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Abstrat

In this paper we study the problem

(

��

p

u = f(x; u;ru) in 


u = 0 on �
;

where 
 � IR

N

is a smooth bounded domain, N � 2 and

�

p

u = div(j ru j

p�2

ru) de�nes the p�Laplaian. We provide

some neessary and suÆient onditions on f under whih the problem ad-

mits a weak solution. For the ase p = 2 we obtain more general onditions

on f . The main ingredients are Degree Theory and super-subsolutionmethod.

�
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1



1 INTRODUCTION

During the past thirty years many mathematiians have been investigating quasi-

linear ellipti problems of the type

(

�Lu = f(x; u;ru) in 


u = 0 on �
;

(1.1)

where 
 is a smooth bounded domain in IR

N

; N � 2; L is a uniformly

ellipti operator of seond order verifying the strong maximum priniple and

f : 
 � IR � IR

N

! IR is a Carath�eodory funtion satisfying appropriate growth

onditions. These studies have ontributed for a better understanding of several

questions related to (1.1) as, for example, regularity, existene and nonexistene of

solution. In the literature, problem (1.1) is known to be ritial in the gradient

if f has quadrati growth in the gradient. This is a reasonable assumption when

we are seeking for a solution. In fat, Serrin [14℄ has proved that if f have a

superquadrati growth in the gradient, then given any smooth domain there is a

smooth data f for whih (1.1) does not admit solution. On the other hand, several

authors have obtained results on existene of solution when f has ritial growth

in the gradient. For instane, see [1℄, [3℄, [5℄, [8℄, [9℄, [12℄, [13℄ and [16℄. Part of these

works are onerned to the question of existene when f interats in some sense

with the �rst eigenvalue of L, see espei�ally [5℄, [9℄ and [16℄. The basi tools

that have been used are a priori estimates, Degree Theory and super-subsolution

method.

Now let us set the problem

(

��

p

u = f(x; u;ru) in 


u = 0 on �
;

(1.2)

where 
 is as in (1.1) and �

p

u = div(j ru j

p�2

ru) denotes the p�Laplaian

with 1 < p <1.

Problems of form (1.2) arise naturally as stationary states of ertain models in Fluids

Mehanis. Therefore, it is important to obtain information about the existene and

nonexistene of solutions for this problem. Similarly, the problem (1.2) is said to be

ritial in the gradient if f has a growth of power p in the gradient. In this ase,

some authors have presented various results on existene of weak solution for (1.2),
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see [4℄ and [6℄. However, it has not been analysed what ours when f interats

with the spetrum of the p�Laplaian. In the present work, we obtain several

results on existene of weak solutions under assumptions that relate f and the �rst

eigenvalue �

1

of the p�Laplaian. Some of these results have not been onsidered

even when p = 2. Getting a omplete understanding, we provide neessary and

suÆient onditions for existene of positive weak solutions. For example, we show

that the problem

8

<

:

��

p

u =

a

1 + ku

j ru j

p

+ b(1 + ku)

p�1

in 


u = 0 on �
;

where a; b > 0 and k � 0 are onstants, admits a positive weak solution if and

only if (k(p� 1) + a)

p�1

b < (p� 1)

p�1

�

1

. Hene,

(

��

p

u = a j ru j

p

+ b in 


u = 0 on �
;

has a positive weak solution if and only if a

p�1

b < (p� 1)

p�1

�

1

. Besides, we give

suÆient onditions under whih the problem

8

>

<

>

:

��

p

u =

a(u)

1 + ku

j ru j

p

+ bu

p�1

in 


u = 0 on �
;

possesses a positive weak solution. When p = 2, we disuss the existene of weak so-

lutions under more general hypotheses on f . In partiular, we investigate equations

of the type

(

��u = a(x; u) j ru j

2

+ b(x; u) in 


u = 0 on �
:

The outline of the paper is as follows. In setion 2 we provide neessary and suÆient

non-ressonane onditions for the existene of positive weak solutions for (1.2). In

setion 3 we show some results on existene of positive weak solutions for problems

subjet to other non-ressonane onditions. Finally, in setion 4 we analyse the

problem (1.2) in the ase p = 2. In partiular, we give more general suÆient

onditions than those of the setion 2. Our arguments are based on D��az and Saa

inequality [7℄, Degree Theory and super-subsolution method.

2 EXISTENCE AND NONEXISTENCE OF

POSITIVE SOLUTIONS
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Throughout the paper 
 denotes a bounded domain of lass C

2

belonging to

IR

N

; N � 2 and 1 < p <1 is a real number.

In this setion we searh for neessary and suÆient onditions for existene of

positive weak solutions for the problem

(

��

p

u = a(u) j ru j

p

+ b(x; u) in 


u = 0 on �
;

(2.1)

where a : IR

+

! IR

+

is a ontinuous funtion, IR

+

= [0;+1) and b : 
� IR

+

!

IR

+

is a Carath�eodory funtion, that is, for a.e. x 2 
 the funtion b(x; :) is

ontinuous and for every s 2 IR the funtion b(:; s) is measurable. As a onsequene

we obtain the existene of nonegative weak solutions for Dirihlet problems of the

form (1.2) subjet to ertain non-ressonane onditions.

Before stating our �rst result, let us onsider the problem

(

��

p

v = g(x; v) in 


v = 0 on �
;

(2.2)

where g : 
� IR

+

! IR

+

is a Carath�eodory funtion verifying

g(x; s) � (s

p�1

+ 1) for every x 2 
 a:e:; s � 0 and some onstant  > 0:

The following result is taken from [2℄:

Lemma 2.1 Suppose

limsup

s!+1

g(x; s)

s

p�1

< �

1

; uniformly for x 2 
 a:e:

Then (2.2) admits, at least, one nonegative weak solution in C

1

(
).

We say that u 2 C

1

(
) is a weak solution (supersolution, subsolution) of (1.2) if

f(�; u(�);ru(�)) 2 L

1

lo

(
); u = 0 on �
 and

Z




j ru j

p�2

ru � r� dx = (�; �)

Z




f(x; u;ru)� dx

for every � 2 C

1

0

(
) with � � 0 in 
.

Let H : IR

+

! IR

+

be de�ned by

H(t) =

Z

t

0

exp

 

1

p� 1

Z

s

0

a(r)dr

!

ds :
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Assume that the pair (a; b) satis�es

(H.1)

limsup

t!+1

H

0

(t)

p�1

b(x; t)

H(t)

p�1

< �

1

; uniformly for x 2 
 a:e:,

(H.2) there are onstants ; k > 0 suh that H

0

(t)

p�1

b(x; t) � H(t)

p�1

for x 2 
 a:e: and t � k,

(H.3)

sup

t2[0;k℄

b(�; t) 2 L

1

(
) .

Proposition 2.1 If (H.1), (H.2) and (H.3) are ful�lled, then (2.1) admits, at

least, one nonegative weak solution.

Proof: Sine H

0

(t) � 1 for t � 0, then

H(t)! +1 as t! +1 : (2.3)

De�ne g(x; s) = (H

0

(H

�1

(s)))

p�1

b(x;H

�1

(s)). From (2.3) and (H.1), it follows

that

limsup

s!+1

g(x; s)

s

p�1

< �

1

; uniformly for x 2 
 a:e:

Futhermore, by (H.2) and (H.3), there exists  > 0 suh that

g(x; s) � (s

p�1

+ 1) for every x 2 
 a:e and s � 0 :

By Lemma 2.1, (2.2) admits a nonegative weak solution v 2 C

1

(
). So, de�ning

u = H

�1

(v), we onlude that u is a nonegative weak solution of (2.1).

Let a;  : IR

+

! IR

+

be ontinuous funtions and b; d : 
 � IR

+

! IR

+

be

Carath�eodory funtions suh that a(t

1

) � (t

2

) and b(x; t

1

) � d(x; t

2

) for every

x 2 
 a:e: and t

1

; t

2

� 0.

Suppose

(H.4) a(t) j � j

p

+ b(x; t) � f(x; t; �) � (t) j � j

p

+ d(x; t)

for every x 2 
 a:e: , t � 0 and � 2 IR

N

.

Theorem 2.1 Assume (H.4) with (a; b) and (; d) satisfying (H.1), (H.2) and

(H.3). Then (1.2) admits, at least, one nonegative weak solution.
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Proof: Let u; u 2 C

1

(
) be nonegative weak solutions of problems

(

��

p

u = a(u) j ru j

p

+ b(x; u) in 


u = 0 on �
;

(

��

p

u = (u) j ru j

p

+ d(x; u) in 


u = 0 on �


By (H.4) and the omparison priniple, we onlude that u is a subsolution of (1.2),

u is a supersolution of (1.2) and u � u in 
. Therefore, by C

1;�

(
) estimates

in [11℄ and monotoni iteration, one onludes that there exists u 2 C

1

(
) , whih

is a weak solution of (1.2) with u � u � u.

Now let us give neessary onditions for the existene of positive weak solution for

(2.1).

Assume

(H.5) H

0

(t)

p�1

b(x; t) � �

1

H(t)

p�1

for x 2 
 a:e: and t > 0,

(H.6) H

0

(t)

p�1

b(x; t) > �

1

H(t)

p�1

for x in a subset of positive measure of 


and t > 0.

Proposition 2.2 If (H.5) and (H.6) are satis�ed, then (2.1) does not admit

positive weak solution.

Proof: Suppose, by ontradition, that (2.1) admits a positive weak solution u 2

C

1

(
). De�ne v = H(u). Then v is a positive weak solution of (2.2), where

g(x; s) is as in the proof of Proposition 2.1. In addition, by (H.5) and (H.6), one

gets

g(�; v(�)) � �

1

v

p�1

(�) in 
 a:e: (2.4)

g(�; v(�)) > �

1

v

p�1

(�) in a subset of positive measure of 
 : (2.5)

Let '

1

be a positive eigenfuntion assoiated to �

1

suh that '

1

> v in 
. Sine

'

p

1

v

p�1

;

v

p

'

p�1

1

2 W

1;p

0

(
), we an write

I =

Z




j r'

1

j

p�2

r'

1

:r

 

'

p

1

� v

p

'

p�1

1

!

dx +

Z




j rv j

p�2

rv:r

 

v

p

� '

p

1

v

p�1

!

dx :

6



From D��az and Saa inequality [7℄, we know that I � 0. On the other hand, from

(2.4) and (2.5), we obtain

I =

Z




�

1

('

p

1

� v

p

)dx +

Z




g(x; v)

v

p�1

(v

p

� '

p

1

)

=

Z




(�

1

�

g(x; v)

v

p�1

)('

p

1

� v

p

)dx < 0;

a ontradition.

Example 2.1 Let us onsider the problem

(

��

p

u = a j ru j

p

+ b in 


u = 0 on �
;

(2.6)

where a; b > 0 are onstants. Then, by Propositions 2.1 and 2.2, (2.6) admits a

positive weak solution if and only if

a

p�1

b < (p� 1)

p�1

�

1

:

Example 2.2 More generally, set the following problem

8

<

:

��

p

u =

a

1 + ku

j ru j

p

+ b(1 + ku)

p�1

in 


u = 0 on �
;

(2.7)

where a; b > 0 and k � 0 are onstants. Then, by Propositions 2.1 and 2.2, (2.7)

possesses a positive weak solution if and only if

(k(p� 1) + a)

p�1

b < (p� 1)

p�1

�

1

:

Example 2.3 Consider the following problem

8

<

:

��

p

u =

a

(1 + u)

�

j ru j

p

+ b(1 + u)

p�1

in 


u = 0 on �
;

(2.8)

where a; b > 0 and � > 1 are onstants. Then, by an extension of L'Hospital's

rule and Propositions 2.1 and 2.2, it is easy to onlude that (2.8) has a positive

weak solution if and only if b < �

1

.
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3 EXISTENCE OF POSITIVE SOLUTIONS

UNDER OTHER NON-RESSONANCE

CONDITIONS

In this setion we need the following result whih is a onsequene of the Degree

Theory in ones:

Lemma 3.1 Suppose

(i)

liminf

s!+1

g(x; s)

s

p�1

> �

1

; uniformly for x 2 
 a:e:;

(ii)

limsup

s!0

+

g(x; s)

s

p�1

< �

1

; uniformly for x 2 
 a:e:

Then (2.2) admits, at least, one positive weak solution in C

1

(
).

Proof: At �rst, one shows that there exists  > 0 suh that kuk

W

1;p

0

(
)

� 

for every nonegative weak solution u of (2.2). This is done by ontradition,

supposing that there is a sequene of nonegative weak solutions u

n

suh that

ku

n

k

W

1;p

0

(
)

! 1. Dividing the equation by its norms and taking the limit, one

arrives at the following relation

8

>

<

>

:

��

p

v = g(x)v

p�1

in 


v � 0 in 


v = 0 on �
;

where v is, up to a subsequene, the weak limit of

u

n

ku

n

k

W

1;p

0

(
)

, g 2 L

1

(
) and,

by (i), g(x) > �

1

for x 2 
 a.e. Using D��az and Saa inequality [7℄, it is easy

to verify that v � 0 in 
, otherwise it must hange sign. On the other hand,

taking u

n

as a test funtion in the equation satis�ed by u

n

, dividing by its norms

to the power of p and letting n!1, one gets a ontradition. The next step is

onsidering the one C = fu 2 W

1;p

0

(
) : u � 0 in 
g and de�ning the homotopy

H : [0;+1)� C ! C by v = H(t; u), where

(

��

p

v = g(x; u) + t in 


v = 0 on �


Let T (u) = H(0; u). Using (ii), one onludes that there exists r > 0 suh that

u 6= t T (u) for every t 2 [0; 1℄ and u 2 C with kuk

W

1;p

0

(
)

= r. In addition,

8



suppose that there are t 2 [0;+1) and u 2 C satisfying u = H(t; u). Using (i),

one obtains

��

p

u � �u

p�1

+ t�  in 


with � > �

1

. Assuming t >  and again applying the D��az and Saa inequality [7℄,

one onludes that u � 0 in 
, ontraditing t > . Hene, t � . Therefore,

there exists M > r suh that kuk

W

1;p

0

(
)

< M for every u 2 C satisfying

u = H(t; u) for some t 2 [0;+1). Now applying the result about expansion of

ones due to Krasnoselskii [10℄ we are done.

Now, assume

(H.7)

liminf

t!+1

H

0

(t)

p�1

b(x; t)

H(t)

p�1

> �

1

; uniformly for x 2 
 a:e:,

(H.8)

limsup

t!0

+

H

0

(t)

p�1

b(x; t)

H(t)

p�1

< �

1

; uniformly for x 2 
 a:e:

Proposition 3.1 If (H.2), (H.3), (H.7) and (H.8) are ful�lled, then (2.1) ad-

mits, at least, one positive weak solution.

Proof: Let g : 
 � IR

+

! IR

+

be as in the proof of Proposition 2.1. By (H.7)

and (H.8), we get

liminf

s!+1

g(x; s)

s

p�1

> �

1

and

limsup

s!0

+

g(x; s)

s

p�1

< �

1

;

both uniformly for x 2 
 a.e. Futhermore, by (H.2) and (H.3), there exists a

onstant  > 0 suh that

g(x; s) � (s

p�1

+ 1) for x 2 
 a:e and s � 0 :

Therefore, by Lemma 3.1, (2.2) admits a positive weak solution v 2 C

1

(
). So,

de�ning u = H

�1

(v), we onlude that u is a positive weak solution of (2.1).

Note that (H.8) implies u � 0 in 
 is also a solution of (2.1). By virtue of

Proposition 3.1 and with the aid of the auxiliar problem (2.1), a similar proedure

used in the proof of Theorem 2.1. allow us to sate the following result.

Theorem 3.1 Assume (H.4) with (a; b) and (; d) satisfying (H.2), (H.3),

(H.7) and (H.8). Then (1.2) admits, at least, one positive weak solution.

9



Example 3.1 Let us onsider the equation

8

>

<

>

:

��

p

u =

a(u)

1 + ku

j ru j

p

+ bu

p�1

in 


u = 0 on �
;

(3.1)

where a : IR

+

! IR

+

is a bounded ontinuous funtion and b; k > 0 are onstants.

Clearly, u � 0 in 
 is a trivial solution of (3.1). However, if

liminf

t!+1

a(t) = a;

b < �

1

and

 

a

k(p� 1)

+ 1

!

p�1

b > �

1

;

then, by Proposition 3.1, (3.1) admits a positive weak solution. In partiular, if

�

1�

1

p

�

p�1

�

1

< b < �

1

;

then the problem

8

<

:

��

p

u =

1

1 + u

j ru j

p

+ bu

p�1

in 


u = 0 on �
;

has a positive weak solution.

4 THE CASE p = 2

In this setion we generalize Proposition 2.1 and Theorem 2.1 for p = 2. Consider

the problem

10



8

>

>

<

>

>

:

��v +

N

X

i=1

B

i

(x; v)D

i

v + C(x; v)v = g(x; v) in 


v = 0 on �
;

(4.1)

where B

i

; C; g : 
� IR! IR are Carath�eodory funtions.

The next lemma follows as a partiular ase of a result in [15℄.

Lemma 4.1 Assume

(i) there is a onstant  > 0 suh that jB

i

(x; s)j; jC(x; s)j �  for x 2 
 a.e. and

s 2 IR

and de�ne

�

1

=

liminf

kvk

L

2

(
)

!+1

v 2 W

1;2

0

(
)

J(v; v)

k v k

2

L

2

(
)

;

where

J(v; v) =

Z




j rv j

2

dx +

N

X

i=1

Z




B

i

(x; v)D

i

v v dx +

Z




C(x; v)v

2

dx :

Then �

1

2 (�1;+1). In addition, if

(ii)

limsup

jsj!+1

g(x; s)

s

< �

1

; uniformly for x 2 
 a:e:,

(iii) there is a onstant 

1

> 0 suh that jg(x; s)j � 

1

(jsj + 1) for x 2 
 a.e.

and s 2 IR

then (4.1) admits, at least, one weak solution in C

1

(
).

Remark 4.1 There is 

0

> 0 suh that if B

i

and C verify (i) of Lemma

4.1 with 

0

in plae of , then J � 0, �

1

> 0 and the full ellipti operator of

the left-hand side of (4.1) satis�es the strong maximum priniple. In this ase, if

g : 
 � IR

+

! IR

+

, then Lemma 4.1 provides the existene of a nonegative weak

solution.

11



Now let us disuss the following problem

(

��u = a(x; u) j ru j

2

+ b(x; u) in 
;

u = 0 on �
;

(4.2)

where a : 
� IR

+

! IR

+

; D

i

a; D

ii

a : 
� IR

+

! IR are ontinuous funtions and

b : 
 � IR

+

! IR

+

is a Carath�eodory funtion, where D

i

a(x; t) = D

x

i

a(x; t) and

D

ii

a(x; t) = D

x

i

x

i

a(x; t).

Assume the assumption below

(H.9) there is a onstant k > 0 suh that j

Z

t

0

D

i

a(x; r)drj; j

Z

t

0

D

ii

a(x; r)drj � k

for every (x; t) 2 
� IR

+

.

De�ne H : 
� IR

+

! IR

+

by

H(x; t) =

Z

t

0

exp

�

Z

s

0

a(x; r)dr

�

ds :

Sine H 2 C

2

(
� IR

+

) and D

t

H(x; t) � 1 for x 2 
 and t � 0, by the Impliit

Funtion Theorem or, more preisely, Submersion Loal Form Theorem, there exists

K 2 C

2

(
� IR

+

) suh that s = H(x;K(x; s)). Let

J(v; v) =

Z




j rv j

2

dx+

N

X

i=1

Z




B

i

(x; v)D

i

v v dx+

Z




C(x; v)v

2

dx; for every v 2 W

1;2

0

(
);

where

B

i

(x; s) =

2H

x

i

t

(x;K(x; s))

H

t

(x;K(x; s))

;

C(x; s) =

N

X

i=1

 

H

x

i

x

i

(x;K(x; s))

s

�

2H

x

i

t

(x;K(x; s))H

x

i

(x;K(x; s))

H

t

(x;K(x; s))s

!

:

By (H.9), B

i

and C verify (i) of Lemma 4.1., so �

1

is �nite. Suppose

J � 0; �

1

> 0 and the full ellipti operator of the left-hand side of (4.1) veri�es

the strong maximum priniple, see Remark 4.1.

Assume that b satis�es

(H.10)

limsup

t!+1

H

0

(x; t)b(x; t)

H(x; t)

< �

1

; uniformly for x 2 
 a:e:,

(H.11) there are onstants ; k > 0 suh that H

0

(x; t)b(x; t) � H(x; t) for

12



x 2 
 and t � k .

Proposition 4.1 If (H.3), (H.9), (H.10) and (H.11) are ful�lled, then (4.2)

admits, at least, one nonegative weak solution.

Proof: De�ne g(x; s) = H

t

(x;K(x; s))b(x;K(x; s)). From (H.3), (H.9), (H.10)

and (H.11), one has

limsup

s!+1

g(x; s)

s

< �

1

; uniformly for x 2 
 a:e:;

g(x; s) � (s + 1); for all x 2 
 a:e: and s � 0 :

By Lemma 4.1 and Remark 4.1, (4.1) admits a nonegative weak solution v 2

C

1

(
)\W

2;p

(
). Now, denoting u = K(x; v) we get u 2 C

1

(
)\W

2;p

(
), let us

verify that u satisfy (4.2). Indeed, sine v(x) = H(x; u(x)) we get

v

x

i

= H

x

i

+H

t

u

x

i

;

v

x

i

x

i

= H

x

i

x

i

+ 2H

x

i

t

u

x

i

+H

tt

u

2

x

i

+H

t

u

x

i

x

i

:

Then

�v =

N

X

i=1

(H

x

i

x

i

+ 2H

x

i

t

u

x

i

) +H

tt

j ru j

2

+H

t

�u :

On the other hand, inserting v in the expression of B

i

and C yields

N

X

i=1

B

i

(x; v)D

i

v + C(x; v)v =

N

X

i=1

(H

x

i

x

i

+ 2H

x

i

t

u

x

i

) :

Consequently

��v +

N

X

i=1

B

i

(x; v)D

i

v + C(x; v)v = �H

tt

(x; u) j ru j

2

�H

t

(x; u)�u :

Sine g(x; v) = H

t

(x; u)b(x; u), it remains to note that H

tt

= a H

t

.

Finally, let a;  : 
�IR

+

! IR

+

be ontinuous funtions and b; d : 
�IR

+

! IR

+

Carath�eodory funtions suh that a(x; t

1

) � (x; t

2

) and b(x; t

1

) � d(x; t

2

) for every

x 2 
 a.e. and t

1

; t

2

� 0.

Suppose

(H.12) a(x; t) j � j

2

+ b(x; t) � f(x; t; �) � (x; t) j � j

2

+ d(x; t),

for every x 2 
 a.e. and t � 0 .

An analogous reasoning used in the proof of Theorem 2.1 produes the following

result:

13



Theorem 4.1 Suppose (H.12) with (a; b) and (; d) verifying (H.3), (H.9),

(H.10) and (H.11). Then (1.2) admits, at least, one nonegative weak solution.

When a(x; t) = a(t), one has B

i

� 0 � C. Consequently, �

1

= �

1

. Hene, when

p = 2, Proposition 4.1 and Theorem 4.1 generalize Proposition 2.1 and Theorem

2.1, respetively. We �nish giving an example where the hypotheses of Proposition

2.1 are not neessarily satis�ed, however, Proposition 4.1 applies.

Example 4.1 Let us set the following problem

8

>

<

>

:

��u =

a("x)

(1 + u)

�

j ru j

2

+ b(x)(1 + u) in 


u = 0 on �
;

(4.3)

where � > 0; a : IR

N

! IR

+

is a funtion of lass C

2

suh that D

i

a and D

ii

a

are bounded funtions in IR

N

and b : 
! IR

+

is a bounded measurable funtion.

If a(�) � a in IR

N

and b(x) < �

1

uniformly for x 2 
 a.e., then, by Proposition

2.1, (4.3) admits a positive weak solution. On the other hand, if a is not onstant,

there exists "

0

> 0 suh that the onditions given in Remark 4.1 hold for every

0 < " < "

0

. Hene, if 0 < " < "

0

and

b(x) < �

1

; uniformly for x 2 
 a:e:; (4.4)

then problem (4.3) possesses a positive weak solution. In partiular, there is "

0

> 0

suh that if 0 < " < "

0

and (4.4) holds, then the problem

8

>

<

>

:

��u =

os

2

("

P

N

i=1

x

i

)

(1 + u)

�

j ru j

2

+ b(x)(1 + u) in 


u = 0 on �
;

has a positive weak solution.
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