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Abstra
t

In this paper we study the problem

(

��

p

u = f(x; u;ru) in 


u = 0 on �
;

where 
 � IR

N

is a smooth bounded domain, N � 2 and

�

p

u = div(j ru j

p�2

ru) de�nes the p�Lapla
ian. We provide

some ne
essary and suÆ
ient 
onditions on f under whi
h the problem ad-

mits a weak solution. For the 
ase p = 2 we obtain more general 
onditions

on f . The main ingredients are Degree Theory and super-subsolutionmethod.

�

This resear
h was partially supported by FUNCAP, Cear�a
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1 INTRODUCTION

During the past thirty years many mathemati
ians have been investigating quasi-

linear ellipti
 problems of the type

(

�Lu = f(x; u;ru) in 


u = 0 on �
;

(1.1)

where 
 is a smooth bounded domain in IR

N

; N � 2; L is a uniformly

ellipti
 operator of se
ond order verifying the strong maximum prin
iple and

f : 
 � IR � IR

N

! IR is a Carath�eodory fun
tion satisfying appropriate growth


onditions. These studies have 
ontributed for a better understanding of several

questions related to (1.1) as, for example, regularity, existen
e and nonexisten
e of

solution. In the literature, problem (1.1) is known to be 
riti
al in the gradient

if f has quadrati
 growth in the gradient. This is a reasonable assumption when

we are seeking for a solution. In fa
t, Serrin [14℄ has proved that if f have a

superquadrati
 growth in the gradient, then given any smooth domain there is a

smooth data f for whi
h (1.1) does not admit solution. On the other hand, several

authors have obtained results on existen
e of solution when f has 
riti
al growth

in the gradient. For instan
e, see [1℄, [3℄, [5℄, [8℄, [9℄, [12℄, [13℄ and [16℄. Part of these

works are 
on
erned to the question of existen
e when f intera
ts in some sense

with the �rst eigenvalue of L, see espe
i�
ally [5℄, [9℄ and [16℄. The basi
 tools

that have been used are a priori estimates, Degree Theory and super-subsolution

method.

Now let us set the problem

(

��

p

u = f(x; u;ru) in 


u = 0 on �
;

(1.2)

where 
 is as in (1.1) and �

p

u = div(j ru j

p�2

ru) denotes the p�Lapla
ian

with 1 < p <1.

Problems of form (1.2) arise naturally as stationary states of 
ertain models in Fluids

Me
hani
s. Therefore, it is important to obtain information about the existen
e and

nonexisten
e of solutions for this problem. Similarly, the problem (1.2) is said to be


riti
al in the gradient if f has a growth of power p in the gradient. In this 
ase,

some authors have presented various results on existen
e of weak solution for (1.2),
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see [4℄ and [6℄. However, it has not been analysed what o

urs when f intera
ts

with the spe
trum of the p�Lapla
ian. In the present work, we obtain several

results on existen
e of weak solutions under assumptions that relate f and the �rst

eigenvalue �

1

of the p�Lapla
ian. Some of these results have not been 
onsidered

even when p = 2. Getting a 
omplete understanding, we provide ne
essary and

suÆ
ient 
onditions for existen
e of positive weak solutions. For example, we show

that the problem

8

<

:

��

p

u =

a

1 + ku

j ru j

p

+ b(1 + ku)

p�1

in 


u = 0 on �
;

where a; b > 0 and k � 0 are 
onstants, admits a positive weak solution if and

only if (k(p� 1) + a)

p�1

b < (p� 1)

p�1

�

1

. Hen
e,

(

��

p

u = a j ru j

p

+ b in 


u = 0 on �
;

has a positive weak solution if and only if a

p�1

b < (p� 1)

p�1

�

1

. Besides, we give

suÆ
ient 
onditions under whi
h the problem

8

>

<

>

:

��

p

u =

a(u)

1 + ku

j ru j

p

+ bu

p�1

in 


u = 0 on �
;

possesses a positive weak solution. When p = 2, we dis
uss the existen
e of weak so-

lutions under more general hypotheses on f . In parti
ular, we investigate equations

of the type

(

��u = a(x; u) j ru j

2

+ b(x; u) in 


u = 0 on �
:

The outline of the paper is as follows. In se
tion 2 we provide ne
essary and suÆ
ient

non-ressonan
e 
onditions for the existen
e of positive weak solutions for (1.2). In

se
tion 3 we show some results on existen
e of positive weak solutions for problems

subje
t to other non-ressonan
e 
onditions. Finally, in se
tion 4 we analyse the

problem (1.2) in the 
ase p = 2. In parti
ular, we give more general suÆ
ient


onditions than those of the se
tion 2. Our arguments are based on D��az and Saa

inequality [7℄, Degree Theory and super-subsolution method.

2 EXISTENCE AND NONEXISTENCE OF

POSITIVE SOLUTIONS
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Throughout the paper 
 denotes a bounded domain of 
lass C

2

belonging to

IR

N

; N � 2 and 1 < p <1 is a real number.

In this se
tion we sear
h for ne
essary and suÆ
ient 
onditions for existen
e of

positive weak solutions for the problem

(

��

p

u = a(u) j ru j

p

+ b(x; u) in 


u = 0 on �
;

(2.1)

where a : IR

+

! IR

+

is a 
ontinuous fun
tion, IR

+

= [0;+1) and b : 
� IR

+

!

IR

+

is a Carath�eodory fun
tion, that is, for a.e. x 2 
 the fun
tion b(x; :) is


ontinuous and for every s 2 IR the fun
tion b(:; s) is measurable. As a 
onsequen
e

we obtain the existen
e of nonegative weak solutions for Diri
hlet problems of the

form (1.2) subje
t to 
ertain non-ressonan
e 
onditions.

Before stating our �rst result, let us 
onsider the problem

(

��

p

v = g(x; v) in 


v = 0 on �
;

(2.2)

where g : 
� IR

+

! IR

+

is a Carath�eodory fun
tion verifying

g(x; s) � 
(s

p�1

+ 1) for every x 2 
 a:e:; s � 0 and some 
onstant 
 > 0:

The following result is taken from [2℄:

Lemma 2.1 Suppose

limsup

s!+1

g(x; s)

s

p�1

< �

1

; uniformly for x 2 
 a:e:

Then (2.2) admits, at least, one nonegative weak solution in C

1

(
).

We say that u 2 C

1

(
) is a weak solution (supersolution, subsolution) of (1.2) if

f(�; u(�);ru(�)) 2 L

1

lo


(
); u = 0 on �
 and

Z




j ru j

p�2

ru � r� dx = (�; �)

Z




f(x; u;ru)� dx

for every � 2 C

1

0

(
) with � � 0 in 
.

Let H : IR

+

! IR

+

be de�ned by

H(t) =

Z

t

0

exp

 

1

p� 1

Z

s

0

a(r)dr

!

ds :
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Assume that the pair (a; b) satis�es

(H.1)

limsup

t!+1

H

0

(t)

p�1

b(x; t)

H(t)

p�1

< �

1

; uniformly for x 2 
 a:e:,

(H.2) there are 
onstants 
; k > 0 su
h that H

0

(t)

p�1

b(x; t) � 
H(t)

p�1

for x 2 
 a:e: and t � k,

(H.3)

sup

t2[0;k℄

b(�; t) 2 L

1

(
) .

Proposition 2.1 If (H.1), (H.2) and (H.3) are ful�lled, then (2.1) admits, at

least, one nonegative weak solution.

Proof: Sin
e H

0

(t) � 1 for t � 0, then

H(t)! +1 as t! +1 : (2.3)

De�ne g(x; s) = (H

0

(H

�1

(s)))

p�1

b(x;H

�1

(s)). From (2.3) and (H.1), it follows

that

limsup

s!+1

g(x; s)

s

p�1

< �

1

; uniformly for x 2 
 a:e:

Futhermore, by (H.2) and (H.3), there exists 
 > 0 su
h that

g(x; s) � 
(s

p�1

+ 1) for every x 2 
 a:e and s � 0 :

By Lemma 2.1, (2.2) admits a nonegative weak solution v 2 C

1

(
). So, de�ning

u = H

�1

(v), we 
on
lude that u is a nonegative weak solution of (2.1).

Let a; 
 : IR

+

! IR

+

be 
ontinuous fun
tions and b; d : 
 � IR

+

! IR

+

be

Carath�eodory fun
tions su
h that a(t

1

) � 
(t

2

) and b(x; t

1

) � d(x; t

2

) for every

x 2 
 a:e: and t

1

; t

2

� 0.

Suppose

(H.4) a(t) j � j

p

+ b(x; t) � f(x; t; �) � 
(t) j � j

p

+ d(x; t)

for every x 2 
 a:e: , t � 0 and � 2 IR

N

.

Theorem 2.1 Assume (H.4) with (a; b) and (
; d) satisfying (H.1), (H.2) and

(H.3). Then (1.2) admits, at least, one nonegative weak solution.
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Proof: Let u; u 2 C

1

(
) be nonegative weak solutions of problems

(

��

p

u = a(u) j ru j

p

+ b(x; u) in 


u = 0 on �
;

(

��

p

u = 
(u) j ru j

p

+ d(x; u) in 


u = 0 on �


By (H.4) and the 
omparison prin
iple, we 
on
lude that u is a subsolution of (1.2),

u is a supersolution of (1.2) and u � u in 
. Therefore, by C

1;�

(
) estimates

in [11℄ and monotoni
 iteration, one 
on
ludes that there exists u 2 C

1

(
) , whi
h

is a weak solution of (1.2) with u � u � u.

Now let us give ne
essary 
onditions for the existen
e of positive weak solution for

(2.1).

Assume

(H.5) H

0

(t)

p�1

b(x; t) � �

1

H(t)

p�1

for x 2 
 a:e: and t > 0,

(H.6) H

0

(t)

p�1

b(x; t) > �

1

H(t)

p�1

for x in a subset of positive measure of 


and t > 0.

Proposition 2.2 If (H.5) and (H.6) are satis�ed, then (2.1) does not admit

positive weak solution.

Proof: Suppose, by 
ontradi
tion, that (2.1) admits a positive weak solution u 2

C

1

(
). De�ne v = H(u). Then v is a positive weak solution of (2.2), where

g(x; s) is as in the proof of Proposition 2.1. In addition, by (H.5) and (H.6), one

gets

g(�; v(�)) � �

1

v

p�1

(�) in 
 a:e: (2.4)

g(�; v(�)) > �

1

v

p�1

(�) in a subset of positive measure of 
 : (2.5)

Let '

1

be a positive eigenfun
tion asso
iated to �

1

su
h that '

1

> v in 
. Sin
e

'

p

1

v

p�1

;

v

p

'

p�1

1

2 W

1;p

0

(
), we 
an write

I =

Z




j r'

1

j

p�2

r'

1

:r

 

'

p

1

� v

p

'

p�1

1

!

dx +

Z




j rv j

p�2

rv:r

 

v

p

� '

p

1

v

p�1

!

dx :

6



From D��az and Saa inequality [7℄, we know that I � 0. On the other hand, from

(2.4) and (2.5), we obtain

I =

Z




�

1

('

p

1

� v

p

)dx +

Z




g(x; v)

v

p�1

(v

p

� '

p

1

)

=

Z




(�

1

�

g(x; v)

v

p�1

)('

p

1

� v

p

)dx < 0;

a 
ontradi
tion.

Example 2.1 Let us 
onsider the problem

(

��

p

u = a j ru j

p

+ b in 


u = 0 on �
;

(2.6)

where a; b > 0 are 
onstants. Then, by Propositions 2.1 and 2.2, (2.6) admits a

positive weak solution if and only if

a

p�1

b < (p� 1)

p�1

�

1

:

Example 2.2 More generally, set the following problem

8

<

:

��

p

u =

a

1 + ku

j ru j

p

+ b(1 + ku)

p�1

in 


u = 0 on �
;

(2.7)

where a; b > 0 and k � 0 are 
onstants. Then, by Propositions 2.1 and 2.2, (2.7)

possesses a positive weak solution if and only if

(k(p� 1) + a)

p�1

b < (p� 1)

p�1

�

1

:

Example 2.3 Consider the following problem

8

<

:

��

p

u =

a

(1 + u)

�

j ru j

p

+ b(1 + u)

p�1

in 


u = 0 on �
;

(2.8)

where a; b > 0 and � > 1 are 
onstants. Then, by an extension of L'Hospital's

rule and Propositions 2.1 and 2.2, it is easy to 
on
lude that (2.8) has a positive

weak solution if and only if b < �

1

.
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3 EXISTENCE OF POSITIVE SOLUTIONS

UNDER OTHER NON-RESSONANCE

CONDITIONS

In this se
tion we need the following result whi
h is a 
onsequen
e of the Degree

Theory in 
ones:

Lemma 3.1 Suppose

(i)

liminf

s!+1

g(x; s)

s

p�1

> �

1

; uniformly for x 2 
 a:e:;

(ii)

limsup

s!0

+

g(x; s)

s

p�1

< �

1

; uniformly for x 2 
 a:e:

Then (2.2) admits, at least, one positive weak solution in C

1

(
).

Proof: At �rst, one shows that there exists 
 > 0 su
h that kuk

W

1;p

0

(
)

� 


for every nonegative weak solution u of (2.2). This is done by 
ontradi
tion,

supposing that there is a sequen
e of nonegative weak solutions u

n

su
h that

ku

n

k

W

1;p

0

(
)

! 1. Dividing the equation by its norms and taking the limit, one

arrives at the following relation

8

>

<

>

:

��

p

v = g(x)v

p�1

in 


v � 0 in 


v = 0 on �
;

where v is, up to a subsequen
e, the weak limit of

u

n

ku

n

k

W

1;p

0

(
)

, g 2 L

1

(
) and,

by (i), g(x) > �

1

for x 2 
 a.e. Using D��az and Saa inequality [7℄, it is easy

to verify that v � 0 in 
, otherwise it must 
hange sign. On the other hand,

taking u

n

as a test fun
tion in the equation satis�ed by u

n

, dividing by its norms

to the power of p and letting n!1, one gets a 
ontradi
tion. The next step is


onsidering the 
one C = fu 2 W

1;p

0

(
) : u � 0 in 
g and de�ning the homotopy

H : [0;+1)� C ! C by v = H(t; u), where

(

��

p

v = g(x; u) + t in 


v = 0 on �


Let T (u) = H(0; u). Using (ii), one 
on
ludes that there exists r > 0 su
h that

u 6= t T (u) for every t 2 [0; 1℄ and u 2 C with kuk

W

1;p

0

(
)

= r. In addition,

8



suppose that there are t 2 [0;+1) and u 2 C satisfying u = H(t; u). Using (i),

one obtains

��

p

u � �u

p�1

+ t� 
 in 


with � > �

1

. Assuming t > 
 and again applying the D��az and Saa inequality [7℄,

one 
on
ludes that u � 0 in 
, 
ontradi
ting t > 
. Hen
e, t � 
. Therefore,

there exists M > r su
h that kuk

W

1;p

0

(
)

< M for every u 2 C satisfying

u = H(t; u) for some t 2 [0;+1). Now applying the result about expansion of


ones due to Krasnoselskii [10℄ we are done.

Now, assume

(H.7)

liminf

t!+1

H

0

(t)

p�1

b(x; t)

H(t)

p�1

> �

1

; uniformly for x 2 
 a:e:,

(H.8)

limsup

t!0

+

H

0

(t)

p�1

b(x; t)

H(t)

p�1

< �

1

; uniformly for x 2 
 a:e:

Proposition 3.1 If (H.2), (H.3), (H.7) and (H.8) are ful�lled, then (2.1) ad-

mits, at least, one positive weak solution.

Proof: Let g : 
 � IR

+

! IR

+

be as in the proof of Proposition 2.1. By (H.7)

and (H.8), we get

liminf

s!+1

g(x; s)

s

p�1

> �

1

and

limsup

s!0

+

g(x; s)

s

p�1

< �

1

;

both uniformly for x 2 
 a.e. Futhermore, by (H.2) and (H.3), there exists a


onstant 
 > 0 su
h that

g(x; s) � 
(s

p�1

+ 1) for x 2 
 a:e and s � 0 :

Therefore, by Lemma 3.1, (2.2) admits a positive weak solution v 2 C

1

(
). So,

de�ning u = H

�1

(v), we 
on
lude that u is a positive weak solution of (2.1).

Note that (H.8) implies u � 0 in 
 is also a solution of (2.1). By virtue of

Proposition 3.1 and with the aid of the auxiliar problem (2.1), a similar pro
edure

used in the proof of Theorem 2.1. allow us to sate the following result.

Theorem 3.1 Assume (H.4) with (a; b) and (
; d) satisfying (H.2), (H.3),

(H.7) and (H.8). Then (1.2) admits, at least, one positive weak solution.

9



Example 3.1 Let us 
onsider the equation

8

>

<

>

:

��

p

u =

a(u)

1 + ku

j ru j

p

+ bu

p�1

in 


u = 0 on �
;

(3.1)

where a : IR

+

! IR

+

is a bounded 
ontinuous fun
tion and b; k > 0 are 
onstants.

Clearly, u � 0 in 
 is a trivial solution of (3.1). However, if

liminf

t!+1

a(t) = a;

b < �

1

and

 

a

k(p� 1)

+ 1

!

p�1

b > �

1

;

then, by Proposition 3.1, (3.1) admits a positive weak solution. In parti
ular, if

�

1�

1

p

�

p�1

�

1

< b < �

1

;

then the problem

8

<

:

��

p

u =

1

1 + u

j ru j

p

+ bu

p�1

in 


u = 0 on �
;

has a positive weak solution.

4 THE CASE p = 2

In this se
tion we generalize Proposition 2.1 and Theorem 2.1 for p = 2. Consider

the problem

10



8

>

>

<

>

>

:

��v +

N

X

i=1

B

i

(x; v)D

i

v + C(x; v)v = g(x; v) in 


v = 0 on �
;

(4.1)

where B

i

; C; g : 
� IR! IR are Carath�eodory fun
tions.

The next lemma follows as a parti
ular 
ase of a result in [15℄.

Lemma 4.1 Assume

(i) there is a 
onstant 
 > 0 su
h that jB

i

(x; s)j; jC(x; s)j � 
 for x 2 
 a.e. and

s 2 IR

and de�ne

�

1

=

liminf

kvk

L

2

(
)

!+1

v 2 W

1;2

0

(
)

J(v; v)

k v k

2

L

2

(
)

;

where

J(v; v) =

Z




j rv j

2

dx +

N

X

i=1

Z




B

i

(x; v)D

i

v v dx +

Z




C(x; v)v

2

dx :

Then �

1

2 (�1;+1). In addition, if

(ii)

limsup

jsj!+1

g(x; s)

s

< �

1

; uniformly for x 2 
 a:e:,

(iii) there is a 
onstant 


1

> 0 su
h that jg(x; s)j � 


1

(jsj + 1) for x 2 
 a.e.

and s 2 IR

then (4.1) admits, at least, one weak solution in C

1

(
).

Remark 4.1 There is 


0

> 0 su
h that if B

i

and C verify (i) of Lemma

4.1 with 


0

in pla
e of 
, then J � 0, �

1

> 0 and the full ellipti
 operator of

the left-hand side of (4.1) satis�es the strong maximum prin
iple. In this 
ase, if

g : 
 � IR

+

! IR

+

, then Lemma 4.1 provides the existen
e of a nonegative weak

solution.

11



Now let us dis
uss the following problem

(

��u = a(x; u) j ru j

2

+ b(x; u) in 
;

u = 0 on �
;

(4.2)

where a : 
� IR

+

! IR

+

; D

i

a; D

ii

a : 
� IR

+

! IR are 
ontinuous fun
tions and

b : 
 � IR

+

! IR

+

is a Carath�eodory fun
tion, where D

i

a(x; t) = D

x

i

a(x; t) and

D

ii

a(x; t) = D

x

i

x

i

a(x; t).

Assume the assumption below

(H.9) there is a 
onstant k > 0 su
h that j

Z

t

0

D

i

a(x; r)drj; j

Z

t

0

D

ii

a(x; r)drj � k

for every (x; t) 2 
� IR

+

.

De�ne H : 
� IR

+

! IR

+

by

H(x; t) =

Z

t

0

exp

�

Z

s

0

a(x; r)dr

�

ds :

Sin
e H 2 C

2

(
� IR

+

) and D

t

H(x; t) � 1 for x 2 
 and t � 0, by the Impli
it

Fun
tion Theorem or, more pre
isely, Submersion Lo
al Form Theorem, there exists

K 2 C

2

(
� IR

+

) su
h that s = H(x;K(x; s)). Let

J(v; v) =

Z




j rv j

2

dx+

N

X

i=1

Z




B

i

(x; v)D

i

v v dx+

Z




C(x; v)v

2

dx; for every v 2 W

1;2

0

(
);

where

B

i

(x; s) =

2H

x

i

t

(x;K(x; s))

H

t

(x;K(x; s))

;

C(x; s) =

N

X

i=1

 

H

x

i

x

i

(x;K(x; s))

s

�

2H

x

i

t

(x;K(x; s))H

x

i

(x;K(x; s))

H

t

(x;K(x; s))s

!

:

By (H.9), B

i

and C verify (i) of Lemma 4.1., so �

1

is �nite. Suppose

J � 0; �

1

> 0 and the full ellipti
 operator of the left-hand side of (4.1) veri�es

the strong maximum prin
iple, see Remark 4.1.

Assume that b satis�es

(H.10)

limsup

t!+1

H

0

(x; t)b(x; t)

H(x; t)

< �

1

; uniformly for x 2 
 a:e:,

(H.11) there are 
onstants 
; k > 0 su
h that H

0

(x; t)b(x; t) � 
H(x; t) for

12



x 2 
 and t � k .

Proposition 4.1 If (H.3), (H.9), (H.10) and (H.11) are ful�lled, then (4.2)

admits, at least, one nonegative weak solution.

Proof: De�ne g(x; s) = H

t

(x;K(x; s))b(x;K(x; s)). From (H.3), (H.9), (H.10)

and (H.11), one has

limsup

s!+1

g(x; s)

s

< �

1

; uniformly for x 2 
 a:e:;

g(x; s) � 
(s + 1); for all x 2 
 a:e: and s � 0 :

By Lemma 4.1 and Remark 4.1, (4.1) admits a nonegative weak solution v 2

C

1

(
)\W

2;p

(
). Now, denoting u = K(x; v) we get u 2 C

1

(
)\W

2;p

(
), let us

verify that u satisfy (4.2). Indeed, sin
e v(x) = H(x; u(x)) we get

v

x

i

= H

x

i

+H

t

u

x

i

;

v

x

i

x

i

= H

x

i

x

i

+ 2H

x

i

t

u

x

i

+H

tt

u

2

x

i

+H

t

u

x

i

x

i

:

Then

�v =

N

X

i=1

(H

x

i

x

i

+ 2H

x

i

t

u

x

i

) +H

tt

j ru j

2

+H

t

�u :

On the other hand, inserting v in the expression of B

i

and C yields

N

X

i=1

B

i

(x; v)D

i

v + C(x; v)v =

N

X

i=1

(H

x

i

x

i

+ 2H

x

i

t

u

x

i

) :

Consequently

��v +

N

X

i=1

B

i

(x; v)D

i

v + C(x; v)v = �H

tt

(x; u) j ru j

2

�H

t

(x; u)�u :

Sin
e g(x; v) = H

t

(x; u)b(x; u), it remains to note that H

tt

= a H

t

.

Finally, let a; 
 : 
�IR

+

! IR

+

be 
ontinuous fun
tions and b; d : 
�IR

+

! IR

+

Carath�eodory fun
tions su
h that a(x; t

1

) � 
(x; t

2

) and b(x; t

1

) � d(x; t

2

) for every

x 2 
 a.e. and t

1

; t

2

� 0.

Suppose

(H.12) a(x; t) j � j

2

+ b(x; t) � f(x; t; �) � 
(x; t) j � j

2

+ d(x; t),

for every x 2 
 a.e. and t � 0 .

An analogous reasoning used in the proof of Theorem 2.1 produ
es the following

result:

13



Theorem 4.1 Suppose (H.12) with (a; b) and (
; d) verifying (H.3), (H.9),

(H.10) and (H.11). Then (1.2) admits, at least, one nonegative weak solution.

When a(x; t) = a(t), one has B

i

� 0 � C. Consequently, �

1

= �

1

. Hen
e, when

p = 2, Proposition 4.1 and Theorem 4.1 generalize Proposition 2.1 and Theorem

2.1, respe
tively. We �nish giving an example where the hypotheses of Proposition

2.1 are not ne
essarily satis�ed, however, Proposition 4.1 applies.

Example 4.1 Let us set the following problem

8

>

<

>

:

��u =

a("x)

(1 + u)

�

j ru j

2

+ b(x)(1 + u) in 


u = 0 on �
;

(4.3)

where � > 0; a : IR

N

! IR

+

is a fun
tion of 
lass C

2

su
h that D

i

a and D

ii

a

are bounded fun
tions in IR

N

and b : 
! IR

+

is a bounded measurable fun
tion.

If a(�) � a in IR

N

and b(x) < �

1

uniformly for x 2 
 a.e., then, by Proposition

2.1, (4.3) admits a positive weak solution. On the other hand, if a is not 
onstant,

there exists "

0

> 0 su
h that the 
onditions given in Remark 4.1 hold for every

0 < " < "

0

. Hen
e, if 0 < " < "

0

and

b(x) < �

1

; uniformly for x 2 
 a:e:; (4.4)

then problem (4.3) possesses a positive weak solution. In parti
ular, there is "

0

> 0

su
h that if 0 < " < "

0

and (4.4) holds, then the problem

8

>

<

>

:

��u =


os

2

("

P

N

i=1

x

i

)

(1 + u)

�

j ru j

2

+ b(x)(1 + u) in 


u = 0 on �
;

has a positive weak solution.
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