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In this paper we introdu
e an augmented Lagrangian type algorithm for stri
tly


onvex quadrati
 programming problems with equality 
onstraints. The new feature

of the proposed algorithm is the adaptive pre
ision 
ontrol of the solution of auxiliary

problems in the inner loop of the basi
 algorithm. Global 
onvergen
e and bound-

edness of the penalty parameter are proved and an error estimate is given that does

not have any term that a

ounts for the inexa
t solution of the auxiliary problems.
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1 Introdu
tion

We shall be 
on
erned with the problem of �nding a minimizer of a quadrati
 fun
tion

subje
t to linear equality 
onstraints, that is

minimize h(x)

subje
t to x 2 


(1.1)

with 
 = fx 2 IR

p

: Dx = dg; h(x) =

1

2

x

T

Bx � 


T

x, 
; x 2 IR

p

, d 2 IR

m

, B 2 IR

p�p

symmetri
 positive de�nite, and D 2 IR

m�p

a full rank matrix. We shall be espe
ially

interested in problems with m mu
h smaller than p and with the matrix B large and

reasonably 
onditioned (or pre
onditioned), so that 
onjugate gradient based methods are

dire
tly appli
able to the solution of un
onstrained problems.

Appli
ations that lead to problem (1.1) in
lude numeri
al solution of ellipti
 partial

di�erential equations with periodi
 boundary 
onditions (e.g. Dost�al [4℄ ) and implementa-

tion of domain de
omposition methods to parallel solution of three-dimensional elasti
ity

problems (e.g. Le Talle
 and Sassi [14℄). It may be advantageous to redu
e the solution

of some problems to a sequen
e of problems of type (1.1). As an example, let us mention

an algorithm for numeri
al solution of 
onta
t problems of elasti
ity that was proposed

by Simo and Laursen [20℄. The results involving the solution of (1.1) are also useful for

problems with simple bounds and inequalities [6℄ that may be used for eÆ
ient solution

of semi
oer
ive 
onta
t problems [5℄.

An eÆ
ient algorithm for the solution of (1.1) is the augmented Lagrangian method

proposed independently by Powell [16℄ and Hestenes [13℄ for problems with general 
ost

fun
tion subje
t to general equality 
onstraints. Their algorithm generates approxima-

tions of the Lagrange multipliers in an outer loop while un
onstrained auxiliary problems

with well stru
tured symmetri
 positive de�nite matri
es are solved in an inner loop.

Spe
i�
ally, the auxiliary problems are of the type

minimize L(x; �

k

; �

k

)

subje
t to x 2 IR

p

(1.2)

where

L(x; �

k

; �

k

) = h(x) + (�

k

)

T

(Dx� d) +

�

k

2

kDx� dk

2

(1.3)
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is known as the augmented Lagrangian fun
tion, �

k

= (�

k

1

; : : : ; �

k

m

)

T

is the ve
tor of

Lagrange multipliers for the equality 
onstraints, �

k

is the penalty parameter, and k � k

denotes the Eu
lidean norm. The pre
ision of the approximate solution x

k

of the auxiliary

problem will be measured by the Eu
lidean norms of the error of feasibility and of the

gradient of the augmented Lagrangian. The latter is always denoted by g, so that

g(x; �; �) = r

x

L(x; �; �) = rh(x) +D

T

�+ �D

T

(Dx� d): (1.4)

Powell and Hestenes proved that their method 
onverges without the hypothesis of

the unboudedness of the penalty parameter �

k

. Hen
e the augmented Lagrangian method


ompares favorably both with the Lagrange multiplier method that works with inde�nite

matri
es and with the penalty method that may require very large values of the penalty

parameter. Ro
kafellar obtained additional results for this type of method in [17, 18, 19℄.

In [2℄ the multiplier method is thoroughly analysed. Solution of problems with inequality


onstraints using this approa
h are 
onsidered in [3℄. Results for problems formulated in

Hilbert spa
es appear in [9℄.

Let us mention that the stru
ture of the Hessian matrix of the Lagrangian fun
tion

L is usually simpler than the one of the matrix arising from elimination of dependent

variables and that the 
onvergen
e of the augmented Lagrangian methods is usually faster

than that of variants of the Uzawa method [7℄.

Even though Hestenes and Powell assumed in their theory that the auxiliary problems

are solved exa
tly, it has been proved later that the 
onvergen
e of the algorithm may be

preserved even when the auxiliary problems are solved only approximately with apriori

pres
ribed pre
isions provided that these pre
isions 
onverge to zero [2, 3℄. The pri
e

paid for the inexa
t minimization is an additional term in the estimate of the rate of


onvergen
e. Hager in [10, 11℄ obtains global 
onvergen
e results for an algorithm of

this type using inexa
t minimization in the solution of the auxiliary problems. In both

papers the size of the optimality error is 
ompared with the size of the feasibility error

of the solution of the auxiliary problems trying to balan
e this quantities throughout the

whole pro
ess. In [10℄ this 
omparison is used to de
ide whether the penalty parameter

will be in
reased or not. In [11℄ it is used as a stopping 
riterion for the minimization

of the auxiliary problems. The rate of 
onvergen
e is free of any term due to inexa
t
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minimization when the least squares estimate of the Lagrange multipliers is used. The

main improvement on the algorithm of Powell and Hestenes that we propose here 
on
erns

the pre
ision 
ontrol of the solution of the auxiliary problems. Our approa
h arises from

the simple observation that the pre
ision of the solution x

k

of the auxiliary problems

should be related to the feasibility of x

k

, i.e. kDx

k

�dk, sin
e it does not seem reasonable

to solve these problems with high pre
ision when �

k

is far from the Lagrange multiplier

of the solution of (1.1). In this aspe
t, our approa
h is similar to Hager's in [10, 11℄.

In our algorithm we de
ide to in
rease the penalty parameter as in [2, 3℄ but stop the

minimization problems in the inner loop as in [11℄. Our interest is to solve very large s
ale

problems arising from the appli
ations mentioned above, therefore a matrix-free approa
h

is proposed and also just the �rst order estimate for updating the Lagrange multipliers is

used.

In Se
tion 2 we present the algorithm, prove that it is well de�ned and that the

quite natural pre
ision 
ontrol of the solution of the auxiliary problems guarantees an

improvement of the 
urrent estimate of the Lagrange multipliers in the 
lassi
al method

of multipliers. Unlike the 
lassi
al results 
on
erning inexa
t solution of the auxiliary

problems ( see Chapter 2 of [2℄), Theorem 2.3 yields relevant information at ea
h stage of

the pro
ess. In Se
tion 3 we prove the global 
onvergen
e of the algorithm to the solution

of problem (1.1). The main results in this se
tion are the boundedness of the sequen
e of

Lagrange multipliers, the 
onvergen
e of the full sequen
es x

k

and �

k

and the boundedness

of the penalty parameters �

k

. The 
hoi
e of the stopping 
riterion results in an estimate

of the rate of 
onvergen
e of �

k

that does not have any term a

ounting for the inexa
t

minimization. Computational implementation and numeri
al experiments are presented

in Se
tion 4. Finally, some 
on
lusions are dis
ussed in Se
tion 5.

The following notation will be used throughout the whole paper:

�

b

x and

b

� are the Kuhn-Tu
ker pair of (1.1).

� �

1

and �

m

are, respe
tively, the smallest and largest eigenvalues of DB

�1

D

T

.

�

e

� = �+ �(Dx� d).

� r = g(x; �; �).
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2 Algorithm for Equality Constraints with Adaptive Pre
i-

sion Control

The following algorithm is a modi�
ation of the 
lassi
al augmented Lagrangian method

for the solution of stri
tly 
onvex quadrati
 programming problems with equality 
on-

straints that enables adaptive pre
ision 
ontrol of the solution of auxiliary problems.

Algorithm 2.1. Given �

0

> 0; 0 < � < 1; � > 1;M > 0; �

0

> 0; � > 0 and �

0

2 IR

m

,

set k = 0.

Step 1. fInner iteration with adaptive pre
ision 
ontrol.g

Find x

k

su
h that

kg(x

k

; �

k

; �

k

)k �MkDx

k

� dk: (2.1)

Step 2. fUpdate �.g

�

k+1

= �

k

+ �

k

(Dx

k

� d): (2.2)

Step 3. fUpdate �; �.g

If kDx

k

� dk � �

k

then

�

k+1

= �

k

; �

k+1

= ��

k

(2.3)

else

�

k+1

= ��

k

; �

k+1

= �

k

: (2.4)

Step 4. Set k = k + 1 and return to the Step 1.

In Step 1 we 
an use any 
onvergent algorithm for minimizing the stri
tly 
onvex

quadrati
 fun
tion su
h as a pre
onditioned 
onjugate gradient method [1℄. A similar

stopping 
riterion for the minimization pro
ess was also proposed by Hager in [10, 11℄.

Optimality and feasibility are both targets of the whole pro
ess, but solving a problem in

Step 1 with high pre
ision when the estimated multiplier � is still very far from the 
orre
t
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one

b

�, seems to be undesirable. That is the main motivation to use the adaptive pre
ision


ontrol proposed here. In [11℄ an interesting dis
ussion about this aspe
t is presented.

The algorithm proposed in that paper exe
utes two fundamental steps, one is 
alled a


onstraint step that takes 
are of the feasibility and the other is 
alled a Kuhn-Tu
ker step

that handles the optimality. In this 
ontext a 
riterion similar to the stopping 
riterion

in Step 1 of our algorithm is used to a
hieve a balan
ed redu
tion in the total error that

results in a more eÆ
ient algorithm. Algorithm 2.1 is similar in stru
ture to Algorithm 5.1

in [10℄. The main di�eren
e is that the adaptive pre
ision 
ontrol is used there to de
ide

whether to in
rease or not the penalty parameter and not as a stopping 
riterion for the

minimization pro
ess. Another important di�eren
e is the rule for updating the multiplier

� in Step 2.

The next lemma shows that Algorithm 2.1 is well de�ned, that is, any 
onvergent

algorithm for the solution of the auxiliary problem required in Step 1 will generate either

x

k

that satis�es (2.1) in a �nite number of steps or a sequen
e of approximations that


onverges to the solution of (1.1). It is also 
lear that there is no hidden enfor
ement of

exa
t solution in (2.1) and 
onsequently typi
ally inexa
t solutions of the auxiliary un
on-

strained problems are obtained in Step 1.

Lemma 2.2. Let M > 0; � 2 IR

m

and � � 0 be given and let fx

k

g denote any sequen
e

that 
onverges to the unique solution x of the problem

minimize L(x; �; �):

(2.5)

Then fx

k

g either 
onverges to the solution

b

x of problem (1.1) or there is an index k su
h

that

kg(x

k

; �; �)k �MkDx

k

� dk: (2.6)

Proof: First observe that if (2.6) does not hold for any k, then we must have Dx = d.

In this 
ase, sin
e x is the solution of (2.5), it follows that

Bx� d+D

T

�+ �D

T

(Dx� d) = 0 (2.7)

6



and after substituting Dx = d into (2.7), we get

Bx� d+D

T

� = 0: (2.8)

However, 
onditions (2.8) and Dx = d are suÆ
ient 
onditions for x to be the unique

solution of (1.1) so that x =

b

x. 2

The next theorem states the basi
 result that relates the adaptive pre
ision 
ontrol

used in Step 1 of Algorithm 2.1 to the improvement on the multiplier estimation when it

is updated as in Step 2.

Theorem 2.3. Let � > 0 and � 2 [0; �). If

krk � �

(�+ �

�1

m

)(�

1

+ �

�1

)

kDk kB

�1

k

kDx� dk (2.9)

then

k

e

��

b

�k � Æ(�; �)k� �

b

�k (2.10)

where

Æ(�; �) = ��=(�� �) + 1=(��

1

+ 1): (2.11)

The proof of this theorem requires some inequalities that, for the sake of 
larity of expo-

sition, we obtain in the following lemmas.

Lemma 2.4. For any ve
tors x 2 R

p

and � 2 R

m

,

k

e

��

b

�k �

kDk kB

�1

k

�

1

+ �

�1

krk+ �

�1

1

�

1

+ �

�1

k��

b

�k: (2.12)

Proof: The de�nition of

e

� and r implies that

Bx + D

T

e

� = r + 


Dx � �

�1

e

� = ��

�1

(��

b

�)� �

�1

b

�+ d;

(2.13)

also

b

� and

b

x are 
ompletely determined by

B

b

x + D

T

b

� = 


D

b

x � �

�1

b

� = ��

�1

b

�+ d:

(2.14)
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Subtra
ting (2.13) from (2.14) and swit
hing to matrix notation, we get

 

B D

T

D ��

�1

I

! 

x�

b

x

e

��

b

�

!

=

 

r

�

�1

(

b

�� �)

!

: (2.15)

The inverse of the matrix in (2.15) is given by

 

(B + �D

T

D)

�1

B

�1

D

T

S

�1

�

S

�1

�

DB

�1

�S

�1

�

!

(2.16)

where S

�

= DB

�1

D

T

+ �

�1

I (see [12℄).

It follows that

e

�� � = S

�1

�

DB

�1

r � �

�1

S

�1

�

(

b

�� �):

(2.17)

Inequality (2.12) results after taking norms in (2.17) and noting that

kS

�1

�

k = 1=(�

1

+ �

�1

) : 2

The previous lemma gives a bound on the distan
e between the updated multiplier

and the 
orre
t one, proportional to the error due to inexa
t minimization in Step 1 and

to the error in the previous multiplier estimate. This bound is related to the results of

Proposition 2.4 in [2℄.

Lemma 2.5. Let � > 0, for any ve
tors x 2 IR

p

and � 2 IR

m

,

k��

b

�k � (�+ �

�1

m

)kDx� dk �

�

�1

kDk kB

�1

k

�

1

+ �

�1

krk: (2.18)

Proof: By the de�nition of r we get

(B + �D

T

D)(x�

b

x) +D

T

(��

b

�) + (B + �D

T

D)

b

x+D

T

b

� = 
+ �D

T

d+ r; (2.19)

and using the equations that determine (

b

x;

b

�)

B

b

x+D

T

b

� = 


D

b

x = d

(2.20)

equation (2.19) redu
es to

(B + �D

T

D)(x�

b

x) +D

T

(��

b

�) = r: (2.21)
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Equation (2.21) together with

D(x�

b

x) = Dx� d (2.22)

may be written in matrix form as

 

B + �D

T

D D

T

D 0

! 

x�

b

x

��

b

�

!

=

 

r

Dx� d

!

: (2.23)

The inverse of the matrix in (2.23) is given by (see [12℄)

 

B

�1

�B

�1

D

T

S

�1

DB

�1

B

�1

D

T

S

�1

S

�1

DB

�1

�S

�1

!

(2.24)

where S = DB

�1

D

T

: Then,

��

b

� = (D(B + �D

T

D)

�1

D

T

)

�1

(D(B + �D

T

D)

�1

r � (Dx� d)); (2.25)

so that

k��

b

�k � �

1

((D(B + �D

T

D)

�1

D

T

)

�1

)(kDx� dk � kD(B + �D

T

D)

�1

k krk); (2.26)

where �

1

(A) denotes the smallest eigenvalue of matrix A.

Applying the Sherman-Morrison-Woodbury formula (see Golub and Van Loan [8℄)

(B + �D

T

D)

�1

= B

�1

�B

�1

D

T

(�

�1

I +DB

�1

D

T

)

�1

DB

�1

; (2.27)

we get

I � �D(B + �D

T

D)

�1

D

T

= �

�1

(�

�1

I +DB

�1

D

T

)

�1

:

Thus

I � �D(B + �D

T

D)

�1

D

T

= �

�1

(�

�1

I +DB

�1

D

T

)

�1

: (2.28)

It follows that

D(B + �D

T

D)

�1

D

T

= �

�1

(I � (I + �DB

�1

D

T

)

�1

) (2.29)

and

kD(B + �D

T

D)

�1

D

T

k = �

�1

�

m

=(�

m

+ �

�1

): (2.30)
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Spe
tral properties and (2.30) imply

�

1

((D(B + �D

T

D)

�1

D

T

)

�1

) = kD(B + �D

T

D)

�1

D

T

k

�1

= �

�1

m

+ �: (2.31)

Finally, substituting (2.31) into (2.26) and noting that by (2.29)

D(B + �D

T

D)

�1

= �

�1

(�

�1

I +DB

�1

D

T

)

�1

DB

�1

(2.32)

and

kD(B + �D

T

D)

�1

k � �

�1

kDkkB

�1

k=(�

1

+ �

�1

); (2.33)

(2.18) is easily obtained. 2

Lemma 2.5 gives us a 
omputable lower bound of the norm of the error in the approx-

imation of the Lagrange multipliers. Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3: The assumptions imply that inequalities (2.12) and (2.18)

hold.

If � = 0, (2.9) implies r = 0 and substituting in (2.12), (2.10) is obtained.

If � > 0, (2.9) implies that

�

�1

kDk kB

�1

k

�

1

+ �

�1

krk � (�+ �

�1

m

)kDx� dk: (2.34)

After substituting (2.34) in (2.18), we get

(�

�1

� �

�1

)

kDk kB

�1

k

�

1

+ �

�1

krk � k��

b

�k (2.35)

so that, for � 2 (0; �),

kDk kB

�1

k

�

1

+ �

�1

krk �

��

�� �

k��

b

�k: (2.36)

To �nish the proof, it is enough to substitute (2.36) in (2.12) and 
he
k that the resulting

inequality is equivalent to (2.10). 2

The problem of �nding the bounds of the norm of gradients that yield estimates of

the updated Lagrange multipliers is now redu
ed to obtaining a bound of Æ(�; �). For this

10



purpose the following properties of the latter fun
tion will be useful.

Lemma 2.6. Let Æ(�; �) be de�ned by (2.11) for 0 � � < �; let K > 0, and �(�) = K=�.

(i) If

� >

p

K (2.37)

then, for any � � �,

�(�) < � and Æ(�(�); �) �

�

�

K + �

�1

1

��

p

K

: (2.38)

(ii) If

� > K +

p

K + �

�1

1

; (2.39)

then there exists � 2 (0; 1) su
h that, for � � �,

Æ(�(�); �) � �

�

�

� �: (2.40)

Proof: Inequalities (2.37) and � � � imply

�(�) = K=� � K=� <

p

K�=�

and

�� �(�) > ��

p

K�

�

= �

��

p

K

�

so that

Æ(�(�); �) <

�K

�(��

p

K)

+

1

��

1

<

�

�

K + �

�1

1

��

p

K

To prove (2.40), observe that Æ(�(�); �) is a de
reasing fun
tion of � for � >

p

K. If �

satis�es (2.39), then by (i) also

Æ(�(�); �) �

�

�

K + �

�1

1

��

p

K

= �

�

�

with

� =

K + �

�1

1

��

p

K

< 1: 2

Corollary 2.7. Under the assumptions of Theorem 2.3, the following statements hold

11



(i) If M

1

is a positive 
onstant and

� >

q

kDkkB

�1

kM

1

=�

1

; (2.41)

then there is a positive 
onstant M

2

su
h that for any x 2 IR

p

; � 2 IR

m

and � � �

kg(x; �; �)k �M

1

kDx� dk (2.42)

implies

k

e

��

b

�k �

1

�

M

2

k��

b

�k: (2.43)

(ii) If M

1

is a positive 
onstant and

� > M

1

+

p

M

1

+ �

�1

1

; (2.44)

then for any x 2 IR

p

; � 2 IR

m

and � � � the inequality (2.42) implies

k

e

��

b

�k �

�

�

k��

b

�k: (2.45)

Proof: (i) Part (i) of Lemma 2.6 and

K = kDkkB

�1

kM

1

=�

1

(2.46)

imply that for � � � >

p

M

Æ(�(�); �) �M

2

=� and �(�) < �

where

M

2

= �

K + �

�1

1

��

p

K

:

Thus, by Theorem 2.3,

kg(x; �; �)k �

�(�)�

1

�

kDkkB

�1

k

kDx� dk =M

1

kDx� dk

implies

k

e

��

b

�k � Æ(�(�); �)k� �

b

�k �

M

2

�

k��

b

�k:

12



(ii) If DD

T

= I, then

�

1

(DB

�1

D

T

) = min

(

z

T

DB

�1

D

T

z

z

T

DD

T

z

: z 6= 0

)

� �

1

(DB

�1

D

T

) = kBk

�1

so that

�

�1

1

� kBk: (2.47)

Thus, assumption (2.44) implies (2.39) and by Lemma 2.6(ii)

Æ(�(�); �) �

�

�

:

Moreover, using DD

T

=I and (2.46) it is easy to verify that

�

(�+ �

�1

m

)(�

1

+ �

�1

)

kDk kB

�1

k

� K;

so that (2.45) follows from Theorem 2.3. 2

3 Global Convergen
e

In this se
tion we prove the global 
onvergen
e of Algorithm 2.1. In Theorem 3.2. we

prove the 
onvergen
e of the whole sequen
es x

k

and �

k

to the Kuhn-Tu
ker pair (

b

x;

b

�),

respe
tively. Theorem 3.3. states a lo
al 
onvergen
e result for the sequen
e �

k

, that does

not have any term a

ounting for the inexa
t minimization in Step 1 of the algorithm. The

�nal result of this se
tion is Theorem 3.4, where the boundedness of the penalty parameter

�

k

is obtained.

Lemma 3.1. Let f�

k

g be a sequen
e generated by Algorithm 2.1. Then f�

k

g is bounded.

Proof: Let f�

k

g; fx

k

g and f�

k

g be generated by Algorithm 2.1. In parti
ular, it follows

that f�

k

g is non-de
reasing.

Let us �rst assume that f�

k

g is not bounded and observe that �

k+1

is assigned by

(2.2) in Step 2 of Algorithm 2.1 so that

�

k+1

= �

k

+ �

k

(Dx

k

� d): (3.1)

13



Let Æ 2 (0; 1), applying Corollary 2.7(ii), there is a positive � su
h that for �

k

� �, if

kg(x

k

; �

k

; �

k

)k �MkDx

k

� dk (3.2)

then

k�

k+1

�

b

�k � Æk�

k

�

b

�k: (3.3)

Therefore, as (2.1) holds, (3.2) is true and we obtain (3.3).

Now, if f�

k

g is bounded, there is k

0

su
h that for k � k

0

the values of �

k

and �

k

are

updated by (2.3) in Step 3. It follows that for any ` � 0,

kDx

k

0

+`

� dk � �

k

0

+`

= �

`

�

k

0

and

�

k

0

+`

� �

k

0

= �

k

0

`�1

X

i=0

(Dx

k

0

+i

� d);

so that

k�

k

0

+`

k � k�

k

0

k+ �

k

0

`�1

X

i=0

kDx

k

0

+i

� dk

� k�

k

0

k+ �

k

0

(1 + : : :+ �

`�1

)�

k

0

� k�

k

0

k+

�

k

0

�

k

0

1� �

:

Hen
e f�

k

g is also bounded in this 
ase. 2

Theorem 3.2. The sequen
es fx

k

g and f�

k

g generated by Algorithm 2.1. 
onverge to

b

x

and

b

�, respe
tively.

Proof: Sin
e all �

k

are generated by (2.2) in Step 2, we have

kDx

k

� dk = �

�1

k

k�

k+1

� �

k

k � �

�1

k

(k�

k+1

k+ k�

k

k): (3.4)

If f�

k

g is not bounded, then, as it is monotonous, it follows by Lemma 3.1 that kDx

k

�dk


onverges to zero.

On the other hand, if f�

k

g is bounded, it follows that there is k

0

su
h that for k � k

0

,

�

k

and �

k

are generated by (2.3) in Step 3 and

kDx

k

� dk � �

k

= �

k�k

0

�

k

0

: (3.5)
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Hen
e we 
an 
on
lude that kDx

k

�dk 
onverges to zero. However, sin
e at ea
h iteration

x

k

satis�es (2.1), it follows that kg(x

k

; �

k

; �

k

)k 
onverges to zero, too.

Let r

k

= g(x

k

; �

k

; �

k

), then

x

k

= (B + �

k

D

T

D)

�1


+ (B + �

k

D

T

D)

�1

(r

k

�D

T

�

k

) + �

k

(B + �

k

D

T

D)

�1

D

T

d: (3.6)

Taking into a

ount that

k(B + �

k

D

T

D)

�1

k � kB

�1

k;

we get

kx

k

k � kB

�1

k(k
k + kr

k

k+ kD

T

k k�

k

k) + �

k

k(B + �

k

D

T

D)

�1

D

T

k kdk: (3.7)

By Lemma 3.1. and (3.7) we obtain that fx

k

g is bounded. Sin
e both sequen
es fx

k

g and

f�

k

g are bounded, they have limit points x and �, respe
tively. As kDx

k

� dk 
onverges

to zero, x is feasible, i.e.

Dx = d: (3.8)

As �

k+1

is generated by (2.2) in Step 2 and

g(x

k

; �

k

; �

k

) = g(x

k

; �

k+1

; 0); (3.9)

from the fa
t that kg(x

k

; �

k

; �

k

)k 
onverges to zero, it follows that

g(x; �; 0) = 0: (3.10)

Equations (3.8) and (3.10) are the suÆ
ient 
onditions for x to be the unique solution of

problem (1.1), with 
orresponding ve
tor of Lagrange multipliers �. Therefore, x =

b

x,

� =

b

� and both sequen
es fx

k

g, f�

k

g are 
onvergent. 2

Theorem 3.3. Let fx

k

g and f�

k

g be generated by Algorithm 2.1 and M be the 
onstant

used in Step 1. Then the following statements hold:

(i) If

� >

q

kDkkB

�1

kM=�

1

; (3.11)

then there is a positive 
onstant M

2

su
h that �

k

� � implies

k�

k+1

�

b

�k �

1

�

k

M

2

k�

k

�

b

�k: (3.12)
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(ii) If

DD

T

= I; � > M +

p

M + kBk; (3.13)

then �

k

� � implies

k�

k+1

�

b

�k �

�

�

k

k�

k

�

b

�k: (3.14)

Proof: If DD

T

= I, then

�

1

= min

(

z

T

DB

�1

D

T

z

z

T

DD

T

z

: z 6= 0

)

= �

1

(B

�1

) = kBk

�1

: (3.15)

The rest is an easy 
onsequen
e of Corollary 2.7. 2

Theorem 3.4 Let the sequen
es fx

k

g; f�

k

g and f�

k

g be generated by Algorithm 2.1.

Then f�

k

g is bounded.

Proof: Let us assume that f�

k

g is not bounded. Then by (2.3) in Step 3, there exists a

subsequen
e IK su
h that kDx

k

�dk > �

k

for k 2 IK. It follows that IN nIK is also in�nite

by (2.4) and the fa
t that kDx

k

� dk 
onverges to zero. Thus, there exists a subsequen
e

IK

1

of IK su
h that for k 2 IK

1

, k + 1 2 IK and k =2 IK. For k 2 IK

1

, �

k+1

= �

k

. Let

r

k+1

= g(x

k+1

; �

k+1

; �

k+1

); r

k

= g(x

k

; �

k

; �

k

);

then, for k 2 IK

1

x

k+1

= (B + �

k

D

T

D)

�1

(
�D

T

�

k

+ �

k

D

T

d� �

k

D

T

(Dx

k

� d) + r

k+1

) (3.16)

x

k

= (B + �

k

D

T

D)

�1

(
�D

T

�

k

+ �

k

D

T

d+ r

k

): (3.17)

Thus

Dx

k+1

� d = D(B + �

k

D

T

D)

�1

((
�D

T

�

k

+ �

k

D

T

d+ r

k

)

� �

k

D

T

(Dx

k

� d) + r

k+1

� r

k

)� d

= (I � �

k

D(B + �

k

D

T

D)

�1

D

T

)(Dx

k

� d)

+ D(B + �

k

D

T

D)

�1

(r

k+1

� r

k

):

(3.18)

Using (2.28), (2.33) and properties of norms, we obtain

kDx

k+1

� dk � �

�1

k

�

kDk kB

�1

k

�

1

+ �

�1

k

kr

k+1

� r

k

k+

1

�

1

+ �

�1

k

kDx

k

� dk

�

: (3.19)
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Let M

1

=

kDkjB

�1

k

�

1

+ �

�1

k

and M

2

=

1

�

1

+ �

�1

k

. Then

kDx

k+1

� dk � �

�1

k

(M

1

(kr

k

k+ kr

k+1

k) +M

2

kDx

k

� dk): (3.20)

From (2.1), we get

kDx

k+1

� dk � �

�1

k

(MM

1

kDx

k+1

� dk+ (MM

1

+M

2

)kDx

k

� dk); (3.21)

and for suÆ
iently large k 2 IK

1

we 
an �nd M

0

su
h that

kDx

k+1

� dk � �

�1

k

M

0

kDx

k

� dk:

On the other hand, for k 2 IK

1

��

k

= �

k+1

� kDx

k+1

� dk � �

�1

k

M

0

kDx

k

� dk � �

�1

k

M

0

�

k

:

It follows that for arbitrarily large k, � � �

�1

k

M

0

. This 
ontradi
ts the assumption that

f�

k

g is unbounded. 2

4 Numeri
al experiments

We are espe
ially interested in the use of the proposed algorithm for the solution of prob-

lems arising in me
hani
al engineering that were mentioned in the introdu
tion. The

algorithm has been tested on the solution of a model problem resulting from the �nite

di�eren
e dis
retization of the following 
ontinuous problem:

minimize

2

X

i=1

�

Z




i

jru

i

j

2

d
�

Z

Pu

i

d


�

subje
t to u

1

(0; y) = u

2

(y) = 0 and u

1

(y) = u

2

(y) for x 2 [0; 1℄;

where




1

= (0; 1) � (0; 1); 


2

= (1; 2) � (0; 1);

P (x; y) = �1 for (x; y) 2 (0; 1) � (0:5; 1);

P (x; y) = 0 for (x; y) 2 (0; 1) � (0; 0:5);

P (x; y) = 2 for (x; y) 2 (1; 2) � (0:0:5);

P (x; y) = 0 for (x; y) 2 (1; 2) � (0:5; 1):
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The dis
retization s
heme 
onsists of a regular grid of 21�21 nodes for ea
h subdomain




i

. The initial approximation used was the null ve
tor. The problem was solved with all

possible 
ombinations of M 2 f0:1; 10; 1000g and �

0

2 f 1E3, 1E5, 1E7 g. The stopping


riteria used were the relative pre
ision krLk=kPk <1E�5 and the feasibility toleran
e

kBxk � 1E�8. For the other parameters, the 
hoi
es � = :1; � = 10 and � = 1 were made.

In just one 
ase, namely for �

0

=1E3 and M =1E3, the penalty parameter was updated.

The number of outer iterations and the total number of 
onjugate gradient iterations used

in the solution of the auxiliary problems in Step 1 are in Table 1.

Table 1. No pre
onditioning

�

0

Outer iterations CG iterations

M = 0:1 M = 10 M = 1000 M = 0:1 M = 10 M = 1000

1E3 3 4 8 300 400 342

1E5 3 3 4 221 214 303

1E7 2 2 4 251 223 220

The 
omputational results suggest that the use of large penalty parameters in the

algorithm presented is eÆ
ient for this type of problems. These results are in agreement

with the theory whi
h predi
ts that the number of outer iterations is small for large

penalty parameters (Theorem 3.3). Also in [1, 15℄ results relating the spe
trum of the

penalized matrix and the performan
e of the 
onjugate gradient method for problems

with the number of 
onstraints m mu
h smaller than the dimension p explain the fa
t

that the number of inner iterations in Step 1 is not sensitive to the growth of the values

of the penalty parameters, as observed here. It is not hard to see that the spe
trum of

the matrix B + �D

T

D is distributed in two disjoints intervals, the �rst p�m eigenvalues

are smaller than the largest eigenvalue of B and that the last m eigenvalues are at least �

times the respe
tive largest m eigenvalues of D

T

D. This suggests a way of pre
onditioning

the augmented matri
es in 
ase the 
onjugate gradient method is used in the inner loop,

namely to pre
ondition only the matrix B and then to orthonormalize the 
onstraints.

The results in Table 2 show that the number of the 
onjugate gradient iterations 
an be


onsiderably redu
ed in this way.
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Table 2. SSOR pre
onditioning of B with orthogonalization of 
onstraints

�

0

Outer iterations CG iterations

M = 0:1 M = 10 M = 1000 M = 0:1 M = 10 M = 1000

1E3 3 4 7 130 106 116

1E5 2 3 4 82 82 107

1E7 2 2 13 122 93 110

For 
omparison, we 
arried out the 
omputations also with straightforward pre
ondi-

tioning of the augmented matrix, but the number of 
onjugate gradient iterations nearly

doubled as 
ompared with Table 1. Our explanation is that the pre
onditioned matrix has

no gap in the spe
trum so that the distribution of the spe
trum is not favorable for the


onjugate gradient method. An alternative strategy for pre
onditioning the augmented

matri
es has been presented in [10, 11℄.

5 Con
lusions

We have proved global 
onvergen
e results for an augmented Lagrangian method that uses

adaptive pre
ision 
ontrol in the solution of the auxiliary problems for quadrati
 program-

ming problems with equality 
onstraints. The pre
ision is 
ontrolled by the feasibility

of the 
urrent iteration. We show that the rate of 
onvergen
e does not depend on the

a

ura
y of the solution of the auxiliary problems and that the penalty parameter � is

bounded.

The numeri
al experiments suggest that the algorithm may be used for eÆ
ient solu-

tion of large sparse problems using initial large values for the penalty parameters and a

strategy of pre
onditioning of the augmented matri
es that takes advantage of the proper-

ties of the spe
trum of these matri
es when the number of 
onstraints is relatively small.

The results presented here are relevant for the solution of quadrati
 programming

problems with equality 
onstraints and simple bounds. An extension to these more general

problems is under 
onsideration by the authors.
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