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Abstract

We study the positivity of a function satisfying some inequalities involving
quasilinear elliptic operators which may grow polinomially, exponentially or
logarithmicaly.



1. INTRODUCTION

At first, the purpose of this paper is to ensure that v > 0 in {2 whenever u €
CHQ), v > 0in Q, u £ 0 in Q satisfy weakly the following inequality in some
arbitray domain Q C IRY, N > 1, unless otherwise stated:

Lu = —divA(z, u, Vu) + B(z,u, Vu) > 0. (1)

So that w cannot vanish identically locally in subdomains of €2. We recall that a
function u satisfies Lu > 0 weakly in Q iff A(x,u, Vu) and B(z,u, Vu) are locally
integrable when u and Vu are and

/Q{A(:r, u,Vu)-Vo+ B(x,u, Vu)p}dx > 0 (2)

for every ¢ € C}(Q2) with ¢ > 0 in Q.

The divergence form operators we are going to deal with have the pricipal part
A:Qx R x RN — RN with a general form:

Aj(z,pym) € CHQ x R x (RN —{0}))NC°(Q2 x R x RY) for j=1,---,N, (3)

N
2,j=1

N

Y Dy Aj(w, 1) < M, p, ), (5)

j=1
N
> DuAj(w, p,m)n; >0 (6)
j=1

and

N
j=1

for every (z,u,n) € Q x IR x RN | £ € RN, £ # 0. The functions A\, A : Q x IR x
(RN — {0}) — IR are such that

A, pm) > p([11) (8)



and

Az, u,m) < vp(] n|) for some constant v > 0. 9)
The function p has the following properties:

p € CH0,+00), (10)
a(t) = p(t)t for t > 0 is odd, increasing and «(0) = 0, (11)
a € C(0,+00) if p'(t)t <0 for t >0 (12)
or
a € CH0,+o0) if p/(t)t > 0 for t > 0, (13)

since we are tacitly assuming that

p is either increasing or decreasing . (14)

If

there exists a constant py > 0 such that p(t) = po, (15)

assumptions (10)—(14) are unecessary. Properties (3)—(14) reveal that the class
of operators we are studying may degenerate at vanishing gradient points of
2. This means that the first eigenvalue of the matrix D, A; may tend to
0 or to 400 as | n |—= 0. Clearly D,, A; may be assumed symmetric by rewrit-
ing it as (D, A;+ D, A;) /2. The uniformly elliptic case (15) will be treated together.

The term B : Q x IR x IR — IR has the form

Bz, p,n) = p(| 0 )n-Clz) + d(z) f (1) (16)

with the properties
C e (L®()V, (17)
de L. (92) and d(x) > 0 a.e. in €, (18)

there exists an € > 0 such that f € C°[0,¢] is nondecreasing with f(0) =0 (19)
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and
5
for every > 0 we have / [x 1(F(s))] 'ds = oo, (20)
0

t t
where F(t) = / f(s)ds and x(t) = a(t)t—/ a(s)ds fort > 0. Note that y is strictly
0 0

increasing for ¢ > 0, since we always may assume that f(s) > 0 for s € (0, +00)
and f is extended continulosly and nondecreasing for s > . Another assumption
we can make of on f is

f(t) = 0 for ¢ in some interval [0, ¢y] with ¢y < £ and f is nondecreasing in [ty, £].
(21)
Let us in turn consider nondivergence form operators satisfying the following
inequality in €

N
Qu =~ a;(z, Vu)Diju + B(z,u, Vu) > 0, (22)

ij=1

where the functions a;; : Q x RN — RN satisfy

aij(z,n) € CHQ x (RN - {0}))NnC°(Q x RY) fori,j =1,---,N,  (23)

N
7,7=1
and
N
Za’jj(q“a 77) < A(JI, 77) (25)
j=1

for every (z,n) € Q x RN | £ € RY, £ # 0. Again, a;; may be assumed symmetric
by rewriting it as (a;; + a;;)/2. As before the functions A\, A : Q x (RN —{0}) —» R
are subject to the assumptions (8)—(15), and our operator may be degenerate.
The function B : Q x R x RY — IR has the same properties (16)-(21). Now we
require an improvement in the regularity of u in order to inequality (22) be satisfied
classically, so we take u € C?(Q). This regularity of u has to do with some classical
comparison principles we are going to apply. Such comparison principles prevent
us form having a dependence on y in the functions a;;, an example in [4] is provided.



THEOREM 1. Let a function u € C'(Q), v > 0in Q, u #Z 0 in Q such that
Lu > 0in © and assume (3)—(20), then u > 0 in €2, if only one of the following extra
structural hypotheses holds:

(i) A= A(x,u,n), pis decreasing or a positive constant, f € C*(0,¢] and d € C*(Q)
(26)

(it) A= A(z,n), p(t) =|t P72 for p > 2, f € C'[0,¢], d € C'(Q) and (27)

D,B—1/N(D,B)? >0 for (z,p,n) € 2x Rx R and 1/p+1/qg=1

(1ii) A = A(z,p,n) and C(z) =0 (28)

(iv) In particular, A = A(n) = p(| n |)n and C(x) = 0.

For nondivergence form operators we have the following counterpart.

THEOREM 2. Let a function u € C*(Q), v > 0in Q, v # 0 in Q such that
Qu > 0in Q and assume (8)—(20) and (23)—(25), then u > 0 in Q.

THEOREM 3. The above theorems remain true with hypotheses (19)—(20) are
replaced by (21).

Let us see a normal boundary derivative version.

THEOREM 4. Let xy € 02 be a point satisfying the interior sphere condition
and let v be the inward unit normal vector at xy. If u satisfies the hypotheses of
the above theorems, u € C'(Q U {x0}) and u(zy) = 0, then du(xy)/dv > 0.

The positivity problem we are studying is related to the nonexistence of a dead
core of a solution, that is, a region on the domain 2 in which « vanishes. Condition
(20) is necessary for the nonexistence of such regions. This question have been
studied in [2], [7], [9], [10] and [11]. Here a broader class of elliptic operators is
considered with the aid of different tools. The second member B is also more
general than those considered in the previous cited works, because we may allow a
gradient dependence, let us see some examples:

—div((exp(| Vu |) — 1)Vu) (29)
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—div(log(| Vu | +1)Vu) (30)

—div((1+ | Vu [*)"V2Vu) (31)

Existence theorems for examples of the growth type (29)-(30) have been
studied in [3] and [5] and for the capilarity operator (31) in [8]. We also refer
to [4] for lots of examples of such operators. In the uniformly elliptic case, they
model many physical and geometrical aspects such as cracking of plates, blast
furnaces, precribed mean curvature, gas dynamics and capilarity. The degenerate
operators are related to non-Newtonian fluids and flow through porous media, see [2].

Our resuls are carried out by means of a contradiction argument. We build a
function w with nonvanishing gradient satisfying the reverse inequality Lw < 0
and compare with u in some annulus contained in 2. This underlying heuristi-
cal idea is similar to that for proving the Classical Hopf’s Maximum Principle
[6]. In that case, the comparison function w has a standard expression. In
contrast, here we only know the existence of function w with the properties
we need. This function w is a solution of a two-point boundary value problem
for the ordinary differential equation —(a(r)a(u/(r)))" + b(r)f(u(r)) = 0. We
use degree theory to solve it. The functions a and b will be timely introduced.
The later equation has to do with the radial formula of L in the constructed annulus.

When condition (20) does not hold the function u cannot be positive, provided
Az, p,m) =p(|nn, C(x) =0 and d(z) = 1. If

5
there exists > 0 such that / [ H(F(s))]  ds < oo, (32)
0

using degree theory we construct a function v vanishing in some portion of €2 and
satifying Lv = 0 in €. So, assumption (20) is necessary and sufficient for obtaining
the positivity of w. This led us to call the following result nonunique continuation

property.

THEOREM 5. If (3)-(19), (28) and (32) are fulfilled with C'(z) = 0 and d(z) = 1,
then for every xo € (RN \ Q) C 0Q and all R > 0 there exists a function v € C'(£2)
such that v > 0in ©Q and v # 0 in Q satisfying Lv = 0 in Q and v = 0 in Q\ Bg(xo).
Under more general assumptions, replacing (28) by (26) or (27), we have Lv > 0 in
2, but the other properties of v are preserved.



In third place, we mention that it is possible to repeat the above study for
nonisotropic operators and wu satifying the following inequality in €2:

Su = —ZDnjAj(x,u,DIju) + ij(| Dy;u [)Dy;u - Ci(z) +d(z) f(u) > 0. (33)

J=1 J=1

We replace A;(z, pu,n), A, A, p, 7, a and ¥, respectively, by A;(x, 11,1;), Aj, Aj, pj,
vj, o and x; for j = 1,---, N, with the same properties for each index j. Now
D,,Aj(x,u,n;) = 0if ¢ # j. Much of the above program can be repeated separately
for each j. It is possible to conclude that Theorems 1, 3 and 4 are still valid. The
comparison function w we need is the sum from 5 = 1 to j = N of w;, obained
in each step j. Theorem 5 does not feature a complete generalization, under the
analogues of assumptions (26)—(28) we conclude that Sv > 0 in Q and v vanishes
in the complementary of some neighbourhood of zy. For that matter we use the

inequality f(iv:tj) > (l/N)if(tj) for ¢; > 0.
=1

=1

We accomplish with a different way to handle the following particular result.

THEOREM 6. Let u € C?(Q), where Q C RN, N > 1, is a bounded domain.

N
Assume that Tu = Y D, (p;j(| Vu |)Dy,u) > 0 and the properties on the functions

7=1
pi: pj € CH(0,+00), pi(s) > 0, (pj(s)s)’ > 0 and either pj(s) > 0 or pj(s) < 0 for
every j = 1,--+-, N and s > 0. If u achives its maximum at an nondegenertate point

xo € Q, then u(z) = u(zg) in Q.

REMARK. A paralell study for functions belonging to some Sobolev or Orlicz-
Sobolev space may be developed in the same scheme of [7]. To this aim some
additional assumptions on A and B in order to get a C! regularity are needed.

2. PROOF OF THEOREMS

We need a refinament of some well known weak comparison principles. We state
them below under conditions (3)—(25) followed by the main steps of its proofs, just
to stress what is different from the classical results. The hypothesis on the gradient
of the function w in the following lemmas may seem to be somewhat artificial, but
this is exactly the situation we are going to face when proving our theorems. This
condition is formulated in order to give a positive lower bound, depending on v, for
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Az, tVw + (1 — t)Vu) for  in a bounded subdomain £y C €.

LEMMA 1. If u,w € C*(Qp) with Vw # 0 in Qq satisfy Lw < Lu in €y and
w < u on 0, then w < u in Qy, provided (19) holds and C'(z) = 0 for z in Q.

PROOF OF LEMMA 1. Preliminarily we should note that

Y A, pym) = Aj(z, ) (ny — ;) =

=1

_ Z:/OI%[A]-(@«, ot + (L —t)n")]dt (n; — ;) =

1 N
= /0 > Dy A, pytn + (L= t)y)dt (n; — nf)(n; — 1)) >

1,j=1
> o 1—t)n 1—t)y |td —n *>
2 | e+ @ =0 ) [tn+ Q=) | dt [n—n[2

>1/4a/an=0N(nl+I0 )" In—nF

for every = € Q and 7,7 € IRN. Since M = supg-(| Vu | + | Vw |) < oo and
1/4 | Vu—=Vuw [<| tVw + (1 —t)Vu |<| Vu | + | Vw |< M for t € [0,1/4]. The
following integration against the test function ¢ = (w — u)™ establishes the result,
provided f is extended continuously and nondecreasing to the whole IR:

0<a(M)/4M {w>u}a(1/4 | Vw—Vu |) | Vw—Vu |* dz < —/{w>u}d(:v)(f(w)—f(u))(w—u)d:v <0.0

LEMMA 2. Assume (26). If u,w € C'(Qy) with Vw # 0 in Qg satisfy Lw < Lu
in Qy and w < u on 0€), then w < w in €.

PROOF OF LEMMA 2. Again, with the aid of the mean value theorem and
extending f to IR so that f € C'(IR — {0}) N C°(RR) and f is nondecreasing, we
write 2 = w — u,

1
@ :/0 Dy, Aj(z, tVw + (1 — £)Vu)dt,
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¢ = /Oan].B(x,w,ti 4 (1= £)Vu)dt
and
d= /OlDﬂB(x,tw + (1 — t)u, Vw)dt.
Therefore

N N

Lz= =Y Di(@;D;z) + S ¢;Diz+dz < 0 in
1,j=1 j=1

z < 0 on 0€.

Note that d > 0 and bounded in ©, and that we may rewrite @;; as (@;; + @;;)/2 if
necessary. So that @;; is a positive definite symmetric matrix. Since M = supg(]|
Vu |+ | Vw |) <ooand | tVw + (1 —t)Vu |<| Vu | + | Vw |< M the terms a;;
and ¢; are bounded in Q. The possible singularity of D, A;(x,n) and Dy, B(x, 1, 7)
for n = 0 is not relevant. It remains to verify that £ is uniformly elliptic in €2,
indeed

N 1
> ay€i€ > [ pll tVw+(1=t)Vu )t | € 2 pl| Vu | +| Vul) |§ 22 p(1) | [

,j=1

for every £ € IRY. Now are able to conclude that 2 < 0 in Q. O
The following result is taken from [1].

LEMMA 3. Assume (27). If u,w € C'(Qy) satisfy Lw < Lu in Qy and w < u on
08y, then w < u in §2y.

LEMMA 4. If u,w € C%*(Q) N C°(€g) with Vw # 0 in Qg satisfy Quw < Qu in
and w < u on 0€)y, then w < w in 2.

PROOF OF LEMMA 4. We write z = w — v and

N
Z aij(:r, V’U})D”w — aij(:r, Vw)D”u + aij (JI, Vw)D”u — CLij (.’E, VU)D”U‘F

b,j=1

+o(| Vu [)Vu-Cz) — ¢(| Vw )V - C(z) 2 d()(f(w) = f(u)) =0
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in Qf = {z € Qf : 2(z) > 0}. With the same notation of Lemma 2, define
N

bj =c; + ZﬁijDiju with @;; and ¢; replaced by its analogues, hence

=1
N N
QZ = — Z aij(x, VZ)DUZ + ijDjZ S 0 iIl QS_
1,j=1 7=1

z < 0 on 0%

and Q is uniformly elliptic. If 0 # 0, then 0 < sup z < sup 27, a contradiction. O
Qo %%

Let us recall the homotopical version of the Leray-Schauder Fixed Point Theorem.

LEMMA 5. Let E be a Banach space and H : E x [0,1] — E be a compact
continuous mapping such that H(u,0) = 0 for every u € E. If there exists a
constant K such that ||u||p < K for every pair (u,0) € E x [0,1] satisfying
u = H(u,0), then the mapping H(.,1) : E — E has a fixed point.

We adapt for our needs some homotopical techniques widely used to solve
elliptic quasilinear boundary value problems for partial differential equations.
The a priori estimates required in the above lemma are usually obtained from
classical Schauder estimates, see [4]. The situation here is different, we menage
to solve an nonliner two-point boudary value problem, so the a priori estimates
we need are derived from the behaviour of the real functions involved in the problem.

LEMMA 6. Assume (19) on f and let «, a and b be functions with the following
properties:

a € C°(IR) with a(0) = 0 is an increasing extention of the function « satisfying (11)-(15)

a € CH0,T) and a > 0 in [0, 7]
be C°0,T],b>0in [0,T] and injective

ab — a’/rb(s)ds > 0in [0,T7.
0

There exists a solution u € C*[0, 7] of the problem
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—(a(r)a(u'(r))" +b(r) f(u(r)) = 0 in (0,
{U((O)(:) u(o,é(%ﬂ))):w(.) r) ©.7) (34)

Moreover, if uy = 0 and ur > 0, then v > 0 and v’ > 0 in [0,7]. According either
(12) or (13) is fulfilled we get either v € C?(0,T] or C?[0,T], and either u” > 0 in
(0,7] or " > 0 in [0,T].

Suplementing the above hypotheses we get deeper informations. If (20) holds and
a'(r) < 0 for r € [0,7], then u'(0) > 0. Hence v’ > 0 in [0,7], u > 0 in (0,7
and u” > 0 either in (0,7] or in [0,T] according either (12) or (13) is fulfilled,
respectively. Futhermore, the solution u is unique.

PROOF OF LEMMA 6. Extend f continuously and nondecreasing to the whole
IR. The problem is equivalent to finding a fixed point of the mapping

Ju)r) =+ [ 1( (K+/ ))ds

where the constant K satisfies

[ o (o (1 + [ rto)an) s = e = o

Such a constant K do exists because the first member defines an unbounded mono-
tone continuous function of K. The mapping J acts from the space C°[0, T'], endowed
with the usual Banach norm ||.||ze (o), into itself. We insert a parameter o € [0,1]
into the operator J in order to generate a homotopy. So we define

Jo( = Uy + / < <K + a/jb(y)f(u(y))dy))ds

with K, satisfying

/OTa—l <$ <Kg + U/Osb(y)f(u(y))dy>>ds = o(up — ug).

We define the mapping H by setting H(v,0) = J,(v) = u. Equivalently, the inserc-
tion of the parameter o into the problem (34) produces the class of problems

{ —(a(r)a(u'(r)))" + ob(r) f(u(r)) = 0 in (0,T)
u(0) = oug, u(T") = our,

where H associates to each pair (u, o) the solution v of

11



{ —(a(r)a(v'(r)))" + ob(r) f (u(r)) = 0 in (0,T)

v(0) = oug, v(T) = our.
Note that H(u,0) = 0 for every v € C°[0, T]. Indeed, this is equivalent to show that

—0in (0,7)
u(T) = 0.

S
—~
S

I
“O
—~

possesses u = 0 as unique solution. Clearly, if u is a solution, then

/OTa(r)a(u')C(r)dr =0

for every ¢ € C2°(0,7T). And hence a(r)a(u') =0 in [0,T]. Since a(r) > 0 in [0, T,
we get a(u') = 01in [0,7]. The homogeneous boundary conditions and applying the
increasing function o' imply « = 0 in [0, T

The continuity and compactness of H follows as usual, the main ingredient is the
Arzela-Ascoli Theorem. It remains to show that there exists a constant M such that
|lu|l oo,y < M for every pair (u,0) € C°[0,T] x [0,1] satisfying J,(u)(r) = u(r)
for every r € [0,7]. So let (u,0) be a such pair and let us analyse the equivalent
boundary value problem

{ —(a(r)a(u'(r)))" + ob(r) f(u(r)) = 0 in (0,T)

u(0) = oug, u(T) = our.

If |u| attains its maximum on the boundary of the interval [0,77], then
|ullpeoory < 0 max{| uo |,| uy |} < max{| uo |,| uy [}. This is the unique
possibility, the maximum is attained only on the boundary of the interval. Indeed,
if the maximum of | u | is attained, say, at a point 7y € (0,7") and | u(ro) |> 0, then
a contradiction is rised, because the equation provides u(ry)(a(r)a(u/(r)))’| > 0.

r=rQ

If u(rg) > 0, then (a(r)a(u/(r)))" > 0 in a neighbourhood (ry — €,79 + €) for € > 0
small. Since a(r) > 0 and u/(ry) = 0, we either have a(u'(r)) < 0 in (rg — €, 1) or
a(u'(r)) > 0in (rg,ro + €). Apllying the increasing function o' we conclude that
either v/(r) < 0in (ry —€,7) or w/'(r) > 0 in (r¢, 79 + €), a contradiction. On the
other hand if u(ry) < 0, we get a similar contradiction.

Thus we have proved that J has a fixed point u € C°[0,T] by applying Lemma
3. A bootstrap reasoning shows that v € C*(0,T], because J(u)(r) = u(r). From
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now on we assume ug = 0 and wy; > 0.

Let us prove that «'(0) > 0. If on the contrary we assume u/(0) = 0, then for
Ty = sup{r € [0,T] : v/ (1) = 0} we have u > 0 in (T}, T], v'(Ty) = 0 and u
is bijective from [Ty, T] to [0,ur]. We have the following calculations valid in the

interval (0,7):

(acr(u'))" = bf (u)
a(a(u) +da(u') =bf(u)
(e(u))'u' + (d'/a)a(u)u" = (b/a) f(u)u’

(a(u)u") + (d'/a)a(u')u" = (b/a) f(u)u" + a(u)u”

(@(u)e') + (a!fa)au ' = (ofa)(Pw)) + ([ s)ds)
Since

a(w) < ([ bls)ds/a) f(u)

0

we get

(@) — ([ a()ds) < Bbfa — (a/Ja)( [ bs)ds/a))(F ()

0 0

x(u') < cF(u)

[ @) ) = [T )] s <
a contradiction.

Our solution satisfies the integral equation

ur) = [lo7t (o5 (1 + [ s ww)ay) )
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then, as remarked above, it is clear that v € C*[0, 7] and K = a(0)a(u'(0)). Since
1

(1) =07 (o5 (a0t ) + [[06) (w(s))dy) (35)

we see that either u € C*(0,T] or C?[0,T] according the C' regularity of a~! at 0,
see (12)—(13). Let us see that u > 0 in [0,7]. Actually, if by contradiction v~ # 0,
there exist r < ro in [0, 73] such that u(r;) = u(ry) = 0, so then multiplying the
equation in (34) by u~ and integrating, produces

0< /r:2a(8)a(_(u)’(S))[—(u)/(s)]ds _ _/ri"?b(S)f(—u(s))(—u(5))d3 <0,

then

for r € [ry,r9). Since o/(t) > 0 for t > 0, we conclude that u= = 0 in [ry, ro).
From relation (35) we see that if w > 0 in [0,77], then «’ > 0 in [0,7]. Deriving the
equation in (35) we get

d(r)a(u'(r)) + a(r)o’(u'(r))u”"(r) = b(r) f (u(r))

on (0,71, so that " > 0 on (0,7], provided (12) holds. Under condition (13) we get
u” > 0 on [0,7]. Finally, we prove by contradiction the uniqueness of u. If u and v
satisfy (34), then tu'(r) + (1 — t)v'(r) # 0 for t € [0,1] and r € [0, Tp], hence

T 1
0< / a/ (@ (tu + (1 — D))dt | o — o |2 ds =
0 0

= /OTa(a(u') —a(v)(u —v')ds = —/OTb(f(u) — f(v))(u —v)ds <0,
then u = v in [0,7]. O

PROOF OF THEOREM 1. Let us begin with a remark in advance. In what
follows we need a function w such that

{ (a(w") + kia(w') =k f (w) in (R/2, R)
w(R) =0,w(R/2) =m >0 and w'(R) < 0.

The function w is the translated reflection w(r) = w(R — r) of the solution
u obtained in the previous lemma, with uy = 0, ur = m, a(r) = e ™" and
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b(r) = kee ™7, It is also a solution of (34) because of the oddness of a. Note
that w'(R) = —u'(0) and, since w' is decreasing, we have | w'(r) |> «'(0) in [R/2, R].

Let us start the proof of our result. If u > ¢ in 2, we are finished. In case u < ¢ for
some point of {2 we proceed as follows. If u(xy) = 0 for some zy € 2, we construct a
ball such that B = Bg(z) CC Q and u(y) = 0 for some y € 0B, note that Vu(y) = 0.
Picking a point T € 2, T # x¢ and a ball B,(T), we may increase the radius r untill
finding a point y € Q such that u(y) = 0, possibly we may have y = zy. Along the
segment ty + (1 — )T, t € [0, 1], we shrink B,(T) into Bg(z) mantaining y fixed. We
may take R small enough in order to put Br(z) CC €, since B,(T) may not be inside
2. Also, we may diminish R so that 0 < u(z) < € in Bg(z). Take now the annulus
Z={re€Q:R/2<|r—z <R}, m=inf{ulx) € R:| z—2z|=R/2}(>0),
ky > 2(yN -1+ C(x) - (x —2))/R > (N —=1)/rforr =| z — 2 | and z € Z,
ks > ||d||p=(z) > d(z) for x € Z. The above mentioned function w satisfy Lw < 0
in Z, Vw(y) # 0 and w < w on 9Z. Arguing by comparison with Lemmas 1, 2 and
3 in each case, w < u in Z. Hence,

i Ytz —y) —uly) L w(B—tR) —w(R) _ _Ruw'(0) > 0

t—0t t T t—0t t

thus Vu(y) # 0 constitutes a contradiction. It rests to explain the inequality Lw < 0
in Z:

N

divA(z, w, Vw) = Y D, (A;(z,w, Vw)) =
=1
N N N
=Y Dy Aj(z,w,Vw)dy+ Y DyAj(z,w,Vw) Dyw b+ > Dy Aj(a, w, Vw)Dijwiw >
inj=1 ij=1 ij=1
N
> Y Dy Aj(z,w,Vw)D; , w =
inj=1

(W (r)r=w!(r)/7*) 3 Dy Ay, w0, Vo) wimz2) a2+ (w'(r)/7) Y- Dy Ayl w, )y >

i,j=1 hj=1

> (@ (1) = ' ()/r*) pl] w/(r) Dr® + AN (@' () /r)pl| () [) >
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> (p(| w'(r) Nw'(r) + (YN = 1) /r)p(] w'(r) [Jw'(r).
Therefore

divA(z, w, Vw) — p(| Vw )Vw - C(z) =
> (p(| w'(r) Nw'(r))" + (YN =1+ C(2) - (z — 2))/r)p(] w'(r) Nuw'(r) =
= (p(| w'(r) Dw'(r))" = kip(] w'(r) w'(r) =
= ko f (w(r)) =

> d(x) f(w(r)). B

PROOF OF THEOREM 2. It is similar to the above repeating the steps with
D, A; replaced by a;;, because Dy, w is the same. The conclusion follows from
Lemma 4. O

PROOF OF THEOREM 3. Under assumption (21) on f, then f(t) = 0 for
0 <t <ty where ty < ¢ and tj is the largest number such that f vanishes. By the
calculations of Lemma 6, (34) has a unique solution u € C?(0,7] N C*[0, 7] such
that «/ > 0 in [0, 7] and u,v” > 0 in (0,77]. Indeed, let us see that u'(0) > 0. Since
e Mra(u'(r)) = a(u'(0)) for 0 < r < T and some T < T. There exists a constant
I' > 0 such that 0 < wu(r) <Tfor 0 <r <T. IfT" <t then f(u) =0in [0,7] and
we make 7' =T, so there exists T* € [0, 7] such that «/'(T*) > 0, then «'(0) > 0. If
[' > ty, then f(u) = 0 in [0,T], where u(T) =ty and T < T'. Since «'(T) > 0, we
have «/(0) > 0. O

PROOF OF THEOREM 4. Let Z be the annulus, as in the proof of Theorem
1, corresponding to the ball B C €2 of the hypothesis, such that zy € 0B. As before
Lw <0< Luin Z and w < u on 0Z. Note that Vu(xg) = 0 and repeat the same
procedure. O

PROOF OF THEOREM 5. In the case N = 1, the function M(r) =
/ [x"'(F(s))]"'ds defined in [0, 6] is invertible, then v(r) = M~(r) is a C' so-
0

lution of
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—(a(v'(r)))" + f(v(r)) =0
{ 2(0) = v'(0) = 0 (36)

5
defined in [0, I], where I = / [x"'(F(s))]"'ds. Furthermore, v, > 0 in (0, I].
0

Take 6§ € (0,1) and set the translate reflection wy(t) = v(—t + ) for t € [0 — I,0]
and wy(t) = 0 for t > 6. Thus wy satisfies the equation in (36) in [0, 00), is a
C! function and C? except possibly in ¢ = 6. Moreover wy is strictly increasing
for 0 <t < #. Given xg € OS2 for all 0 < # < I such that § < R the function
u(z) = wy(| © —xg |) is a solution of the equation in (36) in IR\ {z(} which vanishes
iff | —xy |> 0.

Whenever N > 2, if 2y € (IR \ ) C 02 and R > 0, there exists z; ¢ 2 such
that 0 < p = dist(x,2) < R/2. The problem is solved if we construct a function
u > 0 satisfying Lu = 0 in RN \ B,(z1) and such that u(z) = 0 iff | x — 2y [> b for
some b € (p, R/2). By a similar reasoning of Lemma 6, using Degree Theory, the
two-point boundary value problem

() Y ) = 0in (.0)
{ 2(p) = wy(p), 2(0) = (37)
)

where 0 = min(p + /2, R/2), has a unique solution z € C?[p,o) N C'[p, o] and
z > 0in [p,o]. Let Z(r) = w,(r). Since —(r¥ ta(Z'(r))) + ¥V 1f(Z(r)) > 0
for p < r < o and Z(p) = 2(p),Z(0) = z(0) and by comparison z(r) < Z(r) for
p <r < o. Since Z'(0) = 0 we have 2'(c_) = 0 and z can be extended by 0 for
r > o to a solution in (p,00). Now we set u(z) = z(] z — 1 |) for z € Q and
b =sup{r € [p,+00) : z(r) > 0}(< o), establishing the result. O

PROOF OF THEOREM 6. There exists a neighbourhood V,, of xy such that
(Hu(z)w,w) < 0 for every w € RY — 0 and z € Q, where Hu is the Hessian
matrix of u. Furthermore, if u(x) # u(zg), then there exists a point z €  and a
neighbourhood V, of z such that Vu(z) # 0, Au(z) < 0 and (Hu(z)w,w) < 0 for
every w € IRYN — 0 and o € V,. Our claim is true, because if for every z € Q we
have Vu = 0 or Au(z) > 0 or (Hu(z)w,w) > 0 for every w € IRY. These three
cases imply Au(z) > 0 in €. the maximum principle for subharmonic functions
asserts that u(x) = u(xg), a contradiction.

An easy computation furnishes
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N
Tu=Y D, (fi(] Vu ) Dayu) =
j=1

N
Z Vu | f |Vu|<

N
ZDLUJDx ; >iju + Zf3(| Vu |)D$j$ju -

=1 ]:1

=| Vu | (HuVu, AuVu) +Zf] | Vit ) Dy

j=1

N
=| Vu |7 (AuHuVu, Vu) + > f1(] Vu |),
7=1
where Aw is the diagonal matrix diag(f{(] Vu |),..., fy(| Vu |)). Suppose on
the contray that u(z) # u(x). There is a point z € Q such that f;(] Vu(z) |
)Dy,0;u(z) < 0, for j = 1,..,N. Assume first Au(z) is positive semidefinite
for every © € Q. Since Hu(z) is negative definite, Au(z)Hu(z) is negative

semidefinite. Hence (Au(z)Hu(z)Vu(z),Vu(z)) < 0, thus Lu(z) < 0, a con-
tradiction. Otherwise, if Au(z) is negative semidefinite for every x € €, then

ulz

)
[ Vu [ {(Au(z) Hu(:)Vu(), Vu(2)) < —[Au(z)|Au(z) | Vulz) [ because
||Hu|| < — sum of eigenvalues = —trace(Hu(z)) = —Au(z). Hence

Lu(z) < [min fi(] Vu(2) |) — max(=fj(| Vu(2) ) | Vu(z) [JAu(z) =
= [min fi(| Vu(2) |) + min(fj(| Vu(2) [)) | Vu(z) [JAu(z) <

= min(f;(] Vu(z) |) | Vu(z) [)'Au(z) <0,
again a contradiction. O
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