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Abstrat

We present the Laplae partial di�erential equation assoiated to

the Prasad metri. We disuss the so alled internal and external

spaes that orrespond to the symmetry groups SO

3;2

and SO

4;1

, re-

spetively. Using hyperspherial oordinates we show that both radial

di�erential equations an be led to the Riati ordinary di�erential

equation.

For the Prasad metri with the radius of the universe independent

of the parametrization, we assoiate the solution of the temporal equa-

tion with quantum number hyperharge to the internal struture, and

for the external struture, we assoiate the energy eigenvalues.

Finally, when the radius of the universe goes to in�nity we reobtain

Minkowskian results.
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1 Introdution

Translations in a three-dimensional spae an be desribed as rotations asso-

iated with the group SO

3;1

. Lorentz postulated a partiular transformation,

the standard relativisti one[1℄.

Aridiaono [2,3,4℄ proposed a natural extension of these transformations,

where translations in a Minkowskian spaetime an be thought as rotations

in the symmetry group SO

4;1

, restrited to the de Sitter universe D. We an

divide D in internal and external hyperspaes, assoiating with eah one, the

symmetry groups SO

4;1

and SO

3;2

, respetively[5℄. After parametrizing these

hyperspaes, we solve the generalized Laplae equation, onluding that the

angular part has the spherial harmonis as solutions and the radial equation

an be led to the lassial �eld equation, when the radius of D approahes

in�nity. By a suitable hange of variables this radial equation an be led to

a Riati equation [6℄.

This paper is organized as follows: in setion two we present the Laplae

di�erential equation for the Prasad metri, by the parametrization of the

internal and external hyperspaes assoiated with D, solving the angular

di�erential equation in terms of spherial harmonis and reduing the ra-

dial di�erential �eld equation to a Riati equation. In setion three we

disuss the generalized Laplae di�erential equation assoiated with another

parametrization of D, proving the same behavior for the angular di�erential

equation as in the �rst ase and obtaining the lassial di�erential �eld equa-

tion when the radius of D approahes in�nity. In an appendix we disuss the

topology of D.

2 The Prasad metri

The de Sitter Universe (D) an be desribed as the sum }

1

+ }

2

where }

1

is

the external spae and }

2

is the internal one. To eah of these spaes there

orrespond the symmetry groups SO

4;1

and SO

3;2

respetively[7℄.

2.1 The external spae (}

1

)

This hyperspae has onstant urvature 1=R

2

and has a quadrati form as-

soiated with it, as follows:

R

2

= (x

1

)

2

+ (x

2

)

2

+ (x

3

)

2

� (x

4

)

2

+ (x

5

)

2

:
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A possible parametrization[6℄ for the above quadrati form is

x

1

= R sin� sin � os' osh t

x

2

= R sin� sin � sin' osh t

x

3

= R sin� os � osh t

x

4

= R sinh t

x

5

= R os� osh t

allowing us to write the line element as

ds

2

+

= R

2

osh

2

t[d�

2

+ sin

2

�(d�

2

+ sin

2

�d'

2

)℄� R

2

dt

2

(1)

The metri tensor is given by

g

ij

= R

2

0

B

B

B

�

osh

2

t 0 0 0

0 sin

2

� osh

2

t 0 0

0 0 sin

2

� sin

2

� osh

2

t 0

0 0 0 �1

1

C

C

C

A

After substituting these terms in the generalized laplaian[7℄

r

2

 = r � r =

1

g

1=2

�

�y

k

"

g

1=2

g

ik

� 

�y

i

#

(2)

we obtain the Laplae di�erential equation

(R

2

osh

2

t sin

2

�)r

2

� =

sin

2

�

osh t

�

t

(osh

3

t�

t

�)� �

t

(sin

2

��

�

�)+

+

1

sin �

�

�

(sin ��

�

�) +

1

sin

2

�

�

''

� = 0: (3)

After writing the salar �eld � as

�(�; t; �; ') = �(�; t)Y (�; ')

we an separate the Laplae di�erential equation in two equations:

1

Y

1

sin �

�

�

(sin ��

�

Y ) +

1

Y

1

sin

2

�

�

''

Y = �`(`+ 1) (4)

and

1

osh t

�

t

(osh

3

t�

t

�)�

1

sin

2

�

�

�

(sin

2

��

�

�)�

`(`+ 1)

sin

2

�

� = 0; (5)
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with ` = 0; 1; 2; 3 : : :

Relatively to eq.(5), we onsider the funtional produt

�(�; t) = �(�)
(t)

and suppose that the separation onstant

1

is �

2

. Then, eq.(5) an be sepa-

rated in two equations:

1

sin

2

�

d

d�

 

sin

2

�

d�

d�

!

+

`(`+ 1)

sin

2

�

�� �

2

� = 0 (6)

and

1

osh t

d

dt

 

osh

3

t

d


dt

!

� �

2


 = 0: (7)

We emphasize eq.(5), namely, the radial one.

2

We an rewrite eq.(6) as

1

sin

2

�

"

2 sin� os�

d�

d�

+ sin

2

�

d

2

�

d�

2

+ `(`+ 1)�� �

2

� sin

2

�

#

= 0

or

d

2

�

d�

2

+ 2 ot�

d�

d�

+

`(`+ 1)

sin

2

�

�� �

2

� = 0: (8)

Introduing the variable j � os�, we obtain[8℄

d

d�

=

d

dj

dj

d�

= �

d

dj

sin�) 2 ot�

d�

d�

= �2 os�

d�

dj

and

d

2

d�

2

=

d

d�

 

�

d

dj

sin�

!

= �

d

dj

dj

d�

d

dj

sin��

d

dj

os� =

d

2

dj

2

(sin

2

�)�

d

dj

os�:

Thus, eq.(8) an be written, with this substitution, as

d

2

�

dj

2

(1� j

2

)� 3j

d�

dj

� �

2

�+

`(`+ 1)

1� j

2

� = 0 (9)

1

� = 0; 1; 2; 3; : : : orresponds to the eingenvalue spetrum of Gegenbauer equation.

2

The variable � is de�ned by sin� =

(x

1

)

2

+ (x

2

)

2

+ (x

3

)

2

R

2

. Although sin� is not the

radius of D, it is the so-alled adimensional normalized radius.
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Besides, introduing a new variable � as follows

1

�

d�(j)

dj

� �(j);

we an rewrite eq.(9) as

�

0

= ��

2

+

1

1� j

2

"

3j�+ �

2

�

`(`+ 1)

1� j

2

#

(10)

whih is a Riati equation.

2.2 The internal spae (}

2

)

This hyperspae has a negative onstant urvature �1=r

2

(see appendix)

and an be haraterized by the symmetry group SO

3;2

. To this group is

assoiated a quadrati form

x

2

1

+ x

2

2

+ x

2

3

� x

2

4

� x

2

6

= r

2

:

Prasad[6℄ proposed the following parametrization with nonstati oordi-

nates:

x

1

= r sinh� sin � os' os t

x

2

= r sinh� sin � sin' os t

x

3

= r sinh� os � os t

x

4

= r sin t

x

6

= r osh� os t

Then, we an write the line element as follows:

ds

2

�

= r

2

os

2

t[d�

2

+ sinh

2

�(d�

2

+ sin

2

�d'

2

)℄� r

2

dt

2

: (11)

The metri tensor assoiated with }

2

is given by

g

ij

= r

2

0

B

B

B

�

os

2

t 0 0 0

0 os

2

tsh

2

� 0 0

0 0 os

2

tsh

2

� sin

2

� 0

0 0 0 �1

1

C

C

C

A

The generalized Laplae di�erential equation an be written as

r

2

os

2

t sinh

2

�r

2

� = �

sin

2

�

os t

�

t

(os

3

t�

t

�) + �

�

(sinh

2

��

�

�)+
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1

sin �

�

�

(sin ��

�

�) +

1

sin

2

�

�

''

= 0 (12)

De�ning the funional produt

�(�; t; �; ') = �(�; t)Y (�; ') � �Y;

we an separate eq.(12) in radial (temporal) and angular equations:

�

1

�

sinh

2

�

os t

�

t

(os

3

t�

t

�) +

1

�

�

�

(sinh

2

��

�

�) = `(`+ 1) (13)

and

1

Y

1

sin �

�

�

(sin ��

�

�) +

1

Y

1

sin

2

�

�

''

� = �`(` + 1): (14)

It is also worthwhile to mention here that eq.(14) is exatly the angular

equation obtained in the preedent ase (the internal spae }

1

). One again

we separate eq.(13) in radial and temporal equations (we will emphasize the

radial equation only).

Taking �(�; t) = �(�)	(t) we get

1

	

sin

2

�

os t

�

t

(os

3

t�

t

	) +

1

�

�

�

(sinh

2

��

�

�) = `(`+ 1)

The above equation an be separated, and using �

2

as the separation onstant

we obtain

3

the following ordinary di�erential equations:

1

	

1

os t

d

dt

 

os

3

t

d	

dt

!

= �

2

(15)

and

1

�

1

sinh

2

�

d

d�

 

sinh

2

�

d�

d�

!

�

`(`+ 1)

sinh

2

�

= ��

2

: (16)

We an write eq.(16) as

d

2

�

d�

2

+ 2 oth�

d�

d�

�

"

`(`+ 1)

sinh

2

�

� �

2

#

� = 0: (17)

Let m = osh�. With this substitution, eq.(17) an be written as[9℄

(m

2

� 1)

d

2

�

dm

2

+ 3m

d�

dm

�

"

`(`+ 1)

m

2

� 1

� �

2

#

� = 0: (18)

3

� = 0; 1; 2; 3; : : : orresponds to the eigenvalue spetrum of Gegenbauer equation.
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De�ning

�(m) =

1

�

d�(m)

dm

we an write eq.(18) as

�

0

= ��

2

+

1

1�m

2

"

3m�+ �

2

�

`(`+ 1)

1�m

2

#

; (19)

whih is also a Riati equation.

3 The Prasad metri with radius of the Uni-

verse independent of the parametrization

In the former ase, with the hyperboli parametrization of D, the lassial

radial �eld equations were not obtained in the limit r ! 1. With a new

temporal parametrization we are able to obtain the lassial ase in this limit.

The group that haraterizes the external spae D

+

is SO

4;1

, while the

internal spae D

�

is only a�eted by the symmetry group SO

3;2

. Using arte-

sian oordinates, we an express[10℄ the internal and external line elements,

ds

2

+

= dx

1

2

+ dx

2

2

+ dx

3

2

� dx

4

2

+ dx

5

2

;

ds

2

�

= dx

1

2

+ dx

2

2

+ dx

3

2

� dx

4

2

� dx

6

2

:

From the transformations proposed by Tolman[11℄

x

5

� x

4

= R

+

exp[�t=R

+

℄(1� r

2

=R

2

+

)

1=2

for D

+

and

x

4

� ix

6

= R

�

exp[�it=R

�

℄(1 + r

2

=R

2

�

)

1=2

for D

�

, we an substitute these expressions in the expressions for the line

elements, obtaining

ds

2

�

=

dr

2

1� r

2

=R

�

2

+ r

2

d�

2

+ r

2

sin

2

�d'

2

� (1� r

2

=R

2

�

)dt

2
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where the metri tensor an be written as

g

�

ij

=

0

B

B

B

�

(1� r

2

=R

2

�

)

�1

0 0 0

0 r

2

0 0

0 0 r

2

sin

2

� 0

0 0 0 �(1� r

2

=R

2

�

)

1

C

C

C

A

:

For the generalized Laplae di�erential equation

r

2

 = r � r =

1

g

1=2

�

�y

k

"

g

1=2

g

ik

� 

�y

i

#

(20)

with this metri tensor, we obtain

1

r

2

�

�r

"

r

2

(1� �

�

r

2

)

� 

�r

#

+

1

r

2

sin

2

�

�

��

 

sin �

� 

��

!

+

1

r

2

sin

2

�

�

2

 

�'

2

�

1

1� �

�

r

2

�

2

 

�t

2

= 0; (21)

where �

�

� 1=R

2

�

.

Let  (r; t; �; ') = Y (�; ')�(r; t). Then we an separate eq.(21) as

1

�

�

�r

"

r

2

(1� �

�

r

2

)

��

�r

#

�

1

�

r

2

(1� �

�

r

2

)

�

2

�

�t

2

= `(`+ 1) (22)

for the non-angular equation and

1

Y

1

sin �

�

��

 

sin �

�Y

��

!

+

1

Y

1

sin

2

�

�

2

Y

�'

2

= �`(` + 1) (23)

for the angular one. If the separation onstant in the equations above has

integer values, the angular equation has the spherial harmonis as solu-

tions, given by Y (�; ') = P

l

m

(os �)e

�im'

, where P

l

m

(os �) is the assoiated

Legendre polynomial[7,12℄.

If we put �(r; t) = S(r)T (t), we obtain from eq.(22)

1

T

�

2

T

�t

2

= �B:

If we are on the internal struture of (D

�

), the temporal equation above has

an osillatory solution

T

�

(t) = �

�

exp(�iHt=R

�

);
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assoiated with the quantum number hyperharge (H)[13℄. In ase we are

treating D

+

, time will have an exponential harater desribed by the equa-

tion assoiated with the energy eigenvalues (E)

T

+

(t) = �

+

exp(�Et=R

+

)

For the radial equation we an write

1� �

�

r

2

r

2

d

dr

"

r

2

(1� �

�

r

2

)

dS

dr

#

�

`(`+ 1)

r

2

(1� �

�

r

2

)S = BS: (24)

This equation an be transformed in a lassial �eld equation (for ex-

ample, the eletri or the gravitational �elds in D). From the de�nition

�

�

= 1=R

2

�

,it is obvious that in the limit where R ! 1, �

�

! 0. Using

some results of Quantum Mehanis in hyperspherial universes[15℄ in D

+

,

with B = Y

2

=R

2

�

, and in D

�

,with B = E

2

=R

2

+

, in the limit where R

�

!1

we obtain B ! 0. Therefore the radial �eld equation an be written as

1

r

2

d

dr

 

r

2

dR

dr

!

= 0 (25)

in the ground state, where ` = 0.

With the hange of variables

1

R

dR

d�

= � )

dR

d�

= �R;

we an transform eq.(24) in a Riati equation:

�

0

= ��

2

� �

 

2

r

�

2�

�

r

1� �

�

r

2

!

+

`(`+ 1)

r

2

(1� �

�

r

2

)

+

B

1� �

�

r

2

: (26)

4 Conlusions

The radial di�erential �eld equations have di�erent signs, but both are led

to the same Riati equation. In the �rst ase, with the parametrization,

the lassial ase of a spherially symmetri salar �eld annot be obtained

by making the radius of D approah in�nity. This was expeted beause in

artesian oordinates the radius of D is independent of the oordinates, while

in urvilinear ones the parametrization onstrains the radius of D: it is the
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radial parametri oordinate. Thus the information about the radius is lost,

beause the Laplae di�erential equation is homogeneous. In the last treat-

ment, with the parametrization independent of the radius of the Universe,

the lassial ase is obtained. Finally, by a suitable hange of variables, all

radial di�erential �eld equations an be led to a Riati equation.

We have obtained the following equations:

d

2

�

d�

2

+ 2 ot�

d�

d�

+

`(`+ 1)

sin

2

�

�� �

2

� = 0; (27)

�

0

= ��

2

+

1

1� j

2

"

3j�+ �

2

�

`(`+ 1)

1� j

2

#

; (28)

for the internal Prasad metri, and

d

2

�

d�

2

+ 2 oth�

d�

d�

�

"

`(`+ 1)

sinh

2

�

� �

2

#

� = 0; (29)

�

0

= ��

2

+

1

1�m

2

"

3m�+ �

2

�

`(`+ 1)

1�m

2

#

; (30)

for the external Prasad metri

We note that the two Riati equations arise from di�erent radial di�er-

ential equations, but are the same equation, with di�erent names of variables.

We have already obtained (eq.(24))

1� �

�

r

2

r

2

d

dr

"

r

2

(1� �

�

r

2

)

dS

dr

#

�

"

`(`+ 1)

r

2

(1� �

�

r

2

) + B

#

S = 0; (31)

�

0

= ��

2

� �

 

2

r

�

2�

�

r

1� �

�

r

2

!

+

`(`+ 1)

r

2

(1� �

�

r

2

)

+

B

1� �

�

r

2

; (32)

for the Prasad metri with parametrization independent of the radius of D.

Appendix

The topology S

3

�R of the de Sitter universe

De�nition 1: A di�erentiable manifold of dimension n is a set M and a

family of bijetive appliations x

a

: V

a

� R

n

! M of open sets V

a

of R

n

in

M suh that:
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(1)

S

a

x

a

(V

a

) =M .

(2) For all pairs a, b, with x

a

(V

a

) \ x

b

(V

b

) = W 6= ;, the sets x

�1

a

(W ) e

x

�1

b

(W ) are open in R

n

and the appliations x

�1

b

Æ x

a

are di�erentiable.

The appliations x

a

for p 2 x

a

(U

a

) are alled parametrizations of M in p.

A family f(V

a

; x

a

)g satisfying (1) and (2) is alled a di�erentiable struture

on M [14℄.

De�nition 2: LetM

1

andM

2

be di�erentiable manifolds. An appliation

' : M

1

! M

2

is di�erentiable in p 2 M

1

if, given a parametrization y : Z �

R

m

! M

2

in '(p), there exists a parametrization x : V � R

n

! M

1

in p

suh that '(x(V )) � y(Z) and the appliation y

�1

Æ ' Æ x : V � R

n

! R

m

is di�erentiable in x

�1

(p).

De�nition 3: Let M

1

and M

2

be di�erentiable manifolds. An applia-

tion  : M

1

! M

2

is a di�eomorphism if it is di�erentiable, bijetive, onto

and its inverse  

�1

is di�erentiable.

De�nition 4: Let f : R

k+1

!R be an appliation of lass C

1

in all its

omponents. A point p 2 R

k+1

is alled regular point of f if at least one of

the appliations �f=�x

i

, with i = 1; 2; : : : k + 1, is non-null. A real number

r is alled a regular value of f if f

�1

(r) onsists of regular points.

The de Sitter Universe is identi�ed as a manifold with a level hypersurfae

in R

5

. Given two vetors x; y 2 D, then the inner produt is de�ned by

x � y = x

1

y

1

+ x

2

y

2

+ x

3

y

3

+ x

4

y

4

� x

5

y

5

;

and onsequently there is a quadrati form assoiated with it,

Q(x) = (x

1

)

2

+ (x

2

)

2

+ (x

3

)

2

+ (x

4

)

2

� (x

5

)

2

;

whene we have

�Q

�x

i

= 2x

i

and

�Q

�x

5

= �2x

5

:

Therefore r = R (the non-null radius of the pseudosphere) is a regular value

of Q.

We enuniate the following lemma:

Lemma 1: If r is a regular value of f : R

k+1

! R , then f

�1

(r) is an

empty set or a k-dimensional manifold[15℄.

By lemma 1, the set

Q

�1

(R

2

) = fx 2 R

5

: (x

1

)

2

+ (x

2

)

2

+ (x

3

)

2

+ (x

4

)

2

� (x

5

)

2

= R

2

g
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is a 4-dimensional manifold of R

5

. D = Q

�1

(R

2

) is a one leaf hyperboloid

in R

5

. Parallel setions to the hyperplan fx

1

; x

2

; x

3

; x

4

g are diss whih

represent hyperspheres S

3

. Thus, we have the theorem[16℄:

Theorem 1: The de Sitter spaetime is di�eomorphi to S

3

�R.

Proof: Consider the set

S

3

�R = f(y

1

; y

2

; y

3

; y

4

; t) : y

2

1

+ y

2

2

+ y

2

3

+ y

2

4

= 1; �1 < t <1g

(In this de�nition we onsider the radius of D equal to unit, without loss of

generality, whih is rigorously true only in the ase t = 0.) We de�ne a map

F : S

3

�R ! R

5

:

F (y

1

; y

2

; y

3

; y

4

; t) = [(1 + t

2

)

1=2

℄

 

y

1

; y

2

; y

3

; y

4

;

t

(1 + t

2

)

1=2

!

;

whene we obtain the derivatives

�F

�y

i

= (1 + t

2

)

1=2

(1; 1; 1; 1; 0) and

�F

�t

=

t

(1 + t

2

)

1=2

(y

1

; y

2

; y

3

; y

4

; 1):

Therefore, F is a smooth funtion. F is also one-to-one, sine if we

onsider F (y) = F (y

1

; y

2

; y

3

; y

4

; t

1

) and F (x) = F (x

1

; x

2

; x

3

; x

4

; t

2

), then for

F (y) = F (x), we must have t

1

= t

2

and then x = y.

We know that

Q(F ) = (1 + t

2

)(y

2

1

+ y

2

2

+ y

2

3

+ y

2

4

)� t

2

= (1 + t

2

) � 1� t

2

= 1

Thus F is a map on D.

Now, we onsider G : D ! S

3

�R de�ned by

G(x

1

; x

2

; x

3

; x

4

; x

5

) = (1 + x

2

5

)

�1=2

h

x

1

; x

2

; x

3

; x

4

; x

5

(1 + x

2

5

)

1=2

i

where G is smooth. Besides, G[F (y

1

; y

2

; y

3

; y

4

; t)℄ = (y

1

; y

2

; y

3

; y

4

; t). This

proves that G = F

�1

; then F is a di�eomorphism between D and S

3

�R.
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