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Abstrat

We study the positivity of a funtion satisfying some inequalities involving

quasilinear ellipti operators whih may grow polinomially, exponentially or

logarithmialy.
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1. INTRODUCTION

At �rst, the purpose of this paper is to ensure that u > 0 in 
 whenever u 2

C

1

(
), u � 0 in 
, u 6� 0 in 
 satisfy weakly the following inequality in some

arbitray domain 
 � IR

N

, N � 1, unless otherwise stated:

Lu = �divA(x; u;ru) +B(x; u;ru) � 0: (1)

So that u annot vanish identially loally in subdomains of 
. We reall that a

funtion u satis�es Lu � 0 weakly in 
 i� A(x; u;ru) and B(x; u;ru) are loally

integrable when u and ru are and

Z




fA(x; u;ru) � r�+B(x; u;ru)�gdx � 0 (2)

for every � 2 C

1



(
) with � � 0 in 
.

The divergene form operators we are going to deal with have the priipal part

A : 
� IR� IR

N

! IR

N

with a general form:

A

j

(x; �; �) 2 C

1

(
� IR� (IR

N

� f0g)) \ C

0

(
� IR� IR

N

) for j = 1; � � � ; N; (3)

N

X

i;j=1

D

�

i

A

j

(x; �; �)�

i

�

j

� �(x; �; �) j � j

2

; (4)

N

X

j=1

D

�

j

A

j

(x; �; �) � �(x; �; �); (5)

N

X

j=1

D

�

A

j

(x; �; �)�

j

� 0 (6)

and

N

X

j=1

D

x

i

A

j

(x; �; �) � 0; (7)

for every (x; �; �) 2 
 � IR � IR

N

, � 2 IR

N

, � 6= 0. The funtions �;� : 
 � IR �

(IR

N

� f0g)! IR are suh that

�(x; �; �) � �(j � j) (8)
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and

�(x; �; �) � �(j � j) for some onstant  > 0: (9)

The funtion � has the following properties:

� 2 C

1

(0;+1); (10)

�(t) = �(t)t for t � 0 is odd, inreasing and �(0) = 0; (11)

� 2 C

1

(0;+1) if �

0

(t)t < 0 for t > 0 (12)

or

� 2 C

1

[0;+1) if �

0

(t)t > 0 for t > 0; (13)

sine we are taitly assuming that

� is either inreasing or dereasing : (14)

If

there exists a onstant �

0

> 0 suh that �(t) � �

0

; (15)

assumptions (10){(14) are uneessary. Properties (3){(14) reveal that the lass

of operators we are studying may degenerate at vanishing gradient points of


. This means that the �rst eigenvalue of the matrix D

�

i

A

j

may tend to

0 or to +1 as j � j! 0. Clearly D

�

i

A

j

may be assumed symmetri by rewrit-

ing it as (D

�

i

A

j

+D

�

j

A

i

)=2. The uniformly ellipti ase (15) will be treated together.

The term B : 
� IR� IR

N

! IR has the form

B(x; �; �) = �(j � j)� � C(x) + d(x)f(�) (16)

with the properties

C 2 (L

1

(
))

N

; (17)

d 2 L

1

lo

(
) and d(x) � 0 a.e. in 
; (18)

there exists an " > 0 suh that f 2 C

0

[0; "℄ is nondereasing with f(0) = 0 (19)
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and

for every Æ > 0 we have

Z

Æ

0

[�

�1

(F (s))℄

�1

ds =1; (20)

where F (t) =

Z

t

0

f(s)ds and �(t) = �(t)t�

Z

t

0

�(s)ds for t � 0. Note that � is stritly

inreasing for t � 0, sine we always may assume that f(s) > 0 for s 2 (0;+1)

and f is extended ontinulosly and nondereasing for s � ". Another assumption

we an make of on f is

f(t) = 0 for t in some interval [0; t

0

℄ with t

0

< " and f is nondereasing in [t

0

; "℄:

(21)

Let us in turn onsider nondivergene form operators satisfying the following

inequality in 
:

Qu = �

N

X

i;j=1

a

ij

(x;ru)D

ij

u+B(x; u;ru) � 0; (22)

where the funtions a

ij

: 
� IR

N

! IR

N

satisfy

a

ij

(x; �) 2 C

1

(
� (IR

N

� f0g)) \ C

0

(
� IR

N

) for i; j = 1; � � � ; N; (23)

N

X

i;j=1

a

ij

(x; �)�

i

�

j

� �(x; �) j � j

2

(24)

and

N

X

j=1

a

jj

(x; �) � �(x; �) (25)

for every (x; �) 2 
 � IR

N

, � 2 IR

N

, � 6= 0. Again, a

ij

may be assumed symmetri

by rewriting it as (a

ij

+ a

ji

)=2. As before the funtions �;� : 
� (IR

N

�f0g)! IR

are subjet to the assumptions (8){(15), and our operator may be degenerate.

The funtion B : 
 � IR � IR

N

! IR has the same properties (16){(21). Now we

require an improvement in the regularity of u in order to inequality (22) be satis�ed

lassially, so we take u 2 C

2

(
). This regularity of u has to do with some lassial

omparison priniples we are going to apply. Suh omparison priniples prevent

us form having a dependene on � in the funtions a

ij

, an example in [4℄ is provided.
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THEOREM 1. Let a funtion u 2 C

1

(
), u � 0 in 
, u 6� 0 in 
 suh that

Lu � 0 in 
 and assume (3){(20), then u > 0 in 
, if only one of the following extra

strutural hypotheses holds:

(i) A = A(x; �; �), � is dereasing or a positive onstant, f 2 C

1

(0; "℄ and d 2 C

1

(
)

(26)

(ii) A = A(x; �), �(t) =j t j

p�2

for p > 2, f 2 C

1

[0; "℄, d 2 C

1

(
) and (27)

D

�

B � 1=N(D

�

B)

q

> 0 for (x; �; �) 2 
� IR� IR

N

and 1=p+ 1=q = 1

(iii) A = A(x; �; �) and C(x) � 0 (28)

(iv) In partiular, A = A(�) = �(j � j)� and C(x) � 0:

For nondivergene form operators we have the following ounterpart.

THEOREM 2. Let a funtion u 2 C

2

(
), u � 0 in 
, u 6� 0 in 
 suh that

Qu � 0 in 
 and assume (8){(20) and (23){(25), then u > 0 in 
.

THEOREM 3. The above theorems remain true with hypotheses (19){(20) are

replaed by (21).

Let us see a normal boundary derivative version.

THEOREM 4. Let x

0

2 �
 be a point satisfying the interior sphere ondition

and let � be the inward unit normal vetor at x

0

. If u satis�es the hypotheses of

the above theorems, u 2 C

1

(
 [ fx

0

g) and u(x

0

) = 0, then �u(x

0

)=�� > 0.

The positivity problem we are studying is related to the nonexistene of a dead

ore of a solution, that is, a region on the domain 
 in whih u vanishes. Condition

(20) is neessary for the nonexistene of suh regions. This question have been

studied in [2℄, [7℄, [9℄, [10℄ and [11℄. Here a broader lass of ellipti operators is

onsidered with the aid of di�erent tools. The seond member B is also more

general than those onsidered in the previous ited works, beause we may allow a

gradient dependene, let us see some examples:

�div((exp(j ru j)� 1)ru) (29)
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�div(log(j ru j +1)ru) (30)

�div((1+ j ru j

2

)

�1=2

ru) (31)

Existene theorems for examples of the growth type (29){(30) have been

studied in [3℄ and [5℄ and for the apilarity operator (31) in [8℄. We also refer

to [4℄ for lots of examples of suh operators. In the uniformly ellipti ase, they

model many physial and geometrial aspets suh as raking of plates, blast

furnaes, preribed mean urvature, gas dynamis and apilarity. The degenerate

operators are related to non-Newtonian uids and ow through porous media, see [2℄.

Our resuls are arried out by means of a ontradition argument. We build a

funtion w with nonvanishing gradient satisfying the reverse inequality Lw � 0

and ompare with u in some annulus ontained in 
. This underlying heuristi-

al idea is similar to that for proving the Classial Hopf's Maximum Priniple

[6℄. In that ase, the omparison funtion w has a standard expression. In

ontrast, here we only know the existene of funtion w with the properties

we need. This funtion w is a solution of a two-point boundary value problem

for the ordinary di�erential equation �(a(r)�(u

0

(r)))

0

+ b(r)f(u(r)) = 0. We

use degree theory to solve it. The funtions a and b will be timely introdued.

The later equation has to do with the radial formula of L in the onstruted annulus.

When ondition (20) does not hold the funtion u annot be positive, provided

A(x; �; �) = �(j � j)�, C(x) � 0 and d(x) = 1. If

there exists Æ > 0 suh that

Z

Æ

0

[�

�1

(F (s))℄

�1

ds <1; (32)

using degree theory we onstrut a funtion v vanishing in some portion of 
 and

satifying Lv = 0 in 
. So, assumption (20) is neessary and suÆient for obtaining

the positivity of u. This led us to all the following result nonunique ontinuation

property.

THEOREM 5. If (3){(19), (28) and (32) are ful�lled with C(x) � 0 and d(x) = 1,

then for every x

0

2 �(IR

N

n
) � �
 and all R > 0 there exists a funtion v 2 C

1

(
)

suh that v � 0 in 
 and v 6� 0 in 
 satisfying Lv = 0 in 
 and v = 0 in 
nB

R

(x

0

).

Under more general assumptions, replaing (28) by (26) or (27), we have Lv � 0 in


, but the other properties of v are preserved.
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In third plae, we mention that it is possible to repeat the above study for

nonisotropi operators and u satifying the following inequality in 
:

Su = �

N

X

j=1

D

�

j

A

j

(x; u;D

x

j

u) +

N

X

j=1

�

j

(j D

x

j

u j)D

x

j

u � C

j

(x) + d(x)f(u) � 0: (33)

We replae A

j

(x; �; �), �, �, �, , � and �, respetively, by A

j

(x; �; �

j

), �

j

, �

j

, �

j

,



j

, �

j

and �

j

for j = 1; � � � ; N , with the same properties for eah index j. Now

D

�

i

A

j

(x; u; �

j

) = 0 if i 6= j. Muh of the above program an be repeated separately

for eah j. It is possible to onlude that Theorems 1, 3 and 4 are still valid. The

omparison funtion w we need is the sum from j = 1 to j = N of w

j

, obained

in eah step j. Theorem 5 does not feature a omplete generalization, under the

analogues of assumptions (26){(28) we onlude that Sv � 0 in 
 and v vanishes

in the omplementary of some neighbourhood of x

0

. For that matter we use the

inequality f(

N

X

j=1

t

j

) � (1=N)

N

X

j=1

f(t

j

) for t

j

� 0.

We aomplish with a di�erent way to handle the following partiular result.

THEOREM 6. Let u 2 C

2

(
), where 
 � IR

N

, N � 1, is a bounded domain.

Assume that Tu =

N

X

j=1

D

x

j

(�

j

(j ru j)D

x

j

u) � 0 and the properties on the funtions

�

j

: �

j

2 C

1

(0;+1), �

j

(s) > 0, (�

j

(s)s)

0

� 0 and either �

0

j

(s) � 0 or �

0

j

(s) � 0 for

every j = 1; � � � ; N and s > 0. If u ahives its maximum at an nondegenertate point

x

0

2 
, then u(x) � u(x

0

) in 
.

REMARK. A paralell study for funtions belonging to some Sobolev or Orliz-

Sobolev spae may be developed in the same sheme of [7℄. To this aim some

additional assumptions on A and B in order to get a C

1

regularity are needed.

2. PROOF OF THEOREMS

We need a re�nament of some well known weak omparison priniples. We state

them below under onditions (3){(25) followed by the main steps of its proofs, just

to stress what is di�erent from the lassial results. The hypothesis on the gradient

of the funtion w in the following lemmas may seem to be somewhat arti�ial, but

this is exatly the situation we are going to fae when proving our theorems. This

ondition is formulated in order to give a positive lower bound, depending on v, for
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�(x; trw + (1� t)ru) for x in a bounded subdomain 


0

� 
.

LEMMA 1. If u; w 2 C

1

(


0

) with rw 6= 0 in 


0

satisfy Lw � Lu in 


0

and

w � u on �


0

, then w � u in 


0

, provided (19) holds and C(x) � 0 for x in 
.

PROOF OF LEMMA 1. Preliminarily we should note that

N

X

j=1

A

j

(x; �; �)� A

j

(x; �; �

0

))(�

j

� �

0

j

) =

=

N

X

j=1

Z

1

0

d

dt

[A

j

(x; �; t� + (1� t)�

0

)℄dt (�

j

� �

0

j

) =

=

Z

1

0

N

X

i;j=1

D

�

j

A

j

(x; �; t� + (1� t)�

0

)dt (�

i

� �

0

i

)(�

j

� �

0

j

) �

�

Z

1=4

0

�(j t� + (1� t)�

0

j) j t� + (1� t)�

0

j

�1

dt j � � �

0

j

2

�

� 1=4 �(1=4 j � � �

0

j)(j � j + j �

0

j)

�1

j � � �

0

j

2

for every x 2 


0

and �; �

0

2 IR

N

. Sine M = sup




0

(j ru j + j rw j) < 1 and

1=4 j ru � rw j�j trw + (1 � t)ru j�j ru j + j rw j� M for t 2 [0; 1=4℄. The

following integration against the test funtion � = (w � u)

+

establishes the result,

provided f is extended ontinuously and nondereasing to the whole IR:

0 � �(M)=4M

Z

fw>ug

�(1=4 j rw�ru j) j rw�ru j

2

dx � �

Z

fw>ug

d(x)(f(w)�f(u))(w�u)dx � 0: 2

LEMMA 2. Assume (26). If u; w 2 C

1

(


0

) with rw 6= 0 in 


0

satisfy Lw � Lu

in 


0

and w � u on �


0

, then w � u in 


0

.

PROOF OF LEMMA 2. Again, with the aid of the mean value theorem and

extending f to IR so that f 2 C

1

(IR � f0g) \ C

0

(IR) and f is nondereasing, we

write z = w � u,

a

ij

=

Z

1

0

D

�

j

A

j

(x; trw + (1� t)ru)dt;

8





j

=

Z

1

0

D

�

j

B(x; w; trw + (1� t)ru)dt

and

d =

Z

1

0

D

�

B(x; tw + (1� t)u;rw)dt:

Therefore

8

>

>

<

>

>

:

Lz = �

N

X

i;j=1

D

i

(a

ij

D

j

z) +

N

X

j=1



j

D

j

z + dz � 0 in 


0

z � 0 on �


0

:

Note that d � 0 and bounded in 


0

and that we may rewrite a

ij

as (a

ij

+ a

ji

)=2 if

neessary. So that a

ij

is a positive de�nite symmetri matrix. Sine M = sup




0

(j

ru j + j rw j) < 1 and j trw + (1 � t)ru j�j ru j + j rw j� M the terms a

ij

and 

i

are bounded in 


0

. The possible singularity of D

�

j

A

j

(x; �) and D

�

j

B(x; �; �)

for � = 0 is not relevant. It remains to verify that L is uniformly ellipti in 


0

,

indeed

N

X

i;j=1

a

ij

�

i

�

j

�

Z

1

0

�(j trw+(1�t)ru j)dt j � j

2

� �(j rw j + j ru j) j � j

2

� �(M) j � j

2

:

for every � 2 IR

N

. Now are able to onlude that z � 0 in 


0

. 2

The following result is taken from [1℄.

LEMMA 3. Assume (27). If u; w 2 C

1

(


0

) satisfy Lw � Lu in 


0

and w � u on

�


0

, then w � u in 


0

.

LEMMA 4. If u; w 2 C

2

(
) \ C

0

(


0

) with rw 6= 0 in 


0

satisfy Qw � Qu in 


0

and w � u on �


0

, then w � u in 


0

.

PROOF OF LEMMA 4. We write z = w � u and

N

X

i;j=1

a

ij

(x;rw)D

ij

w � a

ij

(x;rw)D

ij

u+ a

ij

(x;rw)D

ij

u� a

ij

(x;ru)D

ij

u+

+'(j ru j)ru � C(x)� '(j rw j)rw � C(x) � d(x)(f(w)� f(u)) � 0

9



in 


+

0

= fx 2 


+

0

: z(x) > 0g. With the same notation of Lemma 2, de�ne

b

j

= 

j

+

N

X

i=1

a

ij

D

ij

u with a

ij

and 

j

replaed by its analogues, hene

8

>

>

<

>

>

:

Qz = �

N

X

i;j=1

a

ij

(x;rz)D

ij

z +

N

X

j=1

b

j

D

j

z � 0 in 


+

0

z � 0 on �


0

and Q is uniformly ellipti. If 


+

0

6= ;, then 0 < sup




0

z � sup

�


0

z

+

, a ontradition. 2

Let us reall the homotopial version of the Leray-Shauder Fixed Point Theorem.

LEMMA 5. Let E be a Banah spae and H : E � [0; 1℄ ! E be a ompat

ontinuous mapping suh that H(u; 0) = 0 for every u 2 E. If there exists a

onstant K suh that kuk

E

< K for every pair (u; �) 2 E � [0; 1℄ satisfying

u = H(u; �), then the mapping H(:; 1) : E ! E has a �xed point.

We adapt for our needs some homotopial tehniques widely used to solve

ellipti quasilinear boundary value problems for partial di�erential equations.

The a priori estimates required in the above lemma are usually obtained from

lassial Shauder estimates, see [4℄. The situation here is di�erent, we menage

to solve an nonliner two-point boudary value problem, so the a priori estimates

we need are derived from the behaviour of the real funtions involved in the problem.

LEMMA 6. Assume (19) on f and let �, a and b be funtions with the following

properties:

� 2 C

0

(IR) with �(0) = 0 is an inreasing extention of the funtion � satisfying (11){(15)

a 2 C

1

[0; T ℄ and a > 0 in [0; T ℄

b 2 C

0

[0; T ℄, b > 0 in [0; T ℄ and injetive

ab� a

0

Z

r

0

b(s)ds � 0 in [0; T ℄.

There exists a solution u 2 C

1

[0; T ℄ of the problem

10



(

�(a(r)�(u

0

(r)))

0

+ b(r)f(u(r)) = 0 in (0; T )

u(0) = u

0

; u(T ) = u

T

:

(34)

Moreover, if u

0

= 0 and u

T

> 0, then u � 0 and u

0

� 0 in [0; T ℄. Aording either

(12) or (13) is ful�lled we get either u 2 C

2

(0; T ℄ or C

2

[0; T ℄, and either u

00

� 0 in

(0; T ℄ or u

00

� 0 in [0; T ℄.

Suplementing the above hypotheses we get deeper informations. If (20) holds and

a

0

(r) < 0 for r 2 [0; T ℄, then u

0

(0) > 0. Hene u

0

> 0 in [0; T ℄, u > 0 in (0; T ℄

and u

00

> 0 either in (0; T ℄ or in [0; T ℄ aording either (12) or (13) is ful�lled,

respetively. Futhermore, the solution u is unique.

PROOF OF LEMMA 6. Extend f ontinuously and nondereasing to the whole

IR. The problem is equivalent to �nding a �xed point of the mapping

J(u)(r) = u

0

+

Z

r

0

�

�1

�

1

a(s)

�

K +

Z

s

0

b(y)f(u(y))dy

��

ds

where the onstant K satis�es

Z

T

0

�

�1

�

1

a(s)

�

K +

Z

s

0

b(y)f(u(y))dy

��

ds = u

T

� u

0

:

Suh a onstant K do exists beause the �rst member de�nes an unbounded mono-

tone ontinuous funtion ofK. The mapping J ats from the spae C

0

[0; T ℄, endowed

with the usual Banah norm k:k

L

1

(0;T )

, into itself. We insert a parameter � 2 [0; 1℄

into the operator J in order to generate a homotopy. So we de�ne

J

�

(u)(r) = u

0

+

Z

r

0

�

�1

�

1

a(s)

�

K

�

+ �

Z

s

0

b(y)f(u(y))dy

��

ds

with K

�

satisfying

Z

T

0

�

�1

�

1

a(s)

�

K

�

+ �

Z

s

0

b(y)f(u(y))dy

��

ds = �(u

T

� u

0

):

We de�ne the mapping H by setting H(v; �) = J

�

(v) = u. Equivalently, the inser-

tion of the parameter � into the problem (34) produes the lass of problems

(

�(a(r)�(u

0

(r)))

0

+ �b(r)f(u(r)) = 0 in (0; T )

u(0) = �u

0

; u(T ) = �u

T

;

where H assoiates to eah pair (u; �) the solution v of

11



(

�(a(r)�(v

0

(r)))

0

+ �b(r)f(u(r)) = 0 in (0; T )

v(0) = �u

0

; v(T ) = �u

T

:

Note that H(u; 0) = 0 for every u 2 C

0

[0; T ℄. Indeed, this is equivalent to show that

(

�(a(r)�(u

0

(r)))

0

= 0 in (0; T )

u(0) = 0; u(T ) = 0:

possesses u � 0 as unique solution. Clearly, if u is a solution, then

Z

T

0

a(r)�(u

0

)�(r)dr = 0

for every � 2 C

1



(0; T ). And hene a(r)�(u

0

) � 0 in [0; T ℄. Sine a(r) > 0 in [0; T ℄,

we get �(u

0

) � 0 in [0; T ℄. The homogeneous boundary onditions and applying the

inreasing funtion �

�1

imply u � 0 in [0; T ℄.

The ontinuity and ompatness of H follows as usual, the main ingredient is the

Arzel�a-Asoli Theorem. It remains to show that there exists a onstantM suh that

kuk

L

1

(0;T )

< M for every pair (u; �) 2 C

0

[0; T ℄ � [0; 1℄ satisfying J

�

(u)(r) = u(r)

for every r 2 [0; T ℄. So let (u; �) be a suh pair and let us analyse the equivalent

boundary value problem

(

�(a(r)�(u

0

(r)))

0

+ �b(r)f(u(r)) = 0 in (0; T )

u(0) = �u

0

; u(T ) = �u

T

:

If juj attains its maximum on the boundary of the interval [0; T ℄, then

kuk

L

1

(0;T )

� � maxfj u

0

j; j u

T

jg � maxfj u

0

j; j u

T

jg. This is the unique

possibility, the maximum is attained only on the boundary of the interval. Indeed,

if the maximum of j u j is attained, say, at a point r

0

2 (0; T ) and j u(r

0

) j> 0, then

a ontradition is rised, beause the equation provides u(r

0

)(a(r)�(u

0

(r)))

0

�

�

�

�

r=r

0

> 0.

If u(r

0

) > 0, then (a(r)�(u

0

(r)))

0

> 0 in a neighbourhood (r

0

� �; r

0

+ �) for � > 0

small. Sine a(r) > 0 and u

0

(r

0

) = 0, we either have �(u

0

(r)) < 0 in (r

0

� �; r

0

) or

�(u

0

(r)) > 0 in (r

0

; r

0

+ �). Apllying the inreasing funtion �

�1

we onlude that

either u

0

(r) < 0 in (r

0

� �; r

0

) or u

0

(r) > 0 in (r

0

; r

0

+ �), a ontradition. On the

other hand if u(r

0

) < 0, we get a similar ontradition.

Thus we have proved that J has a �xed point u 2 C

0

[0; T ℄ by applying Lemma

3. A bootstrap reasoning shows that u 2 C

1

[0; T ℄, beause J(u)(r) = u(r). From

12



now on we assume u

0

= 0 and u

T

> 0.

Let us prove that u

0

(0) > 0. If on the ontrary we assume u

0

(0) = 0, then for

T

0

= supf� 2 [0; T ℄ : u

0

(�) = 0g we have u > 0 in (T

0

; T ℄, u

0

(T

0

) = 0 and u

is bijetive from [T

0

; T ℄ to [0; u

T

℄. We have the following alulations valid in the

interval (0; T ):

(a�(u

0

))

0

= bf(u)

a(�(u

0

))

0

+ a

0

�(u

0

) = bf(u)

(�(u

0

))

0

u

0

+ (a

0

=a)�(u

0

)u

0

= (b=a)f(u)u

0

(�(u

0

)u

0

)

0

+ (a

0

=a)�(u

0

)u

0

= (b=a)f(u)u

0

+ �(u

0

)u

00

(�(u

0

)u

0

)

0

+ (a

0

=a)�(u

0

)u

0

= (b=a)(F (u))

0

+ (

Z

u

0

0

�(s)ds)

0

Sine

�(u

0

) � (

Z

r

0

b(s)ds=a)f(u)

we get

(�(u

0

)u

0

)

0

� (

Z

u

0

0

�(s)ds)

0

� [b=a� (a

0

=a)(

Z

r

0

b(s)ds=a)℄(F (u))

0

�(u

0

) � F (u)

Z

T

T

0

[�

�1

(F (u(r)))℄

�1

u

0

(r)dr =

Z

u

T

0

[�

�1

(F (s))℄

�1

ds <1;

a ontradition.

Our solution satis�es the integral equation

u(r) =

Z

r

0

�

�1

�

1

a(s)

�

K +

Z

s

0

b(y)f(u(y))dy

��

ds

13



then, as remarked above, it is lear that u 2 C

1

[0; T ℄ and K = a(0)�(u

0

(0)). Sine

u

0

(r) = �

�1

�

1

a(r)

�

a(0)�(u

0

(0)) +

Z

r

0

b(s)f(u(s))dy

��

(35)

we see that either u 2 C

2

(0; T ℄ or C

2

[0; T ℄ aording the C

1

regularity of �

�1

at 0,

see (12){(13). Let us see that u > 0 in [0; T ℄. Atually, if by ontradition u

�

6� 0,

there exist r

1

< r

2

in [0; r

2

℄ suh that u(r

1

) = u(r

2

) = 0, so then multiplying the

equation in (34) by u

�

and integrating, produes

0 �

Z

r

2

r

1

a(s)�(�(u

�

)

0

(s))[�(u

�

)

0

(s)℄ds = �

Z

r

2

r

1

b(s)f(�u

�

(s))(�u

�

(s))ds � 0;

then

�(�(u

�

)

0

(r))[�(u

�

)

0

(r)℄ = 0;

for r 2 [r

1

; r

2

℄. Sine �

0

(t) > 0 for t > 0, we onlude that u

�

� 0 in [r

1

; r

2

℄.

From relation (35) we see that if u � 0 in [0; T ℄, then u

0

> 0 in [0; T ℄. Deriving the

equation in (35) we get

a

0

(r)�(u

0

(r)) + a(r)�

0

(u

0

(r))u

00

(r) = b(r)f(u(r))

on (0; T ℄, so that u

00

> 0 on (0; T ℄, provided (12) holds. Under ondition (13) we get

u

00

> 0 on [0; T ℄. Finally, we prove by ontradition the uniqueness of u. If u and v

satisfy (34), then tu

0

(r) + (1� t)v

0

(r) 6= 0 for t 2 [0; 1℄ and r 2 [0; T

0

℄, hene

0 �

Z

T

0

a

Z

1

0

(�

0

(tu

0

+ (1� t)v

0

))dt j u

0

� v

0

j

2

ds =

=

Z

T

0

a(�(u

0

)� �(v

0

))(u

0

� v

0

)ds = �

Z

T

0

b(f(u)� f(v))(u� v)ds � 0;

then u � v in [0; T ℄. 2

PROOF OF THEOREM 1. Let us begin with a remark in advane. In what

follows we need a funtion w suh that

(

(�(w

0

))

0

+ k

1

�(w

0

) = k

2

f(w) in (R=2; R)

w(R) = 0; w(R=2) = m > 0 and w

0

(R) < 0:

The funtion w is the translated reetion w(r) = u(R � r) of the solution

u obtained in the previous lemma, with u

0

= 0, u

T

= m, a(r) = e

�k

1

r

and

14



b(r) = k

2

e

�k

1

r

. It is also a solution of (34) beause of the oddness of �. Note

that w

0

(R) = �u

0

(0) and, sine w

0

is dereasing, we have j w

0

(r) j� u

0

(0) in [R=2; R℄.

Let us start the proof of our result. If u � " in 
, we are �nished. In ase u � " for

some point of 
 we proeed as follows. If u(x

0

) = 0 for some x

0

2 
, we onstrut a

ball suh that B = B

R

(z) �� 
 and u(y) = 0 for some y 2 �B, note thatru(y) = 0.

Piking a point x 2 
, x 6= x

0

and a ball B

r

(x), we may inrease the radius r untill

�nding a point y 2 
 suh that u(y) = 0, possibly we may have y = x

0

. Along the

segment ty+(1� t)x, t 2 [0; 1℄, we shrink B

r

(x) into B

R

(z) mantaining y �xed. We

may take R small enough in order to put B

R

(z) �� 
, sine B

r

(x) may not be inside


. Also, we may diminish R so that 0 < u(x) < " in B

R

(z). Take now the annulus

Z = fx 2 
 : R=2 < jx � zj < Rg, m = inffu(x) 2 IR :j x � z j= R=2g(> 0),

k

1

� 2(N � 1 + C(x) � (x � z))=R � (N � 1)=r for r =j x � z j and x 2 Z,

k

2

� kdk

L

1

(Z)

� d(x) for x 2 Z. The above mentioned funtion w satisfy Lw � 0

in Z, rw(y) 6= 0 and w � u on �Z. Arguing by omparison with Lemmas 1, 2 and

3 in eah ase, w � u in Z. Hene,

lim

t!0

+

u(y + t(z � y))� u(y)

t

� lim

t!0

+

w(R� tR)� w(R)

t

= �Rw

0

(0) > 0

thus ru(y) 6= 0 onstitutes a ontradition. It rests to explain the inequality Lw � 0

in Z:

divA(x; w;rw) =

N

X

j=1

D

�

j

(A

j

(x; w;rw)) =

=

N

X

i;j=1

D

x

i

A

j

(x; w;rw)Æ

ij

+

N

X

i;j=1

D

�

A

j

(x; w;rw)D

x

j

w Æ

ij

+

N

X

i;j=1

D

�

i

A

j

(x; w;rw)D

2

x

j

x

i

w �

�

N

X

i;j=1

D

�

i

A

j

(x; w;rw)D

2

x

j

x

i

w =

=

�

(w

00

(r)r�w

0

(r))=r

3

�

N

X

i;j=1

D

�

i

A

j

(x; w;rw)(x

i

�z

i

)(x

j

�z

j

)+(w

0

(r)=r)

N

X

i;j=1

D

�

i

A

j

(x; w;rw)Æ

ij

�

�

�

(w

00

(r)r � w

0

(r))=r

3

�

�(j w

0

(r) j)r

2

+ N(w

0

(r)=r)�(j w

0

(r) j) �

15



� (�(j w

0

(r) j)w

0

(r))

0

+ ((N � 1)=r)�(j w

0

(r) j)w

0

(r):

Therefore

divA(x; w;rw)� �(j rw j)rw � C(x) �

� (�(j w

0

(r) j)w

0

(r))

0

+ ((N � 1 + C(x) � (x� z))=r)�(j w

0

(r) j)w

0

(r) �

� (�(j w

0

(r) j)w

0

(r))

0

� k

1

�(j w

0

(r) j)w

0

(r) =

= k

2

f(w(r)) �

� d(x)f(w(r)): 2

PROOF OF THEOREM 2. It is similar to the above repeating the steps with

D

�

i

A

j

replaed by a

ij

, beause D

x

j

x

i

w is the same. The onlusion follows from

Lemma 4. 2

PROOF OF THEOREM 3. Under assumption (21) on f , then f(t) = 0 for

0 � t � t

0

where t

0

� " and t

0

is the largest number suh that f vanishes. By the

alulations of Lemma 6, (34) has a unique solution u 2 C

2

(0; T ℄ \ C

1

[0; T ℄ suh

that u

0

> 0 in [0; T ℄ and u; u

00

> 0 in (0; T ℄. Indeed, let us see that u

0

(0) > 0. Sine

e

�k

1

r

�(u

0

(r)) = �(u

0

(0)) for 0 � r � T and some T � T . There exists a onstant

� > 0 suh that 0 � u(r) � � for 0 � r � T . If � � t

0

, then f(u) = 0 in [0; T ℄ and

we make T = T , so there exists T

�

2 [0; T ℄ suh that u

0

(T

�

) > 0, then u

0

(0) > 0. If

� > t

0

, then f(u) = 0 in [0; T ℄, where u(T ) = t

0

and T < T . Sine u

0

(T ) > 0, we

have u

0

(0) > 0. 2

PROOF OF THEOREM 4. Let Z be the annulus, as in the proof of Theorem

1, orresponding to the ball B � 
 of the hypothesis, suh that x

0

2 �B. As before

Lw � 0 � Lu in Z and w � u on �Z. Note that ru(x

0

) = 0 and repeat the same

proedure. 2

PROOF OF THEOREM 5. In the ase N = 1, the funtion M(�) =

Z

�

0

[�

�1

(F (s))℄

�1

ds de�ned in [0; Æ℄ is invertible, then v(r) = M

�1

(r) is a C

1

so-

lution of

16



(

�(�(v

0

(r)))

0

+ f(v(r)) = 0

v(0) = v

0

(0) = 0

(36)

de�ned in [0; I℄, where I =

Z

Æ

0

[�

�1

(F (s))℄

�1

ds. Furthermore, v; v

0

> 0 in (0; I℄.

Take � 2 (0; I) and set the translate reetion w

�

(t) = v(�t + �) for t 2 [� � I; �℄

and w

�

(t) = 0 for t � �. Thus w

�

satis�es the equation in (36) in [0;1), is a

C

1

funtion and C

2

exept possibly in t = �. Moreover w

�

is stritly inreasing

for 0 < t < �. Given x

0

2 �
 for all 0 < � < I suh that � � R the funtion

u(x) = w

�

(j x�x

0

j) is a solution of the equation in (36) in IR nfx

0

g whih vanishes

i� j x� x

0

j� �.

Whenever N � 2, if x

0

2 �(IR

N

n 
) � �
 and R > 0, there exists x

1

62 
 suh

that 0 < � = dist(x

1

;
) < R=2. The problem is solved if we onstrut a funtion

u � 0 satisfying Lu = 0 in IR

N

nB

�

(x

1

) and suh that u(x) = 0 i� j x� x

1

j� b for

some b 2 (�; R=2). By a similar reasoning of Lemma 6, using Degree Theory, the

two-point boundary value problem

(

�(r

N�1

�(z

0

(r)))

0

+ r

N�1

f(z(r)) = 0 in (�; �)

z(�) = w

�

(�); z(�) = 0

(37)

where � = min(� + I=2; R=2), has a unique solution z 2 C

2

[�; �) \ C

1

[�; �℄ and

z � 0 in [�; �℄. Let z(r) = w

�

(r). Sine �(r

N�1

�(z

0

(r)))

0

+ r

N�1

f(z(r)) � 0

for � < r < � and z(�) = z(�); z(�) = z(�) and by omparison z(r) � z(r) for

� < r < �. Sine z

0

(�) = 0 we have z

0

(�

�

) = 0 and z an be extended by 0 for

r � � to a solution in (�;1). Now we set u(x) = z(j x � x

1

j) for x 2 
 and

b = supfr 2 [�;+1) : z(r) > 0g(� �), establishing the result. 2

PROOF OF THEOREM 6. There exists a neighbourhood V

x

0

of x

0

suh that

hHu(x)w;wi < 0 for every w 2 IR

N

� 0 and x 2 
, where Hu is the Hessian

matrix of u. Furthermore, if u(x) 6= u(x

0

), then there exists a point z 2 
 and a

neighbourhood V

z

of z suh that ru(x) 6= 0, �u(x) < 0 and hHu(x)w;wi < 0 for

every w 2 IR

N

� 0 and x 2 V

z

. Our laim is true, beause if for every x 2 
 we

have ru = 0 or �u(x) � 0 or hHu(x)w;wi � 0 for every w 2 IR

N

. These three

ases imply �u(x) � 0 in 
. the maximum priniple for subharmoni funtions

asserts that u(x) = u(x

0

), a ontradition.

An easy omputation furnishes

17



Tu =

N

X

j=1

D

x

j

(f

j

(j ru j)D

x

j

u) =

=

N

X

j=1

j ru j

�1

f

0

j

(j ru j)

�

N

X

i=1

D

x

i

uD

x

i

x

j

u

�

D

x

j

u+

N

X

j=1

f

j

(j ru j)D

x

j

x

j

u =

=j ru j

�1

hHuru;Aurui+

N

X

j=1

f

j

(j ru j)D

x

j

x

j

u =

=j ru j

�1

hAuHuru;rui+

N

X

j=1

f

0

1

(j ru j);

where Au is the diagonal matrix diag(f

0

1

(j ru j); :::; f

0

N

(j ru j)). Suppose on

the ontray that u(x) 6� u(x

0

). There is a point z 2 
 suh that f

j

(j ru(z) j

)D

x

j

x

j

u(z) < 0, for j = 1; :::; N . Assume �rst Au(x) is positive semide�nite

for every x 2 
. Sine Hu(z) is negative de�nite, Au(z)Hu(z) is negative

semide�nite. Hene hAu(z)Hu(z)ru(z);ru(z)i < 0, thus Lu(z) < 0, a on-

tradition. Otherwise, if Au(x) is negative semide�nite for every x 2 
, then

j ru j

�1

hAu(z)Hu(z)ru(z);ru(z)i � �kAu(z)k�u(z) j ru(z) j

2

, beause

kHuk � � sum of eigenvalues = �trae(Hu(z)) = ��u(z). Hene

Lu(z) < [min f

i

(j ru(z) j)�max(�f

0

j

(j ru(z) j)) j ru(z) j℄�u(z) =

= [min f

i

(j ru(z) j) + min(f

0

j

(j ru(z) j)) j ru(z) j℄�u(z) �

= min(f

j

(j ru(z) j) j ru(z) j)

0

�u(z) � 0;

again a ontradition. 2
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