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Abstract

We present the Laplace partial differential equation associated to
the Prasad metric. We discuss the so called internal and external
spaces that correspond to the symmetry groups SO32 and SOy 1, re-
spectively. Using hyperspherical coordinates we show that both radial
differential equations can be led to the Riccati ordinary differential
equation.

For the Prasad metric with the radius of the universe independent
of the parametrization, we associate the solution of the temporal equa-
tion with quantum number hypercharge to the internal structure, and
for the external structure, we associate the energy eigenvalues.

Finally, when the radius of the universe goes to infinity we reobtain
Minkowskian results.



1 Introduction

Translations in a three-dimensional space can be described as rotations asso-
ciated with the group SOs ;. Lorentz postulated a particular transformation,
the standard relativistic one[1].

Arcidiacono [2,3,4] proposed a natural extension of these transformations,
where translations in a Minkowskian spacetime can be thought as rotations
in the symmetry group SOy, restricted to the de Sitter universe D. We can
divide D in internal and external hyperspaces, associating with each one, the
symmetry groups SOy and SOj 5, respectively[5]. After parametrizing these
hyperspaces, we solve the generalized Laplace equation, concluding that the
angular part has the spherical harmonics as solutions and the radial equation
can be led to the classical field equation, when the radius of D approaches
infinity. By a suitable change of variables this radial equation can be led to
a Riccati equation [6].

This paper is organized as follows: in section two we present the Laplace
differential equation for the Prasad metric, by the parametrization of the
internal and external hyperspaces associated with D, solving the angular
differential equation in terms of spherical harmonics and reducing the ra-
dial differential field equation to a Riccati equation. In section three we
discuss the generalized Laplace differential equation associated with another
parametrization of D, proving the same behavior for the angular differential
equation as in the first case and obtaining the classical differential field equa-
tion when the radius of D approaches infinity. In an appendix we discuss the
topology of D.

2 The Prasad metric

The de Sitter Universe (D) can be described as the sum p; + oo where g, is
the external space and g is the internal one. To each of these spaces there
correspond the symmetry groups SOy, and SOs 2 respectively[7].

2.1 The external space (p;)

This hyperspace has constant curvature 1/R? and has a quadratic form as-
sociated with it, as follows:

R? = (21)° + (22)* + (23)* — (22)” + (25)*.



A possible parametrization[6] for the above quadratic form is

x1 = Rsinxsinfcospcosht
x93 = Rsinxsinfsinpcosht
r3 = Rsinycosfcosht

ry = Rsinht

rs = HRcosycosht

allowing us to write the line element as

ds’. = R® cosh® t[dy* + sin® y(d6? + sin® 0dp?)] — R*dt’

The metric tensor is given by

cosh? ¢ 0 0 0

2 0 sin? y cosh? t 0 0
Jij = 0 0 sin? ysin? @ cosh?t 0
0 0 0 -1

After substituting these terms in the generalized laplacian[7]

1 0 5 O
2 T . _ = Y2 ik Y

we obtain the Laplace differential equation

S

-2
(R? cosh® tsin? ) V¢ = ct)nshﬁ 0y (cosh® t9,¢) — 9, (sin® 0y )+

1 ) 1
+ g (i 0009) + 550,56 = 0.
After writing the scalar field ¢ as

o(x,t,0,0) =T (x, )Y (0, ¢)

we can separate the Laplace differential equation in two equations:

1 1 1 1
C L Oy(sinBdY) + ———8,,Y = —L({+1
v sin@aﬂ (sin 00pY’) + v sin? eaw ((0+1)
and 1 1 L(l+1)
+
3 Y WA _ _
p_— tat(cosh to,I) sinZXaX(sm X0, I') S =0,

(1)



with € =10,1,2,3. ..
Relatively to eq.(5), we consider the functional product

I'(x, 1) = I(x)(¢)
and suppose that the separation constant! is . Then, eq.(5) can be sepa-
rated in two equations:

1 d (., dll\ (¢+1) )
— — [I—a’lI=0 6
sin? x dy <s1n de) * sin? y “ (6)
and p .
1 3 20y _
- <cosh t%> — Q2 =0. (7)
We emphasize eq.(5), namely, the radial one.? We can rewrite eq.(6) as
dIl d?11
—— |2sin x cos x— + sin® x=— + £(£ 4+ 1)IT — &’ITsin® x| = 0
sin” x dx dx
or
d°T1 dil (0 +1) )
—— + 2cot y— II - II=0.
i +2co XdX + sin? « 0 (8)
Introducing the variable j = cos x, we obtain[8]
d ddj d e Myl
— = —— = ——gin cot y— = —2cos x—
dx  djdy g omX Xy X
and
& d d si d4j d si d cos & (sin® x) d cos
—=—|——siny| = ————siny— — = —(sin® x) — — :
2 dy \ g mX Gaxdj X T g X g X T g CO8X

Thus, eq.(8) can be written, with this substitution, as

d*11 dIl L(l+1)

2 . 2 _

la =0,1,2,3,... corresponds to the eingenvalue spectrum of Gegenbauer equation.

(1)* + (2)* + (23)*
2

radius of D, it is the so-called adimensional normalized radius.

2The variable x is defined by sinxy =

. Although siny is not the
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Besides, introducing a new variable p as follows

Ldll(j) _
we can rewrite eq.(9) as

0(l+1)
1— 52

/

po=—p*+ 3ju+a® —

== (10)

which is a Riccati equation.

2.2 The internal space (p»)

This hyperspace has a negative constant curvature —1/r% (see appendix)
and can be characterized by the symmetry group SOs,. To this group is
associated a quadratic form

2 2 2 2 2 _ 2
r]+ x5+ a3 —xy — x5 =17,

Prasad[6] proposed the following parametrization with nonstatic coordi-
nates:

xy = rsinhxsinécos pcost
xy = rsinh xsinfsinpcost
x3 = rsinhycosfcost

ry = rsint

r¢ = rcoshycost

Then, we can write the line element as follows:
ds® = r?cos? t{dx* + sinh® x(df* + sin® 0dp?)] — r?dt*. (11)

The metric tensor associated with @9 is given by

cos? t 0 0 0

g = 72 0  cos’tsh?y 0 0
Y 0 0 cos®tsh®ysin?f 0
0 0 0 —1

The generalized Laplace differential equation can be written as

-2
> Xat(cos3 t01¢) + Oy (sinh® X0, ¢)+

r? cos® tsinh? V3¢ = —
cost




1 .
@89(sm 00y9) + Dpp =0 (12)

sin? 6

Defining the funcional product

o(p,t,0,0) = Ap,1)Y (0, ¢) = AY,

we can separate eq.(12) in radial (temporal) and angular equations:

1 sinh2X 5 1 o, -
A cost Oulcos taN) + KaX(Smh XOx9) = (L +1) (13)
and
iia (sin 00, ¢)+iLa 6= —L(0+1) (14)
Y sing?V 0 v snZglee? = .

It is also worthwhile to mention here that eq.(14) is exactly the angular
equation obtained in the precedent case (the internal space p;). Once again
we separate eq.(13) in radial and temporal equations (we will emphasize the
radial equation only).

Taking A(x,t) = Z(x)V(t) we get

1 sin? 1 . -
T cost Oi(cos® 1o, W) + EOX (sinh® x0,Z) = £(¢ + 1)

The above equation can be separated, and using 32 as the separation constant
we obtain® the following ordinary differential equations:

1 1 d 5, AV
W cost dt (COS t%) =0 (15)
wnd d =\ fe+1)
1 1 = +1
——— = (sink®xy =) - =B 16
=sinh? y dx (sm de) sinh? y g (16)
We can write eq.(16) as
d’Z d= [l +1)
— +2coth x— — —F?|E=0. 17
dx? Teco XdX [sinhZX b (17)
Let m = cosh x. With this substitution, eq.(17) can be written as[9]
d’= d= [0l +1)
-1 — - - B*|==0. 1
(m )dm2 +3mdm [mZ—l b 0 (18)

33=0,1,2,3,... corresponds to the eigenvalue spectrum of Gegenbauer equation.
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Defining

1 d=(m)
we can write eq.(18) as
=+ ! 3m —i—ﬂQ—w (19)
Ho=—p 1 —m2 K I—m2 |’

which is also a Riccati equation.

3 The Prasad metric with radius of the Uni-
verse independent of the parametrization

In the former case, with the hyperbolic parametrization of D, the classical
radial field equations were not obtained in the limit » — oco. With a new
temporal parametrization we are able to obtain the classical case in this limit.

The group that characterizes the external space D is SOy, while the
internal space D_ is only affected by the symmetry group SOs;,. Using carte-
sian coordinates, we can express[10] the internal and external line elements,

dsi = dry? + duy? + dus? — duy® + dxs?,

ds® = du® + dwo® + das® — dey® — dug.

From the transformations proposed by Tolman[11]

x5 + x4 = Ry exp[+t/RJ(1 - 72/R2+)1/2
for Dy and

x4 £ izg = R_ exp[+it/R_](1 + r?/R%)'/?

for D_, we can substitute these expressions in the expressions for the line
elements, obtaining

d 2
r 5+ r?df* + r?sin® 0dy® — (1 F r*/R%)d¢t?

ds? = —————
"L 1:FT2/R:|:



where the metric tensor can be written as

(1Fr*/RA)~" 0 0 0
- 0 r? 0 0
Yij = 0 0 r?sin6 0
0 0 0 —(1Fr*/R%)
For the generalized Laplace differential equation
1 0 o
V=V -Vip = ——— |g?g* = 20

with this metric tensor, we obtain
1o], oy 1 o (. 0
—— 1 F AL — —— 0—
2 or lr( AL )87‘] T s’ 0 (Sm 0) "

1 0? 1 0?
o ) e1)
r2sin” @ 0p? 1 F Apr? Ot?

where AL = 1/R%.
Let ¢(r,t,0,¢) =Y (0, 9)I'(r,t). Then we can separate eq.(21) as

9, 2 or’ 1 7‘2 821—‘
mo (T F ALt o | — = =(l+1 22
I'or lr( + ir)ar] T (17 Air?) ot (£+1) (22)
for the non-angular equation and
1 1 0 oYy 1 1 0%Y
Ve (Snlon |+ oo = (41 2
Y sin 0 00 (Sm 89>+Ysin293¢2 (+1) (23)

for the angular one. If the separation constant in the equations above has
integer values, the angular equation has the spherical harmonics as solu-
tions, given by Y (6, p) = P, (cos 0)e*™¥ where P, (cos @) is the associated
Legendre polynomial[7,12].
If we put I'(r,t) = S(r)T'(t), we obtain from eq.(22)
10°T
T oz
If we are on the internal structure of (D_), the temporal equation above has
an oscillatory solution

T (t) = 7_exp(xiHt/R_),

8



associated with the quantum number hypercharge (H)[13]. In case we are
treating D, time will have an exponential character described by the equa-
tion associated with the energy eigenvalues (FE)

Ty (t) = 74 exp(£Et/Ry)
For the radial equation we can write

1FAr?d |, N 0(+1)
72 dr [T (1 Asr )dr 2

This equation can be transformed in a classical field equation (for ex-
ample, the electric or the gravitational fields in D). From the definition
Ay = 1/R% it is obvious that in the limit where R — oo, Ay — 0. Using
some results of Quantum Mechanics in hyperspherical universes[15] in D,
with B =Y?/R?, and in D_,with B = E?/R%, in the limit where Ry — 0o
we obtain B — 0. Therefore the radial field equation can be written as

1 d [ ,dR

il =0 25

r2dr (T dr) (25)
in the ground state, where ¢ = 0.

With the change of variables

1dR _ dRr _
Rdp dp

(1FAsr®)S = BS. (24)

r

nk,

we can transform eq.(24) in a Riccati equation:

2 2A4r L+1) B

! 2 +

T + + . 26
1 g 1 (7" l:FAiT2> T2(1:FA:|:7"2) l:FA:tTZ ( )

4 Conclusions

The radial differential field equations have different signs, but both are led
to the same Riccati equation. In the first case, with the parametrization,
the classical case of a spherically symmetric scalar field cannot be obtained
by making the radius of D approach infinity. This was expected because in
cartesian coordinates the radius of D is independent of the coordinates, while
in curvilinear ones the parametrization constrains the radius of D: it is the

9



radial parametric coordinate. Thus the information about the radius is lost,
because the Laplace differential equation is homogeneous. In the last treat-
ment, with the parametrization independent of the radius of the Universe,
the classical case is obtained. Finally, by a suitable change of variables, all
radial differential field equations can be led to a Riccati equation.

We have obtained the following equations:

22—; + 2 cot Xfi_l; + Egnj;;)n — Il =0, (27)

p = —p?+ . _1]_2 [Sju +a? — Eié_iji)] ; (28)
for the internal Prasad metric, and

f—}?mmhxg— Kﬁﬂ;? —621520, (29)

po=—p?+ T lSmu + 5 - El(gjn;)] ) (30)

for the external Prasad metric
We note that the two Riccati equations arise from different radial differ-
ential equations, but are the same equation, with different names of variables.
We have already obtained (eq.(24))

LFAr?d |, o dS l+1) )
_ 1FA — - 1FA B = 1
= gy |7 (L FALr) S (1F Aur®) + B S =0, (31)
2 2A 41 L+1) B
' 2 +
= —n (> 32
g g n(TqZIZFAiT2>+T2(1:FAiT2)+1:FA:|:7"2, (32)

for the Prasad metric with parametrization independent of the radius of D.

Appendix

The topology S* x R of the de Sitter universe

Definition 1: A differentiable manifold of dimension n is a set M and a
family of bijective applications z, : V, C R™ — M of open sets V, of R"™ in
M such that:
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(1) Up 2a(Va) = M.
(2) For all pairs a, b, with z,(V,) N xy(V,) = W # 0, the sets z; (W) e
x, *(W) are open in R™ and the applications z, ' o z, are differentiable.

The applications z, for p € z,(U,) are called parametrizations of M in p.
A family {(V,,z,)} satisfying (1) and (2) is called a differentiable structure
on M [14].

Definition 2: Let M; and M, be differentiable manifolds. An application
w : My — M, is differentiable in p € M; if, given a parametrization y : Z C
R™ — M, in ¢(p), there exists a parametrization x : V' C R™ — M; in p
such that p(z(V)) C y(Z) and the application y topox:V C R" — R™
is differentiable in 27! (p).

Definition 3: Let M; and M, be differentiable manifolds. An applica-
tion ¢ : My — Ms is a diffeomorphism if it is differentiable, bijective, onto
and its inverse ¢! is differentiable.

Definition 4: Let f : R¥*! — R be an application of class C* in all its
components. A point p € R*¥t! is called regular point of f if at least one of
the applications 0f /0%, with i = 1,2,...k + 1, is non-null. A real number
ris called a regular value of f if f='(r) consists of regular points.

The de Sitter Universe is identified as a manifold with a level hypersurface
in R°. Given two vectors z,y € D, then the inner product is defined by

T-Y=T1Y1 + Toyo + T3Y3 + TaYs — T5Ys,

and consequently there is a quadratic form associated with it,

Q(x) = (21)* + (22)* + (w3)* + (24)* — (5)%,

whence we have

0
82 = 2.1;2 and 8—1‘5 = —2.1;5.

Therefore 7 = R (the non-null radius of the pseudosphere) is a regular value

of Q.

We enunciate the following lemma:

Lemma 1: If r is a regular value of f : R¥*! — R , then f *(r) is an
empty set or a k-dimensional manifold[15].

By lemma 1, the set
Q R ={z e R’ (x1)* + (w2)* + (23)* + (w4)? — (25)* = R?*}
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is a 4-dimensional manifold of R°. D = Q~'(R?) is a one leaf hyperboloid
in R5. Parallel sections to the hyperplan {x),xy,x3, 74} are discs which
represent hyperspheres S®. Thus, we have the theorem[16]:
Theorem 1: The de Sitter spacetime is diffeomorphic to S? x R.
Proof: Consider the set

S* X R = {(y1,¥2, s, y1,t) 1 s +y3 + 45 + i =1, —00 < t < o0}

(In this definition we consider the radius of D equal to unit, without loss of
generality, which is rigorously true only in the case t = 0.) We define a map
F:S$3 xR — R

i
F(yla Y2, Y3, Ya, t) = [(1 + t2)1/2] (yl; Y2, Y3, Ya, m) )

whence we obtain the derivatives

OF OF t

— = (1+t*)"*(1,1,1,1,0 d — = —rr 1).
ayz ( + ) ( , L, 1, 1, ) an ot (1+t2)1/2(y17y27y37y47 )

Therefore, F' is a smooth function. F' is also one-to-one, since if we
consider F'(y) = F(y1,Y2,y3,ys,t1) and F(z) = F(x1, T2, T3, T4, t2), then for
F(y) = F(z), we must have t; =t, and then x = y.

We know that

QUF)=(1+) i+ +us+u) — P =1+ 1-1 =1

Thus F' is a map on D.
Now, we consider G : D — S3 x R defined by

G(l‘l,$2,$3,l‘4,l‘5) - (]- + xg)il/Q |:l‘1,$2,1‘g,l‘4,x5(1 + l‘g)l/Q:I

where G is smooth. Besides, G[F(y17y27y37y47t)] = (y17y27y3ay47t)' This
proves that G = F'!; then F is a diffcomorphism between D and S® x R.
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