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Abstract

In this paper we study the problem

-Apu = f(z,u,Vu) in
u = 0 on 0,

where Q@ C RN is a smooth bounded domain, N > 2 and
Apu = div(] Vu |72 Vu) defines the p—Laplacian. We provide
some necessary and sufficient conditions on f under which the problem ad-
mits a weak solution. For the case p =2 we obtain more general conditions
on f. The main ingredients are Degree Theory and super-subsolution method.
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1 INTRODUCTION

During the past thirty years many mathematicians have been investigating quasi-
linear elliptic problems of the type

{ —Lu = f(r,u,Vu) in (1.1)
u = 0 on  0f), '
where € is a smooth bounded domain in RN, N > 2, £ is a uniformly
elliptic operator of second order verifying the strong maximum principle and
f:QxRxRY — IR is a Carathéodory function satisfying appropriate growth
conditions. These studies have contributed for a better understanding of several
questions related to (1.1) as, for example, regularity, existence and nonexistence of
solution. In the literature, problem (1.1) is known to be critical in the gradient
if f has quadratic growth in the gradient. This is a reasonable assumption when
we are seeking for a solution. In fact, Serrin [14] has proved that if f have a
superquadratic growth in the gradient, then given any smooth domain there is a
smooth data f for which (1.1) does not admit solution. On the other hand, several
authors have obtained results on existence of solution when f has critical growth
in the gradient. For instance, see [1], [3], [5], [8], [9], [12], [13] and [16]. Part of these
works are concerned to the question of existence when f interacts in some sense
with the first eigenvalue of L, see especifically [5], [9] and [16]. The basic tools
that have been used are a priori estimates, Degree Theory and super-subsolution

method.
Now let us set the problem

{_AP“ = f(@,u,Vu) in  Q (1.2)

u = 0 on  0f),

where Q is asin (1.1) and Ayu = div(] Vu [P72 Vu) denotes the p—Laplacian
with 1 <p < 0.

Problems of form (1.2) arise naturally as stationary states of certain models in Fluids
Mechanics. Therefore, it is important to obtain information about the existence and
nonexistence of solutions for this problem. Similarly, the problem (1.2) is said to be
critical in the gradient if f has a growth of power p in the gradient. In this case,
some authors have presented various results on existence of weak solution for (1.2),



see [4] and [6]. However, it has not been analysed what occurs when f interacts
with the spectrum of the p—Laplacian. In the present work, we obtain several
results on existence of weak solutions under assumptions that relate f and the first
eigenvalue \; of the p—Laplacian. Some of these results have not been considered
even when p = 2. Getting a complete understanding, we provide necessary and
sufficient conditions for existence of positive weak solutions. For example, we show
that the problem

1+ ku

A = —— | Vu P+ b1+ ku)Pt i
u = 0 on 01,

where a,b > 0 and k > 0 are constants, admits a positive weak solution if and
only if (k(p—1) + a)?'b < (p—1)P"*)\;. Hence,

—Ayu = a|VulP+b in Q
u = 0 on 01,

has a positive weak solution if and only if a?~'b < (p — 1)P7')\,. Besides, we give
sufficient conditions under which the problem

Ay = %'V“ P+ bt in Q
u = 0 on  0f),

possesses a positive weak solution. When p = 2, we discuss the existence of weak so-
lutions under more general hypotheses on f. In particular, we investigate equations
of the type

—Au = a(z,u) | Vu|? + blz,u) in Q
u = 0 on  OfL

The outline of the paper is as follows. In section 2 we provide necessary and sufficient
non-ressonance conditions for the existence of positive weak solutions for (1.2). In
section 3 we show some results on existence of positive weak solutions for problems
subject to other non-ressonance conditions. Finally, in section 4 we analyse the
problem (1.2) in the case p = 2. In particular, we give more general sufficient
conditions than those of the section 2. Our arguments are based on Diaz and Saa
inequality [7], Degree Theory and super-subsolution method.

2 EXISTENCE AND NONEXISTENCE OF
POSITIVE SOLUTIONS



Throughout the paper € denotes a bounded domain of class C? belonging to
RN, N>2 and 1<p< oo is a real number.

In this section we search for necessary and sufficient conditions for existence of
positive weak solutions for the problem

{ —Apu = a(u) |Vu P+ b(xr,u) in Q

u = 0 on 09, (2.1)

where a: IR, — IR, is a continuous function, R, = [0,+0c0) and b:Qx R, —
IR, is a Carathéodory function, that is, for a.e. x € Q the function b(x,.) is
continuous and for every s € IR the function b(., s) is measurable. As a consequence
we obtain the existence of nonegative weak solutions for Dirichlet problems of the
form (1.2) subject to certain non-ressonance conditions.

Before stating our first result, let us consider the problem

—Ayv = g(x,v) in
{ v = 0 on 012, (2.2)

where ¢:Q x IR, — IR, is a Carathéodory function verifying
g(x,s) < e(sP7' + 1) for every v €Q ae., s>0 and some constant ¢ > 0.

The following result is taken from [2]:

Lemma 2.1 Suppose

limsup M
s—+00 sp=1

< Ay, uniformly for z € Q a.e.

Then (2.2) admits, at least, one nonegative weak solution in C*(2).

We say that u € C*(Q) is a weak solution (supersolution, subsolution) of (1.2) if
f(u(t),Vu(+)) € L}, (), u=0 on 9Q and

/Q|Vu P2 Vu-Vo¢ dr = (>, <) /Qf(x,u,Vu)¢ dx

for every ¢ € C}(Q2) with ¢ >0 in Q.
Let H: IR, — IR, be defined by

H(t) = /Ot exp (2% /0 a(r)dr) ds |
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Assume that the pair (a, b) satisfies

H'(t)P~b(x, t)
H.1 i
(H.1) - limsup —m

< Ay, uniformly for z € Q a.e.,

(H.2) there are constants ¢,k > 0 such that H'(t)P"'b(x,t) < cH(t)P™!
for x € Q a.e. and t >k,

(H.3) sup b(-,t) € L>(Q).
te[0,k]

Proposition 2.1 If (H.1), (H.2) and (H.3) are fulfilled, then (2.1) admits, at
least, one nonegative weak solution.

Proof: Since H'(t) > 1 for ¢ >0, then
H(t) - +00 as t — 400 (2.3)

Define g(z,s) = (H'(H (s)))" "b(x, H'(s)). From (2.3) and (H.1), it follows
that

limsup G
s—+00 S -1

< A1, uniformly for z € Q a.e.

Futhermore, by (H.2) and (H.3), there exists ¢ > 0 such that
g(x,5) < c(sPt + 1) for every 1 €Q ae and s>0.

By Lemma 2.1, (2.2) admits a nonegative weak solution v € C*(Q). So, defining
u = H™'(v), we conclude that u is a nonegative weak solution of (2.1). m

Let a, ¢: IRy — IR, be continuous functions and b, d : 2 x Ry — IR, be
Carathéodory functions such that a(t;) < c(ty) and b(z,t) < d(zx,ty) for every
r €Q ae. and ty,ty > 0.

Suppose
(H4) a@) € +0(z,t) < flz,t,§) < c(t) [P + d(,t)

for every € ae.,t>0and £ € RN,

Theorem 2.1 Assume (H.4) with (a,b) and (¢, d) satistying (H.1), (H.2) and
(H.3). Then (1.2) admits, at least, one nonegative weak solution.
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Proof: Let u, u € C*(Q)) be nonegative weak solutions of problems

{—Apu = a(u) | VulP +b(z,u) in Q
0

u = on 0f2,
-Ayu = c(@) |Vul|P+dx,u) in Q
u = 0 on Of)

By (H.4) and the comparison principle, we conclude that u is a subsolution of (1.2),
U is a supersolution of (1.2) and u < @ in (. Therefore, by C1*(Q) estimates
in [11] and monotonic iteration, one concludes that there exists u € C*(Q) , which
is a weak solution of (1.2) with v < v < T. =

Now let us give necessary conditions for the existence of positive weak solution for
(2.1).

Assume

(H.5) H'(t) 'o(x,t) > MH(t)P! for 2 €Q ae. and t >0,

(H.6) H'(t)’"'b(x,t) > MH(t)P"! for x in a subset of positive measure of
and t>0.

Proposition 2.2 If (H.5) and (H.6) are satisfied, then (2.1) does not admit
positive weak solution.

Proof: Suppose, by contradiction, that (2.1) admits a positive weak solution u €
C'(Q). Define v = H(u). Then v is a positive weak solution of (2.2), where
g(x,s) is as in the proof of Proposition 2.1. In addition, by (H.5) and (H.6), one
gets

g(v()) > AP ) in Q ae. :
g(,v(-)) > AP !(-) in a subset of positive measure of Q . (2.5)
Let ¢, be a positive eigenfunction associated to A; such that ¢; > v in €. Since

©r P
p—1’ p—1
v P1

b — P p_ P
O N S
“ ¥ Q 4

1

€ WyP(Q), we can write




From Diaz and Saa inequality [7], we know that I > 0. On the other hand, from
(2.4) and (2.5), we obtain

D= [ - + [ S0 g
Q o ovPl

pp—1

- /Qul—g(””’”))(sof—w)dx <0,

a contradiction. m

Example 2.1 Let us consider the problem

{—Apu = a|VulP+b in Q

u = 0 on 01, (2.6)

where a,b > 0 are constants. Then, by Propositions 2.1 and 2.2, (2.6) admits a
positive weak solution if and only if

a? b < (p—1)P A

Example 2.2 More generally, set the following problem

+ ku

1 (2.7)
u = 0 on 01,

{—Apu = % | VuP+b1+k) i Q

where a,b >0 and k > 0 are constants. Then, by Propositions 2.1 and 2.2, (2.7)
possesses a positive weak solution if and only if

(k(p—1) + a)P™'b < (p—1)P"1); .
Example 2.3 Consider the following problem

(14 u)
u = 0 on  0f),

{ A = ———— | VuP+b(l+uP T in 2.

where a,b > 0 and « > 1 are constants. Then, by an extension of L’Hospital’s
rule and Propositions 2.1 and 2.2, it is easy to conclude that (2.8) has a positive
weak solution if and only if b < A;.



3 EXISTENCE OF POSITIVE SOLUTIONS
UNDER OTHER NON-RESSONANCE
CONDITIONS

In this section we need the following result which is a consequence of the Degree
Theory in cones:

Lemma 3.1 Suppose

(2, 5)

(4) liminf gspﬁ > Ay, uniformly for z € Q a.e.,

§—+00
: T, 8
(i) thlip g(p: ) < A1, uniformly for z € Q ae.
5—0 S

Then (2.2) admits, at least, one positive weak solution in C*(Q).

Proof: At first, one shows that there exists ¢ > 0 such that ||u||Wg,p(Q) <c
for every nonegative weak solution w of (2.2). This is done by contradiction,
supposing that there is a sequence of nonegative weak solutions wu, such that
||un||W01,p(Q) — 00. Dividing the equation by its norms and taking the limit, one
arrives at the following relation

Ay = gzt in Q
v > 0 in Q
v = 0 on 01},
where v is, up to a subsequence, the weak limit of W, g € L*(Q)) and,
" P (Q)

by (i), g(z) > Ay for x € Q a.e. Using Diaz and Saa inequality [7], it is easy
to verify that v = 0 in (2, otherwise it must change sign. On the other hand,
taking wu, as a test function in the equation satisfied by wu,,, dividing by its norms
to the power of p and letting n — 0o, one gets a contradiction. The next step is
considering the cone C = {u € Wy?(Q) : u > 0in Q} and defining the homotopy
H:[0,400) x C = C by v=H(t,u), where
—Ayv = g(r,u) +t in  Q
v = 0 on 0f)

Let T(u) = H(0,u). Using (ii), one concludes that there exists 7 > 0 such that
uw # tT(u) for every ¢t € [0,1] and w € C' with ||u||Wg,p(Q) = r. In addition,
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suppose that there are t € [0,4+00) and uw € C satisfying v = H(t,u). Using (i),
one obtains
—Apju> AP+t —c in Q

with A > A;. Assuming ¢ > ¢ and again applying the Diaz and Saa inequality [7],
one concludes that v = 0 in (), contradicting ¢ > c¢. Hence, ¢t < c¢. Therefore,
there exists M > r such that ||u||Wg,p(Q) < M for every u € C satistying
w = H(t,u) for some t € [0,4+00). Now applying the result about expansion of
cones due to Krasnoselskii [10] we are done. =

Now, assume

(H.7)  liminf H @ b, )

H{p- > Ay, uniformly for z € a.e.,
t—+o00

: H'(t)?"'b(x, t
(H.8) llrtrljélp (h)f(t)P(lx, ) < A1, uniformly for z € Q a.e.
Proposition 3.1 If (H.2), (H.3), (H.7) and (H.8) are fulfilled, then (2.1) ad-
mits, at least, one positive weak solution.

Proof: Let g:Q x IR, — IR, be as in the proof of Proposition 2.1. By (H.7)
and (H.8), we get
(, )

g .
liminf —— > A1 and limsup
s—+oo sP s—07t sP

g(z, s)

-1

< )\17

both uniformly for # € Q a.e. Futhermore, by (H.2) and (H.3), there exists a
constant ¢ > 0 such that

g(z,s) < c(sP + 1) for x€Q ae and s>0.

Therefore, by Lemma 3.1, (2.2) admits a positive weak solution v € C*(Q). So,
defining u = H~'(v), we conclude that u is a positive weak solution of (2.1). m

Note that (H.8) implies u = 0 in © is also a solution of (2.1). By virtue of
Proposition 3.1 and with the aid of the auxiliar problem (2.1), a similar procedure
used in the proof of Theorem 2.1. allow us to sate the following result.

Theorem 3.1 Assume (H.4) with (a,b) and (c,d) satistying (H.2), (H.3),
(H.7) and (H.8). Then (1.2) admits, at least, one positive weak solution.



Example 3.1 Let us consider the equation

a(u) I
—Apu = [ ku | Vu [P + b~ in Q
u = 0 on  0f),

(3.1)

where a: IR, — IR, is a bounded continuous function and b,k > 0 are constants.
Clearly, u=0 in € is a trivial solution of (3.1). However, if

liminf a(t) = a,
t——+o00

b < A\

and

a Pl
S 1 b A
(k(p—n " > -

then, by Proposition 3.1, (3.1) admits a positive weak solution. In particular, if
1\P-1
(1——) AL < b < Aq,
p

then the problem

1+u

1
Ay = —— |[VulP+ bt in Q
u = 0 on 01},

has a positive weak solution.

4 THE CASE p=2

In this section we generalize Proposition 2.1 and Theorem 2.1 for p = 2. Consider
the problem
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—Av + iBi(x,v)Div + C(z,v)v = g(xz,v) in Q (A1)
v = 0 on 01,

where B;, C, ¢g:Q x IR — IR are Carathéodory functions.

The next lemma follows as a particular case of a result in [15].

Lemma 4.1 Assume

(¢) there is a constant ¢ > 0 such that |B;(z, s)|, |C(z, s)| < ¢ for x € Q a.e. and
se€ R

and define
J(v,v)
H1 = liminf 5 )
l[vll L2 () —+00 | v ||L2(Q)
v € W)
where

N
J(v,v) :/ | Vo |? dx —i—Z/ Bi(xz,v)Dyvvdx —I-/ C(z,v)v’dx .
Q —Jo Q
Then py € (—o0,+00). In addition, if

(¢¢) limsup g(w,s)

|s|—=>+o0 S

< pp, uniformly for x € a.e.,

(#77) there is a constant ¢; > 0 such that |g(z, s)| < ¢i(|s| + 1) for x € Q a.e.
and s € IR

then (4.1) admits, at least, one weak solution in C*(€).

Remark 4.1 There is ¢y > 0 such that if B, and C verify (i) of Lemma
4.1 with ¢y in place of ¢, then J >0, p; > 0 and the full elliptic operator of
the left-hand side of (4.1) satisfies the strong maximum principle. In this case, if
g:Q xR, — IR, , then Lemma 4.1 provides the existence of a nonegative weak
solution.
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Now let us discuss the following problem

{ —Au = a(z,u) | Vu |+ blz,u) in Q

u = 0 on 01, (4.2)

where a:Q x IR, — IR,, D;a, Dya:Q x IR, — IR are continuous functions and
b:Q xR, — IR, isa Carathéodory function, where D;a(x,t) = D,,a(x,t) and
Djia(x,t) = Dy,p,a(x, t).

Assume the assumption below

¢ ¢
(H.9) there is a constant k£ > 0 such that |/ D;a(z,r)dr|, |/ Dja(x,r)dr| < k
0 0
for every (z,t) € Q@ x R, .

Define H :Q x IRy — IR, by

H(z,t) = /Otexp (/Os a(:r,r)dr) ds .

Since H € C?*(QUx Ry) and DyH(x,t) > 1 for x € Q and ¢ > 0, by the Implicit
Function Theorem or, more precisely, Submersion Local Form Theorem, there exists
K € C*(Q x IRy) such that s = H(x,K(z,s)). Let

N
J(v,v) = /Q | Vo |? dz + Z/QBi(x,v)Divvdx —I—/QC(x,v)vzdx, for every v € Wy (%),
i=1

where

Bi(x,s) = 2H, (z, K(z, s))

Hy(z,K(x,s)) ’

(Hxiwi(x,K(x,s)) B 2Hwit(x,K(x,s))Hwi(x,K(x,s)))
s Hy(x,K(z,s))s '

C(z,s) = Z

=1

By (H.9), B; and C verify (i) of Lemma 4.1., so gy is finite. Suppose
J >0, up > 0 and the full elliptic operator of the left-hand side of (4.1) verifies
the strong maximum principle, see Remark 4.1.

Assume that b satisfies

H'(x,t)b(x,t
(H.10) limsup H'{w, blz, 1)

< p1, uniformly for x € Q a.e.,
t—+-+00 H(z,1t) = Y

(H.11) there are constants ¢,k > 0 such that H'(z,t)b(x,t) < cH(xz,t) for
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zeQ and t> k.

Proposition 4.1 If (H.3), (H.9), (H.10) and (H.11) are fulfilled, then (4.2)
admits, at least, one nonegative weak solution.

Proof: Define ¢g(x,s) = Hy(z, K(z,s))b(z, K(z,s)). From (H.3), (H.9), (H.10)
and (H.11), one has

x,S
limsup 9(z,5)
§——400 S

g(x,s) < c(s + 1), forallz € Q ae. and s>0.

< py, uniformly for z € Q a.e.,

By Lemma 4.1 and Remark 4.1, (4.1) admits a nonegative weak solution v €
CHQ) NW?2(Q). Now, denoting u = K(z,v) we get ue CHQ)NW?2P(Q), let us
verify that w satisfy (4.2). Indeed, since v(x) = H(z,u(z)) we get

U:Ei - H:cz + Ht u.’tia

va:ia:i - H:E;:El + 2H:Eltuiltl + Httuii + Htua:ia:i .

Then
N

Av = Z(Hwﬂiz + 2Hwitua:i) + Hy | Vu |2 +H;Au .
i=1
On the other hand, inserting v in the expression of B; and C' yields

N N
ZBi(x, v)Div + C(z,v)v = Z(me +2H,,uy,) .

i=1 =1
Consequently
N
—Av+ > Bi(z,v)Dyv + C(z,v)v = —Hy(z,u) | Vu [* —Hy(z,u)Au .
i—1

Since g(x,v) = Hy(z,u)b(z,u), it remains to note that Hy = a H;. »

Finally, let a, c¢: Q2 x IRy — IR, be continuous functions and b, d: Q@ x IRy — IR,
Carathéodory functions such that a(z,t) < ¢(z,t3) and b(z,t;) < d(z,ty) for every
x €Q ae. and ti,t, > 0.

Suppose

(H.12) a(z,t) [£]? +b(z,t) < f(2,1,8) < c(z,t) [£]* +d(z,1),
for every x € Q a.e. and t>0.

An analogous reasoning used in the proof of Theorem 2.1 produces the following
result:
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Theorem 4.1 Suppose (H.12) with (a,b) and (c,d) verifying (H.3), (H.9),
(H.10) and (H.11). Then (1.2) admits, at least, one nonegative weak solution.

When a(z,t) = a(t), one has B; = 0 = C. Consequently, p; = A;. Hence, when
p = 2, Proposition 4.1 and Theorem 4.1 generalize Proposition 2.1 and Theorem
2.1, respectively. We finish giving an example where the hypotheses of Proposition
2.1 are not necessarily satisfied, however, Proposition 4.1 applies.

Example 4.1 Let us set the following problem

¢ )a|Vu|2—|-b(x)(1+u) i Q

(ex
Ay = =
“ (14 u)
0 on 01,

(4.3)

u =
where o >0, a: IRY — IR, is a function of class C? such that D;a and Dja
are bounded functions in /RN and b:Q — IR, is a bounded measurable function.

If a(-)=a in RY and b(z) < A; uniformly for x € Q a.e., then, by Proposition
2.1, (4.3) admits a positive weak solution. On the other hand, if @ is not constant,
there exists ¢y > 0 such that the conditions given in Remark 4.1 hold for every
0 < e <egg. Hence, if 0 <e <gp and

b(x) < pi, uniformly for z € Q ae., (4.4)

then problem (4.3) possesses a positive weak solution. In particular, there is €5 > 0
such that if 0 <e < gy and (4.4) holds, then the problem

2 N g
A 008(56_?;3; %) | Vu | +b(x)(1+u) in Q

u = 0 on  0f),

has a positive weak solution.
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