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Abstract

In this paper we prove existence and uniqueness of global regular
solutions of a mixed problem for the perturbed of extensional vibra-
tions of a thin rod equation or torsional vibrations of thin rod.

1 Introduction

Let us consider a Lipschitzian perturbation of vibrations of a thin rod oper-
ator (see. Love [1])

82u 2

Ku=— —-Au—M (/ |Vu(z,t)] dx) Auy

ot? Q ’
given by Ku+ F(u), where F is a Lipschitzian function which satisfies some
appropriate conditions fixed in Section 2 and M € C*([0,+00)). We obtain
the nonlinear mixed problem:

882712‘ —Au—M (fQ |Vu(:r,t)|2dx) Auy + F(u) = f in Q,
u=0on 2, (1)
u(z,0) = up(x), uz,0) =uy(z) in Q.

In (1) 2 is a bounded open set of R" with smooth boundary I', @) is the
cylinder © x (0,7), T is a positive real number. The lateral boundary of @

*1991 Mathematics Subject Classifications: 35L70,35Q72
Key words and phrases:global regular solution, extensional or torsional vibrations of thin
rod, quasilinear hyperbolic equation.



is represented by ¥, i.e. ¥ =T x (0,7). By M(A) we denote a real function
defined on the positive real numbers with M(\) > p > 0 for all A > 0, for
some p > 0; Vu is the gradient of v and A is the Laplace operator.

Solving equation (1) is important by the following reasons: equation (1)
with M (\) =1 and F(u) = 0 arises in the study of the extensional vibrations
of thin rods; many authors studied this equation when M(\) = 1; among
them we mention Pereira [12] and Ferreira and Pereira [13]. Besides, equation
(1) with F(u) = 0, M(\) = X, Ao = [, ¢*dz, where ¢ is the torsion-function,
also appears in the study of the torsional vibrations of thin rods (see. Love
[1]). Finally, the function M () in (1) has its motivation in the mathematical
description of the vibrations of an elastic stretched string

2
% - M (/Q |Vu(x,t)|2dx> Au =0, (2)

which for M (A\) > p > 0, was studied by Pohozaev [16], Nishihara [15] and
Lions [11]. When M (\) > 0 was treated by Arosio and Spagnolo [8], Ebihara,
Medeiros and Miranda [4], Yamada [6], Matos [14].When M () is a constant
C?, (2) becomes a perturbation of the d’Alembert operator

(see Lions [11]). In [2], Strauss studied a nonlinear perturbation of this op-
erator of the type:
Ou+ F(u) = fin Q
u=0onX (3)
u(0) = up, u'(0) =uy in Q

where F': R — R is continuous and sF'(s) > 0 for all s € R.

For others perturbations of Kirchhoff-Carrier operator, see Jorgens [9],
Hosoya and Yamada [5], D’Ancona and Spagnolo [7].

In Ebihara and Pereira [3] it was proved that there exists only one classical
solution for a quasilinear model, given by following initial-boundary value
problem:

24— Au— M (o |Vu(e,0) dr) Auy = [ in Q
u=0on X (4)
u(0) = up, w'(0) =uy in Q

when the following hypotheses hold:



(H.O) M(\) € C' ([0, 4+00)) , and there exist positive constants «, p such
that
M) > oV A+ p, forall A € [0,+00).

(H.1) There exists a nonnegative function 3(\) satisfying:
d
aM(A)‘ VA < BAM(N), for all A € [0, 400).

(H.2) The initial conditions are such that:
Up, U7 € D(Al), [ 2 2

and

f,% € C(0,T; D(AT)), 1 >2
where A = —A and by D(A®) we are denoting the domain of the operator
A*.

Motivated by Hosoya and Yamada [5], Strauss [2] and Ebihara and Pereira
[3], we shall investigate in this paper the following perturbation of the vibra-
tions model,

Ku+F(u)=fin Q
u=0on% (5)
u(0) = up, uy(0) =wuy in Q
with F' Lipschitzian.

Our main objective is to give a complete, clear and short proof for the ex-
istence and uniqueness of global regular solutions to the problem in question.
For that, we use the Faedo-Galerkin’s method associated with a compactness
argument and some technical ideas. In our proof of the existence and unique-
ness of global regular solutions to (5) we assume (H.0) and substitute (H.2)
by f € C([0,T); H()) and ug,u, € D(AY?) and (H.1) becomes unneces-
sary.

2 Notations and Main Result

For the Hilbert space L*() we denote its inner product and norm, respec-
tively, by (', ) and |.|, defined by:

(u,v) :/uvdx; |u|2:/ ul® dz.
Q Q
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By H™(2) we represent the Sobolev space on the bounded open set (2
of R". HJ*(Q) is the closure of C§°(Q2) in H™(Q). In particular, H'(Q) has
inner product (( ,)) and norm ||.|| given by

((u,v)) :/qudx—l-/QVu.Vvdx

and

lol? = [ v+ [ Vol da.
Q Q

In H;(2) we consider the equivalent norm

loll* = [ 1Vof* de
Q
and the inner product

((u,v)) :/QVU.Vvdx

for all u,v € Hj(2). We also observe that if T is of class C™!, then the
norms of ||v|| ;2 and |Av| are equivalent for v € Hy(Q) N HE ().

Suppose that the functions M(\) and F'(u) satisfy:

(A.1) M € C'([0,+00)) and there exist positive constants a, p such that
the following inequality is valid:

M) > oV A+ p, forall A € [0,+00).
(A.2) F: R — R is a Lipschitzian function such that
sF(s) >0 for all s € R.

We have the following result:

THEOREM 1. Suppose uy, u; € Hy(Q) N H*(Q), f € C([0,T]; Hj(2))
and assumptions (A.1)-(A.2) hold. Then there exists a unique function
u: [0, T] = L?*(QQ), satistying:

u € CH[0,T]; D(A%)) forall 0 < a < 1 (6)
u' € L=(0,T; Hy(Q) N H*(Q)) (7)

u" € L0, T; Hy () N H*(2)) (8)
Ku+ F(u) = f in L*(0,T; L*(Q)) 9)
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u(0) = ug (10)

u'(0) = uy (11)

u=0on X. (12)

As it is well known, the Laplace operator with homogeneous boundary

conditions has a set of eigenvectors such that the subspace spanned by them

is dense in L?(Q2), in HJ(2) and in H(Q2) N HZ(2). We may consider these

eigenvectors to be orthonormal in L?(Q) and orthogonal in Hy () or Hy ()N

HE (). Moreover, by the regularity of the boundary I', we have w;(x) €
H?(Q).

Let us denote by V,,, = [wy, ..., w;,] the subspace of H}(2) generated by

the fists m eigenvectors w; (m > 1).
Let

u(t) = i Gim(t)w;(2) € Vi

be a solution of the system:

(Kupm(t),v) + (F(un(t),v) = (f(t),v), Vv & Vy, (13)
U, (0) = Uy — ug strongly in Hy (Q) N H*() as m — oo, (14)
ul (0) = Uy, — uy strongly in Hy(Q) N H*(2) asm — oo, (15)
where . .
Uy = Zl(ug,wj)wj, Uy = Zl(ul,wj)wj.
j= =

Setting v = w; for j = 1, ..., m we obtain a system of ordinary differential
equations to which the classical Peano’s theorem is applicable. Therefore
this system has a local solution u,,(t) on [0,7,,), 0 < T,,, < T. The extension
to [0,77] is a consequence of the estimate (i) given in the next Section.

To prove our results, we will use the following result due a Simon [17]

Lemma 2.1 Let X C F C Y Banach spaces, the imbedding X — E being

compact. Then the following imbedding are compact:
(i) LYO, T; X)n{p: %2 € L'(0,T;Y)} — LU0, T; E) if 1 < q < o,
(ii) L=(0,T; X)N{p: %2 € L"(0,T;Y)} — C([0,t}; E) if 1 <1 < oo.

and (see Temam [18])

Lemma 2.2 Let X C E C X* Banach spaces. If u € L*(0,T;X) and
u; € L*(0,T; X*) then u € C([0,T]; E) a.e.



3 A Priori Estimates
Estimate (i). Setting v = ! (¢) in (13), we obtain

[ (O + @y (t), wiy (£)) + M (alun(t)))alu, (¢), up, (1)) (16)
H(E (um (1)), (1)) = (f(2), i (1))-

where

a(u,v) :/ Vu.Vodr and a(u) :/ \Vul|? da.
Q Q

Let us define p(t) = M(a(un(t))) > p > 0. Dividing both sides of (16) by
(), applying Cauchy-Schwartz’s inequality and using the hypothesis (A.1),
we get

[ (O Vi (O] 1S O [ (1)

1 " 2 n 2
|F (un (1)) ] | (1)
a [|um ()

Since F' is Lipschitzian and satisfies sF'(s) > 0 for all s € R (thus,
F(0) =0) we obtain

Plum)] < € ([ fum®[ dr)” = C lun(®)]. (18)
Using the Poincaré’s inequality in (18), we have
F(un(t)] < CVun ()], € >0. (19)

Applying (19) in (17), yields

1 n 2 " 2 1 1 " 2 02 2
— i t < — 4+ - t — i 2
L OF TV 0F < S IV @F + 25 VS0P (20
]_ 2 02 ]. 2
+Z|Vu,rln(t)| +¥+Z|vu’rln(t)|

where C' is a positive constant such that |f(t)| < C'|Vf(t)| and |ul, ()| <
C|Vull (t)].



Then, from te above estimate and f € C([0,T]; H}(Q)), we get

v ()2 <4 Sl Vi)? ) <C 21
VL OF <45+ G+ ma VAOP) <G ge)
where C] > 0 is independent of ¢ and m.
Thus,
(u!’)) is bounded in L>®(0, T},; Hy (). (22)
By the Fundamental Theorem of Calculus, we have
(ul,) is bounded in L>(0,T,,; H; (2)) (23)
and
() is bounded in L*®(0, T;,, Hy (). (24)

The above estimates permit us to extend wu,,(t) to all interval [0, 7] .
Estimate (ii). Since we are working with spectral basis, we have —Au! () €
V. Then we can take v = —2Au! (¢) in (13) to obtain

(I 0 + 1D (O] + Ml (1)) 5 [0, (1)
+2(VE (um (1)), Vg, (¢ )) =2(V(t), Vu,(1)).
Setting p(t) = M(a(u,(t))) > p > 0, dividing both sides of the last

equality by pu(t), we obtain

%% (1Y, (6 + | Aum ()] + |Au Gl (25)

) , i

= iy (VEn(®), Vi, () + N(t)(Vf() ul, (t).
Defining
1 ! 2 2 ’ 2
hm<t>=@[|wm<t>| + A ()] + | A, (2)] (26)
we have

H,(t) = ﬁ%[wwunhmm(tnﬂ+%|Au;n<t>|2 (27)

_/l’l(t) I 2 2

oL [V, (1) + | A (1) ]



Using (25) in (27), we obtain
/ 2 , 2
i (t) < o) VE(um ()] [V, (8)] + o)

PG :
Lo (90O + 12w 0]

We observe that

VO]V, ()]

+

IVE (i ()] = [F" (um () Vi (8)] < C'[Vum(t)]

because F' is Lipschitzian.

Consequently,
! £ u o' i u'
h(t) < 0 V(1) [V m(t)|+u(t) VIO Vu, (0] (28)
O 1o, 2 2
o [V, (O + | Aum(8)]?] -

We also observe that

p(t) = M (a(um(t)))2a(um(t), u, (t))

and

| M ((a(um(t)))]

|a(tm(t), u (1))]

Then

Coif 0<t<T, 0<a(un(t)) <C
|V ()] [V, (2)]

W' ()] < Cs,

where C} is a positive constant.
From (28), we get
2C

/ - u ul l ul
W) < ) [V (1) [V m(t)|+u(t) VIOV, (©)] (29)

03 li 2 2
g [V 0F + [Bun ()]




Using the estimate (i), we get

I CZ 1 U,’ 2 1 2 1 u/ 2
B < s VO + s V0P + s (Va0 (30
03 1 / 2 2
oy [V O + 120 0]

By the definition of h,,(t),

1 2 2
—— | Vul, (O + |Aup ()7 < hn(t) ,
N(t)ﬂ (1) + [Aum (1) ] (t)
and
1 1
T [Aup ()] < ()2
p(t)?
From (23), we have
1 2
—— |Vu,,(t)]" < C
/l,(t) | ( )| 1
where (] is positive constant.
Hence
C? 1 C
I 4 2 3
Thus,
d
%hm(t) <Cs5(1+hp(t), 0<t<T, (31)
where

2 1
Cs = max{%+— max |Vf(t)|2,2,%} > 0.

)
o
N
~

I
!
=
=

From (31), we can easily see that, there exists a positive constant Cg such
that for all ¢ € [0, T
hm(t) < Cg in [0,T].

This implies that

5 [V OF + 180, (0] + 180, (0 <



Therefore,

IV, (OF + A () *] + plAu, (@) < Cr, 0<t<T (32)
where C7 > 0 is a constant independent of ¢ and m.
Whence,
() is bounded in L*®(0,T; H*(R2)), (33)
(ul) is bounded in L*®(0,T; H*(Q2)). (34)

Estimate (iii). Setting v = —Au! (¢) in (13), we obtain

Vi, ()] + (D (1), Ay, () + M (alum (1)) | Auy, (0]
+H(E (um (1)), =Auy, (1) = (f (1), —Auy, (1))

Let pu(t) = M(a(un,(t))) > p > 0. Dividing both sides of the last equality
by w(t), applying Cauchy-Schwartz’s inequality and using hypothesis (A.1),
we get
VO + M OF < 1Al 0]+ 0] 1A, 0] - (3)
plt) " " o " p "
|F (um(t))] | Ay, (t)]
a [[um ()]

Using (19), |f(t)| < C' |V f(t)| and recalling that |Au!, (¢)| is bounded by
the second estimate in (35), we obtain that

iWu” (O] + | Aup, ()" < C—$+1|Au” (t)|2+c—2|Vf(t)l2 (36)
pla) " " A P

1 p 2 c? 1 " 2
+Z|Aum(t)| +§+Z|Aum(t)| )

In particular we have

2 2 2
L0 |Vf(t)|2> <G

2 a? | p? o<t<T

|Amuwfs4(

where Cy > 0 is a constant independent of ¢ and m.
Hence,
(u!') is bounded in L*®(0,T; H*(Q2)). (37)
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4 Proof of Theorem

By estimates (22), (23), (24), (33), (34) and (37) there exists a subsequence
of (t)men which we still denote by (u,)men, and a function w such that:

Uy, — u weak — star in L>(0,T; Hy () N H*()), (38)
ul, — u' weak — star in L>°(0,T; Hy () N H*(2)), (39)
ul' — u" weak — star in L*(0,T; Hy(2) N H*(2)). (40)

From (38), (39) and (40), via Lemma 1, there exists a subsequence (still
represented by (u,,;)men) such that:

um — u strongly in C'(0,7; D(AY)). (41)
and

u,, — u' strongly in C(0,T; D(A%)). (42)

for all a € [3,1)
As a consequence,

M (a(um(t))) — M(a(u(t))) strongly in C'(0,7; D(A%)). (43)
Now, by (40), we have

Aull — Au" weaklyinL?(0,T; L*(Q)) 1 < p < oo, (44)

Au! — Au" weakly — startinL>°(0,T; L*(£2)) . (45)
Thus, by (43) and (44) we get

M (a(um, (1)) Aull (t) — M(a(u(t)))Au" (t) weakly in LP(0,T; L*(Q)), 1 < p < oo.
Since that F' is Lipschitzian, the convergence in (41) implies that

F(um(t)) — F(u(t)) strongly in LP(0,T; L*()). (47)

The established convergences make it easy to pass to the limit in the
approximate problem (13 ) and obtain the existence of a strong solution to
problem (1).
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To prove the continuity established in the Theorem 1, we observe that
(from Lemma 2)

um € C(0,T; D(AY)). (48)
and

ul € C(0,T; D(A%)). (49)
Consequently,

Uy € CH0,T; D(A%)). (50)

In order to check up that u(0) = wy, it is sufficient to use (48). Analo-
gously, by using (49), it can be shown that u'(0) = u,.

remark 4.1 If M’ satisfies (H.1) then it is possible to show that u" €
L?(0,T; H1(2)). Consequently, by interpolation, we have that u" € C([0,T]; L*(£2))
and, thus the equation Ku + F(u) = f is satisfied a.e. in t.

5 Uniqueness

We prove the uniqueness in Theorem 1 as follows.
Let u,v be solutions of (5) in the class of Theorem 1. It follows that
w = u — v is a solution of:
w" — Aw — M(a(u(t)))Aw" — [M(a(v(t))) — M(a(u(t)))] Av" (51)
+F(u(t)) — F(o(t)) =0,
w(0) =0, (52)
w'(0) = 0. (53)

We shall prove that w = 0 in [0,7]. In fact, taking the inner product in
L3(2) of (50) by 2w’ € L*(0,T; H}(Q)), we get

% o/ (OF + [Vw@) + M(a(u(t)a(w' ()] = — (M(a(u(t)))a(w' (1)) (54)
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ie.,

IA
|
—
S
@
—~
i~
<+
SN—
SN—
SN—
SN—

Observe also that
[M(a(v(t))) — M(a(u(?)))] = |M'(£)]| \Ilv(t)ll2 - IIU(t)IIQ\

where

E=(1=0) u@®* +0o@)*, 0<o<1.
Hence,

M@ la@* =l @I = 1M @U@l = llo@Dlu@)] + o@D

< Colvw(@®)| (lu@)] + (o))
because
|M'(€)] < Caif € € (a(u(?)), a(v(t))) with t € [0,T].
Then,

2| M(a(u(t)) — M(a(o(D)] |a(v"(t), w'(1))] (56)
< 20 [Vw@)] (lu@l + [lv@)[]) |A" (0] [w'(2)]

Using (6), (8) and the Poincaré’s inequality in (55) we obtain that

|M(a(v(t)) — M(a(u(t)))| 2 ]a(0" (1), w'(£))] (57)
< Gy (IVo®)f + Vo' 0)).

Also we have that

dt

M(@(U(t)))‘ = |M'(a(u(t)))] 2 |a(u(t), u'(t))] (58)
< Gy Au(t)] [u'(t)] < C;
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hence p
=M (a(u(t)))

In the last term of inequality (54), we observe that

2(F(u(t)) = F(o(1), w'(t))]

a(w'(t)) < Croa(w'(t)). (59)

2|F(u(t)) = F(v(®)|[w' )] (60)
2C w(#)] Jw'(t)]
Cu [[Vw(®)[* + [Vu' ()] .

VANRVAN VAN

Using (56), (58) and (59) in (54) we obtain

@) + 9w (0) + Mau(t))a(u' (1) (61)
< O [IVu()f + V(1)

where

012 = Imax {Cg, ClO; 011} > 0.
Integrating (60) from 0 to ¢ and applying the hypothesis (A.1) we have

W' (OF + |V )]” + p| V' () (62)
< Oy /Ot [Vw(s) + [Vw'(s)]?] ds;
hence by Gronwall inequality we conclude
w=01in [0,7].
Thus, the proof of Theorem 1 is completed. O

REMARK 2. In the forthcoming work we will try to study the equa-
tion (5) when M (A) has zero points, that is, degenerate case and F(s) is a
continuous function such that sF(s) > 0 for all s € R.
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