
Derivation of Cubic Splines from

Cubic Hermite Functions

Saulo Pomponet Oliveira

1

saulo@ime.unicamp.br

Prof. Dr. Petrônio Pulino

2

pulino@ime.unicamp.br

DMA - IMECC - UNICAMP

Caixa Postal 6065, Campinas-SP

Brazil 13081-970

Abstract: There are several ways to derive the cubic splines. In this article

we derive them using piecewise cubic hermite functions with a very simple

approach: we put continuity conditions on the second derivative of an arbi-

trary function s = s(x) in the linear space spanned by the hermite functions.

This way, s will also belong to the piecewise cubic splines space. It reveals a

nice connection between splines and hermite functions that can be explored

in numerical analysis courses.

1

Student of the M.Sc. program in Applied Mathematics, IMECC-UNICAMP

2

Department of Applied Mathematics, IMECC-UNICAMP

1

1 Piecewise Polynomials

Let � : a =x

0

< x

1

< : : :< x

n

=b be a partition of the interval [a; b] � IR.

It means that the n + 1 points of � divide [a; b] in n subintervals [x

k

; x

k+1

],

0 � k � n � 1. We denote an arbitrary interval [x

k

; x

k+1

] by K. Let

P

m

([x

k

; x

k+1

]) = P

m

(K) be the linear space of the polynomials with degree

� m de�ned in K. We call the set

PP

m

(�) = f q : [a; b]! IR j 8k ; 0 � k � n� 1;

9p

(k)

2 P

m

(K) ; p

(k)

(x) = q(x) 8x 2 K g (1)

as the piecewise polynomials space with degree � m de�ned in �. PP

m

(�) is

a linear space with dimension (m+1)n, and P

m

([a; b]) is a subset of PP

m

(�).

When we put interpolatory or smoothness conditions in PP

m

(�), we gen-

erate other spaces that are subspaces of PP

m

(�). We will consider two sub-

spaces of PP

3

(�), the cubic splines and cubic hermite functions spaces.

2 S

3

(�) Space

Given a partition � of [a,b], S

3

(�) is the set of all fuctions s 2 C

2

[a; b]

that reduces to cubic polynomials at each interval [x

k

; x

k+1

] ; 0 � k � n� 1.

These functions are called cubic splines. We can also de�ne S

3

(�) as

S

3

(�) = PP

3

(�) \ C

2

[a; b] (2)

Since splines are twice continuously di�erentiable, they're suitable to

approximation problems, especially this interpolation problem: Given f 2

C

1

[a; b], �nd s 2 PP

3

(�) so that

1. s(x

i

) = f(x

i

) ; x

i

2[a,b] , 0 � i � n;

2. s

0

(x

o

) = f

0

(x

o

) and s

0

(x

n

) = f

0

(x

n

);

3. s is twice continuously di�erentiable,

It can be shown that there is a unique s 2 S

3

(�) satifying all conditions

above, and that the dimension of S

3

(�) is n+ 3.

2

3 H

3

(�) space

Let's �rst de�ne this space as follows :

Consider f 2 C

1

[a; b] and � a partition of [a; b]. There is a unique

function s 2 PP

3

(�) satisfying the following interpolation problem :

f

(j)

(x

i

) = s

(j)

(x

i

); 0 � i � n and j = 0; 1 (3)

Functions s 2 PP

3

(�) satisfying this property are called cubic Hermite

functions, and the space spanned by them is denoted by H

3

(�). It can be

shown that the dimension of H

3

(�) is 2(n + 1).

In the following we will summarize the local basis to H

3

(�) space (see

[1]). A local basis covers a single arbitrary subinterval (or element), while

the global basis covers all the partition. The use of a local basis instead

a global one, associated with master and real elements is typical of �nite

element computations; that idea will be helpful in this work.

3.1 Local Basis in the Master Element

When we deal with functions if one real variable, the master element is

the interval [-1,1], that we will denote by

^

K.

s(t) j

^

K

=

4

X

i=1

�

i

^

�

i

(t); t 2 [�1; 1] ; (4)

^

�

1

(t) = (2 + t)(1� t)

2

� 0:25 (5)

^

�

2

(t) = (1 + t)(1� t)

2

� 0:25 (6)

^

�

3

(t) = (2� t)(1 + t)

2

� 0:25 (7)

^

�

4

(t) = (t� 1)(1 + t)

2

� 0:25 (8)

This basis will be helpful for computation tasks.

3.2 Local Basis in the Real Element

The real element is a generic interval [x

k

; x

k+1

] of the partition �.

s(x) j

K

=

4

X

i=1

�

i

�

i(k)

(x); x 2 [x

k

; x

k+1

] (9)

3

�

1(k)

(x) =

(x

k+1

� x)

2

(x

k+1

� x

k

)

3

[2(x� x

k

) + (x

k+1

� x

k

)] (10)

�

3(k)

(x) =

(x� x

k

)

2

(x

k+1

� x

k

)

3

[2(x

k+1

� x) + (x

k+1

� x

k

)] (11)

�

2(k)

(x) =

(x� x

k+1

)

2

(x� x

k

)

(x

k+1

� x

k

)

2

(12)

�

4(k)

(x) =

(x� x

k

)

2

(x� x

k+1

)

(x

k+1

� x

k

)

2

(13)

3.3 Master and Real Elements Connection

We de�ne the transformation

F: [-1,1] �! [x

k

; x

k+1

]

t 7�! F(t) = at+ b, satisfying

(

F(�1) = x

k

F(1) = x

k+1

We have a =

x

k+1

�x

k

2

and b =

x

k

+x

k+1

2

.

F associates to each point t of [-1,1] another point x in [x

k

; x

k+1

] . We

can now associate the functions

^

�

i

with those de�ned in [x

k

; x

k+1

]. Setting

x = F(t):

8

>

<

>

:

�

i

(x) =

^

�

i

(t) ; t 2 [�1; 1] ; i = 1; 3

�

i

(x) =

^

�

i

(t) � a ; t 2 [�1; 1] ; i = 2; 4

(14)

Derivating twice with respect to t, we have :

8

>

<

>

:

d

2

dx

2

�

i

(x) =

d

2

dt

2

^

�

i

(t)

1

a

2

; i = 1; 3

d

2

dx

2

�

i

(x) =

d

2

dt

2

^

�

i

(t)

1

a

; i = 2; 4

(15)

4

4 Relation between H

3

(�) and S

3

(�)

We can de�ne H

3

(�) in a generic way. By the last de�nition, all functions

belonging to this space are necessarily C

1

, since on the possible descontinuity

points { the nodes of � { we have a continuity restriction (due to interpolatory

conditions).

It sugests another way to de�ne H

3

(�) :

H

3

(�) = PP

3

(�) \ C

1

[a; b] (16)

Since every C

2

function is also a C

1

function (C

2

[a; b] � C

1

[a; b]), we expect

that every cubic spline is also a cubic Hermite. The following theorem, that

uses standard arguments from interpolation proofs, stabilishes that S

3

(�) �

H

3

(�).

Theorem 1. For all f 2 S

3

(�) there is a unique s 2 H

3

(�) so that f = s.

Proof. Let f 2 S

3

(�) and s 2 H

3

(�) be so that

s

(j)

(x

i

) = f

(j)

(x

i

); 0 � i � n and j = 0; 1 (s is unique) (17)

De�ning g = f � s , we have:

� g 2 PP

3

(�); since f; s 2 PP

3

(�)

� g; g

0

are continous, since f and s 2 C

1

[a; b]

� g(x

i

) = g

0

(x

i

) = 0 ; 0 � i � n

By Rolle Theorem,

g

0

(�x

k

) = 0; x

k

� �x

k

� x

k+1

; 0 � k � n� 1 (18)

Therefore, points x

0

; �x

0

; x

1

; : : : ; �x

n�1

; x

n

are roots of g

0

, so in each subin-

terval [x

k

; x

k+1

] ; g

0

j

K

have three roots: x

k

, �x

k

and x

k+1

, 0 � k � n� 1.

As g

0

j

K

is a polynomial with degree two, by the Algebraic Fundamental

Theorem, g

0

j

K

� 0, 0 � k � n� 1 .

As g

0

j

K

� 0, g j

K

is a polynomial with degree one. But in each subinter-

val [x

k

; x

k+1

] the function g have two roots: x

k

and x

k+1

, and by Algebraic

Fundamental Theorem, g j

K

� 0 , 0 � k � n� 1 .

Therefore, g � 0 and f = s.

5

5 Deriving the Cubic Splines

We will �nd the splines selecting a subset of H

3

(�), according to the last

result. The selecting criterion will be the continuity of the second derivative

at each interior point x

k

of the partition �:

d

2

dx

2

s

�

(x

k

) =

d

2

dx

2

s

+

(x

k

) ; 1 � k � n� 1 ; (19)

where s

�

(x) = s(x) j

K�1

and s

+

(x) = s(x) j

K

.

Setting with the local basis

S(x) j

K

= y

k

�

1(k)

(x) + y

k+1

�

3(k)

(x) + �

k

�

2(k)

(x) + �

k+1

�

4(k)

(x) ; (20)

we have from (19):

y

k�1

d

2

dx

2

�

1(k�1)

(x

k

) + y

k

d

2

dx

2

�

3(k�1)

(x

k

) + �

k�1

d

2

dx

2

�

2(k�1)

(x

k

)+

+�

k

d

2

dx

2

�

4(k�1)

(x

k

) = y

k

d

2

dx

2

�

1(k)

(x

k

) + y

k+1

d

2

dx

2

�

3(k)

(x

k

)+

+�

k

d

2

dx

2

�

2(k)

(x

k

) + �

k+1

d

2

dx

2

�

4(k)

(x

k

) (21)

Instead operating with the functions �

i

, we will do all computations on

master element, and then use the transformation de�ned on section 3.3 .

Procceding this way,

d

2

dx

2

^

�

1

(t) =

3

2

t

d

2

dx

2

^

�

2

(t) =

3t�1

2

d

2

dx

2

^

�

3

(t) =

�3

2

t

d

2

dx

2

^

�

4

(t) =

3t+1

2

(22)

De�ning h

k

= x

k+1

� x

k

, we can write (15) as:

8

>

>

<

>

>

:

d

2

dx

2

�

i(k)

(x) =

d

2

dx

2

^

�

i

(t)

4

h

2

k

; i = 1; 3

d

2

dx

2

�

i(k)

(x) =

d

2

dx

2

^

�

i

(t)

2

h

; i = 2; 4

(23)

It follows that:

d

2

dx

2

�

1(k)

(F (t)) =

6

h

2

k

t

d

2

dx

2

�

2(k)

(F (t)) =

3t�1

h

k

d

2

dx

2

�

3(k)

(F (t)) =

�6

h

2

k

t

d

2

dx

2

�

4(k)

(F (t)) =

3t+1

h

k

(24)

6

As F(-1) = x

k

and F(1) = x

k+1

:

d

2

dx

2

�

1(k)

(x

k

) =

�6

h

2

k

and

d

2

dx

2

�

1(k)

(x

k+1

) =

6

h

2

k

d

2

dx

2

�

2(k)

(x

k

) =

�4

h

k

and

d

2

dx

2

�

2(k)

(x

k+1

) =

2

h

k

d

2

dx

2

�

3(k)

(x

k

) =

6

h

2

k

and

d

2

dx

2

�

3(k)

(x

k+1

) =

�6

h

2

k

d

2

dx

2

�

4(k)

(x

k

) =

�2

h

k

and

d

2

dx

2

�

4(k)

(x

k+1

) =

4

h

k

(25)

The procedure for [x

k�1

; x

k

] is the same, but h

k�1

replaces h

k

.

Updating (21), for 1 � k � n� 1, we have:

6y

k�1

h

2

k�1

�

6y

k

h

2

k�1

+

2�

k�1

h

k�1

+

4�

k

h

k�1

=

�6y

k

h

2

k

+

6y

k+1

h

2

k

�

4�

k

h

k

�

2�

k+1

h

k

(26)

These restrictions will cause loss of freedom degrees, that is, some unknowns

will be combination of others, so that S

3

(�) will have a dimension lower than

H

3

(�), as we have expected.

The coe�cients y

i

and �

i

, 0 � i � n, are related to the interpolation of

the function and the derivative, respectively (according to the de�nition of

H

3

(�)). As most of the problems involves interpolation of the function, it is

convenient to �nd the unknowns �

i

as combinations of y

i

.

Rearranging (26) :

h

k

�

k�1

+ 2(h

k

+ h

k�1

)�

k

+ h

k�1

�

k+1

= f(y

k

) ; 1 � k � n� 1 ; (27)

where f(y

k

) is given by:

f(y

k

) = 3

"

�h

k

h

k�1

y

k�1

+

h

k

h

k�1

�

h

k�1

h

k

!

y

k

+

h

k�1

h

k

y

k+1

#

(28)

We have n-1 equations and n+1 unknowns. There are two frequent ways

to supply the remaining equations: extending the partition � with two arti-

�cial nodes, one in the right, other in the left, or restrict the derivative on

the extreme nodes, x

0

and x

n

(allowing interpolant conditions at s

0

(x

0

) and

s

0

(x

n

)). We use the last one:

s

0

(x

0

) = �y

0

! �

0

= �y

0

s

0

(x

n

) = �y

n

! �

n

= �y

n

(29)

7

The equalities in (29) suggest us to eliminate the unknowns �

0

and �

n

from the system. The reduced system in the matrix form A:x = b is:

A =

2

6

6

6

6

6

6

6

6

6

4

2(h

1

+ h

0

) h

0

0

h

2

2(h

2

+ h

1

) h

1

.

.

.

.

.

.

h

n�2

2(h

n�2

+ h

n�3

) h

n�3

0 h

n�1

2(h

n�1

+ h

n�2

)

3

7

7

7

7

7

7

7

7

7

5

(30)

x = (�

1

; �

2

; : : : ; �

n�2

; �

n�1

)

T

(31)

y = (f(y

1

)� h

1

�y

n

; f(y

2

) ; : : : ; f(y

n�2

) ; f(y

n�1

)� h

n�2

�y

n

)

T

(32)

Observe that

j a

i;i

j = j 2(h

i

+ h

i�1

) j > h

i

+ h

i�1

� j a

i;i�1

j+ j a

i;i+1

j (33)

As a

i;j

= 0; j i� j j > 1,

j a

i;i

j >

X

j 6=i

j a

i;j

j ; (34)

that is, the matrix A is strictly diagonally dominant by column, so it is non

singular. Therefore the system above have a unique solutuion, and �

i

are

completely determined by �y

0

, y

i

; 0 � i � n e �y

n

.

6 Conclusion

In the following we present an algorithm that uses the method above,

written for the software MATLAB

c

. Two subroutines (solvetrd.m and

basis.m) join the main function (h spline.m). There is also an example of

spline interpolation using these routines. Therefore the derivation of splines

presented not only serves as a learning alternative but also provides another

computer method for applications envolving splines.

8

function h spline(x,y)

% h spline(x,y) : spline interpolation using hermite functions

% x : nodes of the partition

% y : interpolation table; the 1st and the last ones interpolate

% the derivative at the extremal points

% Setting parameters

n = length(x) - 1;

if(length(y) =n+3)

error('Wrong input arguments: x and y are not compatible');

end

m = 16; % spacing parameter for the plot

% The tridiagonal linear system (See equations (30) to (32))

% Computing h

for k = 1:n

h(k) = x(k+1) - x(k);

end

% Computing the rigth hand size (See equations (28) and (32))

b(1) = y(1);

for k = 1:n-1

aux = h(k+1)/h(k);

aux2 = 1/aux;

b(k) = 3*(-aux*y(k+1) + (aux-aux2)*y(k+2) + aux2*y(k+3));

end

b(1) = b(1) - h(2)*y(1);

9

b(n-1) = b(n-1) - h(n-1)*y(n+3);

% Computing the diagonals of the system matrix

for i=1:n-2

Sub(i) = h(i+2);

Diag(i+1) = 2*(h(i+1) + h(i));

Sup(i) = h(i);

end

Diag(n-1) = 2*(h(n) + h(n-1));

% Computing the variables sigma

sigma(1) = y(1);

sigma(2:n) = solvetrd(Sub,Diag,Sup,b);

sigma(n+1) = y(n+3)

% Assembling and drawing the solution

% Definig the domain in the variable t

j = 1;

for k = 1:n

t(j) = x(k);

j = j + 1;

Spacing = h(k)/m;

for i = 1:m-1

t(j) = t(j-1) + Spacing;

j = j + 1;

end

end

t(j) = x(n+1); % the last point of the domain

n t = j; % dimension of t

10

% assembling the solution with the hermite local basis

% see equation (20)

j = 1;

for k = 1:n

for i = 1:m

phi = basis(t(j),k,x,h);

aux = y(k+1)*phi(1) + y(k+2)*phi(3);

spl(j) = aux + sigma(k)*phi(2) + sigma(k+1)*phi(4);

j = j + 1;

end

end

spl(n t) = y(n+2);

% drawing

plot(t,spl,x,y(2:n+2),'o');

function [phi] = basis(xo,k,x,h)

% basis : hermite functions local basis evaluated at x = xo

% See equations (10) to (13)

% The solution is returned in the vector phi

% xo : point of evaluation

% k : subinterval index

% x : partition vector

% h : h(k) = x(k+1) - x(k)

aux = x(k+1) - xo;

aux2 = xo - x(k);

phi(1) = aux^2*(2*aux2 + h(k))/h(k)^3;

11

phi(2) = aux^2*aux2/h(k)^2;

phi(3) = aux2^2*(2*aux + h(k))/h(k)^3;

phi(4) = -aux*aux2^2/h(k)^2;

function x = solvetrd(Sub,Diag,Sup,b);

% solvetrd : tridiagonal system solver

% The solution is returned in x

% Sub : lower diagonal

% Diag : main diagonal

% Sub : upper diagonal

% b : right hand side

N = length(b);

% forward elimination

for i = 2:N

Diag(i) = Diag(i) - Sup(i-1)*Sub(i-1)/Diag(i-1);

b(i) = b(i) - b(i-1)*Sub(i-1)/Diag(i-1);

end

% back substitution

x(N) = b(N)/Diag(N);

for i = 1:N-1

x(N-i) = (b(N-i) - Sup(N-i)*x(N-i+1))/Diag(N-i);

end

12

7 References

[1] P. M. Prenter - Splines and Variational Methods, 1975,

John Wiley & Sons.

[2] George E. Forsythe - Computer Methods for Mathematical Computations,

1977, Prentice-Hall.

[3] Larry L. Schumacker - Spline Funcions: Basic Theory, 1981,

John Wiley & Sons.

13

