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Abstra
t

We present the Lapla
e partial di�erential equation asso
iated to

the Prasad metri
. We dis
uss the so 
alled internal and external

spa
es that 
orrespond to the symmetry groups SO

3;2

and SO

4;1

, re-

spe
tively. Using hyperspheri
al 
oordinates we show that both radial

di�erential equations 
an be led to the Ri

ati ordinary di�erential

equation.

For the Prasad metri
 with the radius of the universe independent

of the parametrization, we asso
iate the solution of the temporal equa-

tion with quantum number hyper
harge to the internal stru
ture, and

for the external stru
ture, we asso
iate the energy eigenvalues.

Finally, when the radius of the universe goes to in�nity we reobtain

Minkowskian results.
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1 Introdu
tion

Translations in a three-dimensional spa
e 
an be des
ribed as rotations asso-


iated with the group SO

3;1

. Lorentz postulated a parti
ular transformation,

the standard relativisti
 one[1℄.

Ar
idia
ono [2,3,4℄ proposed a natural extension of these transformations,

where translations in a Minkowskian spa
etime 
an be thought as rotations

in the symmetry group SO

4;1

, restri
ted to the de Sitter universe D. We 
an

divide D in internal and external hyperspa
es, asso
iating with ea
h one, the

symmetry groups SO

4;1

and SO

3;2

, respe
tively[5℄. After parametrizing these

hyperspa
es, we solve the generalized Lapla
e equation, 
on
luding that the

angular part has the spheri
al harmoni
s as solutions and the radial equation


an be led to the 
lassi
al �eld equation, when the radius of D approa
hes

in�nity. By a suitable 
hange of variables this radial equation 
an be led to

a Ri

ati equation [6℄.

This paper is organized as follows: in se
tion two we present the Lapla
e

di�erential equation for the Prasad metri
, by the parametrization of the

internal and external hyperspa
es asso
iated with D, solving the angular

di�erential equation in terms of spheri
al harmoni
s and redu
ing the ra-

dial di�erential �eld equation to a Ri

ati equation. In se
tion three we

dis
uss the generalized Lapla
e di�erential equation asso
iated with another

parametrization of D, proving the same behavior for the angular di�erential

equation as in the �rst 
ase and obtaining the 
lassi
al di�erential �eld equa-

tion when the radius of D approa
hes in�nity. In an appendix we dis
uss the

topology of D.

2 The Prasad metri


The de Sitter Universe (D) 
an be des
ribed as the sum }

1

+ }

2

where }

1

is

the external spa
e and }

2

is the internal one. To ea
h of these spa
es there


orrespond the symmetry groups SO

4;1

and SO

3;2

respe
tively[7℄.

2.1 The external spa
e (}

1

)

This hyperspa
e has 
onstant 
urvature 1=R

2

and has a quadrati
 form as-

so
iated with it, as follows:

R

2

= (x

1

)

2

+ (x

2

)

2

+ (x

3

)

2

� (x

4

)

2

+ (x

5

)

2

:
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A possible parametrization[6℄ for the above quadrati
 form is

x

1

= R sin� sin � 
os' 
osh t

x

2

= R sin� sin � sin' 
osh t

x

3

= R sin� 
os � 
osh t

x

4

= R sinh t

x

5

= R 
os� 
osh t

allowing us to write the line element as

ds

2

+

= R

2


osh

2

t[d�

2

+ sin

2

�(d�

2

+ sin

2

�d'

2

)℄� R

2

dt

2

(1)

The metri
 tensor is given by

g

ij

= R

2

0

B

B

B

�


osh

2

t 0 0 0

0 sin

2

� 
osh

2

t 0 0

0 0 sin

2

� sin

2

� 
osh

2

t 0

0 0 0 �1

1

C

C

C

A

After substituting these terms in the generalized lapla
ian[7℄

r

2

 = r � r =

1

g

1=2

�

�y

k

"

g

1=2

g

ik

� 

�y

i

#

(2)

we obtain the Lapla
e di�erential equation

(R

2


osh

2

t sin

2

�)r

2

� =

sin

2

�


osh t

�

t

(
osh

3

t�

t

�)� �

t

(sin

2

��

�

�)+

+

1

sin �

�

�

(sin ��

�

�) +

1

sin

2

�

�

''

� = 0: (3)

After writing the s
alar �eld � as

�(�; t; �; ') = �(�; t)Y (�; ')

we 
an separate the Lapla
e di�erential equation in two equations:

1

Y

1

sin �

�

�

(sin ��

�

Y ) +

1

Y

1

sin

2

�

�

''

Y = �`(`+ 1) (4)

and

1


osh t

�

t

(
osh

3

t�

t

�)�

1

sin

2

�

�

�

(sin

2

��

�

�)�

`(`+ 1)

sin

2

�

� = 0; (5)
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with ` = 0; 1; 2; 3 : : :

Relatively to eq.(5), we 
onsider the fun
tional produ
t

�(�; t) = �(�)
(t)

and suppose that the separation 
onstant

1

is �

2

. Then, eq.(5) 
an be sepa-

rated in two equations:

1

sin

2

�

d

d�

 

sin

2

�

d�

d�

!

+

`(`+ 1)

sin

2

�

�� �

2

� = 0 (6)

and

1


osh t

d

dt

 


osh

3

t

d


dt

!

� �

2


 = 0: (7)

We emphasize eq.(5), namely, the radial one.

2

We 
an rewrite eq.(6) as

1

sin

2

�

"

2 sin� 
os�

d�

d�

+ sin

2

�

d

2

�

d�

2

+ `(`+ 1)�� �

2

� sin

2

�

#

= 0

or

d

2

�

d�

2

+ 2 
ot�

d�

d�

+

`(`+ 1)

sin

2

�

�� �

2

� = 0: (8)

Introdu
ing the variable j � 
os�, we obtain[8℄

d

d�

=

d

dj

dj

d�

= �

d

dj

sin�) 2 
ot�

d�

d�

= �2 
os�

d�

dj

and

d

2

d�

2

=

d

d�

 

�

d

dj

sin�

!

= �

d

dj

dj

d�

d

dj

sin��

d

dj


os� =

d

2

dj

2

(sin

2

�)�

d

dj


os�:

Thus, eq.(8) 
an be written, with this substitution, as

d

2

�

dj

2

(1� j

2

)� 3j

d�

dj

� �

2

�+

`(`+ 1)

1� j

2

� = 0 (9)

1

� = 0; 1; 2; 3; : : : 
orresponds to the eingenvalue spe
trum of Gegenbauer equation.

2

The variable � is de�ned by sin� =

(x

1

)

2

+ (x

2

)

2

+ (x

3

)

2

R

2

. Although sin� is not the

radius of D, it is the so-
alled adimensional normalized radius.
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Besides, introdu
ing a new variable � as follows

1

�

d�(j)

dj

� �(j);

we 
an rewrite eq.(9) as

�

0

= ��

2

+

1

1� j

2

"

3j�+ �

2

�

`(`+ 1)

1� j

2

#

(10)

whi
h is a Ri

ati equation.

2.2 The internal spa
e (}

2

)

This hyperspa
e has a negative 
onstant 
urvature �1=r

2

(see appendix)

and 
an be 
hara
terized by the symmetry group SO

3;2

. To this group is

asso
iated a quadrati
 form

x

2

1

+ x

2

2

+ x

2

3

� x

2

4

� x

2

6

= r

2

:

Prasad[6℄ proposed the following parametrization with nonstati
 
oordi-

nates:

x

1

= r sinh� sin � 
os' 
os t

x

2

= r sinh� sin � sin' 
os t

x

3

= r sinh� 
os � 
os t

x

4

= r sin t

x

6

= r 
osh� 
os t

Then, we 
an write the line element as follows:

ds

2

�

= r

2


os

2

t[d�

2

+ sinh

2

�(d�

2

+ sin

2

�d'

2

)℄� r

2

dt

2

: (11)

The metri
 tensor asso
iated with }

2

is given by

g

ij

= r

2

0

B

B

B

�


os

2

t 0 0 0

0 
os

2

tsh

2

� 0 0

0 0 
os

2

tsh

2

� sin

2

� 0

0 0 0 �1

1

C

C

C

A

The generalized Lapla
e di�erential equation 
an be written as

r

2


os

2

t sinh

2

�r

2

� = �

sin

2

�


os t

�

t

(
os

3

t�

t

�) + �

�

(sinh

2

��

�

�)+
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1

sin �

�

�

(sin ��

�

�) +

1

sin

2

�

�

''

= 0 (12)

De�ning the fun
ional produ
t

�(�; t; �; ') = �(�; t)Y (�; ') � �Y;

we 
an separate eq.(12) in radial (temporal) and angular equations:

�

1

�

sinh

2

�


os t

�

t

(
os

3

t�

t

�) +

1

�

�

�

(sinh

2

��

�

�) = `(`+ 1) (13)

and

1

Y

1

sin �

�

�

(sin ��

�

�) +

1

Y

1

sin

2

�

�

''

� = �`(` + 1): (14)

It is also worthwhile to mention here that eq.(14) is exa
tly the angular

equation obtained in the pre
edent 
ase (the internal spa
e }

1

). On
e again

we separate eq.(13) in radial and temporal equations (we will emphasize the

radial equation only).

Taking �(�; t) = �(�)	(t) we get

1

	

sin

2

�


os t

�

t

(
os

3

t�

t

	) +

1

�

�

�

(sinh

2

��

�

�) = `(`+ 1)

The above equation 
an be separated, and using �

2

as the separation 
onstant

we obtain

3

the following ordinary di�erential equations:

1

	

1


os t

d

dt

 


os

3

t

d	

dt

!

= �

2

(15)

and

1

�

1

sinh

2

�

d

d�

 

sinh

2

�

d�

d�

!

�

`(`+ 1)

sinh

2

�

= ��

2

: (16)

We 
an write eq.(16) as

d

2

�

d�

2

+ 2 
oth�

d�

d�

�

"

`(`+ 1)

sinh

2

�

� �

2

#

� = 0: (17)

Let m = 
osh�. With this substitution, eq.(17) 
an be written as[9℄

(m

2

� 1)

d

2

�

dm

2

+ 3m

d�

dm

�

"

`(`+ 1)

m

2

� 1

� �

2

#

� = 0: (18)

3

� = 0; 1; 2; 3; : : : 
orresponds to the eigenvalue spe
trum of Gegenbauer equation.
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De�ning

�(m) =

1

�

d�(m)

dm

we 
an write eq.(18) as

�

0

= ��

2

+

1

1�m

2

"

3m�+ �

2

�

`(`+ 1)

1�m

2

#

; (19)

whi
h is also a Ri

ati equation.

3 The Prasad metri
 with radius of the Uni-

verse independent of the parametrization

In the former 
ase, with the hyperboli
 parametrization of D, the 
lassi
al

radial �eld equations were not obtained in the limit r ! 1. With a new

temporal parametrization we are able to obtain the 
lassi
al 
ase in this limit.

The group that 
hara
terizes the external spa
e D

+

is SO

4;1

, while the

internal spa
e D

�

is only a�e
ted by the symmetry group SO

3;2

. Using 
arte-

sian 
oordinates, we 
an express[10℄ the internal and external line elements,

ds

2

+

= dx

1

2

+ dx

2

2

+ dx

3

2

� dx

4

2

+ dx

5

2

;

ds

2

�

= dx

1

2

+ dx

2

2

+ dx

3

2

� dx

4

2

� dx

6

2

:

From the transformations proposed by Tolman[11℄

x

5

� x

4

= R

+

exp[�t=R

+

℄(1� r

2

=R

2

+

)

1=2

for D

+

and

x

4

� ix

6

= R

�

exp[�it=R

�

℄(1 + r

2

=R

2

�

)

1=2

for D

�

, we 
an substitute these expressions in the expressions for the line

elements, obtaining

ds

2

�

=

dr

2

1� r

2

=R

�

2

+ r

2

d�

2

+ r

2

sin

2

�d'

2

� (1� r

2

=R

2

�

)dt

2
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where the metri
 tensor 
an be written as

g

�

ij

=

0

B

B

B

�

(1� r

2

=R

2

�

)

�1

0 0 0

0 r

2

0 0

0 0 r

2

sin

2

� 0

0 0 0 �(1� r

2

=R

2

�

)

1

C

C

C

A

:

For the generalized Lapla
e di�erential equation

r

2

 = r � r =

1

g

1=2

�

�y

k

"

g

1=2

g

ik

� 

�y

i

#

(20)

with this metri
 tensor, we obtain

1

r

2

�

�r

"

r

2

(1� �

�

r

2

)

� 

�r

#

+

1

r

2

sin

2

�

�

��

 

sin �

� 

��

!

+

1

r

2

sin

2

�

�

2

 

�'

2

�

1

1� �

�

r

2

�

2

 

�t

2

= 0; (21)

where �

�

� 1=R

2

�

.

Let  (r; t; �; ') = Y (�; ')�(r; t). Then we 
an separate eq.(21) as

1

�

�

�r

"

r

2

(1� �

�

r

2

)

��

�r

#

�

1

�

r

2

(1� �

�

r

2

)

�

2

�

�t

2

= `(`+ 1) (22)

for the non-angular equation and

1

Y

1

sin �

�

��

 

sin �

�Y

��

!

+

1

Y

1

sin

2

�

�

2

Y

�'

2

= �`(` + 1) (23)

for the angular one. If the separation 
onstant in the equations above has

integer values, the angular equation has the spheri
al harmoni
s as solu-

tions, given by Y (�; ') = P

l

m

(
os �)e

�im'

, where P

l

m

(
os �) is the asso
iated

Legendre polynomial[7,12℄.

If we put �(r; t) = S(r)T (t), we obtain from eq.(22)

1

T

�

2

T

�t

2

= �B:

If we are on the internal stru
ture of (D

�

), the temporal equation above has

an os
illatory solution

T

�

(t) = �

�

exp(�iHt=R

�

);
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asso
iated with the quantum number hyper
harge (H)[13℄. In 
ase we are

treating D

+

, time will have an exponential 
hara
ter des
ribed by the equa-

tion asso
iated with the energy eigenvalues (E)

T

+

(t) = �

+

exp(�Et=R

+

)

For the radial equation we 
an write

1� �

�

r

2

r

2

d

dr

"

r

2

(1� �

�

r

2

)

dS

dr

#

�

`(`+ 1)

r

2

(1� �

�

r

2

)S = BS: (24)

This equation 
an be transformed in a 
lassi
al �eld equation (for ex-

ample, the ele
tri
 or the gravitational �elds in D). From the de�nition

�

�

= 1=R

2

�

,it is obvious that in the limit where R ! 1, �

�

! 0. Using

some results of Quantum Me
hani
s in hyperspheri
al universes[15℄ in D

+

,

with B = Y

2

=R

2

�

, and in D

�

,with B = E

2

=R

2

+

, in the limit where R

�

!1

we obtain B ! 0. Therefore the radial �eld equation 
an be written as

1

r

2

d

dr

 

r

2

dR

dr

!

= 0 (25)

in the ground state, where ` = 0.

With the 
hange of variables

1

R

dR

d�

= � )

dR

d�

= �R;

we 
an transform eq.(24) in a Ri

ati equation:

�

0

= ��

2

� �

 

2

r

�

2�

�

r

1� �

�

r

2

!

+

`(`+ 1)

r

2

(1� �

�

r

2

)

+

B

1� �

�

r

2

: (26)

4 Con
lusions

The radial di�erential �eld equations have di�erent signs, but both are led

to the same Ri

ati equation. In the �rst 
ase, with the parametrization,

the 
lassi
al 
ase of a spheri
ally symmetri
 s
alar �eld 
annot be obtained

by making the radius of D approa
h in�nity. This was expe
ted be
ause in


artesian 
oordinates the radius of D is independent of the 
oordinates, while

in 
urvilinear ones the parametrization 
onstrains the radius of D: it is the

9



radial parametri
 
oordinate. Thus the information about the radius is lost,

be
ause the Lapla
e di�erential equation is homogeneous. In the last treat-

ment, with the parametrization independent of the radius of the Universe,

the 
lassi
al 
ase is obtained. Finally, by a suitable 
hange of variables, all

radial di�erential �eld equations 
an be led to a Ri

ati equation.

We have obtained the following equations:

d

2

�

d�

2

+ 2 
ot�

d�

d�

+

`(`+ 1)

sin

2

�

�� �

2

� = 0; (27)

�

0

= ��

2

+

1

1� j

2

"

3j�+ �

2

�

`(`+ 1)

1� j

2

#

; (28)

for the internal Prasad metri
, and

d

2

�

d�

2

+ 2 
oth�

d�

d�

�

"

`(`+ 1)

sinh

2

�

� �

2

#

� = 0; (29)

�

0

= ��

2

+

1

1�m

2

"

3m�+ �

2

�

`(`+ 1)

1�m

2

#

; (30)

for the external Prasad metri


We note that the two Ri

ati equations arise from di�erent radial di�er-

ential equations, but are the same equation, with di�erent names of variables.

We have already obtained (eq.(24))

1� �

�

r

2

r

2

d

dr

"

r

2

(1� �

�

r

2

)

dS

dr

#

�

"

`(`+ 1)

r

2

(1� �

�

r

2

) + B

#

S = 0; (31)

�

0

= ��

2

� �

 

2

r

�

2�

�

r

1� �

�

r

2

!

+

`(`+ 1)

r

2

(1� �

�

r

2

)

+

B

1� �

�

r

2

; (32)

for the Prasad metri
 with parametrization independent of the radius of D.

Appendix

The topology S

3

�R of the de Sitter universe

De�nition 1: A di�erentiable manifold of dimension n is a set M and a

family of bije
tive appli
ations x

a

: V

a

� R

n

! M of open sets V

a

of R

n

in

M su
h that:
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(1)

S

a

x

a

(V

a

) =M .

(2) For all pairs a, b, with x

a

(V

a

) \ x

b

(V

b

) = W 6= ;, the sets x

�1

a

(W ) e

x

�1

b

(W ) are open in R

n

and the appli
ations x

�1

b

Æ x

a

are di�erentiable.

The appli
ations x

a

for p 2 x

a

(U

a

) are 
alled parametrizations of M in p.

A family f(V

a

; x

a

)g satisfying (1) and (2) is 
alled a di�erentiable stru
ture

on M [14℄.

De�nition 2: LetM

1

andM

2

be di�erentiable manifolds. An appli
ation

' : M

1

! M

2

is di�erentiable in p 2 M

1

if, given a parametrization y : Z �

R

m

! M

2

in '(p), there exists a parametrization x : V � R

n

! M

1

in p

su
h that '(x(V )) � y(Z) and the appli
ation y

�1

Æ ' Æ x : V � R

n

! R

m

is di�erentiable in x

�1

(p).

De�nition 3: Let M

1

and M

2

be di�erentiable manifolds. An appli
a-

tion  : M

1

! M

2

is a di�eomorphism if it is di�erentiable, bije
tive, onto

and its inverse  

�1

is di�erentiable.

De�nition 4: Let f : R

k+1

!R be an appli
ation of 
lass C

1

in all its


omponents. A point p 2 R

k+1

is 
alled regular point of f if at least one of

the appli
ations �f=�x

i

, with i = 1; 2; : : : k + 1, is non-null. A real number

r is 
alled a regular value of f if f

�1

(r) 
onsists of regular points.

The de Sitter Universe is identi�ed as a manifold with a level hypersurfa
e

in R

5

. Given two ve
tors x; y 2 D, then the inner produ
t is de�ned by

x � y = x

1

y

1

+ x

2

y

2

+ x

3

y

3

+ x

4

y

4

� x

5

y

5

;

and 
onsequently there is a quadrati
 form asso
iated with it,

Q(x) = (x

1

)

2

+ (x

2

)

2

+ (x

3

)

2

+ (x

4

)

2

� (x

5

)

2

;

when
e we have

�Q

�x

i

= 2x

i

and

�Q

�x

5

= �2x

5

:

Therefore r = R (the non-null radius of the pseudosphere) is a regular value

of Q.

We enun
iate the following lemma:

Lemma 1: If r is a regular value of f : R

k+1

! R , then f

�1

(r) is an

empty set or a k-dimensional manifold[15℄.

By lemma 1, the set

Q

�1

(R

2

) = fx 2 R

5

: (x

1

)

2

+ (x

2

)

2

+ (x

3

)

2

+ (x

4

)

2

� (x

5

)

2

= R

2

g
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is a 4-dimensional manifold of R

5

. D = Q

�1

(R

2

) is a one leaf hyperboloid

in R

5

. Parallel se
tions to the hyperplan fx

1

; x

2

; x

3

; x

4

g are dis
s whi
h

represent hyperspheres S

3

. Thus, we have the theorem[16℄:

Theorem 1: The de Sitter spa
etime is di�eomorphi
 to S

3

�R.

Proof: Consider the set

S

3

�R = f(y

1

; y

2

; y

3

; y

4

; t) : y

2

1

+ y

2

2

+ y

2

3

+ y

2

4

= 1; �1 < t <1g

(In this de�nition we 
onsider the radius of D equal to unit, without loss of

generality, whi
h is rigorously true only in the 
ase t = 0.) We de�ne a map

F : S

3

�R ! R

5

:

F (y

1

; y

2

; y

3

; y

4

; t) = [(1 + t

2

)

1=2

℄

 

y

1

; y

2

; y

3

; y

4

;

t

(1 + t

2

)

1=2

!

;

when
e we obtain the derivatives

�F

�y

i

= (1 + t

2

)

1=2

(1; 1; 1; 1; 0) and

�F

�t

=

t

(1 + t

2

)

1=2

(y

1

; y

2

; y

3

; y

4

; 1):

Therefore, F is a smooth fun
tion. F is also one-to-one, sin
e if we


onsider F (y) = F (y

1

; y

2

; y

3

; y

4

; t

1

) and F (x) = F (x

1

; x

2

; x

3

; x

4

; t

2

), then for

F (y) = F (x), we must have t

1

= t

2

and then x = y.

We know that

Q(F ) = (1 + t

2

)(y

2

1

+ y

2

2

+ y

2

3

+ y

2

4

)� t

2

= (1 + t

2

) � 1� t

2

= 1

Thus F is a map on D.

Now, we 
onsider G : D ! S

3

�R de�ned by

G(x

1

; x

2

; x

3

; x

4

; x

5

) = (1 + x

2

5

)

�1=2

h

x

1

; x

2

; x

3

; x

4

; x

5

(1 + x

2

5

)

1=2

i

where G is smooth. Besides, G[F (y

1

; y

2

; y

3

; y

4

; t)℄ = (y

1

; y

2

; y

3

; y

4

; t). This

proves that G = F

�1

; then F is a di�eomorphism between D and S

3

�R.
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