
Augmented Lagrangians with adaptive preision ontrol for

quadrati programming with equality onstraints

�

Z. Dost�al

y

A. Friedlander

z

S. A. Santos

x

January 9, 2001

Abstrat

In this paper we introdue an augmented Lagrangian type algorithm for stritly

onvex quadrati programming problems with equality onstraints. The new feature

of the proposed algorithm is the adaptive preision ontrol of the solution of auxiliary

problems in the inner loop of the basi algorithm. Global onvergene and bound-

edness of the penalty parameter are proved and an error estimate is given that does

not have any term that aounts for the inexat solution of the auxiliary problems.

Numerial experiments illustrate eÆieny of the algorithm presented.

AMS lassi�ation: Primary 90C20; Seondary 65K05

Key words and phrases: Quadrati programming, equality onstraints, augmented

Lagrangians, adaptive preision ontrol

�

This researh has been supported by CNPq, FAPESP 95/6574-9 and by grants GA

�

CR 201/97/0421,

105/95/1273.

y

V

�

SB-Tehnial University Ostrava, T�r 17 listopadu, CZ-70833 Ostrava, Czeh Republi. E-mail:

Zdenek.Dostal�vsb.z

z

Department of Applied Mathematis, IMECC-UNICAMP, University of Campinas, CP 6065, 13081-

970 Campinas SP, Brazil. E-mail: friedlan�ime.uniamp.br.

x

Department of Mathematis, IMECC-UNICAMP, University of Campinas, CP 6065, 13081-970 Cam-

pinas SP, Brazil. E-mail: sandra�ime.uniamp.br.

1



1 Introdution

We shall be onerned with the problem of �nding a minimizer of a quadrati funtion

subjet to linear equality onstraints, that is

minimize h(x)

subjet to x 2 


(1.1)

with 
 = fx 2 IR

p

: Dx = dg; h(x) =

1

2

x

T

Bx � 

T

x, ; x 2 IR

p

, d 2 IR

m

, B 2 IR

p�p

symmetri positive de�nite, and D 2 IR

m�p

a full rank matrix. We shall be espeially

interested in problems with m muh smaller than p and with the matrix B large and

reasonably onditioned (or preonditioned), so that onjugate gradient based methods are

diretly appliable to the solution of unonstrained problems.

Appliations that lead to problem (1.1) inlude numerial solution of ellipti partial

di�erential equations with periodi boundary onditions (e.g. Dost�al [4℄ ) and implementa-

tion of domain deomposition methods to parallel solution of three-dimensional elastiity

problems (e.g. Le Talle and Sassi [14℄). It may be advantageous to redue the solution

of some problems to a sequene of problems of type (1.1). As an example, let us mention

an algorithm for numerial solution of ontat problems of elastiity that was proposed

by Simo and Laursen [20℄. The results involving the solution of (1.1) are also useful for

problems with simple bounds and inequalities [6℄ that may be used for eÆient solution

of semioerive ontat problems [5℄.

An eÆient algorithm for the solution of (1.1) is the augmented Lagrangian method

proposed independently by Powell [16℄ and Hestenes [13℄ for problems with general ost

funtion subjet to general equality onstraints. Their algorithm generates approxima-

tions of the Lagrange multipliers in an outer loop while unonstrained auxiliary problems

with well strutured symmetri positive de�nite matries are solved in an inner loop.

Spei�ally, the auxiliary problems are of the type

minimize L(x; �

k

; �

k

)

subjet to x 2 IR

p

(1.2)

where

L(x; �

k

; �

k

) = h(x) + (�

k

)

T

(Dx� d) +

�

k

2

kDx� dk

2

(1.3)
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is known as the augmented Lagrangian funtion, �

k

= (�

k

1

; : : : ; �

k

m

)

T

is the vetor of

Lagrange multipliers for the equality onstraints, �

k

is the penalty parameter, and k � k

denotes the Eulidean norm. The preision of the approximate solution x

k

of the auxiliary

problem will be measured by the Eulidean norms of the error of feasibility and of the

gradient of the augmented Lagrangian. The latter is always denoted by g, so that

g(x; �; �) = r

x

L(x; �; �) = rh(x) +D

T

�+ �D

T

(Dx� d): (1.4)

Powell and Hestenes proved that their method onverges without the hypothesis of

the unboudedness of the penalty parameter �

k

. Hene the augmented Lagrangian method

ompares favorably both with the Lagrange multiplier method that works with inde�nite

matries and with the penalty method that may require very large values of the penalty

parameter. Rokafellar obtained additional results for this type of method in [17, 18, 19℄.

In [2℄ the multiplier method is thoroughly analysed. Solution of problems with inequality

onstraints using this approah are onsidered in [3℄. Results for problems formulated in

Hilbert spaes appear in [9℄.

Let us mention that the struture of the Hessian matrix of the Lagrangian funtion

L is usually simpler than the one of the matrix arising from elimination of dependent

variables and that the onvergene of the augmented Lagrangian methods is usually faster

than that of variants of the Uzawa method [7℄.

Even though Hestenes and Powell assumed in their theory that the auxiliary problems

are solved exatly, it has been proved later that the onvergene of the algorithm may be

preserved even when the auxiliary problems are solved only approximately with apriori

presribed preisions provided that these preisions onverge to zero [2, 3℄. The prie

paid for the inexat minimization is an additional term in the estimate of the rate of

onvergene. Hager in [10, 11℄ obtains global onvergene results for an algorithm of

this type using inexat minimization in the solution of the auxiliary problems. In both

papers the size of the optimality error is ompared with the size of the feasibility error

of the solution of the auxiliary problems trying to balane this quantities throughout the

whole proess. In [10℄ this omparison is used to deide whether the penalty parameter

will be inreased or not. In [11℄ it is used as a stopping riterion for the minimization

of the auxiliary problems. The rate of onvergene is free of any term due to inexat
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minimization when the least squares estimate of the Lagrange multipliers is used. The

main improvement on the algorithm of Powell and Hestenes that we propose here onerns

the preision ontrol of the solution of the auxiliary problems. Our approah arises from

the simple observation that the preision of the solution x

k

of the auxiliary problems

should be related to the feasibility of x

k

, i.e. kDx

k

�dk, sine it does not seem reasonable

to solve these problems with high preision when �

k

is far from the Lagrange multiplier

of the solution of (1.1). In this aspet, our approah is similar to Hager's in [10, 11℄.

In our algorithm we deide to inrease the penalty parameter as in [2, 3℄ but stop the

minimization problems in the inner loop as in [11℄. Our interest is to solve very large sale

problems arising from the appliations mentioned above, therefore a matrix-free approah

is proposed and also just the �rst order estimate for updating the Lagrange multipliers is

used.

In Setion 2 we present the algorithm, prove that it is well de�ned and that the

quite natural preision ontrol of the solution of the auxiliary problems guarantees an

improvement of the urrent estimate of the Lagrange multipliers in the lassial method

of multipliers. Unlike the lassial results onerning inexat solution of the auxiliary

problems ( see Chapter 2 of [2℄), Theorem 2.3 yields relevant information at eah stage of

the proess. In Setion 3 we prove the global onvergene of the algorithm to the solution

of problem (1.1). The main results in this setion are the boundedness of the sequene of

Lagrange multipliers, the onvergene of the full sequenes x

k

and �

k

and the boundedness

of the penalty parameters �

k

. The hoie of the stopping riterion results in an estimate

of the rate of onvergene of �

k

that does not have any term aounting for the inexat

minimization. Computational implementation and numerial experiments are presented

in Setion 4. Finally, some onlusions are disussed in Setion 5.

The following notation will be used throughout the whole paper:

�

b

x and

b

� are the Kuhn-Tuker pair of (1.1).

� �

1

and �

m

are, respetively, the smallest and largest eigenvalues of DB

�1

D

T

.

�

e

� = �+ �(Dx� d).

� r = g(x; �; �).
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2 Algorithm for Equality Constraints with Adaptive Prei-

sion Control

The following algorithm is a modi�ation of the lassial augmented Lagrangian method

for the solution of stritly onvex quadrati programming problems with equality on-

straints that enables adaptive preision ontrol of the solution of auxiliary problems.

Algorithm 2.1. Given �

0

> 0; 0 < � < 1; � > 1;M > 0; �

0

> 0; � > 0 and �

0

2 IR

m

,

set k = 0.

Step 1. fInner iteration with adaptive preision ontrol.g

Find x

k

suh that

kg(x

k

; �

k

; �

k

)k �MkDx

k

� dk: (2.1)

Step 2. fUpdate �.g

�

k+1

= �

k

+ �

k

(Dx

k

� d): (2.2)

Step 3. fUpdate �; �.g

If kDx

k

� dk � �

k

then

�

k+1

= �

k

; �

k+1

= ��

k

(2.3)

else

�

k+1

= ��

k

; �

k+1

= �

k

: (2.4)

Step 4. Set k = k + 1 and return to the Step 1.

In Step 1 we an use any onvergent algorithm for minimizing the stritly onvex

quadrati funtion suh as a preonditioned onjugate gradient method [1℄. A similar

stopping riterion for the minimization proess was also proposed by Hager in [10, 11℄.

Optimality and feasibility are both targets of the whole proess, but solving a problem in

Step 1 with high preision when the estimated multiplier � is still very far from the orret
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one

b

�, seems to be undesirable. That is the main motivation to use the adaptive preision

ontrol proposed here. In [11℄ an interesting disussion about this aspet is presented.

The algorithm proposed in that paper exeutes two fundamental steps, one is alled a

onstraint step that takes are of the feasibility and the other is alled a Kuhn-Tuker step

that handles the optimality. In this ontext a riterion similar to the stopping riterion

in Step 1 of our algorithm is used to ahieve a balaned redution in the total error that

results in a more eÆient algorithm. Algorithm 2.1 is similar in struture to Algorithm 5.1

in [10℄. The main di�erene is that the adaptive preision ontrol is used there to deide

whether to inrease or not the penalty parameter and not as a stopping riterion for the

minimization proess. Another important di�erene is the rule for updating the multiplier

� in Step 2.

The next lemma shows that Algorithm 2.1 is well de�ned, that is, any onvergent

algorithm for the solution of the auxiliary problem required in Step 1 will generate either

x

k

that satis�es (2.1) in a �nite number of steps or a sequene of approximations that

onverges to the solution of (1.1). It is also lear that there is no hidden enforement of

exat solution in (2.1) and onsequently typially inexat solutions of the auxiliary unon-

strained problems are obtained in Step 1.

Lemma 2.2. Let M > 0; � 2 IR

m

and � � 0 be given and let fx

k

g denote any sequene

that onverges to the unique solution x of the problem

minimize L(x; �; �):

(2.5)

Then fx

k

g either onverges to the solution

b

x of problem (1.1) or there is an index k suh

that

kg(x

k

; �; �)k �MkDx

k

� dk: (2.6)

Proof: First observe that if (2.6) does not hold for any k, then we must have Dx = d.

In this ase, sine x is the solution of (2.5), it follows that

Bx� d+D

T

�+ �D

T

(Dx� d) = 0 (2.7)
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and after substituting Dx = d into (2.7), we get

Bx� d+D

T

� = 0: (2.8)

However, onditions (2.8) and Dx = d are suÆient onditions for x to be the unique

solution of (1.1) so that x =

b

x. 2

The next theorem states the basi result that relates the adaptive preision ontrol

used in Step 1 of Algorithm 2.1 to the improvement on the multiplier estimation when it

is updated as in Step 2.

Theorem 2.3. Let � > 0 and � 2 [0; �). If

krk � �

(�+ �

�1

m

)(�

1

+ �

�1

)

kDk kB

�1

k

kDx� dk (2.9)

then

k

e

��

b

�k � Æ(�; �)k� �

b

�k (2.10)

where

Æ(�; �) = ��=(�� �) + 1=(��

1

+ 1): (2.11)

The proof of this theorem requires some inequalities that, for the sake of larity of expo-

sition, we obtain in the following lemmas.

Lemma 2.4. For any vetors x 2 R

p

and � 2 R

m

,

k

e

��

b

�k �

kDk kB

�1

k

�

1

+ �

�1

krk+ �

�1

1

�

1

+ �

�1

k��

b

�k: (2.12)

Proof: The de�nition of

e

� and r implies that

Bx + D

T

e

� = r + 

Dx � �

�1

e

� = ��

�1

(��

b

�)� �

�1

b

�+ d;

(2.13)

also

b

� and

b

x are ompletely determined by

B

b

x + D

T

b

� = 

D

b

x � �

�1

b

� = ��

�1

b

�+ d:

(2.14)
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Subtrating (2.13) from (2.14) and swithing to matrix notation, we get

 

B D

T

D ��

�1

I

! 

x�

b

x

e

��

b

�

!

=

 

r

�

�1

(

b

�� �)

!

: (2.15)

The inverse of the matrix in (2.15) is given by

 

(B + �D

T

D)

�1

B

�1

D

T

S

�1

�

S

�1

�

DB

�1

�S

�1

�

!

(2.16)

where S

�

= DB

�1

D

T

+ �

�1

I (see [12℄).

It follows that

e

�� � = S

�1

�

DB

�1

r � �

�1

S

�1

�

(

b

�� �):

(2.17)

Inequality (2.12) results after taking norms in (2.17) and noting that

kS

�1

�

k = 1=(�

1

+ �

�1

) : 2

The previous lemma gives a bound on the distane between the updated multiplier

and the orret one, proportional to the error due to inexat minimization in Step 1 and

to the error in the previous multiplier estimate. This bound is related to the results of

Proposition 2.4 in [2℄.

Lemma 2.5. Let � > 0, for any vetors x 2 IR

p

and � 2 IR

m

,

k��

b

�k � (�+ �

�1

m

)kDx� dk �

�

�1

kDk kB

�1

k

�

1

+ �

�1

krk: (2.18)

Proof: By the de�nition of r we get

(B + �D

T

D)(x�

b

x) +D

T

(��

b

�) + (B + �D

T

D)

b

x+D

T

b

� = + �D

T

d+ r; (2.19)

and using the equations that determine (

b

x;

b

�)

B

b

x+D

T

b

� = 

D

b

x = d

(2.20)

equation (2.19) redues to

(B + �D

T

D)(x�

b

x) +D

T

(��

b

�) = r: (2.21)
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Equation (2.21) together with

D(x�

b

x) = Dx� d (2.22)

may be written in matrix form as

 

B + �D

T

D D

T

D 0

! 

x�

b

x

��

b

�

!

=

 

r

Dx� d

!

: (2.23)

The inverse of the matrix in (2.23) is given by (see [12℄)

 

B

�1

�B

�1

D

T

S

�1

DB

�1

B

�1

D

T

S

�1

S

�1

DB

�1

�S

�1

!

(2.24)

where S = DB

�1

D

T

: Then,

��

b

� = (D(B + �D

T

D)

�1

D

T

)

�1

(D(B + �D

T

D)

�1

r � (Dx� d)); (2.25)

so that

k��

b

�k � �

1

((D(B + �D

T

D)

�1

D

T

)

�1

)(kDx� dk � kD(B + �D

T

D)

�1

k krk); (2.26)

where �

1

(A) denotes the smallest eigenvalue of matrix A.

Applying the Sherman-Morrison-Woodbury formula (see Golub and Van Loan [8℄)

(B + �D

T

D)

�1

= B

�1

�B

�1

D

T

(�

�1

I +DB

�1

D

T

)

�1

DB

�1

; (2.27)

we get

I � �D(B + �D

T

D)

�1

D

T

= �

�1

(�

�1

I +DB

�1

D

T

)

�1

:

Thus

I � �D(B + �D

T

D)

�1

D

T

= �

�1

(�

�1

I +DB

�1

D

T

)

�1

: (2.28)

It follows that

D(B + �D

T

D)

�1

D

T

= �

�1

(I � (I + �DB

�1

D

T

)

�1

) (2.29)

and

kD(B + �D

T

D)

�1

D

T

k = �

�1

�

m

=(�

m

+ �

�1

): (2.30)
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Spetral properties and (2.30) imply

�

1

((D(B + �D

T

D)

�1

D

T

)

�1

) = kD(B + �D

T

D)

�1

D

T

k

�1

= �

�1

m

+ �: (2.31)

Finally, substituting (2.31) into (2.26) and noting that by (2.29)

D(B + �D

T

D)

�1

= �

�1

(�

�1

I +DB

�1

D

T

)

�1

DB

�1

(2.32)

and

kD(B + �D

T

D)

�1

k � �

�1

kDkkB

�1

k=(�

1

+ �

�1

); (2.33)

(2.18) is easily obtained. 2

Lemma 2.5 gives us a omputable lower bound of the norm of the error in the approx-

imation of the Lagrange multipliers. Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3: The assumptions imply that inequalities (2.12) and (2.18)

hold.

If � = 0, (2.9) implies r = 0 and substituting in (2.12), (2.10) is obtained.

If � > 0, (2.9) implies that

�

�1

kDk kB

�1

k

�

1

+ �

�1

krk � (�+ �

�1

m

)kDx� dk: (2.34)

After substituting (2.34) in (2.18), we get

(�

�1

� �

�1

)

kDk kB

�1

k

�

1

+ �

�1

krk � k��

b

�k (2.35)

so that, for � 2 (0; �),

kDk kB

�1

k

�

1

+ �

�1

krk �

��

�� �

k��

b

�k: (2.36)

To �nish the proof, it is enough to substitute (2.36) in (2.12) and hek that the resulting

inequality is equivalent to (2.10). 2

The problem of �nding the bounds of the norm of gradients that yield estimates of

the updated Lagrange multipliers is now redued to obtaining a bound of Æ(�; �). For this

10



purpose the following properties of the latter funtion will be useful.

Lemma 2.6. Let Æ(�; �) be de�ned by (2.11) for 0 � � < �; let K > 0, and �(�) = K=�.

(i) If

� >

p

K (2.37)

then, for any � � �,

�(�) < � and Æ(�(�); �) �

�

�

K + �

�1

1

��

p

K

: (2.38)

(ii) If

� > K +

p

K + �

�1

1

; (2.39)

then there exists � 2 (0; 1) suh that, for � � �,

Æ(�(�); �) � �

�

�

� �: (2.40)

Proof: Inequalities (2.37) and � � � imply

�(�) = K=� � K=� <

p

K�=�

and

�� �(�) > ��

p

K�

�

= �

��

p

K

�

so that

Æ(�(�); �) <

�K

�(��

p

K)

+

1

��

1

<

�

�

K + �

�1

1

��

p

K

To prove (2.40), observe that Æ(�(�); �) is a dereasing funtion of � for � >

p

K. If �

satis�es (2.39), then by (i) also

Æ(�(�); �) �

�

�

K + �

�1

1

��

p

K

= �

�

�

with

� =

K + �

�1

1

��

p

K

< 1: 2

Corollary 2.7. Under the assumptions of Theorem 2.3, the following statements hold

11



(i) If M

1

is a positive onstant and

� >

q

kDkkB

�1

kM

1

=�

1

; (2.41)

then there is a positive onstant M

2

suh that for any x 2 IR

p

; � 2 IR

m

and � � �

kg(x; �; �)k �M

1

kDx� dk (2.42)

implies

k

e

��

b

�k �

1

�

M

2

k��

b

�k: (2.43)

(ii) If M

1

is a positive onstant and

� > M

1

+

p

M

1

+ �

�1

1

; (2.44)

then for any x 2 IR

p

; � 2 IR

m

and � � � the inequality (2.42) implies

k

e

��

b

�k �

�

�

k��

b

�k: (2.45)

Proof: (i) Part (i) of Lemma 2.6 and

K = kDkkB

�1

kM

1

=�

1

(2.46)

imply that for � � � >

p

M

Æ(�(�); �) �M

2

=� and �(�) < �

where

M

2

= �

K + �

�1

1

��

p

K

:

Thus, by Theorem 2.3,

kg(x; �; �)k �

�(�)�

1

�

kDkkB

�1

k

kDx� dk =M

1

kDx� dk

implies

k

e

��

b

�k � Æ(�(�); �)k� �

b

�k �

M

2

�

k��

b

�k:

12



(ii) If DD

T

= I, then

�

1

(DB

�1

D

T

) = min

(

z

T

DB

�1

D

T

z

z

T

DD

T

z

: z 6= 0

)

� �

1

(DB

�1

D

T

) = kBk

�1

so that

�

�1

1

� kBk: (2.47)

Thus, assumption (2.44) implies (2.39) and by Lemma 2.6(ii)

Æ(�(�); �) �

�

�

:

Moreover, using DD

T

=I and (2.46) it is easy to verify that

�

(�+ �

�1

m

)(�

1

+ �

�1

)

kDk kB

�1

k

� K;

so that (2.45) follows from Theorem 2.3. 2

3 Global Convergene

In this setion we prove the global onvergene of Algorithm 2.1. In Theorem 3.2. we

prove the onvergene of the whole sequenes x

k

and �

k

to the Kuhn-Tuker pair (

b

x;

b

�),

respetively. Theorem 3.3. states a loal onvergene result for the sequene �

k

, that does

not have any term aounting for the inexat minimization in Step 1 of the algorithm. The

�nal result of this setion is Theorem 3.4, where the boundedness of the penalty parameter

�

k

is obtained.

Lemma 3.1. Let f�

k

g be a sequene generated by Algorithm 2.1. Then f�

k

g is bounded.

Proof: Let f�

k

g; fx

k

g and f�

k

g be generated by Algorithm 2.1. In partiular, it follows

that f�

k

g is non-dereasing.

Let us �rst assume that f�

k

g is not bounded and observe that �

k+1

is assigned by

(2.2) in Step 2 of Algorithm 2.1 so that

�

k+1

= �

k

+ �

k

(Dx

k

� d): (3.1)

13



Let Æ 2 (0; 1), applying Corollary 2.7(ii), there is a positive � suh that for �

k

� �, if

kg(x

k

; �

k

; �

k

)k �MkDx

k

� dk (3.2)

then

k�

k+1

�

b

�k � Æk�

k

�

b

�k: (3.3)

Therefore, as (2.1) holds, (3.2) is true and we obtain (3.3).

Now, if f�

k

g is bounded, there is k

0

suh that for k � k

0

the values of �

k

and �

k

are

updated by (2.3) in Step 3. It follows that for any ` � 0,

kDx

k

0

+`

� dk � �

k

0

+`

= �

`

�

k

0

and

�

k

0

+`

� �

k

0

= �

k

0

`�1

X

i=0

(Dx

k

0

+i

� d);

so that

k�

k

0

+`

k � k�

k

0

k+ �

k

0

`�1

X

i=0

kDx

k

0

+i

� dk

� k�

k

0

k+ �

k

0

(1 + : : :+ �

`�1

)�

k

0

� k�

k

0

k+

�

k

0

�

k

0

1� �

:

Hene f�

k

g is also bounded in this ase. 2

Theorem 3.2. The sequenes fx

k

g and f�

k

g generated by Algorithm 2.1. onverge to

b

x

and

b

�, respetively.

Proof: Sine all �

k

are generated by (2.2) in Step 2, we have

kDx

k

� dk = �

�1

k

k�

k+1

� �

k

k � �

�1

k

(k�

k+1

k+ k�

k

k): (3.4)

If f�

k

g is not bounded, then, as it is monotonous, it follows by Lemma 3.1 that kDx

k

�dk

onverges to zero.

On the other hand, if f�

k

g is bounded, it follows that there is k

0

suh that for k � k

0

,

�

k

and �

k

are generated by (2.3) in Step 3 and

kDx

k

� dk � �

k

= �

k�k

0

�

k

0

: (3.5)
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Hene we an onlude that kDx

k

�dk onverges to zero. However, sine at eah iteration

x

k

satis�es (2.1), it follows that kg(x

k

; �

k

; �

k

)k onverges to zero, too.

Let r

k

= g(x

k

; �

k

; �

k

), then

x

k

= (B + �

k

D

T

D)

�1

+ (B + �

k

D

T

D)

�1

(r

k

�D

T

�

k

) + �

k

(B + �

k

D

T

D)

�1

D

T

d: (3.6)

Taking into aount that

k(B + �

k

D

T

D)

�1

k � kB

�1

k;

we get

kx

k

k � kB

�1

k(kk + kr

k

k+ kD

T

k k�

k

k) + �

k

k(B + �

k

D

T

D)

�1

D

T

k kdk: (3.7)

By Lemma 3.1. and (3.7) we obtain that fx

k

g is bounded. Sine both sequenes fx

k

g and

f�

k

g are bounded, they have limit points x and �, respetively. As kDx

k

� dk onverges

to zero, x is feasible, i.e.

Dx = d: (3.8)

As �

k+1

is generated by (2.2) in Step 2 and

g(x

k

; �

k

; �

k

) = g(x

k

; �

k+1

; 0); (3.9)

from the fat that kg(x

k

; �

k

; �

k

)k onverges to zero, it follows that

g(x; �; 0) = 0: (3.10)

Equations (3.8) and (3.10) are the suÆient onditions for x to be the unique solution of

problem (1.1), with orresponding vetor of Lagrange multipliers �. Therefore, x =

b

x,

� =

b

� and both sequenes fx

k

g, f�

k

g are onvergent. 2

Theorem 3.3. Let fx

k

g and f�

k

g be generated by Algorithm 2.1 and M be the onstant

used in Step 1. Then the following statements hold:

(i) If

� >

q

kDkkB

�1

kM=�

1

; (3.11)

then there is a positive onstant M

2

suh that �

k

� � implies

k�

k+1

�

b

�k �

1

�

k

M

2

k�

k

�

b

�k: (3.12)
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(ii) If

DD

T

= I; � > M +

p

M + kBk; (3.13)

then �

k

� � implies

k�

k+1

�

b

�k �

�

�

k

k�

k

�

b

�k: (3.14)

Proof: If DD

T

= I, then

�

1

= min

(

z

T

DB

�1

D

T

z

z

T

DD

T

z

: z 6= 0

)

= �

1

(B

�1

) = kBk

�1

: (3.15)

The rest is an easy onsequene of Corollary 2.7. 2

Theorem 3.4 Let the sequenes fx

k

g; f�

k

g and f�

k

g be generated by Algorithm 2.1.

Then f�

k

g is bounded.

Proof: Let us assume that f�

k

g is not bounded. Then by (2.3) in Step 3, there exists a

subsequene IK suh that kDx

k

�dk > �

k

for k 2 IK. It follows that IN nIK is also in�nite

by (2.4) and the fat that kDx

k

� dk onverges to zero. Thus, there exists a subsequene

IK

1

of IK suh that for k 2 IK

1

, k + 1 2 IK and k =2 IK. For k 2 IK

1

, �

k+1

= �

k

. Let

r

k+1

= g(x

k+1

; �

k+1

; �

k+1

); r

k

= g(x

k

; �

k

; �

k

);

then, for k 2 IK

1

x

k+1

= (B + �

k

D

T

D)

�1

(�D

T

�

k

+ �

k

D

T

d� �

k

D

T

(Dx

k

� d) + r

k+1

) (3.16)

x

k

= (B + �

k

D

T

D)

�1

(�D

T

�

k

+ �

k

D

T

d+ r

k

): (3.17)

Thus

Dx

k+1

� d = D(B + �

k

D

T

D)

�1

((�D

T

�

k

+ �

k

D

T

d+ r

k

)

� �

k

D

T

(Dx

k

� d) + r

k+1

� r

k

)� d

= (I � �

k

D(B + �

k

D

T

D)

�1

D

T

)(Dx

k

� d)

+ D(B + �

k

D

T

D)

�1

(r

k+1

� r

k

):

(3.18)

Using (2.28), (2.33) and properties of norms, we obtain

kDx

k+1

� dk � �

�1

k

�

kDk kB

�1

k

�

1

+ �

�1

k

kr

k+1

� r

k

k+

1

�

1

+ �

�1

k

kDx

k

� dk

�

: (3.19)
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Let M

1

=

kDkjB

�1

k

�

1

+ �

�1

k

and M

2

=

1

�

1

+ �

�1

k

. Then

kDx

k+1

� dk � �

�1

k

(M

1

(kr

k

k+ kr

k+1

k) +M

2

kDx

k

� dk): (3.20)

From (2.1), we get

kDx

k+1

� dk � �

�1

k

(MM

1

kDx

k+1

� dk+ (MM

1

+M

2

)kDx

k

� dk); (3.21)

and for suÆiently large k 2 IK

1

we an �nd M

0

suh that

kDx

k+1

� dk � �

�1

k

M

0

kDx

k

� dk:

On the other hand, for k 2 IK

1

��

k

= �

k+1

� kDx

k+1

� dk � �

�1

k

M

0

kDx

k

� dk � �

�1

k

M

0

�

k

:

It follows that for arbitrarily large k, � � �

�1

k

M

0

. This ontradits the assumption that

f�

k

g is unbounded. 2

4 Numerial experiments

We are espeially interested in the use of the proposed algorithm for the solution of prob-

lems arising in mehanial engineering that were mentioned in the introdution. The

algorithm has been tested on the solution of a model problem resulting from the �nite

di�erene disretization of the following ontinuous problem:

minimize

2

X

i=1

�

Z




i

jru

i

j

2

d
�

Z

Pu

i

d


�

subjet to u

1

(0; y) = u

2

(y) = 0 and u

1

(y) = u

2

(y) for x 2 [0; 1℄;

where




1

= (0; 1) � (0; 1); 


2

= (1; 2) � (0; 1);

P (x; y) = �1 for (x; y) 2 (0; 1) � (0:5; 1);

P (x; y) = 0 for (x; y) 2 (0; 1) � (0; 0:5);

P (x; y) = 2 for (x; y) 2 (1; 2) � (0:0:5);

P (x; y) = 0 for (x; y) 2 (1; 2) � (0:5; 1):
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The disretization sheme onsists of a regular grid of 21�21 nodes for eah subdomain




i

. The initial approximation used was the null vetor. The problem was solved with all

possible ombinations of M 2 f0:1; 10; 1000g and �

0

2 f 1E3, 1E5, 1E7 g. The stopping

riteria used were the relative preision krLk=kPk <1E�5 and the feasibility tolerane

kBxk � 1E�8. For the other parameters, the hoies � = :1; � = 10 and � = 1 were made.

In just one ase, namely for �

0

=1E3 and M =1E3, the penalty parameter was updated.

The number of outer iterations and the total number of onjugate gradient iterations used

in the solution of the auxiliary problems in Step 1 are in Table 1.

Table 1. No preonditioning

�

0

Outer iterations CG iterations

M = 0:1 M = 10 M = 1000 M = 0:1 M = 10 M = 1000

1E3 3 4 8 300 400 342

1E5 3 3 4 221 214 303

1E7 2 2 4 251 223 220

The omputational results suggest that the use of large penalty parameters in the

algorithm presented is eÆient for this type of problems. These results are in agreement

with the theory whih predits that the number of outer iterations is small for large

penalty parameters (Theorem 3.3). Also in [1, 15℄ results relating the spetrum of the

penalized matrix and the performane of the onjugate gradient method for problems

with the number of onstraints m muh smaller than the dimension p explain the fat

that the number of inner iterations in Step 1 is not sensitive to the growth of the values

of the penalty parameters, as observed here. It is not hard to see that the spetrum of

the matrix B + �D

T

D is distributed in two disjoints intervals, the �rst p�m eigenvalues

are smaller than the largest eigenvalue of B and that the last m eigenvalues are at least �

times the respetive largest m eigenvalues of D

T

D. This suggests a way of preonditioning

the augmented matries in ase the onjugate gradient method is used in the inner loop,

namely to preondition only the matrix B and then to orthonormalize the onstraints.

The results in Table 2 show that the number of the onjugate gradient iterations an be

onsiderably redued in this way.
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Table 2. SSOR preonditioning of B with orthogonalization of onstraints

�

0

Outer iterations CG iterations

M = 0:1 M = 10 M = 1000 M = 0:1 M = 10 M = 1000

1E3 3 4 7 130 106 116

1E5 2 3 4 82 82 107

1E7 2 2 13 122 93 110

For omparison, we arried out the omputations also with straightforward preondi-

tioning of the augmented matrix, but the number of onjugate gradient iterations nearly

doubled as ompared with Table 1. Our explanation is that the preonditioned matrix has

no gap in the spetrum so that the distribution of the spetrum is not favorable for the

onjugate gradient method. An alternative strategy for preonditioning the augmented

matries has been presented in [10, 11℄.

5 Conlusions

We have proved global onvergene results for an augmented Lagrangian method that uses

adaptive preision ontrol in the solution of the auxiliary problems for quadrati program-

ming problems with equality onstraints. The preision is ontrolled by the feasibility

of the urrent iteration. We show that the rate of onvergene does not depend on the

auray of the solution of the auxiliary problems and that the penalty parameter � is

bounded.

The numerial experiments suggest that the algorithm may be used for eÆient solu-

tion of large sparse problems using initial large values for the penalty parameters and a

strategy of preonditioning of the augmented matries that takes advantage of the proper-

ties of the spetrum of these matries when the number of onstraints is relatively small.

The results presented here are relevant for the solution of quadrati programming

problems with equality onstraints and simple bounds. An extension to these more general

problems is under onsideration by the authors.
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