Derivation of Cubic Splines from Cubic Hermite Functions

Saulo Pomponet Oliveira ${ }^{1}$
saulo@ime.unicamp.br
Prof. Dr. Petrônio Pulino ${ }^{2}$
pulino@ime.unicamp.br
DMA - IMECC - UNICAMP
Caixa Postal 6065, Campinas-SP
Brazil 13081-970

Abstract: There are several ways to derive the cubic splines. In this article we derive them using piecewise cubic hermite functions with a very simple approach: we put continuity conditions on the second derivative of an arbitrary function $s=s(x)$ in the linear space spanned by the hermite functions. This way, s will also belong to the piecewise cubic splines space. It reveals a nice connection between splines and hermite functions that can be explored in numerical analysis courses.

[^0]
1 Piecewise Polynomials

Let $\pi: a=x_{0}<x_{1}<\ldots<x_{n}=b$ be a partition of the interval $[a, b] \subset \mathbb{R}$. It means that the $n+1$ points of π divide $[a, b]$ in n subintervals $\left[x_{k}, x_{k+1}\right]$, $0 \leq k \leq n-1$. We denote an arbitrary interval $\left[x_{k}, x_{k+1}\right]$ by K. Let $P_{m}\left(\left[x_{k}, x_{k+1}\right]\right)=P_{m}(K)$ be the linear space of the polynomials with degree $\leq m$ defined in K. We call the set

$$
\begin{gather*}
P P_{m}(\pi)=\{q:[a, b] \rightarrow \mathbb{R} \mid \forall k, \quad 0 \leq k \leq n-1, \\
\left.\exists p_{(k)} \in P_{m}(K) ; p_{(k)}(x)=q(x) \forall x \in K\right\} \tag{1}
\end{gather*}
$$

as the piecewise polynomials space with degree $\leq m$ defined in $\pi . P P_{m}(\pi)$ is a linear space with dimension $(m+1) n$, and $P_{m}([a, b])$ is a subset of $P P_{m}(\pi)$.

When we put interpolatory or smoothness conditions in $P P_{m}(\pi)$, we generate other spaces that are subspaces of $P P_{m}(\pi)$. We will consider two subspaces of $P P_{3}(\pi)$, the cubic splines and cubic hermite functions spaces.

$2 \quad \mathrm{~S}_{3}(\pi)$ Space

Given a partition π of $[\mathrm{a}, \mathrm{b}], \mathrm{S}_{3}(\pi)$ is the set of all fuctions $s \in C^{2}[a, b]$ that reduces to cubic polynomials at each interval $\left[x_{k}, x_{k+1}\right], 0 \leq k \leq n-1$. These functions are called cubic splines. We can also define $S_{3}(\pi)$ as

$$
\begin{equation*}
\mathrm{S}_{3}(\pi)=P P_{3}(\pi) \cap C^{2}[a, b] \tag{2}
\end{equation*}
$$

Since splines are twice continuously differentiable, they're suitable to approximation problems, especially this interpolation problem: Given $f \in$ $C^{1}[a, b]$, find $s \in P P_{3}(\pi)$ so that

1. $s\left(x_{i}\right)=f\left(x_{i}\right), x_{i} \in[\mathrm{a}, \mathrm{b}], 0 \leq i \leq n$;
2. $s^{\prime}\left(x_{o}\right)=f^{\prime}\left(x_{o}\right)$ and $s^{\prime}\left(x_{n}\right)=f^{\prime}\left(x_{n}\right)$;
3. s is twice continuously differentiable,

It can be shown that there is a unique $s \in \mathrm{~S}_{3}(\pi)$ satifying all conditions above, and that the dimension of $\mathrm{S}_{3}(\pi)$ is $n+3$.

$3 \quad \mathrm{H}_{3}(\pi)$ space

Let's first define this space as follows :
Consider $f \in C^{1}[a, b]$ and π a partition of $[a, b]$. There is a unique function $s \in P P_{3}(\pi)$ satisfying the following interpolation problem :

$$
\begin{equation*}
f^{(j)}\left(x_{i}\right)=s^{(j)}\left(x_{i}\right), \quad 0 \leq i \leq n \quad \text { and } \quad j=0,1 \tag{3}
\end{equation*}
$$

Functions $s \in P P_{3}(\pi)$ satisfying this property are called cubic Hermite functions, and the space spanned by them is denoted by $\mathrm{H}_{3}(\pi)$. It can be shown that the dimension of $\mathrm{H}_{3}(\pi)$ is $2(n+1)$.

In the following we will summarize the local basis to $\mathrm{H}_{3}(\pi)$ space (see [1]). A local basis covers a single arbitrary subinterval (or element), while the global basis covers all the partition. The use of a local basis instead a global one, associated with master and real elements is typical of finite element computations; that idea will be helpful in this work.

3.1 Local Basis in the Master Element

When we deal with functions if one real variable, the master element is the interval $[-1,1]$, that we will denote by $\hat{\mathrm{K}}$.

$$
\begin{align*}
\left.s(t)\right|_{\hat{\mathrm{K}}} & =\sum_{i=1}^{4} \alpha_{i} \hat{\Phi}_{i}(t), \quad t \in[-1,1] \tag{4}\\
\hat{\Phi}_{1}(t) & =(2+t)(1-t)^{2} * 0.25 \tag{5}\\
\hat{\Phi}_{2}(t) & =(1+t)(1-t)^{2} * 0.25 \tag{6}\\
\hat{\Phi}_{3}(t) & =(2-t)(1+t)^{2} * 0.25 \tag{7}\\
\hat{\Phi}_{4}(t) & =(t-1)(1+t)^{2} * 0.25 \tag{8}
\end{align*}
$$

This basis will be helpful for computation tasks.

3.2 Local Basis in the Real Element

The real element is a generic interval $\left[x_{k}, x_{k+1}\right]$ of the partition π.

$$
\begin{equation*}
\left.s(x)\right|_{K}=\sum_{i=1}^{4} \alpha_{i} \Phi_{i(k)}(x), \quad x \in\left[x_{k}, x_{k+1}\right] \tag{9}
\end{equation*}
$$

$$
\begin{align*}
\Phi_{1(k)}(x)= & \frac{\left(x_{k+1}-x\right)^{2}}{\left(x_{k+1}-x_{k}\right)^{3}}\left[2\left(x-x_{k}\right)+\left(x_{k+1}-x_{k}\right)\right] \tag{10}\\
\Phi_{3(k)}(x)= & \frac{\left(x-x_{k}\right)^{2}}{\left(x_{k+1}-x_{k}\right)^{3}}\left[2\left(x_{k+1}-x\right)+\left(x_{k+1}-x_{k}\right)\right] \tag{11}\\
& \Phi_{2(k)}(x)=\frac{\left(x-x_{k+1}\right)^{2}\left(x-x_{k}\right)}{\left(x_{k+1}-x_{k}\right)^{2}} \tag{12}\\
& \Phi_{4(k)}(x)=\frac{\left(x-x_{k}\right)^{2}\left(x-x_{k+1}\right)}{\left(x_{k+1}-x_{k}\right)^{2}} \tag{13}
\end{align*}
$$

3.3 Master and Real Elements Connection

We define the transformation
$\mathrm{F}:[-1,1] \longrightarrow\left[x_{k}, x_{k+1}\right]$
$t \longmapsto \mathrm{~F}(t)=a t+b$, satisfying $\left\{\begin{array}{l}\mathrm{F}(-1)=x_{k} \\ \mathrm{~F}(1)=x_{k+1}\end{array}\right.$
We have $a=\frac{x_{k+1}-x_{k}}{2}$ and $b=\frac{x_{k}+x_{k+1}}{2}$.
\mathbf{F} associates to each point t of $[-1,1]$ another point x in $\left[x_{k}, x_{k+1}\right]$. We can now associate the functions $\hat{\Phi}_{i}$ with those defined in $\left[x_{k}, x_{k+1}\right]$. Setting $\mathrm{x}=\mathrm{F}(\mathrm{t})$:

$$
\left\{\begin{array}{l}
\Phi_{i}(x)=\hat{\Phi}_{i}(t), \quad t \in[-1,1], \quad i=1,3 \tag{14}\\
\Phi_{i}(x)=\hat{\Phi}_{i}(t) \cdot a, \quad t \in[-1,1], \quad i=2,4
\end{array}\right.
$$

Derivating twice with respect to t, we have :

$$
\begin{cases}\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} \Phi_{i}(x)=\frac{\mathrm{d}^{2}}{\mathrm{dt}^{2}} \hat{\Phi}_{i}(t) \frac{1}{a^{2}}, \quad i=1,3 \tag{15}\\ \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \Phi_{i}(x)=\frac{\mathrm{d}^{2}}{\mathrm{dt}^{2}} \hat{\Phi}_{i}(t) \frac{1}{a}, \quad i=2,4\end{cases}
$$

4 Relation between $\mathrm{H}_{3}(\pi)$ and $\mathrm{S}_{3}(\pi)$

We can define $\mathrm{H}_{3}(\pi)$ in a generic way. By the last definition, all functions belonging to this space are necessarily C^{1}, since on the possible descontinuity points - the nodes of π - we have a continuity restriction (due to interpolatory conditions).
It sugests another way to define $\mathrm{H}_{3}(\pi)$:

$$
\begin{equation*}
\mathrm{H}_{3}(\pi)=P P_{3}(\pi) \cap C^{1}[a, b] \tag{16}
\end{equation*}
$$

Since every C^{2} function is also a C^{1} function $\left(C^{2}[a, b] \subset C^{1}[a, b]\right)$, we expect that every cubic spline is also a cubic Hermite. The following theorem, that uses standard arguments from interpolation proofs, stabilishes that $\mathrm{S}_{3}(\pi) \subset$ $\mathrm{H}_{3}(\pi)$.

Theorem 1. For all $f \in \mathrm{~S}_{3}(\pi)$ there is a unique $s \in \mathrm{H}_{3}(\pi)$ so that $f=s$.
Proof. Let $f \in \mathrm{~S}_{3}(\pi)$ and $s \in \mathrm{H}_{3}(\pi)$ be so that

$$
\begin{equation*}
s^{(j)}\left(x_{i}\right)=f^{(j)}\left(x_{i}\right), \quad 0 \leq i \leq n \text { and } j=0,1(s \text { is unique }) \tag{17}
\end{equation*}
$$

Defining $g=f-s$, we have:

- $g \in P P_{3}(\pi)$, since $f, s \in P P_{3}(\pi)$
- g, g^{\prime} are continous, since f and $s \in C^{1}[a, b]$
- $g\left(x_{i}\right)=g^{\prime}\left(x_{i}\right)=0 \quad, \quad 0 \leq i \leq n$

By Rolle Theorem,

$$
\begin{equation*}
g^{\prime}\left(\bar{x}_{k}\right)=0, x_{k} \leq \bar{x}_{k} \leq x_{k+1}, 0 \leq k \leq n-1 \tag{18}
\end{equation*}
$$

Therefore, points $x_{0}, \bar{x}_{0}, x_{1}, \ldots, \bar{x}_{n-1}, x_{n}$ are roots of g^{\prime}, so in each subinterval $\left[x_{k}, x_{k+1}\right],\left.g^{\prime}\right|_{K}$ have three roots: x_{k}, \bar{x}_{k} and $x_{k+1}, 0 \leq k \leq n-1$.

As $\left.g^{\prime}\right|_{K}$ is a polynomial with degree two, by the Algebraic Fundamental Theorem, $\left.g^{\prime}\right|_{K} \equiv 0,0 \leq k \leq n-1$.

As $\left.g^{\prime}\right|_{K} \equiv 0,\left.g\right|_{K}$ is a polynomial with degree one. But in each subinterval $\left[x_{k}, x_{k+1}\right]$ the function g have two roots: x_{k} and x_{k+1}, and by Algebraic Fundamental Theorem, $\left.g\right|_{K} \equiv 0,0 \leq k \leq n-1$.

Therefore, $g \equiv 0$ and $f=s$.

5 Deriving the Cubic Splines

We will find the splines selecting a subset of $\mathrm{H}_{3}(\pi)$, according to the last result. The selecting criterion will be the continuity of the second derivative at each interior point x_{k} of the partition π :

$$
\begin{equation*}
\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} s_{-}\left(x_{k}\right)=\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} s_{+}\left(x_{k}\right) \quad, \quad 1 \leq k \leq n-1 \tag{19}
\end{equation*}
$$

where $s_{-}(x)=\left.s(x)\right|_{K-1}$ and $s_{+}(x)=\left.s(x)\right|_{K}$.
Setting with the local basis

$$
\begin{equation*}
\left.S(x)\right|_{K}=y_{k} \Phi_{1(k)}(x)+y_{k+1} \Phi_{3(k)}(x)+\sigma_{k} \Phi_{2(k)}(x)+\sigma_{k+1} \Phi_{4(k)}(x) \tag{20}
\end{equation*}
$$

we have from (19):

$$
\begin{gather*}
y_{k-1} \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \Phi_{1(k-1)}\left(x_{k}\right)+y_{k} \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \Phi_{3(k-1)}\left(x_{k}\right)+\sigma_{k-1} \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \Phi_{2(k-1)}\left(x_{k}\right)+ \\
+\sigma_{k} \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \Phi_{4(k-1)}\left(x_{k}\right)=y_{k} \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \Phi_{1(k)}\left(x_{k}\right)+y_{k+1} \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \Phi_{3(k)}\left(x_{k}\right)+ \\
+\sigma_{k} \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \Phi_{2(k)}\left(x_{k}\right)+\sigma_{k+1} \frac{\mathrm{~d}^{2} \mathrm{dx}^{2}}{\mathrm{~d}_{4(k)}}\left(x_{k}\right) \tag{21}
\end{gather*}
$$

Instead operating with the functions Φ_{i}, we will do all computations on master element, and then use the transformation defined on section 3.3 .
Procceding this way,

$$
\begin{array}{ll}
\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} \hat{\Phi}_{1}(t)=\frac{3}{2} t & \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \hat{\Phi}_{2}(t)=\frac{3 t-1}{2} \\
\frac{\mathrm{~d}^{2}}{\mathrm{dx} \mathrm{x}^{2}} \hat{\Phi}_{3}(t)=\frac{-3}{2} t & \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \hat{\Phi}_{4}(t)=\frac{3 t+1}{2} \tag{22}
\end{array}
$$

Defining $h_{k}=x_{k+1}-x_{k}$, we can write (15) as:

$$
\begin{cases}\frac{\mathrm{d}^{2}}{\mathrm{~d} \mathrm{x}^{2}} \Phi_{i(k)}(x)=\frac{\mathrm{d}^{2}}{\mathrm{dx}{ }^{2}} \hat{\Phi}_{i}(t) \frac{4}{h_{k}^{2}}, \quad i=1,3 \tag{23}\\ \frac{\mathrm{~d}^{2}}{\mathrm{dx}} \Phi_{i(k)}(x)=\frac{\mathrm{d}^{2}}{\mathrm{dx}} \hat{\Phi}_{i}(t) \frac{2}{h}, \quad i=2,4\end{cases}
$$

It follows that:

$$
\begin{array}{ll}
\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} \Phi_{1(k)}(F(t))=\frac{6}{h_{k}^{2}} t & \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \Phi_{2(k)}(F(t))=\frac{3 t-1}{h_{k}} \tag{24}\\
\frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \Phi_{3(k)}(F(t))=\frac{-6}{h_{k}^{2}} t & \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \Phi_{4(k)}(F(t))=\frac{3 t+1}{h_{k}}
\end{array}
$$

As $\mathrm{F}(-1)=x_{k}$ and $\mathrm{F}(1)=x_{k+1}$:

$$
\begin{array}{lll}
\frac{\mathrm{d}^{2}}{\mathrm{dx}} \Phi_{1(k)}\left(x_{k}\right)=\frac{-6}{h_{k}^{2}} & \text { and } & \frac{\mathrm{d}^{2}}{\mathrm{dx}}{ }^{2} \\
1(k) & \left(x_{k+1}\right)=\frac{6}{h_{k}^{2}} \tag{25}\\
\frac{\mathrm{~d}^{2}}{\mathrm{dx}} \Phi_{2(k)}\left(x_{k}\right)=\frac{-4}{h_{k}} & \text { and } & \frac{\mathrm{d}^{2}}{\mathrm{dx} \mathrm{x}^{2}} \Phi_{2(k)}\left(x_{k+1}\right)=\frac{2}{h_{k}} \\
\frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \Phi_{3(k)}\left(x_{k}\right)=\frac{6}{h_{k}^{2}} & \text { and } & \frac{\mathrm{d}^{2}}{\mathrm{dx}} \Phi^{2} \\
\Phi_{3(k)}\left(x_{k+1}\right)=\frac{-6}{h_{k}^{2}} \\
\frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \Phi_{4(k)}\left(x_{k}\right)=\frac{-2}{h_{k}} & \text { and } & \frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} \Phi_{4(k)}\left(x_{k+1}\right)=\frac{4}{h_{k}}
\end{array}
$$

The procedure for $\left[x_{k-1}, x_{k}\right]$ is the same, but h_{k-1} replaces h_{k}. Updating (21), for $1 \leq k \leq n-1$, we have:

$$
\begin{equation*}
\frac{6 y_{k-1}}{h_{k-1}^{2}}-\frac{6 y_{k}}{h_{k-1}^{2}}+\frac{2 \sigma_{k-1}}{h_{k-1}}+\frac{4 \sigma_{k}}{h_{k-1}}=\frac{-6 y_{k}}{h_{k}^{2}}+\frac{6 y_{k+1}}{h_{k}^{2}}-\frac{4 \sigma_{k}}{h_{k}}-\frac{2 \sigma_{k+1}}{h_{k}} \tag{26}
\end{equation*}
$$

These restrictions will cause loss of freedom degrees, that is, some unknowns will be combination of others, so that $S_{3}(\pi)$ will have a dimension lower than $\mathrm{H}_{3}(\pi)$, as we have expected.

The coefficients y_{i} and $\sigma_{i}, 0 \leq i \leq n$, are related to the interpolation of the function and the derivative, respectively (according to the definition of $\left.\mathrm{H}_{3}(\pi)\right)$. As most of the problems involves interpolation of the function, it is convenient to find the unknowns σ_{i} as combinations of y_{i}.

Rearranging (26) :

$$
\begin{equation*}
h_{k} \sigma_{k-1}+2\left(h_{k}+h_{k-1}\right) \sigma_{k}+h_{k-1} \sigma_{k+1}=f\left(y_{k}\right), \quad 1 \leq k \leq n-1, \tag{27}
\end{equation*}
$$

where $f\left(y_{k}\right)$ is given by:

$$
\begin{equation*}
f\left(y_{k}\right)=3\left[\frac{-h_{k}}{h_{k-1}} y_{k-1}+\left(\frac{h_{k}}{h_{k-1}}-\frac{h_{k-1}}{h_{k}}\right) y_{k}+\frac{h_{k-1}}{h_{k}} y_{k+1}\right] \tag{28}
\end{equation*}
$$

We have $\mathrm{n}-1$ equations and $\mathrm{n}+1$ unknowns. There are two frequent ways to supply the remaining equations: extending the partition π with two artificial nodes, one in the right, other in the left, or restrict the derivative on the extreme nodes, x_{0} and x_{n} (allowing interpolant conditions at $s^{\prime}\left(x_{0}\right)$ and $s^{\prime}\left(x_{n}\right)$). We use the last one:

$$
\begin{array}{ll}
s^{\prime}\left(x_{0}\right)=\bar{y}_{0} & \rightarrow \sigma_{0}=\bar{y}_{0} \\
s^{\prime}\left(x_{n}\right)=\bar{y}_{n} & \rightarrow \sigma_{n}=\bar{y}_{n} \tag{29}
\end{array}
$$

The equalities in (29) suggest us to eliminate the unknowns σ_{0} and σ_{n} from the system. The reduced system in the matrix form $A . x=b$ is:

$$
\begin{array}{r}
A=\left[\begin{array}{cccc}
2\left(h_{1}+h_{0}\right) & h_{0} & & 0 \\
h_{2} & 2\left(h_{2}+h_{1}\right) & h_{1} & \\
& \ddots & \ddots & \\
& h_{n-2} & 2\left(h_{n-2}+h_{n-3}\right) & h_{n-3} \\
0 & & h_{n-1} & 2\left(h_{n-1}+h_{n-2}\right)
\end{array}\right] \\
\left.x=\left(\begin{array}{lllll}
\sigma_{1}, & \sigma_{2}, \ldots, & \sigma_{n-2}, & \left.\sigma_{n-1}\right)^{T} \\
y & =\left(f\left(y_{1}\right)-h_{1} \bar{y}_{n},\right. & f\left(y_{2}\right), & \ldots, & f\left(y_{n-2}\right),
\end{array}\right) f\left(y_{n-1}\right)-h_{n-2} \bar{y}_{n}\right)^{T}
\end{array}
$$

Observe that

$$
\begin{equation*}
\left|a_{i, i}\right|=\left|2\left(h_{i}+h_{i-1}\right)\right|>h_{i}+h_{i-1} \geq\left|a_{i, i-1}\right|+\left|a_{i, i+1}\right| \tag{33}
\end{equation*}
$$

As $a_{i, j}=0,|i-j|>1$,

$$
\begin{equation*}
\left|a_{i, i}\right|>\sum_{j \neq i}\left|a_{i, j}\right| \tag{34}
\end{equation*}
$$

that is, the matrix A is strictly diagonally dominant by column, so it is non singular. Therefore the system above have a unique solutuion, and σ_{i} are completely determined by $\bar{y}_{0}, y_{i}, 0 \leq i \leq n$ e \bar{y}_{n}.

6 Conclusion

In the following we present an algorithm that uses the method above, written for the software $M A T L A B{ }^{(}{ }^{(}$. Two subroutines (solvetrd.m and basis.m) join the main function (h_spline.m). There is also an example of spline interpolation using these routines. Therefore the derivation of splines presented not only serves as a learning alternative but also provides another computer method for applications envolving splines.

function h_spline(x,y)

\% h_spline(x,y) : spline interpolation using hermite functions $\% \mathrm{x}$: nodes of the partition
$\%$ y : interpolation table; the 1st and the last ones interpolate \% the derivative at the extremal points
\% Setting parameters
$\mathrm{n}=$ length (x) - 1;
if (length (y) $=\mathrm{n}+3$) error('Wrong input arguments: x and y are not compatible'); end
$\mathrm{m}=16 ; \quad \%$ spacing parameter for the plot
\% The tridiagonal linear system (See equations (30) to (32))
\% Computing h
for $k=1: n$ $h(k)=x(k+1)-x(k) ;$
end
\% Computing the rigth hand size (See equations (28) and (32))
$b(1)=y(1)$;
for $k=1: n-1$
aux $=h(k+1) / h(k) ;$ aux2 = 1/aux; $\mathrm{b}(\mathrm{k})=3 *(-\mathrm{aux} * \mathrm{y}(\mathrm{k}+1)+(\mathrm{aux}-\mathrm{aux} 2) * \mathrm{y}(\mathrm{k}+2)+\mathrm{aux} 2 * \mathrm{y}(\mathrm{k}+3))$;
end
$\mathrm{b}(1)=\mathrm{b}(1)-\mathrm{h}(2) * \mathrm{y}(1)$;

```
    b}(\textrm{n}-1)=\textrm{b}(\textrm{n}-1)-\textrm{h}(\textrm{n}-1)*y(\textrm{n}+3)
    % Computing the diagonals of the system matrix
    for i=1:n-2
        Sub(i) = h(i+2);
        Diag(i+1) = 2*( h(i+1) + h(i) );
        Sup(i) = h(i);
    end
    Diag(n-1) = 2*( h(n) + h(n-1) );
    % Computing the variables sigma
    sigma(1) = y(1);
    sigma(2:n) = solvetrd(Sub,Diag,Sup,b);
    sigma(n+1) = y(n+3)
% Assembling and drawing the solution
    % Definig the domain in the variable t
j = 1;
for k = 1:n
        t(j) = x(k);
        j = j + 1;
        Spacing = h(k)/m;
        for i = 1:m-1
            t(j) = t(j-1) + Spacing;
            j = j + 1;
        end
end
t(j) = x(n+1); % the last point of the domain
n_t = j; % dimension of t
```

\% assembling the solution with the hermite local basis $\%$ see equation (20)

```
j = 1;
```

for $k=1: n$
for $i=1: m$
phi $=\operatorname{basis}(t(j), k, x, h) ;$
aux $=y(k+1) * p h i(1)+y(k+2) * p h i(3) ;$
$\operatorname{spl}(j)=$ aux $+\operatorname{sigma}(k) * p h i(2)+\operatorname{sigma}(k+1) * p h i(4) ;$
$j=j+1 ;$
end
end
spl(n_t) = $y(n+2)$;
\% drawing
plot(t,spl, $\left.x, y(2: n+2), o^{\prime}\right) ;$
function $[\mathrm{phi}]=\operatorname{basis}(\mathrm{xo}, \mathrm{k}, \mathrm{x}, \mathrm{h})$
\% basis : hermite functions local basis evaluated at $\mathrm{x}=\mathrm{xo}$
\% See equations (10) to (13)
\% The solution is returned in the vector phi
$\%$ xo : point of evaluation
$\% \mathrm{k}$: subinterval index
$\% \mathrm{x}$: partition vector
$\% \mathrm{~h}: \mathrm{h}(\mathrm{k})=\mathrm{x}(\mathrm{k}+1)-\mathrm{x}(\mathrm{k})$

```
aux = x(k+1) - xo;
aux2 = xo - x(k);
phi(1) = aux^2*(2*aux2 + h(k))/h(k)^3;
```

```
    phi(2) = aux^2*aux2/h(k)^2;
    phi(3) = aux2^2*(2*aux + h(k))/h(k)^3;
    phi(4) = -aux*aux2^2/h(k)^2;
function x = solvetrd(Sub,Diag,Sup,b);
% solvetrd : tridiagonal system solver
% The solution is returned in x
% Sub : lower diagonal
% Diag : main diagonal
% Sub : upper diagonal
% b : right hand side
    N = length(b);
% forward elimination
    for i = 2:N
        Diag(i) = Diag(i) - Sup(i-1)*Sub(i-1)/Diag(i-1);
        b(i) = b(i) - b(i-1)*Sub(i-1)/Diag(i-1);
    end
% back substitution
    x(N) = b(N)/Diag(N);
    for i = 1:N-1
        x(N-i) = (b (N-i) - Sup (N-i) *x (N-i+1))/Diag(N-i);
    end
```


7 References

[1] P. M. Prenter - Splines and Variational Methods, 1975, John Wiley \& Sons.
[2] George E. Forsythe - Computer Methods for Mathematical Computations, 1977, Prentice-Hall.
[3] Larry L. Schumacker - Spline Funcions: Basic Theory, 1981, John Wiley \& Sons.

[^0]: ${ }^{1}$ Student of the M.Sc. program in Applied Mathematics, IMECC-UNICAMP
 ${ }^{2}$ Department of Applied Mathematics, IMECC-UNICAMP

