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Abstract

In this paper we introduce an augmented Lagrangian type algorithm for strictly
convex quadratic programming problems with equality constraints. The new feature
of the proposed algorithm is the adaptive precision control of the solution of auxiliary
problems in the inner loop of the basic algorithm. Global convergence and bound-
edness of the penalty parameter are proved and an error estimate is given that does
not have any term that accounts for the inexact solution of the auxiliary problems.
Numerical experiments illustrate efficiency of the algorithm presented.
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1 Introduction

We shall be concerned with the problem of finding a minimizer of a quadratic function

subject to linear equality constraints, that is

minimize  h(x)

. (L.1)
subject to x € Q

with Q@ = {z € RP : Dz = d}, h(z) = %:L‘TBI —cl'z, c,0 € RP, d € R™, B € IRP*P
symmetric positive definite, and D € IR™*P a full rank matrix. We shall be especially
interested in problems with m much smaller than p and with the matrix B large and
reasonably conditioned (or preconditioned), so that conjugate gradient based methods are
directly applicable to the solution of unconstrained problems.

Applications that lead to problem (1.1) include numerical solution of elliptic partial
differential equations with periodic boundary conditions (e.g. Dostél [4] ) and implementa-
tion of domain decomposition methods to parallel solution of three-dimensional elasticity
problems (e.g. Le Tallec and Sassi [14]). It may be advantageous to reduce the solution
of some problems to a sequence of problems of type (1.1). As an example, let us mention
an algorithm for numerical solution of contact problems of elasticity that was proposed
by Simo and Laursen [20]. The results involving the solution of (1.1) are also useful for
problems with simple bounds and inequalities [6] that may be used for efficient solution
of semicoercive contact problems [5].

An efficient algorithm for the solution of (1.1) is the augmented Lagrangian method
proposed independently by Powell [16] and Hestenes [13] for problems with general cost
function subject to general equality constraints. Their algorithm generates approxima-
tions of the Lagrange multipliers in an outer loop while unconstrained auxiliary problems
with well structured symmetric positive definite matrices are solved in an inner loop.

Specifically, the auxiliary problems are of the type

minimize L(z, 1*, pi)

1.2
subject to x € IRP (1-2)

where

L(z, ¥, p) = h(z) + (u*)" (Dz — d) + f;—kllDz —d| (1.3)



)T is the vector of

is known as the augmented Lagrangian function, p* = (u¥,...,uk,
Lagrange multipliers for the equality constraints, py is the penalty parameter, and || - ||
denotes the Euclidean norm. The precision of the approximate solution z* of the auxiliary
problem will be measured by the Euclidean norms of the error of feasibility and of the

gradient of the augmented Lagrangian. The latter is always denoted by g, so that
g(w,p,p) = Vil(z,p,p) = Vh(z)+D'p+pD"(Dz - d). (1.4)

Powell and Hestenes proved that their method converges without the hypothesis of
the unboudedness of the penalty parameter pi. Hence the augmented Lagrangian method
compares favorably both with the Lagrange multiplier method that works with indefinite
matrices and with the penalty method that may require very large values of the penalty
parameter. Rockafellar obtained additional results for this type of method in [17, 18, 19].
In [2] the multiplier method is thoroughly analysed. Solution of problems with inequality
constraints using this approach are considered in [3]. Results for problems formulated in
Hilbert spaces appear in [9].

Let us mention that the structure of the Hessian matrix of the Lagrangian function
L is usually simpler than the one of the matrix arising from elimination of dependent
variables and that the convergence of the augmented Lagrangian methods is usually faster
than that of variants of the Uzawa method [7].

Even though Hestenes and Powell assumed in their theory that the auxiliary problems
are solved exactly, it has been proved later that the convergence of the algorithm may be
preserved even when the auxiliary problems are solved only approximately with apriori
prescribed precisions provided that these precisions converge to zero [2, 3]. The price
paid for the inexact minimization is an additional term in the estimate of the rate of
convergence. Hager in [10, 11] obtains global convergence results for an algorithm of
this type using inexact minimization in the solution of the auxiliary problems. In both
papers the size of the optimality error is compared with the size of the feasibility error
of the solution of the auxiliary problems trying to balance this quantities throughout the
whole process. In [10] this comparison is used to decide whether the penalty parameter
will be increased or not. In [11] it is used as a stopping criterion for the minimization

of the auxiliary problems. The rate of convergence is free of any term due to inexact



minimization when the least squares estimate of the Lagrange multipliers is used. The
main improvement on the algorithm of Powell and Hestenes that we propose here concerns
the precision control of the solution of the auxiliary problems. Our approach arises from
the simple observation that the precision of the solution z* of the auxiliary problems
should be related to the feasibility of z¥, i.e. ||[Dz* — d||, since it does not seem reasonable
to solve these problems with high precision when p* is far from the Lagrange multiplier
of the solution of (1.1). In this aspect, our approach is similar to Hager’s in [10, 11].
In our algorithm we decide to increase the penalty parameter as in [2, 3] but stop the
minimization problems in the inner loop as in [11]. Our interest is to solve very large scale
problems arising from the applications mentioned above, therefore a matrix-free approach
is proposed and also just the first order estimate for updating the Lagrange multipliers is
used.

In Section 2 we present the algorithm, prove that it is well defined and that the
quite natural precision control of the solution of the auxiliary problems guarantees an
improvement of the current estimate of the Lagrange multipliers in the classical method
of multipliers. Unlike the classical results concerning inexact solution of the auxiliary
problems ( see Chapter 2 of [2]), Theorem 2.3 yields relevant information at each stage of
the process. In Section 3 we prove the global convergence of the algorithm to the solution
of problem (1.1). The main results in this section are the boundedness of the sequence of
Lagrange multipliers, the convergence of the full sequences z* and ;* and the boundedness
of the penalty parameters p;. The choice of the stopping criterion results in an estimate
of the rate of convergence of p* that does not have any term accounting for the inexact
minimization. Computational implementation and numerical experiments are presented
in Section 4. Finally, some conclusions are discussed in Section 5.

The following notation will be used throughout the whole paper:

e 7 and i are the Kuhn-Tucker pair of (1.1).

e (3 and 3, are, respectively, the smallest and largest eigenvalues of DB~!DT.
o i =p+p(Dx—d).

o r=g(z,u,p).



2 Algorithm for Equality Constraints with Adaptive Preci-

sion Control

The following algorithm is a modification of the classical augmented Lagrangian method
for the solution of strictly convex quadratic programming problems with equality con-

straints that enables adaptive precision control of the solution of auxiliary problems.

Algorithm 2.1. Givenny > 0,0 <a <1,8>1,M > 0,pp > 0,v > 0 and p° € R™ ,
set k = 0.

Step 1. {Inner iteration with adaptive precision control.}

Find z* such that
llg(a®, 1", pr) || < M||Dz"* —d|. (2.1)

Step 2. {Update u.}

pFtt = b 4 pp(D2® — d). (2.2)

Step 3. {Update p,n.}
If | Dz* — d|| < my then

Pk+1 = P>  Nh41 = Qg (2.3)

else
Pk+1 = BPrky  Mkt1 = k- (2.4)

Step 4. Set k =k + 1 and return to the Step 1.

In Step 1 we can use any convergent algorithm for minimizing the strictly convex
quadratic function such as a preconditioned conjugate gradient method [1]. A similar
stopping criterion for the minimization process was also proposed by Hager in [10, 11].
Optimality and feasibility are both targets of the whole process, but solving a problem in

Step 1 with high precision when the estimated multiplier y is still very far from the correct



one [i, seems to be undesirable. That is the main motivation to use the adaptive precision
control proposed here. In [11] an interesting discussion about this aspect is presented.
The algorithm proposed in that paper executes two fundamental steps, one is called a
constraint step that takes care of the feasibility and the other is called a Kuhn-Tucker step
that handles the optimality. In this context a criterion similar to the stopping criterion
in Step 1 of our algorithm is used to achieve a balanced reduction in the total error that
results in a more efficient algorithm. Algorithm 2.1 is similar in structure to Algorithm 5.1
in [10]. The main difference is that the adaptive precision control is used there to decide
whether to increase or not the penalty parameter and not as a stopping criterion for the
minimization process. Another important difference is the rule for updating the multiplier
1 in Step 2.

The next lemma shows that Algorithm 2.1 is well defined, that is, any convergent
algorithm for the solution of the auxiliary problem required in Step 1 will generate either
z¥ that satisfies (2.1) in a finite number of steps or a sequence of approximations that
converges to the solution of (1.1). It is also clear that there is no hidden enforcement of
exact solution in (2.1) and consequently typically inexact solutions of the auxiliary uncon-

strained problems are obtained in Step 1.

Lemma 2.2. Let M > 0, € IR™ and p > 0 be given and let {z*} denote any sequence

that converges to the unique solution T of the problem
minimize L(z,u,p). (2.5)

Then {x*} either converges to the solution T of problem (1.1) or there is an index k such
that
lg(*, i, p)|| < M||Da* — dJ. (2.6)

Proof: First observe that if (2.6) does not hold for any k, then we must have DT = d.

In this case, since T is the solution of (2.5), it follows that

BT —d+ DY+ pDT(DT —d) =0 (2.7)



and after substituting DT = d into (2.7), we get
BT —d+ DT =o. (2.8)

However, conditions (2.8) and DT = d are sufficient conditions for T to be the unique

solution of (1.1) so that T = Z. 0

The next theorem states the basic result that relates the adaptive precision control
used in Step 1 of Algorithm 2.1 to the improvement on the multiplier estimation when it

is updated as in Step 2.

Theorem 2.3. Let p >0 and 7 € [0,p). If

(p+ 6, )(BL+p 1)

Il < 7 e 1D —d) (29)
then
1 = pll < 67, p) i — 72l (2.10)
where
5(r,0) = mp/(p — ) + 1/ (o1 +1). (2.11)

The proof of this theorem requires some inequalities that, for the sake of clarity of expo-

sition, we obtain in the following lemmas.

Lemma 2.4. For any vectors x € RP and u € R™,

DI 1B~

1
Il + o~ ———llu — All. (2.12)
B+ pt B+ pt

Proof: The definition of i and r implies that

Bz + D' = r+c

s 3 R N (2.13)
Dz — p7'n = —p~Hp—p)—p'a+d,
also 1 and T are completely determined by
Bt + D'np = ¢ (2.14)

Dz — p7'n = —pli+d.



Subtracting (2.13) from (2.14) and switching to matrix notation, we get

(o ) (n) = (i)
D —p7'1 )\ pi—p pHE-p )

The inverse of the matrix in (2.15) is given by

T -1 —-1n7T qg-1
<(B+pD D)~' BTIDTS; )
-1 -1 -1
S;'DB -5;
where S, = DB™'DT + p~IT (see [12]).
It follows that
~ _ o-1lpp-1 “lg-1(r
fi—p = S,°DB 'r—p S, (i — p).

Inequality (2.12) results after taking norms in (2.17) and noting that

IS, 1 =1/(Bi+p) . D

(2.15)

(2.16)

(2.17)

The previous lemma gives a bound on the distance between the updated multiplier

and the correct one, proportional to the error due to inexact minimization in Step 1 and

to the error in the previous multiplier estimate. This bound is related to the results of

Proposition 2.4 in [2].

Lemma 2.5. Let p > 0, for any vectors © € IRP and u € R™,

p D]l || B~
pr+pt

ln =2l = (p+ BN | Dz — d|| - [l

Proof: By the definition of r we get
(B + pD'D)(x — %) + D" (u— i) + (B+ pD' D)z + D'ji = ¢ + pDTd + 1,
and using the equations that determine (Z, 1)

Bz+DTi = ¢
Dz =

equation (2.19) reduces to

(B+pD'D)(z —2)+ D" (u—p) =r.

(2.18)

(2.19)

(2.20)

(2.21)



Equation (2.21) together with
D(z—z)=Dz—d (2.22)

may be written in matrix form as

B+pDT'D DT rT—T \ r (2.23)
D 0 p—i) \Dz—d )’ '

The inverse of the matrix in (2.23) is given by (see [12])

B—l _ B—IDT —IDB—I B—IDT -1
o S (2.24)
S—'DB! -5t
where S = DB~'D?". Then,
i —f = (D(B+pDTD)'D")"Y(D(B + pD*D)"'r — (Dz — d)), (2.25)

so that
Il =l > M ((D(B + pD"D)"' D) "Y)(| Dz — d|| — |ID(B + pD" D)7 |Ir[l), (2-26)

where A;(A) denotes the smallest eigenvalue of matrix A.

Applying the Sherman-Morrison-Woodbury formula (see Golub and Van Loan [8])

B+pD'D)y '=Bt'—B 'DY(p 1+ DB D) DB, 2.27
P P
we get
I—pD(B+pDTD)'DT = p Y (p 'I+DB 'DT) L
Thus
I—pD(B+pDTD) DT = p Y (p 1 + DB D) L. (2.28)
It follows that
D(B+ pDTD) DT = p~Y(I — (I + pDB'DT)7}) (2.29)
and
ID(B + pD" D)~ D = p~ B/ (B + 07 1) (2.30)



Spectral properties and (2.30) imply
M((D(B + pDT D) DT)Y) = |D(B + pD' D) DL |V = ol . (231)

Finally, substituting (2.31) into (2.26) and noting that by (2.29)

D(B+pD'D)™' = p~Yp~' 1+ DB 'DT)"'DB™! (2.32)
and
ID(B + pD D)~ < p~H DB~/ (51 + p7), (2.33)
(2.18) is easily obtained. 0

Lemma 2.5 gives us a computable lower bound of the norm of the error in the approx-

imation of the Lagrange multipliers. Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3: The assumptions imply that inequalities (2.12) and (2.18)
hold.

If 7 =0, (2.9) implies r = 0 and substituting in (2.12), (2.10) is obtained.

If 7 >0, (2.9) implies that

DB~
T -1
pr+p

After substituting (2.34) in (2.18), we get

Irll < (o + BRY) 1Dz — d]. (2.34)

S IPIB -
(rt=p7h) Bt [l <l — &l (2.35)
so that, for 7 € (0, p),
1D] 1B~ TP -
_ < —— || — ml]. 2.36
Bt Il < p_THM | (2.36)

To finish the proof, it is enough to substitute (2.36) in (2.12) and check that the resulting
inequality is equivalent to (2.10). O

The problem of finding the bounds of the norm of gradients that yield estimates of

the updated Lagrange multipliers is now reduced to obtaining a bound of d(r, p). For this

10



purpose the following properties of the latter function will be useful.

Lemma 2.6. Let 0(7,p) be defined by (2.11) for 0 <71 < p,let K > 0, and 7(p) = K/p.
(1) If

7> VK (2.37)
then, for any p > p,
pK+p"
7(p) <p and 6o(7(p),p) < ——-F~. 2.38
(p) (7(p), p) 05 VE (2.38)
(ii) If
p>K+VEK+ B, (2.39)
then there exists a € (0,1) such that, for p > p,
3(7(p).p) < o < (2.40)

Proof: Inequalities (2.37) and p > p imply

7(p) = K/p < K/p <VEKp[p

and
vVKp p— VK
p—1(p) >p— =p——
p p
so that
K 1 pK+p!

To prove (2.40), observe that §(7(p), p) is a decreasing function of p for p > VK. If
satisfies (2.39), then by (i) also

pK+B" P

6(r(p),p) £ =—F~= =a=

(rlp)p) < Lo =
with .
.

_E+h <1. 0
72— VK

Corollary 2.7. Under the assumptions of Theorem 2.3, the following statements hold

11



(i) If My is a positive constant and

7> \IDIIBM,/81, (2.41)
then there is a positive constant Mo such that for any x € IRP, i € IR™ and p > p
lg(@, 1, p)|| < Mi||Dz — d (2.42)

implies
~ - 1 ~
17—l < ;Mallu—ull- (2.43)

(ii) If My is a positive constant and
7> M, + /M + 67}, (2.44)
then for any © € IRP, ;i € IR™ and p > p the inequality (2.42) implies

. p ~
13— all < ;llu—ull- (2.45)

Proof: (i) Part (i) of Lemma 2.6 and
K =||D|l[| B~ M1/py (2.46)
imply that for p > 75 > VM
6(r(p),p) < Mz/p and 7(p) <p

where

Thus, by Theorem 2.3,

7(p)Prp
lote. )| < 1D = dl = My[1Dz

implies

SN N Moy .
Iz —pl| < 6(7(p), )|l — pl| < 7”# — -

12



(ii) If DD* = I, then

T —-1nT
_ . z! DB~ D"z _ _
)\1(DB 1_DT) = mm{m 4 # 0} 2 )\]_(DB 1_l)T) = ||B“ !
so that
st < |IBl. (2.47)

Thus, assumption (2.44) implies (2.39) and by Lemma 2.6(ii)

o(t(p),p) <

I

Moreover, using DD*'=I and (2.46) it is easy to verify that

(p+ BB+ p 1)
K
EEE

so that (2.45) follows from Theorem 2.3. O

3 Global Convergence

In this section we prove the global convergence of Algorithm 2.1. In Theorem 3.2. we
prove the convergence of the whole sequences z* and p* to the Kuhn-Tucker pair (Z, fi),
respectively. Theorem 3.3. states a local convergence result for the sequence p*, that does
not have any term accounting for the inexact minimization in Step 1 of the algorithm. The
final result of this section is Theorem 3.4, where the boundedness of the penalty parameter

Pk 1s obtained.
Lemma 3.1. Let {u*} be a sequence generated by Algorithm 2.1. Then {u*} is bounded.

Proof: Let {y*},{z*} and {p;} be generated by Algorithm 2.1. In particular, it follows
that {pr} is non-decreasing.

Let us first assume that {p;} is not bounded and observe that p**! is assigned by
(2.2) in Step 2 of Algorithm 2.1 so that

pf = 1k + pp(Dzk — a). (3.1)

13



Let 6 € (0,1), applying Corollary 2.7(ii), there is a positive p such that for py > p, if
lg(z*, 1*, i)l < M||Da* — || (3.2)
then
5 = Rl < ollu® - Al (3.3)
Therefore, as (2.1) holds, (3.2) is true and we obtain (3.3).

Now, if {pk} is bounded, there is ky such that for & > ko the values of pj and 7 are
updated by (2.3) in Step 3. It follows that for any ¢ > 0,

| Dz*t — d|| < ngyre = b,

and .
Mko-l—f o uko — ,Ok;o Z(DIkO'i'i o d),
i=0
so that
{—1 )
IR < ol + pry Y 1Dt —dl]
i=0
<l o (L 0 g
Pko "k
<l + %
Hence {¢*} is also bounded in this case. 0

Theorem 3.2. The sequences {z*} and {u*¥} generated by Algorithm 2.1. converge to &

and i, respectively.

Proof: Since all p* are generated by (2.2) in Step 2, we have
1D2* —d|| = py I = u* I < o PSR- (3.4)

If {px} is not bounded, then, as it is monotonous, it follows by Lemma 3.1 that || Dz* —d||
converges to zero.

On the other hand, if {p; } is bounded, it follows that there is ko such that for k& > ko,
pr and ny are generated by (2.3) in Step 3 and

1D — d|| <y = o Fony,. (3.5)

14



Hence we can conclude that ||Dz* —d|| converges to zero. However, since at each iteration
z¥ satisfies (2.1), it follows that ||g(z*, u*, p)|| converges to zero, too.

Let ,,JC = g(xkhu‘kapk)a then
2 = (B + ppDT D) te+ (B4 pp DT D)L (r* — DT P + pp(B + pp DT D)7 DTd. (3.6)

Taking into account that
I(B + pxDTD) M| < 1B,
we get

(1 < UBTHICNell + I+ 1D I I8 1) + pell (B + pe DT D) "D ||d). (3.7)

By Lemma 3.1. and (3.7) we obtain that {z*} is bounded. Since both sequences {z*} and
{u*} are bounded, they have limit points Z and 7, respectively. As ||Dz* — d|| converges

to zero, T is feasible, i.e.

Dz =d. (3.8)
As pFt1 is generated by (2.2) in Step 2 and
g(x*, 1, pr) = g(a®, 4, 0), (3.9)
from the fact that ||g(z*, u¥, pr)|| converges to zero, it follows that
9(Z,m,0) =0. (3.10)

Equations (3.8) and (3.10) are the sufficient conditions for T to be the unique solution of
problem (1.1), with corresponding vector of Lagrange multipliers 7z. Therefore, T = 7,

i = fi and both sequences {z*}, {1*} are convergent. O

Theorem 3.3. Let {z*} and {u*} be generated by Algorithm 2.1 and M be the constant
used in Step 1. Then the following statements hold:

(i) If

p >/ IDII1B-11M /By, (3.11)

then there is a positive constant Ms such that pp > p implies

~ 1 N
I = fa < p—kM2!|uk — . (3.12)

15



(ii) If

DD =1, 5> M +VM +|B|, (3.13)
then pr > p implies
. p .
Il =l < =t = Al (3.14)
Pk
Proof: If DDT =1, then
TpR-1pnT
. |2 DB Dtz 1 -1
The rest is an easy consequence of Corollary 2.7. a

Theorem 3.4 Let the sequences {z*}, {1*} and {p;} be generated by Algorithm 2.1.
Then {px} is bounded.

Proof: Let us assume that {p;} is not bounded. Then by (2.3) in Step 3, there exists a
subsequence IK such that ||Dz* —d|| > n for k € IK. It follows that IV \ IK is also infinite
by (2.4) and the fact that ||[Dz* — d|| converges to zero. Thus, there exists a subsequence
IK, of IK such that for k € IK;, k+1 € IK and k ¢ IK. For k € IK;, px+1 = pi. Let

PPt = g(aF T o), r* = g(a", ¥, pr),
then, for k € IKy
= (B + pp D' D) e — DTt + pp DT d — pp DT (Da* — d) + ) (3.16)
¥ = (B + ppy DT D)"Y (c — DT ¥ + pp DT d + r¥). (3.17)

Thus
Dz*tl —d = D(B+ ppDTD) ' ((c — DT ¥ + ppy DTd + %)

— pp DT (D — d) + r¥tl — k) —4q

3.18
= (I —pxD(B+ p D" D)D) (Dz* — d) (3.18)
+ D(B + /f)kDTD)_l(rk"'1 — rk).
Using (2.28), (2.33) and properties of norms, we obtain
(1D IB 1
“DCUHI —d[| < py ' <71||7korl - Tk“ + 7,1“ka - d“) (3.19)
b1+ Py b1+ Py

16



_ B 1

Let M, = —— and My = — - Then
b1+ P b1+ py
D2 —d|| < p M (Ir* (] + [17F1]) + My || Da® — dJ)). (3.20)
From (2.1), we get
D2 —d|l < p H(MM|| D2 — d|| + (MM, + M)||Da* — d)), (3.21)

and for sufficiently large k € IK; we can find My such that
|Dak — ]| < i Mo|| Da* — d.
On the other hand, for k£ € IK;
ar = i < | D2 —d|| < pi Mo | Da® — dl| < pj;t Mon.

It follows that for arbitrarily large k, o < plleo. This contradicts the assumption that
{pr} is unbounded. O

4 Numerical experiments

We are especially interested in the use of the proposed algorithm for the solution of prob-
lems arising in mechanical engineering that were mentioned in the introduction. The
algorithm has been tested on the solution of a model problem resulting from the finite

difference discretization of the following continuous problem:

2
minimize » (/ |V [2dQ — /PuidQ>
i=1 M

subject to u1(0,y) = u2(y) =0 and u;(y) = ue(y) for z € [0,1],

where
Q; =(0,1) x (0,1), Q2 = (1,2) x (0,1),
P(z,y) =—-1 for (z,y) € (0,1) x (0.5,1),
P(z,y) =0 for (z,y) € (0,1) x (0,0.5),
P(z,y) =2 for (z,y) € (1,2) x (0.0.5),
P(z,y) =0 for (z,y) € (1,2) x (0.5,1).

17



The discretization scheme consists of a regular grid of 21 x21 nodes for each subdomain
Q;. The initial approximation used was the null vector. The problem was solved with all
possible combinations of M € {0.1,10,1000} and py € { 1E3, 1E5, 1E7 }. The stopping
criteria used were the relative precision ||VL||/||P|| <1E—5 and the feasibility tolerance
|Bz|| < 1E—8. For the other parameters, the choices & = .1, # = 10 and 1 = 1 were made.
In just one case, namely for pg =1E3 and M =1E3, the penalty parameter was updated.
The number of outer iterations and the total number of conjugate gradient iterations used

in the solution of the auxiliary problems in Step 1 are in Table 1.

Table 1. No preconditioning

Po Outer iterations CG iterations
M=01|M=10| M=1000 | M =0.1 | M =10 | M = 1000
1E3 3 4 8 300 400 342
1E5 3 3 221 214 303
1E7 2 2 4 251 223 220

The computational results suggest that the use of large penalty parameters in the
algorithm presented is efficient for this type of problems. These results are in agreement
with the theory which predicts that the number of outer iterations is small for large
penalty parameters (Theorem 3.3). Also in [1, 15] results relating the spectrum of the
penalized matrix and the performance of the conjugate gradient method for problems
with the number of constraints m much smaller than the dimension p explain the fact
that the number of inner iterations in Step 1 is not sensitive to the growth of the values
of the penalty parameters, as observed here. It is not hard to see that the spectrum of
the matrix B + pD? D is distributed in two disjoints intervals, the first p — m eigenvalues
are smaller than the largest eigenvalue of B and that the last m eigenvalues are at least p
times the respective largest m eigenvalues of DT D. This suggests a way of preconditioning
the augmented matrices in case the conjugate gradient method is used in the inner loop,
namely to precondition only the matrix B and then to orthonormalize the constraints.
The results in Table 2 show that the number of the conjugate gradient iterations can be

considerably reduced in this way.
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Table 2. SSOR preconditioning of B with orthogonalization of constraints

Po Outer iterations CG iterations
M=01|M=10| M=1000 | M =0.1 | M =10 | M = 1000
1E3 3 4 7 130 106 116
1E5 2 3 82 82 107
1E7 2 2 13 122 93 110

For comparison, we carried out the computations also with straightforward precondi-
tioning of the augmented matrix, but the number of conjugate gradient iterations nearly
doubled as compared with Table 1. Our explanation is that the preconditioned matrix has
no gap in the spectrum so that the distribution of the spectrum is not favorable for the
conjugate gradient method. An alternative strategy for preconditioning the augmented

matrices has been presented in [10, 11].

5 Conclusions

We have proved global convergence results for an augmented Lagrangian method that uses
adaptive precision control in the solution of the auxiliary problems for quadratic program-
ming problems with equality counstraints. The precision is controlled by the feasibility
of the current iteration. We show that the rate of convergence does not depend on the
accuracy of the solution of the auxiliary problems and that the penalty parameter p is
bounded.

The numerical experiments suggest that the algorithm may be used for efficient solu-
tion of large sparse problems using initial large values for the penalty parameters and a
strategy of preconditioning of the augmented matrices that takes advantage of the proper-
ties of the spectrum of these matrices when the number of constraints is relatively small.

The results presented here are relevant for the solution of quadratic programming
problems with equality constraints and simple bounds. An extension to these more general

problems is under consideration by the authors.
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