

- [ ralforae
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Since [, |9(&)?d¢é = [, |£(£)|2d¢ by Parseval’s identity, it follows that

[ ralferdez [ o) tg]mera

Since lim 1/[1 — r”gz] = £2, taking the limit as ¥ — oo on both sides of the

vV—00
preceding inequality and using the Monotone Convergence Theorem gives

[ erForasz [ iepaeP
R R

which together with (i) in Theorem A.1 shows that |f| € H'(R).
For the other affirmation we note initially that since N = N, then for g =
|fI* = f* the inequaltiy of Riesz gives

| raliors= [ s@w @iz [ @, e

Also, by Parseval’s identity [, | f “(&)|2de = [; | F(€)|2d¢. The result then follows
exactly as in the preceding proof . I

The next result is discussed in Kawohl ([K]) and Friedman and McLeod ([FM]),
here we establish it in the case of R.

Theorem A.3. Let f be Lipschitz continuous on R, with % € LP(R) for some
1 <p< oo. Let

m = essinf f, M = esssup f.

Ifm({z : f(z) =t}) =0 forallm <t < M and f € C! in the set {x : m <
f(z) < M} then the strict equality in

[ @l ez [ |Zref

holds only if f = f* modulo translations.

An immediate consequence of Theorem A.3 is the following result used in our
work.

Corollary A.4. Let f € H*(R) for some s > 3/2. If f is analytic on R then the

strict equality in
d 2d > d ... |2
/R‘%f(x)‘ 37:/R ‘%f (z)

holds only if f = f* modulo translations.

Remark: We call a function f analytic on R if there exist a constant » > 0 and
a function F(z) defined and analytic on the open strip {z € C: |Im(2)| < v }
such that F(z) = f(z) for all z € R
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