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Abstra
t

We study the positivity of a fun
tion satisfying some inequalities involving

quasilinear ellipti
 operators whi
h may grow polinomially, exponentially or

logarithmi
aly.
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1. INTRODUCTION

At �rst, the purpose of this paper is to ensure that u > 0 in 
 whenever u 2

C

1

(
), u � 0 in 
, u 6� 0 in 
 satisfy weakly the following inequality in some

arbitray domain 
 � IR

N

, N � 1, unless otherwise stated:

Lu = �divA(x; u;ru) +B(x; u;ru) � 0: (1)

So that u 
annot vanish identi
ally lo
ally in subdomains of 
. We re
all that a

fun
tion u satis�es Lu � 0 weakly in 
 i� A(x; u;ru) and B(x; u;ru) are lo
ally

integrable when u and ru are and

Z




fA(x; u;ru) � r�+B(x; u;ru)�gdx � 0 (2)

for every � 2 C

1




(
) with � � 0 in 
.

The divergen
e form operators we are going to deal with have the pri
ipal part

A : 
� IR� IR

N

! IR

N

with a general form:

A

j

(x; �; �) 2 C

1

(
� IR� (IR

N

� f0g)) \ C

0

(
� IR� IR

N

) for j = 1; � � � ; N; (3)

N

X

i;j=1

D

�

i

A

j

(x; �; �)�

i

�

j

� �(x; �; �) j � j

2

; (4)

N

X

j=1

D

�

j

A

j

(x; �; �) � �(x; �; �); (5)

N

X

j=1

D

�

A

j

(x; �; �)�

j

� 0 (6)

and

N

X

j=1

D

x

i

A

j

(x; �; �) � 0; (7)

for every (x; �; �) 2 
 � IR � IR

N

, � 2 IR

N

, � 6= 0. The fun
tions �;� : 
 � IR �

(IR

N

� f0g)! IR are su
h that

�(x; �; �) � �(j � j) (8)
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and

�(x; �; �) � 
�(j � j) for some 
onstant 
 > 0: (9)

The fun
tion � has the following properties:

� 2 C

1

(0;+1); (10)

�(t) = �(t)t for t � 0 is odd, in
reasing and �(0) = 0; (11)

� 2 C

1

(0;+1) if �

0

(t)t < 0 for t > 0 (12)

or

� 2 C

1

[0;+1) if �

0

(t)t > 0 for t > 0; (13)

sin
e we are ta
itly assuming that

� is either in
reasing or de
reasing : (14)

If

there exists a 
onstant �

0

> 0 su
h that �(t) � �

0

; (15)

assumptions (10){(14) are une
essary. Properties (3){(14) reveal that the 
lass

of operators we are studying may degenerate at vanishing gradient points of


. This means that the �rst eigenvalue of the matrix D

�

i

A

j

may tend to

0 or to +1 as j � j! 0. Clearly D

�

i

A

j

may be assumed symmetri
 by rewrit-

ing it as (D

�

i

A

j

+D

�

j

A

i

)=2. The uniformly ellipti
 
ase (15) will be treated together.

The term B : 
� IR� IR

N

! IR has the form

B(x; �; �) = �(j � j)� � C(x) + d(x)f(�) (16)

with the properties

C 2 (L

1

(
))

N

; (17)

d 2 L

1

lo


(
) and d(x) � 0 a.e. in 
; (18)

there exists an " > 0 su
h that f 2 C

0

[0; "℄ is nonde
reasing with f(0) = 0 (19)
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and

for every Æ > 0 we have

Z

Æ

0

[�

�1

(F (s))℄

�1

ds =1; (20)

where F (t) =

Z

t

0

f(s)ds and �(t) = �(t)t�

Z

t

0

�(s)ds for t � 0. Note that � is stri
tly

in
reasing for t � 0, sin
e we always may assume that f(s) > 0 for s 2 (0;+1)

and f is extended 
ontinulosly and nonde
reasing for s � ". Another assumption

we 
an make of on f is

f(t) = 0 for t in some interval [0; t

0

℄ with t

0

< " and f is nonde
reasing in [t

0

; "℄:

(21)

Let us in turn 
onsider nondivergen
e form operators satisfying the following

inequality in 
:

Qu = �

N

X

i;j=1

a

ij

(x;ru)D

ij

u+B(x; u;ru) � 0; (22)

where the fun
tions a

ij

: 
� IR

N

! IR

N

satisfy

a

ij

(x; �) 2 C

1

(
� (IR

N

� f0g)) \ C

0

(
� IR

N

) for i; j = 1; � � � ; N; (23)

N

X

i;j=1

a

ij

(x; �)�

i

�

j

� �(x; �) j � j

2

(24)

and

N

X

j=1

a

jj

(x; �) � �(x; �) (25)

for every (x; �) 2 
 � IR

N

, � 2 IR

N

, � 6= 0. Again, a

ij

may be assumed symmetri


by rewriting it as (a

ij

+ a

ji

)=2. As before the fun
tions �;� : 
� (IR

N

�f0g)! IR

are subje
t to the assumptions (8){(15), and our operator may be degenerate.

The fun
tion B : 
 � IR � IR

N

! IR has the same properties (16){(21). Now we

require an improvement in the regularity of u in order to inequality (22) be satis�ed


lassi
ally, so we take u 2 C

2

(
). This regularity of u has to do with some 
lassi
al


omparison prin
iples we are going to apply. Su
h 
omparison prin
iples prevent

us form having a dependen
e on � in the fun
tions a

ij

, an example in [4℄ is provided.
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THEOREM 1. Let a fun
tion u 2 C

1

(
), u � 0 in 
, u 6� 0 in 
 su
h that

Lu � 0 in 
 and assume (3){(20), then u > 0 in 
, if only one of the following extra

stru
tural hypotheses holds:

(i) A = A(x; �; �), � is de
reasing or a positive 
onstant, f 2 C

1

(0; "℄ and d 2 C

1

(
)

(26)

(ii) A = A(x; �), �(t) =j t j

p�2

for p > 2, f 2 C

1

[0; "℄, d 2 C

1

(
) and (27)

D

�

B � 1=N(D

�

B)

q

> 0 for (x; �; �) 2 
� IR� IR

N

and 1=p+ 1=q = 1

(iii) A = A(x; �; �) and C(x) � 0 (28)

(iv) In parti
ular, A = A(�) = �(j � j)� and C(x) � 0:

For nondivergen
e form operators we have the following 
ounterpart.

THEOREM 2. Let a fun
tion u 2 C

2

(
), u � 0 in 
, u 6� 0 in 
 su
h that

Qu � 0 in 
 and assume (8){(20) and (23){(25), then u > 0 in 
.

THEOREM 3. The above theorems remain true with hypotheses (19){(20) are

repla
ed by (21).

Let us see a normal boundary derivative version.

THEOREM 4. Let x

0

2 �
 be a point satisfying the interior sphere 
ondition

and let � be the inward unit normal ve
tor at x

0

. If u satis�es the hypotheses of

the above theorems, u 2 C

1

(
 [ fx

0

g) and u(x

0

) = 0, then �u(x

0

)=�� > 0.

The positivity problem we are studying is related to the nonexisten
e of a dead


ore of a solution, that is, a region on the domain 
 in whi
h u vanishes. Condition

(20) is ne
essary for the nonexisten
e of su
h regions. This question have been

studied in [2℄, [7℄, [9℄, [10℄ and [11℄. Here a broader 
lass of ellipti
 operators is


onsidered with the aid of di�erent tools. The se
ond member B is also more

general than those 
onsidered in the previous 
ited works, be
ause we may allow a

gradient dependen
e, let us see some examples:

�div((exp(j ru j)� 1)ru) (29)
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�div(log(j ru j +1)ru) (30)

�div((1+ j ru j

2

)

�1=2

ru) (31)

Existen
e theorems for examples of the growth type (29){(30) have been

studied in [3℄ and [5℄ and for the 
apilarity operator (31) in [8℄. We also refer

to [4℄ for lots of examples of su
h operators. In the uniformly ellipti
 
ase, they

model many physi
al and geometri
al aspe
ts su
h as 
ra
king of plates, blast

furna
es, pre
ribed mean 
urvature, gas dynami
s and 
apilarity. The degenerate

operators are related to non-Newtonian 
uids and 
ow through porous media, see [2℄.

Our resuls are 
arried out by means of a 
ontradi
tion argument. We build a

fun
tion w with nonvanishing gradient satisfying the reverse inequality Lw � 0

and 
ompare with u in some annulus 
ontained in 
. This underlying heuristi-


al idea is similar to that for proving the Classi
al Hopf's Maximum Prin
iple

[6℄. In that 
ase, the 
omparison fun
tion w has a standard expression. In


ontrast, here we only know the existen
e of fun
tion w with the properties

we need. This fun
tion w is a solution of a two-point boundary value problem

for the ordinary di�erential equation �(a(r)�(u

0

(r)))

0

+ b(r)f(u(r)) = 0. We

use degree theory to solve it. The fun
tions a and b will be timely introdu
ed.

The later equation has to do with the radial formula of L in the 
onstru
ted annulus.

When 
ondition (20) does not hold the fun
tion u 
annot be positive, provided

A(x; �; �) = �(j � j)�, C(x) � 0 and d(x) = 1. If

there exists Æ > 0 su
h that

Z

Æ

0

[�

�1

(F (s))℄

�1

ds <1; (32)

using degree theory we 
onstru
t a fun
tion v vanishing in some portion of 
 and

satifying Lv = 0 in 
. So, assumption (20) is ne
essary and suÆ
ient for obtaining

the positivity of u. This led us to 
all the following result nonunique 
ontinuation

property.

THEOREM 5. If (3){(19), (28) and (32) are ful�lled with C(x) � 0 and d(x) = 1,

then for every x

0

2 �(IR

N

n
) � �
 and all R > 0 there exists a fun
tion v 2 C

1

(
)

su
h that v � 0 in 
 and v 6� 0 in 
 satisfying Lv = 0 in 
 and v = 0 in 
nB

R

(x

0

).

Under more general assumptions, repla
ing (28) by (26) or (27), we have Lv � 0 in


, but the other properties of v are preserved.
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In third pla
e, we mention that it is possible to repeat the above study for

nonisotropi
 operators and u satifying the following inequality in 
:

Su = �

N

X

j=1

D

�

j

A

j

(x; u;D

x

j

u) +

N

X

j=1

�

j

(j D

x

j

u j)D

x

j

u � C

j

(x) + d(x)f(u) � 0: (33)

We repla
e A

j

(x; �; �), �, �, �, 
, � and �, respe
tively, by A

j

(x; �; �

j

), �

j

, �

j

, �

j

,




j

, �

j

and �

j

for j = 1; � � � ; N , with the same properties for ea
h index j. Now

D

�

i

A

j

(x; u; �

j

) = 0 if i 6= j. Mu
h of the above program 
an be repeated separately

for ea
h j. It is possible to 
on
lude that Theorems 1, 3 and 4 are still valid. The


omparison fun
tion w we need is the sum from j = 1 to j = N of w

j

, obained

in ea
h step j. Theorem 5 does not feature a 
omplete generalization, under the

analogues of assumptions (26){(28) we 
on
lude that Sv � 0 in 
 and v vanishes

in the 
omplementary of some neighbourhood of x

0

. For that matter we use the

inequality f(

N

X

j=1

t

j

) � (1=N)

N

X

j=1

f(t

j

) for t

j

� 0.

We a

omplish with a di�erent way to handle the following parti
ular result.

THEOREM 6. Let u 2 C

2

(
), where 
 � IR

N

, N � 1, is a bounded domain.

Assume that Tu =

N

X

j=1

D

x

j

(�

j

(j ru j)D

x

j

u) � 0 and the properties on the fun
tions

�

j

: �

j

2 C

1

(0;+1), �

j

(s) > 0, (�

j

(s)s)

0

� 0 and either �

0

j

(s) � 0 or �

0

j

(s) � 0 for

every j = 1; � � � ; N and s > 0. If u a
hives its maximum at an nondegenertate point

x

0

2 
, then u(x) � u(x

0

) in 
.

REMARK. A paralell study for fun
tions belonging to some Sobolev or Orli
z-

Sobolev spa
e may be developed in the same s
heme of [7℄. To this aim some

additional assumptions on A and B in order to get a C

1

regularity are needed.

2. PROOF OF THEOREMS

We need a re�nament of some well known weak 
omparison prin
iples. We state

them below under 
onditions (3){(25) followed by the main steps of its proofs, just

to stress what is di�erent from the 
lassi
al results. The hypothesis on the gradient

of the fun
tion w in the following lemmas may seem to be somewhat arti�
ial, but

this is exa
tly the situation we are going to fa
e when proving our theorems. This


ondition is formulated in order to give a positive lower bound, depending on v, for
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�(x; trw + (1� t)ru) for x in a bounded subdomain 


0

� 
.

LEMMA 1. If u; w 2 C

1

(


0

) with rw 6= 0 in 


0

satisfy Lw � Lu in 


0

and

w � u on �


0

, then w � u in 


0

, provided (19) holds and C(x) � 0 for x in 
.

PROOF OF LEMMA 1. Preliminarily we should note that

N

X

j=1

A

j

(x; �; �)� A

j

(x; �; �

0

))(�

j

� �

0

j

) =

=

N

X

j=1

Z

1

0

d

dt

[A

j

(x; �; t� + (1� t)�

0

)℄dt (�

j

� �

0

j

) =

=

Z

1

0

N

X

i;j=1

D

�

j

A

j

(x; �; t� + (1� t)�

0

)dt (�

i

� �

0

i

)(�

j

� �

0

j

) �

�

Z

1=4

0

�(j t� + (1� t)�

0

j) j t� + (1� t)�

0

j

�1

dt j � � �

0

j

2

�

� 1=4 �(1=4 j � � �

0

j)(j � j + j �

0

j)

�1

j � � �

0

j

2

for every x 2 


0

and �; �

0

2 IR

N

. Sin
e M = sup




0

(j ru j + j rw j) < 1 and

1=4 j ru � rw j�j trw + (1 � t)ru j�j ru j + j rw j� M for t 2 [0; 1=4℄. The

following integration against the test fun
tion � = (w � u)

+

establishes the result,

provided f is extended 
ontinuously and nonde
reasing to the whole IR:

0 � �(M)=4M

Z

fw>ug

�(1=4 j rw�ru j) j rw�ru j

2

dx � �

Z

fw>ug

d(x)(f(w)�f(u))(w�u)dx � 0: 2

LEMMA 2. Assume (26). If u; w 2 C

1

(


0

) with rw 6= 0 in 


0

satisfy Lw � Lu

in 


0

and w � u on �


0

, then w � u in 


0

.

PROOF OF LEMMA 2. Again, with the aid of the mean value theorem and

extending f to IR so that f 2 C

1

(IR � f0g) \ C

0

(IR) and f is nonde
reasing, we

write z = w � u,

a

ij

=

Z

1

0

D

�

j

A

j

(x; trw + (1� t)ru)dt;
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j

=

Z

1

0

D

�

j

B(x; w; trw + (1� t)ru)dt

and

d =

Z

1

0

D

�

B(x; tw + (1� t)u;rw)dt:

Therefore

8

>

>

<

>

>

:

Lz = �

N

X

i;j=1

D

i

(a

ij

D

j

z) +

N

X

j=1




j

D

j

z + dz � 0 in 


0

z � 0 on �


0

:

Note that d � 0 and bounded in 


0

and that we may rewrite a

ij

as (a

ij

+ a

ji

)=2 if

ne
essary. So that a

ij

is a positive de�nite symmetri
 matrix. Sin
e M = sup




0

(j

ru j + j rw j) < 1 and j trw + (1 � t)ru j�j ru j + j rw j� M the terms a

ij

and 


i

are bounded in 


0

. The possible singularity of D

�

j

A

j

(x; �) and D

�

j

B(x; �; �)

for � = 0 is not relevant. It remains to verify that L is uniformly ellipti
 in 


0

,

indeed

N

X

i;j=1

a

ij

�

i

�

j

�

Z

1

0

�(j trw+(1�t)ru j)dt j � j

2

� �(j rw j + j ru j) j � j

2

� �(M) j � j

2

:

for every � 2 IR

N

. Now are able to 
on
lude that z � 0 in 


0

. 2

The following result is taken from [1℄.

LEMMA 3. Assume (27). If u; w 2 C

1

(


0

) satisfy Lw � Lu in 


0

and w � u on

�


0

, then w � u in 


0

.

LEMMA 4. If u; w 2 C

2

(
) \ C

0

(


0

) with rw 6= 0 in 


0

satisfy Qw � Qu in 


0

and w � u on �


0

, then w � u in 


0

.

PROOF OF LEMMA 4. We write z = w � u and

N

X

i;j=1

a

ij

(x;rw)D

ij

w � a

ij

(x;rw)D

ij

u+ a

ij

(x;rw)D

ij

u� a

ij

(x;ru)D

ij

u+

+'(j ru j)ru � C(x)� '(j rw j)rw � C(x) � d(x)(f(w)� f(u)) � 0

9



in 


+

0

= fx 2 


+

0

: z(x) > 0g. With the same notation of Lemma 2, de�ne

b

j

= 


j

+

N

X

i=1

a

ij

D

ij

u with a

ij

and 


j

repla
ed by its analogues, hen
e

8

>

>

<

>

>

:

Qz = �

N

X

i;j=1

a

ij

(x;rz)D

ij

z +

N

X

j=1

b

j

D

j

z � 0 in 


+

0

z � 0 on �


0

and Q is uniformly ellipti
. If 


+

0

6= ;, then 0 < sup




0

z � sup

�


0

z

+

, a 
ontradi
tion. 2

Let us re
all the homotopi
al version of the Leray-S
hauder Fixed Point Theorem.

LEMMA 5. Let E be a Bana
h spa
e and H : E � [0; 1℄ ! E be a 
ompa
t


ontinuous mapping su
h that H(u; 0) = 0 for every u 2 E. If there exists a


onstant K su
h that kuk

E

< K for every pair (u; �) 2 E � [0; 1℄ satisfying

u = H(u; �), then the mapping H(:; 1) : E ! E has a �xed point.

We adapt for our needs some homotopi
al te
hniques widely used to solve

ellipti
 quasilinear boundary value problems for partial di�erential equations.

The a priori estimates required in the above lemma are usually obtained from


lassi
al S
hauder estimates, see [4℄. The situation here is di�erent, we menage

to solve an nonliner two-point boudary value problem, so the a priori estimates

we need are derived from the behaviour of the real fun
tions involved in the problem.

LEMMA 6. Assume (19) on f and let �, a and b be fun
tions with the following

properties:

� 2 C

0

(IR) with �(0) = 0 is an in
reasing extention of the fun
tion � satisfying (11){(15)

a 2 C

1

[0; T ℄ and a > 0 in [0; T ℄

b 2 C

0

[0; T ℄, b > 0 in [0; T ℄ and inje
tive

ab� a

0

Z

r

0

b(s)ds � 0 in [0; T ℄.

There exists a solution u 2 C

1

[0; T ℄ of the problem

10



(

�(a(r)�(u

0

(r)))

0

+ b(r)f(u(r)) = 0 in (0; T )

u(0) = u

0

; u(T ) = u

T

:

(34)

Moreover, if u

0

= 0 and u

T

> 0, then u � 0 and u

0

� 0 in [0; T ℄. A

ording either

(12) or (13) is ful�lled we get either u 2 C

2

(0; T ℄ or C

2

[0; T ℄, and either u

00

� 0 in

(0; T ℄ or u

00

� 0 in [0; T ℄.

Suplementing the above hypotheses we get deeper informations. If (20) holds and

a

0

(r) < 0 for r 2 [0; T ℄, then u

0

(0) > 0. Hen
e u

0

> 0 in [0; T ℄, u > 0 in (0; T ℄

and u

00

> 0 either in (0; T ℄ or in [0; T ℄ a

ording either (12) or (13) is ful�lled,

respe
tively. Futhermore, the solution u is unique.

PROOF OF LEMMA 6. Extend f 
ontinuously and nonde
reasing to the whole

IR. The problem is equivalent to �nding a �xed point of the mapping

J(u)(r) = u

0

+

Z

r

0

�

�1

�

1

a(s)

�

K +

Z

s

0

b(y)f(u(y))dy

��

ds

where the 
onstant K satis�es

Z

T

0

�

�1

�

1

a(s)

�

K +

Z

s

0

b(y)f(u(y))dy

��

ds = u

T

� u

0

:

Su
h a 
onstant K do exists be
ause the �rst member de�nes an unbounded mono-

tone 
ontinuous fun
tion ofK. The mapping J a
ts from the spa
e C

0

[0; T ℄, endowed

with the usual Bana
h norm k:k

L

1

(0;T )

, into itself. We insert a parameter � 2 [0; 1℄

into the operator J in order to generate a homotopy. So we de�ne

J

�

(u)(r) = u

0

+

Z

r

0

�

�1

�

1

a(s)

�

K

�

+ �

Z

s

0

b(y)f(u(y))dy

��

ds

with K

�

satisfying

Z

T

0

�

�1

�

1

a(s)

�

K

�

+ �

Z

s

0

b(y)f(u(y))dy

��

ds = �(u

T

� u

0

):

We de�ne the mapping H by setting H(v; �) = J

�

(v) = u. Equivalently, the inser
-

tion of the parameter � into the problem (34) produ
es the 
lass of problems

(

�(a(r)�(u

0

(r)))

0

+ �b(r)f(u(r)) = 0 in (0; T )

u(0) = �u

0

; u(T ) = �u

T

;

where H asso
iates to ea
h pair (u; �) the solution v of

11



(

�(a(r)�(v

0

(r)))

0

+ �b(r)f(u(r)) = 0 in (0; T )

v(0) = �u

0

; v(T ) = �u

T

:

Note that H(u; 0) = 0 for every u 2 C

0

[0; T ℄. Indeed, this is equivalent to show that

(

�(a(r)�(u

0

(r)))

0

= 0 in (0; T )

u(0) = 0; u(T ) = 0:

possesses u � 0 as unique solution. Clearly, if u is a solution, then

Z

T

0

a(r)�(u

0

)�(r)dr = 0

for every � 2 C

1




(0; T ). And hen
e a(r)�(u

0

) � 0 in [0; T ℄. Sin
e a(r) > 0 in [0; T ℄,

we get �(u

0

) � 0 in [0; T ℄. The homogeneous boundary 
onditions and applying the

in
reasing fun
tion �

�1

imply u � 0 in [0; T ℄.

The 
ontinuity and 
ompa
tness of H follows as usual, the main ingredient is the

Arzel�a-As
oli Theorem. It remains to show that there exists a 
onstantM su
h that

kuk

L

1

(0;T )

< M for every pair (u; �) 2 C

0

[0; T ℄ � [0; 1℄ satisfying J

�

(u)(r) = u(r)

for every r 2 [0; T ℄. So let (u; �) be a su
h pair and let us analyse the equivalent

boundary value problem

(

�(a(r)�(u

0

(r)))

0

+ �b(r)f(u(r)) = 0 in (0; T )

u(0) = �u

0

; u(T ) = �u

T

:

If juj attains its maximum on the boundary of the interval [0; T ℄, then

kuk

L

1

(0;T )

� � maxfj u

0

j; j u

T

jg � maxfj u

0

j; j u

T

jg. This is the unique

possibility, the maximum is attained only on the boundary of the interval. Indeed,

if the maximum of j u j is attained, say, at a point r

0

2 (0; T ) and j u(r

0

) j> 0, then

a 
ontradi
tion is rised, be
ause the equation provides u(r

0

)(a(r)�(u

0

(r)))

0

�

�

�

�

r=r

0

> 0.

If u(r

0

) > 0, then (a(r)�(u

0

(r)))

0

> 0 in a neighbourhood (r

0

� �; r

0

+ �) for � > 0

small. Sin
e a(r) > 0 and u

0

(r

0

) = 0, we either have �(u

0

(r)) < 0 in (r

0

� �; r

0

) or

�(u

0

(r)) > 0 in (r

0

; r

0

+ �). Apllying the in
reasing fun
tion �

�1

we 
on
lude that

either u

0

(r) < 0 in (r

0

� �; r

0

) or u

0

(r) > 0 in (r

0

; r

0

+ �), a 
ontradi
tion. On the

other hand if u(r

0

) < 0, we get a similar 
ontradi
tion.

Thus we have proved that J has a �xed point u 2 C

0

[0; T ℄ by applying Lemma

3. A bootstrap reasoning shows that u 2 C

1

[0; T ℄, be
ause J(u)(r) = u(r). From

12



now on we assume u

0

= 0 and u

T

> 0.

Let us prove that u

0

(0) > 0. If on the 
ontrary we assume u

0

(0) = 0, then for

T

0

= supf� 2 [0; T ℄ : u

0

(�) = 0g we have u > 0 in (T

0

; T ℄, u

0

(T

0

) = 0 and u

is bije
tive from [T

0

; T ℄ to [0; u

T

℄. We have the following 
al
ulations valid in the

interval (0; T ):

(a�(u

0

))

0

= bf(u)

a(�(u

0

))

0

+ a

0

�(u

0

) = bf(u)

(�(u

0

))

0

u

0

+ (a

0

=a)�(u

0

)u

0

= (b=a)f(u)u

0

(�(u

0

)u

0

)

0

+ (a

0

=a)�(u

0

)u

0

= (b=a)f(u)u

0

+ �(u

0

)u

00

(�(u

0

)u

0

)

0

+ (a

0

=a)�(u

0

)u

0

= (b=a)(F (u))

0

+ (

Z

u

0

0

�(s)ds)

0

Sin
e

�(u

0

) � (

Z

r

0

b(s)ds=a)f(u)

we get

(�(u

0

)u

0

)

0

� (

Z

u

0

0

�(s)ds)

0

� [b=a� (a

0

=a)(

Z

r

0

b(s)ds=a)℄(F (u))

0

�(u

0

) � 
F (u)

Z

T

T

0

[�

�1

(F (u(r)))℄

�1

u

0

(r)dr =

Z

u

T

0

[�

�1

(F (s))℄

�1

ds <1;

a 
ontradi
tion.

Our solution satis�es the integral equation

u(r) =

Z

r

0

�

�1

�

1

a(s)

�

K +

Z

s

0

b(y)f(u(y))dy

��

ds

13



then, as remarked above, it is 
lear that u 2 C

1

[0; T ℄ and K = a(0)�(u

0

(0)). Sin
e

u

0

(r) = �

�1

�

1

a(r)

�

a(0)�(u

0

(0)) +

Z

r

0

b(s)f(u(s))dy

��

(35)

we see that either u 2 C

2

(0; T ℄ or C

2

[0; T ℄ a

ording the C

1

regularity of �

�1

at 0,

see (12){(13). Let us see that u > 0 in [0; T ℄. A
tually, if by 
ontradi
tion u

�

6� 0,

there exist r

1

< r

2

in [0; r

2

℄ su
h that u(r

1

) = u(r

2

) = 0, so then multiplying the

equation in (34) by u

�

and integrating, produ
es

0 �

Z

r

2

r

1

a(s)�(�(u

�

)

0

(s))[�(u

�

)

0

(s)℄ds = �

Z

r

2

r

1

b(s)f(�u

�

(s))(�u

�

(s))ds � 0;

then

�(�(u

�

)

0

(r))[�(u

�

)

0

(r)℄ = 0;

for r 2 [r

1

; r

2

℄. Sin
e �

0

(t) > 0 for t > 0, we 
on
lude that u

�

� 0 in [r

1

; r

2

℄.

From relation (35) we see that if u � 0 in [0; T ℄, then u

0

> 0 in [0; T ℄. Deriving the

equation in (35) we get

a

0

(r)�(u

0

(r)) + a(r)�

0

(u

0

(r))u

00

(r) = b(r)f(u(r))

on (0; T ℄, so that u

00

> 0 on (0; T ℄, provided (12) holds. Under 
ondition (13) we get

u

00

> 0 on [0; T ℄. Finally, we prove by 
ontradi
tion the uniqueness of u. If u and v

satisfy (34), then tu

0

(r) + (1� t)v

0

(r) 6= 0 for t 2 [0; 1℄ and r 2 [0; T

0

℄, hen
e

0 �

Z

T

0

a

Z

1

0

(�

0

(tu

0

+ (1� t)v

0

))dt j u

0

� v

0

j

2

ds =

=

Z

T

0

a(�(u

0

)� �(v

0

))(u

0

� v

0

)ds = �

Z

T

0

b(f(u)� f(v))(u� v)ds � 0;

then u � v in [0; T ℄. 2

PROOF OF THEOREM 1. Let us begin with a remark in advan
e. In what

follows we need a fun
tion w su
h that

(

(�(w

0

))

0

+ k

1

�(w

0

) = k

2

f(w) in (R=2; R)

w(R) = 0; w(R=2) = m > 0 and w

0

(R) < 0:

The fun
tion w is the translated re
e
tion w(r) = u(R � r) of the solution

u obtained in the previous lemma, with u

0

= 0, u

T

= m, a(r) = e

�k

1

r

and

14



b(r) = k

2

e

�k

1

r

. It is also a solution of (34) be
ause of the oddness of �. Note

that w

0

(R) = �u

0

(0) and, sin
e w

0

is de
reasing, we have j w

0

(r) j� u

0

(0) in [R=2; R℄.

Let us start the proof of our result. If u � " in 
, we are �nished. In 
ase u � " for

some point of 
 we pro
eed as follows. If u(x

0

) = 0 for some x

0

2 
, we 
onstru
t a

ball su
h that B = B

R

(z) �� 
 and u(y) = 0 for some y 2 �B, note thatru(y) = 0.

Pi
king a point x 2 
, x 6= x

0

and a ball B

r

(x), we may in
rease the radius r untill

�nding a point y 2 
 su
h that u(y) = 0, possibly we may have y = x

0

. Along the

segment ty+(1� t)x, t 2 [0; 1℄, we shrink B

r

(x) into B

R

(z) mantaining y �xed. We

may take R small enough in order to put B

R

(z) �� 
, sin
e B

r

(x) may not be inside


. Also, we may diminish R so that 0 < u(x) < " in B

R

(z). Take now the annulus

Z = fx 2 
 : R=2 < jx � zj < Rg, m = inffu(x) 2 IR :j x � z j= R=2g(> 0),

k

1

� 2(
N � 1 + C(x) � (x � z))=R � (N � 1)=r for r =j x � z j and x 2 Z,

k

2

� kdk

L

1

(Z)

� d(x) for x 2 Z. The above mentioned fun
tion w satisfy Lw � 0

in Z, rw(y) 6= 0 and w � u on �Z. Arguing by 
omparison with Lemmas 1, 2 and

3 in ea
h 
ase, w � u in Z. Hen
e,

lim

t!0

+

u(y + t(z � y))� u(y)

t

� lim

t!0

+

w(R� tR)� w(R)

t

= �Rw

0

(0) > 0

thus ru(y) 6= 0 
onstitutes a 
ontradi
tion. It rests to explain the inequality Lw � 0

in Z:

divA(x; w;rw) =

N

X

j=1

D

�

j

(A

j

(x; w;rw)) =

=

N

X

i;j=1

D

x

i

A

j

(x; w;rw)Æ

ij

+

N

X

i;j=1

D

�

A

j

(x; w;rw)D

x

j

w Æ

ij

+

N

X

i;j=1

D

�

i

A

j

(x; w;rw)D

2

x

j

x

i

w �

�

N

X

i;j=1

D

�

i

A

j

(x; w;rw)D

2

x

j

x

i

w =

=

�

(w

00

(r)r�w

0

(r))=r

3

�

N

X

i;j=1

D

�

i

A

j

(x; w;rw)(x

i

�z

i

)(x

j

�z

j

)+(w

0

(r)=r)

N

X

i;j=1

D

�

i

A

j

(x; w;rw)Æ

ij

�

�

�

(w

00

(r)r � w

0

(r))=r

3

�

�(j w

0

(r) j)r

2

+ 
N(w

0

(r)=r)�(j w

0

(r) j) �

15



� (�(j w

0

(r) j)w

0

(r))

0

+ ((
N � 1)=r)�(j w

0

(r) j)w

0

(r):

Therefore

divA(x; w;rw)� �(j rw j)rw � C(x) �

� (�(j w

0

(r) j)w

0

(r))

0

+ ((
N � 1 + C(x) � (x� z))=r)�(j w

0

(r) j)w

0

(r) �

� (�(j w

0

(r) j)w

0

(r))

0

� k

1

�(j w

0

(r) j)w

0

(r) =

= k

2

f(w(r)) �

� d(x)f(w(r)): 2

PROOF OF THEOREM 2. It is similar to the above repeating the steps with

D

�

i

A

j

repla
ed by a

ij

, be
ause D

x

j

x

i

w is the same. The 
on
lusion follows from

Lemma 4. 2

PROOF OF THEOREM 3. Under assumption (21) on f , then f(t) = 0 for

0 � t � t

0

where t

0

� " and t

0

is the largest number su
h that f vanishes. By the


al
ulations of Lemma 6, (34) has a unique solution u 2 C

2

(0; T ℄ \ C

1

[0; T ℄ su
h

that u

0

> 0 in [0; T ℄ and u; u

00

> 0 in (0; T ℄. Indeed, let us see that u

0

(0) > 0. Sin
e

e

�k

1

r

�(u

0

(r)) = �(u

0

(0)) for 0 � r � T and some T � T . There exists a 
onstant

� > 0 su
h that 0 � u(r) � � for 0 � r � T . If � � t

0

, then f(u) = 0 in [0; T ℄ and

we make T = T , so there exists T

�

2 [0; T ℄ su
h that u

0

(T

�

) > 0, then u

0

(0) > 0. If

� > t

0

, then f(u) = 0 in [0; T ℄, where u(T ) = t

0

and T < T . Sin
e u

0

(T ) > 0, we

have u

0

(0) > 0. 2

PROOF OF THEOREM 4. Let Z be the annulus, as in the proof of Theorem

1, 
orresponding to the ball B � 
 of the hypothesis, su
h that x

0

2 �B. As before

Lw � 0 � Lu in Z and w � u on �Z. Note that ru(x

0

) = 0 and repeat the same

pro
edure. 2

PROOF OF THEOREM 5. In the 
ase N = 1, the fun
tion M(�) =

Z

�

0

[�

�1

(F (s))℄

�1

ds de�ned in [0; Æ℄ is invertible, then v(r) = M

�1

(r) is a C

1

so-

lution of

16



(

�(�(v

0

(r)))

0

+ f(v(r)) = 0

v(0) = v

0

(0) = 0

(36)

de�ned in [0; I℄, where I =

Z

Æ

0

[�

�1

(F (s))℄

�1

ds. Furthermore, v; v

0

> 0 in (0; I℄.

Take � 2 (0; I) and set the translate re
e
tion w

�

(t) = v(�t + �) for t 2 [� � I; �℄

and w

�

(t) = 0 for t � �. Thus w

�

satis�es the equation in (36) in [0;1), is a

C

1

fun
tion and C

2

ex
ept possibly in t = �. Moreover w

�

is stri
tly in
reasing

for 0 < t < �. Given x

0

2 �
 for all 0 < � < I su
h that � � R the fun
tion

u(x) = w

�

(j x�x

0

j) is a solution of the equation in (36) in IR nfx

0

g whi
h vanishes

i� j x� x

0

j� �.

Whenever N � 2, if x

0

2 �(IR

N

n 
) � �
 and R > 0, there exists x

1

62 
 su
h

that 0 < � = dist(x

1

;
) < R=2. The problem is solved if we 
onstru
t a fun
tion

u � 0 satisfying Lu = 0 in IR

N

nB

�

(x

1

) and su
h that u(x) = 0 i� j x� x

1

j� b for

some b 2 (�; R=2). By a similar reasoning of Lemma 6, using Degree Theory, the

two-point boundary value problem

(

�(r

N�1

�(z

0

(r)))

0

+ r

N�1

f(z(r)) = 0 in (�; �)

z(�) = w

�

(�); z(�) = 0

(37)

where � = min(� + I=2; R=2), has a unique solution z 2 C

2

[�; �) \ C

1

[�; �℄ and

z � 0 in [�; �℄. Let z(r) = w

�

(r). Sin
e �(r

N�1

�(z

0

(r)))

0

+ r

N�1

f(z(r)) � 0

for � < r < � and z(�) = z(�); z(�) = z(�) and by 
omparison z(r) � z(r) for

� < r < �. Sin
e z

0

(�) = 0 we have z

0

(�

�

) = 0 and z 
an be extended by 0 for

r � � to a solution in (�;1). Now we set u(x) = z(j x � x

1

j) for x 2 
 and

b = supfr 2 [�;+1) : z(r) > 0g(� �), establishing the result. 2

PROOF OF THEOREM 6. There exists a neighbourhood V

x

0

of x

0

su
h that

hHu(x)w;wi < 0 for every w 2 IR

N

� 0 and x 2 
, where Hu is the Hessian

matrix of u. Furthermore, if u(x) 6= u(x

0

), then there exists a point z 2 
 and a

neighbourhood V

z

of z su
h that ru(x) 6= 0, �u(x) < 0 and hHu(x)w;wi < 0 for

every w 2 IR

N

� 0 and x 2 V

z

. Our 
laim is true, be
ause if for every x 2 
 we

have ru = 0 or �u(x) � 0 or hHu(x)w;wi � 0 for every w 2 IR

N

. These three


ases imply �u(x) � 0 in 
. the maximum prin
iple for subharmoni
 fun
tions

asserts that u(x) = u(x

0

), a 
ontradi
tion.

An easy 
omputation furnishes
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Tu =

N

X

j=1

D

x

j

(f

j

(j ru j)D

x

j

u) =

=

N

X

j=1

j ru j

�1

f

0

j

(j ru j)

�

N

X

i=1

D

x

i

uD

x

i

x

j

u

�

D

x

j

u+

N

X

j=1

f

j

(j ru j)D

x

j

x

j

u =

=j ru j

�1

hHuru;Aurui+

N

X

j=1

f

j

(j ru j)D

x

j

x

j

u =

=j ru j

�1

hAuHuru;rui+

N

X

j=1

f

0

1

(j ru j);

where Au is the diagonal matrix diag(f

0

1

(j ru j); :::; f

0

N

(j ru j)). Suppose on

the 
ontray that u(x) 6� u(x

0

). There is a point z 2 
 su
h that f

j

(j ru(z) j

)D

x

j

x

j

u(z) < 0, for j = 1; :::; N . Assume �rst Au(x) is positive semide�nite

for every x 2 
. Sin
e Hu(z) is negative de�nite, Au(z)Hu(z) is negative

semide�nite. Hen
e hAu(z)Hu(z)ru(z);ru(z)i < 0, thus Lu(z) < 0, a 
on-

tradi
tion. Otherwise, if Au(x) is negative semide�nite for every x 2 
, then

j ru j

�1

hAu(z)Hu(z)ru(z);ru(z)i � �kAu(z)k�u(z) j ru(z) j

2

, be
ause

kHuk � � sum of eigenvalues = �tra
e(Hu(z)) = ��u(z). Hen
e

Lu(z) < [min f

i

(j ru(z) j)�max(�f

0

j

(j ru(z) j)) j ru(z) j℄�u(z) =

= [min f

i

(j ru(z) j) + min(f

0

j

(j ru(z) j)) j ru(z) j℄�u(z) �

= min(f

j

(j ru(z) j) j ru(z) j)

0

�u(z) � 0;

again a 
ontradi
tion. 2
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