Some Nonlinear Perturbation of the Quasilinear hyperbolic Equation*

J. Ferreira \& M.A. Rojas-Medar

Abstract

In this paper we prove existence and uniqueness of global regular solutions of a mixed problem for the perturbed of extensional vibrations of a thin rod equation or torsional vibrations of thin rod.

1 Introduction

Let us consider a Lipschitzian perturbation of vibrations of a thin rod operator (see. Love [1])

$$
K u=\frac{\partial^{2} u}{\partial t^{2}}-\Delta u-M\left(\int_{\Omega}|\nabla u(x, t)|^{2} d x\right) \Delta u_{t t}
$$

given by $K u+F(u)$, where F is a Lipschitzian function which satisfies some appropriate conditions fixed in Section 2 and $M \in C^{1}([0,+\infty))$. We obtain the nonlinear mixed problem:

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t^{2}}-\Delta u-M\left(\int_{\Omega}|\nabla u(x, t)|^{2} d x\right) \Delta u_{t t}+F(u)=f \text { in } Q, \\
u=0 \text { on } \Sigma, \tag{1}\\
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x) \text { in } \Omega .
\end{gather*}
$$

In (1) Ω is a bounded open set of R^{n} with smooth boundary Γ, Q is the cylinder $\Omega \times(0, T), T$ is a positive real number. The lateral boundary of Q

[^0]is represented by Σ, i.e. $\Sigma=\Gamma \times(0, T)$. By $M(\lambda)$ we denote a real function defined on the positive real numbers with $M(\lambda) \geq \rho>0$ for all $\lambda \geq 0$, for some $\rho>0 ; \nabla u$ is the gradient of u and Δ is the Laplace operator.

Solving equation (1) is important by the following reasons: equation (1) with $M(\lambda)=1$ and $F(u)=0$ arises in the study of the extensional vibrations of thin rods; many authors studied this equation when $M(\lambda)=1$; among them we mention Pereira [12] and Ferreira and Pereira [13]. Besides, equation (1) with $F(u)=0, M(\lambda)=\lambda_{0}, \lambda_{0}=\int_{\Omega} \phi^{2} d x$, where ϕ is the torsion-function, also appears in the study of the torsional vibrations of thin rods (see. Love [1]). Finally, the function $M(\lambda)$ in (1) has its motivation in the mathematical description of the vibrations of an elastic stretched string

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-M\left(\int_{\Omega}|\nabla u(x, t)|^{2} d x\right) \Delta u=0 \tag{2}
\end{equation*}
$$

which for $M(\lambda) \geq \rho>0$, was studied by Pohozaev [16], Nishihara [15] and Lions [11]. When $M(\lambda) \geq 0$ was treated by Arosio and Spagnolo [8], Ebihara, Medeiros and Miranda [4], Yamada [6], Matos [14]. When $M(\lambda)$ is a constant $C^{2},(2)$ becomes a perturbation of the d'Alembert operator

$$
\square u=\frac{\partial^{2} u}{\partial t^{2}}-C^{2} \Delta u
$$

(see Lions [11]). In [2], Strauss studied a nonlinear perturbation of this operator of the type:

$$
\left\lvert\, \begin{gather*}
\square u+F(u)=f \text { in } Q \\
u=0 \text { on } \Sigma \tag{3}\\
u(0)=u_{0}, u^{\prime}(0)=u_{1} \text { in } \Omega
\end{gather*}\right.
$$

where $F: R \rightarrow R$ is continuous and $s F(s) \geq 0$ for all $s \in R$.
For others perturbations of Kirchhoff-Carrier operator, see Jörgens [9], Hosoya and Yamada [5], D'Ancona and Spagnolo [7].

In Ebihara and Pereira [3] it was proved that there exists only one classical solution for a quasilinear model, given by following initial-boundary value problem:

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t^{2}}-\Delta u-M\left(\int_{\Omega}|\nabla u(x, t)|^{2} d x\right) \Delta u_{t t}=f \text { in } Q \\
u=0 \text { on } \Sigma \tag{4}\\
u(0)=u_{0}, u^{\prime}(0)=u_{1} \text { in } \Omega
\end{gather*}
$$

when the following hypotheses hold:
(H.O) $M(\lambda) \in C^{1}([0,+\infty))$, and there exist positive constants α, ρ such that

$$
M(\lambda) \geq \alpha \sqrt{\lambda}+\rho, \text { for all } \lambda \in[0,+\infty)
$$

(H.1) There exists a nonnegative function $\beta(\lambda)$ satisfying:

$$
\left|\frac{d}{d \lambda} M(\lambda)\right| \sqrt{\lambda} \leq \beta(\lambda) M(\lambda), \text { for all } \lambda \in[0,+\infty)
$$

(H.2) The initial conditions are such that:

$$
u_{0}, u_{1} \in D\left(A^{l}\right), l \geq 2
$$

and

$$
f, \frac{d f}{d t} \in C\left(0, T ; D\left(A^{\frac{l-1}{2}}\right)\right), l \geq 2
$$

where $A=-\Delta$ and by $D\left(A^{s}\right)$ we are denoting the domain of the operator A^{s}.

Motivated by Hosoya and Yamada [5], Strauss [2] and Ebihara and Pereira [3], we shall investigate in this paper the following perturbation of the vibrations model,

$$
\begin{gather*}
K u+F(u)=f \text { in } Q \\
u=0 \text { on } \Sigma \tag{5}\\
u(0)=u_{0}, u_{1}(0)=u_{1} \text { in } \Omega
\end{gather*}
$$

with F Lipschitzian.
Our main objective is to give a complete, clear and short proof for the existence and uniqueness of global regular solutions to the problem in question. For that, we use the Faedo-Galerkin's method associated with a compactness argument and some technical ideas. In our proof of the existence and uniqueness of global regular solutions to (5) we assume (H.0) and substitute (H.2) by $f \in C\left([0, T] ; H_{0}^{1}(\Omega)\right)$ and $u_{0}, u_{1} \in D\left(A^{1 / 2}\right)$ and (H.1) becomes unnecessary.

2 Notations and Main Result

For the Hilbert space $L^{2}(\Omega)$ we denote its inner product and norm, respectively, by (,) and |.|, defined by:

$$
(u, v)=\int_{\Omega} u v d x ; \quad|u|^{2}=\int_{\Omega}|u|^{2} d x
$$

By $H^{m}(\Omega)$ we represent the Sobolev space on the bounded open set Ω of R^{n}. $H_{0}^{m}(\Omega)$ is the closure of $C_{0}^{\infty}(\Omega)$ in $H^{m}(\Omega)$. In particular, $H^{1}(\Omega)$ has inner product $(()$,$) and norm \|$.$\| given by$

$$
((u, v))=\int_{\Omega} u v d x+\int_{\Omega} \nabla u \cdot \nabla v d x
$$

and

$$
\|v\|^{2}=\int_{\Omega} v^{2} d x+\int_{\Omega}|\nabla v|^{2} d x .
$$

In $H_{0}^{1}(\Omega)$ we consider the equivalent norm

$$
\|v\|^{2}=\int_{\Omega}|\nabla v|^{2} d x
$$

and the inner product

$$
((u, v))=\int_{\Omega} \nabla u \cdot \nabla v d x
$$

for all $u, v \in H_{0}^{1}(\Omega)$. We also observe that if Γ is of class $C^{1,1}$, then the norms of $\|v\|_{H^{2}}$ and $|\triangle v|$ are equivalent for $v \in H_{0}^{1}(\Omega) \cap H_{0}^{2}(\Omega)$.

Suppose that the functions $M(\lambda)$ and $F(u)$ satisfy:
(A.1) $M \in C^{1}([0,+\infty))$ and there exist positive constants α, ρ such that the following inequality is valid:

$$
M(\lambda) \geq \alpha \sqrt{\lambda}+\rho, \text { for all } \lambda \in[0,+\infty)
$$

(A.2) $F: R \rightarrow R$ is a Lipschitzian function such that

$$
s F(s) \geq 0 \text { for all } s \in R
$$

We have the following result:
THEOREM 1. Suppose $u_{0}, u_{1} \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega), f \in C\left([0, T] ; H_{0}^{1}(\Omega)\right)$ and assumptions (A.1)-(A.2) hold. Then there exists a unique function $u:[0, T] \rightarrow L^{2}(\Omega)$, satisfying:

$$
\begin{gather*}
u \in C^{1}\left([0, T] ; D\left(A^{\alpha}\right)\right) \text { for all } 0 \leq \alpha<1 \tag{6}\\
u^{\prime} \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right) \tag{7}\\
u^{\prime \prime} \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right) \tag{8}\\
K u+F(u)=f \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \tag{9}
\end{gather*}
$$

$$
\begin{gather*}
u(0)=u_{0} \tag{10}\\
u^{\prime}(0)=u_{1} \tag{11}\\
u=0 \text { on } \Sigma . \tag{12}
\end{gather*}
$$

As it is well known, the Laplace operator with homogeneous boundary conditions has a set of eigenvectors such that the subspace spanned by them is dense in $L^{2}(\Omega)$, in $H_{0}^{1}(\Omega)$ and in $H_{0}^{1}(\Omega) \cap H_{0}^{2}(\Omega)$. We may consider these eigenvectors to be orthonormal in $L^{2}(\Omega)$ and orthogonal in $H_{0}^{1}(\Omega)$ or $H_{0}^{1}(\Omega) \cap$ $H_{0}^{2}(\Omega)$. Moreover, by the regularity of the boundary Γ, we have $w_{j}(x) \in$ $H^{2}(\Omega)$.

Let us denote by $V_{m}=\left[w_{1}, \ldots, w_{m}\right]$ the subspace of $H_{0}^{1}(\Omega)$ generated by the fists m eigenvectors $w_{j}(m \geq 1)$.

Let

$$
u_{m}(t)=\sum_{j=1}^{m} g_{j m}(t) w_{j}(x) \in V_{m}
$$

be a solution of the system:

$$
\begin{gather*}
\left(K u_{m}(t), v\right)+\left(F\left(u_{m}(t), v\right)=(f(t), v), \forall v \in V_{m},\right. \tag{13}\\
u_{m}(0)=u_{0 m} \rightarrow u_{0} \text { strongly in } H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \text { as } m \rightarrow \infty, \tag{14}\\
u_{m}^{\prime}(0)=u_{1 m} \rightarrow u_{1} \text { strongly in } H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \text { as } m \rightarrow \infty, \tag{15}
\end{gather*}
$$

where

$$
u_{0 m}=\sum_{j=1}^{m}\left(u_{0}, w_{j}\right) w_{j}, u_{1 m}=\sum_{j=1}^{m}\left(u_{1}, w_{j}\right) w_{j} .
$$

Setting $\nu=w_{j}$ for $j=1, \ldots, m$ we obtain a system of ordinary differential equations to which the classical Peano's theorem is applicable. Therefore this system has a local solution $u_{m}(t)$ on $\left[0, T_{m}\right), 0<T_{m} \leq T$. The extension to $[0, T]$ is a consequence of the estimate (i) given in the next Section.

To prove our results, we will use the following result due a Simon [17]
Lemma 2.1 Let $X \subset E \subset Y$ Banach spaces, the imbedding $X \rightarrow E$ being compact. Then the following imbedding are compact:
(i) $L^{q}(O, T ; X) \cap\left\{\varphi: \frac{\partial \varphi}{\partial t} \in L^{1}(0, T ; Y)\right\} \rightarrow L^{q}(0, T ; E)$ if $1 \leq q \leq \infty$,
(ii) $L^{\infty}(0, T ; X) \cap\left\{\varphi: \frac{\partial \varphi}{\partial t} \in L^{r}(0, T ; Y)\right\} \rightarrow C([0, t] ; E)$ if $1<r \leq \infty$.
and (see Temam [18])
Lemma 2.2 Let $X \subset E \subset X^{*}$ Banach spaces. If $u \in L^{2}(0, T ; X)$ and $u_{t} \in L^{2}\left(0, T ; X^{*}\right)$ then $u \in C([0, T] ; E)$ a.e.

3 A Priori Estimates

Estimate (i). Setting $v=u_{m}^{\prime \prime}(t)$ in (13), we obtain

$$
\begin{array}{r}
\left|u_{m}^{\prime \prime}(t)\right|^{2}+a\left(u_{m}(t), u_{m}^{\prime \prime}(t)\right)+M\left(a\left(u_{m}(t)\right)\right) a\left(u_{m}^{\prime \prime}(t), u_{m}^{\prime \prime}(t)\right) \tag{16}\\
+\left(F\left(u_{m}(t)\right), u_{m}^{\prime \prime}(t)\right)=\left(f(t), u_{m}^{\prime \prime}(t)\right)
\end{array}
$$

where

$$
a(u, v)=\int_{\Omega} \nabla u . \nabla v d x \text { and } a(u)=\int_{\Omega}|\nabla u|^{2} d x .
$$

Let us define $\mu(t)=M\left(a\left(u_{m}(t)\right)\right) \geq \rho>0$. Dividing both sides of (16) by $\mu(t)$, applying Cauchy-Schwartz's inequality and using the hypothesis (A.1), we get

$$
\begin{align*}
\frac{1}{\mu(t)}\left|u_{m}^{\prime \prime}(t)\right|^{2}+\left|\nabla u_{m}^{\prime \prime}(t)\right|^{2} \leq & \frac{\left\|u_{m}(t)\right\|\left|\nabla u_{m}^{\prime \prime}(t)\right|}{\alpha\left\|u_{m}(t)\right\|}+\frac{|f(t)|\left|u_{m}^{\prime \prime}(t)\right|}{\rho} \tag{17}\\
& +\frac{\left|F\left(u_{m}(t)\right)\right|\left|u_{m}^{\prime \prime}(t)\right|}{\alpha\left\|u_{m}(t)\right\|} .
\end{align*}
$$

Since F is Lipschitzian and satisfies $s F(s) \geq 0$ for all $s \in R$ (thus, $F(0)=0$) we obtain

$$
\begin{equation*}
\left|F\left(u_{m}(t)\right)\right| \leq C\left(\int_{\Omega}\left|u_{m}(t)\right|^{2} d x\right)^{\frac{1}{2}}=C\left|u_{m}(t)\right| \tag{18}
\end{equation*}
$$

Using the Poincaré's inequality in (18), we have

$$
\begin{equation*}
\left|F\left(u_{m}(t)\right)\right| \leq C\left|\nabla u_{m}(t)\right|, C>0 . \tag{19}
\end{equation*}
$$

Applying (19) in (17), yields

$$
\begin{align*}
\frac{1}{\mu(t)}\left|u_{m}^{\prime \prime}(t)\right|^{2}+\left|\nabla u_{m}^{\prime \prime}(t)\right|^{2} \leq & \frac{1}{\alpha^{2}}+\frac{1}{4}\left|\nabla u_{m}^{\prime \prime}(t)\right|^{2}+\frac{C^{2}}{\rho^{2}}|\nabla f(t)|^{2} \tag{20}\\
& +\frac{1}{4}\left|\nabla u_{m}^{\prime \prime}(t)\right|^{2}+\frac{C^{2}}{\alpha^{2}}+\frac{1}{4}\left|\nabla u_{m}^{\prime \prime}(t)\right|^{2}
\end{align*}
$$

where C is a positive constant such that $|f(t)| \leq C|\nabla f(t)|$ and $\left|u_{m}^{\prime \prime}(t)\right| \leq$ $C\left|\nabla u_{m}^{\prime \prime}(t)\right|$.

Then, from te above estimate and $f \in C\left([0, T] ; H_{0}^{1}(\Omega)\right)$, we get

$$
\begin{equation*}
\left|\nabla u_{m}^{\prime \prime}(t)\right|^{2} \leq 4\left(\frac{1}{\alpha^{2}}+\frac{C^{2}}{\alpha^{2}}+\frac{C^{2}}{\rho^{2}} \max _{0 \leq t \leq T}|\nabla f(t)|^{2}\right)<C_{1} \tag{21}
\end{equation*}
$$

where $C_{1}>0$ is independent of t and m.
Thus,

$$
\begin{equation*}
\left(u_{m}^{\prime \prime}\right) \text { is bounded in } L^{\infty}\left(0, T_{m} ; H_{0}^{1}(\Omega)\right) \tag{22}
\end{equation*}
$$

By the Fundamental Theorem of Calculus, we have

$$
\begin{equation*}
\left(u_{m}^{\prime}\right) \text { is bounded in } L^{\infty}\left(0, T_{m} ; H_{0}^{1}(\Omega)\right) \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(u_{m}\right) \text { is bounded in } L^{\infty}\left(0, T_{m}, H_{0}^{1}(\Omega)\right) \tag{24}
\end{equation*}
$$

The above estimates permit us to extend $u_{m}(t)$ to all interval $[0, T]$.
Estimate (ii). Since we are working with spectral basis, we have $-\Delta u_{m}^{\prime}(t) \in$ V_{m}. Then we can take $v=-2 \Delta u_{m}^{\prime}(t)$ in (13) to obtain

$$
\begin{array}{r}
\frac{d}{d t}\left[\left|\nabla u_{m}^{\prime}(t)\right|^{2}+\left|\Delta u_{m}(t)\right|^{2}\right]+M\left(a\left(u_{m}(t)\right)\right) \frac{d}{d t}\left|\Delta u_{m}^{\prime}(t)\right|^{2} \\
+2\left(\nabla F\left(u_{m}(t)\right), \nabla u_{m}^{\prime}(t)\right)=2\left(\nabla f(t), \nabla u_{m}^{\prime}(t)\right) .
\end{array}
$$

Setting $\mu(t)=M\left(a\left(u_{m}(t)\right)\right) \geq \rho>0$, dividing both sides of the last equality by $\mu(t)$, we obtain

$$
\begin{align*}
& \frac{1}{\mu(t)} \frac{d}{d t}\left[\left|\nabla u_{m}^{\prime}(t)\right|^{2}+\left|\Delta u_{m}(t)\right|^{2}\right]+\frac{d}{d t}\left|\Delta u_{m}^{\prime}(t)\right|^{2} \tag{25}\\
= & \frac{-2}{\mu(t)}\left(\nabla F\left(u_{m}(t)\right), \nabla u_{m}^{\prime}(t)\right)+\frac{2}{\mu(t)}\left(\nabla f(t), \nabla u_{m}^{\prime}(t)\right) .
\end{align*}
$$

Defining

$$
\begin{equation*}
h_{m}(t)=\frac{1}{\mu(t)}\left[\left|\nabla u_{m}^{\prime}(t)\right|^{2}+\left|\Delta u_{m}(t)\right|^{2}\right]+\left|\Delta u_{m}^{\prime}(t)\right|^{2} \tag{26}
\end{equation*}
$$

we have

$$
\begin{align*}
h_{m}^{\prime}(t)= & \frac{1}{\mu(t)} \frac{d}{d t}\left[\left|\nabla u_{m}^{\prime}(t)\right|^{2}+\left|\Delta u_{m}(t)\right|^{2}\right]+\frac{d}{d t}\left|\Delta u_{m}^{\prime}(t)\right|^{2} \tag{27}\\
& \frac{-\mu^{\prime}(t)}{\mu(t)^{2}}\left[\left|\nabla u_{m}^{\prime}(t)\right|^{2}+\left|\Delta u_{m}(t)\right|^{2}\right] .
\end{align*}
$$

Using (25) in (27), we obtain

$$
\begin{aligned}
h_{m}^{\prime}(t) \leq & \frac{2}{\mu(t)}\left|\nabla F\left(u_{m}(t)\right)\right|\left|\nabla u_{m}^{\prime}(t)\right|+\frac{2}{\mu(t)}|\nabla f(t)|\left|\nabla u_{m}^{\prime}(t)\right| \\
& +\frac{\left|\mu^{\prime}(t)\right|}{\mu(t)^{2}}\left[\left|\nabla u_{m}^{\prime}(t)\right|^{2}+\left|\Delta u_{m}(t)\right|^{2}\right] .
\end{aligned}
$$

We observe that

$$
\left|\nabla F\left(u_{m}(t)\right)\right|=\left|F^{\prime}\left(u_{m}(t)\right) \nabla u_{m}(t)\right| \leq C\left|\nabla u_{m}(t)\right|
$$

because F is Lipschitzian.
Consequently,

$$
\begin{align*}
h_{m}^{\prime}(t) \leq & \frac{2 C}{\mu(t)}\left|\nabla u_{m}(t)\right|\left|\nabla u_{m}^{\prime}(t)\right|+\frac{2}{\mu(t)}|\nabla f(t)|\left|\nabla u_{m}^{\prime}(t)\right| \tag{28}\\
& +\frac{\left|\mu^{\prime}(t)\right|}{\mu(t)^{2}}\left[\left|\nabla u_{m}^{\prime}(t)\right|^{2}+\left|\Delta u_{m}(t)\right|^{2}\right] .
\end{align*}
$$

We also observe that

$$
\mu^{\prime}(t)=M^{\prime}\left(a\left(u_{m}(t)\right)\right) 2 a\left(u_{m}(t), u_{m}^{\prime}(t)\right)
$$

and

$$
\begin{aligned}
\mid M^{\prime}\left(\left(a\left(u_{m}(t)\right)\right) \mid\right. & \leq C_{2} \text { if } 0 \leq t \leq T, 0 \leq a\left(u_{m}(t)\right) \leq C_{1} \\
\left|a\left(u_{m}(t), u_{m}^{\prime}(t)\right)\right| & \leq\left|\nabla u_{m}(t)\right|\left|\nabla u_{m}^{\prime}(t)\right|
\end{aligned}
$$

Then

$$
\left|\mu^{\prime}(t)\right| \leq C_{3}
$$

where C_{3} is a positive constant.
From (28), we get

$$
\begin{align*}
h^{\prime}(t) \leq & \frac{2 C}{\mu(t)}\left|\nabla u_{m}(t)\right|\left|\nabla u_{m}^{\prime}(t)\right|+\frac{2}{\mu(t)}|\nabla f(t)|\left|\nabla u_{m}^{\prime}(t)\right| \tag{29}\\
& +\frac{C_{3}}{\mu(t)^{2}}\left[\left|\nabla u_{m}^{\prime}(t)\right|^{2}+\left|\Delta u_{m}(t)\right|^{2}\right]
\end{align*}
$$

Using the estimate (i), we get

$$
\begin{align*}
h^{\prime}(t) \leq & \frac{C_{4}^{2}}{\mu(t)}+\frac{1}{\mu(t)}\left|\nabla u_{m}^{\prime}(t)\right|^{2}+\frac{1}{\mu(t)}|\nabla f(t)|^{2}+\frac{1}{\mu(t)}\left|\nabla u_{m}^{\prime}(t)\right|^{2} \tag{30}\\
& +\frac{C_{3}}{\mu(t)} \frac{1}{\mu(t)}\left[\left|\nabla u_{m}^{\prime}(t)\right|^{2}+\left|\Delta u_{m}(t)\right|^{2}\right] .
\end{align*}
$$

By the definition of $h_{m}(t)$,

$$
\frac{1}{\mu(t)}\left[\left|\nabla u_{m}^{\prime}(t)\right|^{2}+\left|\Delta u_{m}(t)\right|^{2}\right] \leq h_{m}(t)
$$

and

$$
\frac{1}{\mu(t)^{\frac{1}{2}}}\left|\Delta u_{m}(t)\right| \leq h_{m}(t)^{\frac{1}{2}}
$$

From (23), we have

$$
\frac{1}{\mu(t)}\left|\nabla u_{m}^{\prime}(t)\right|^{2} \leq C_{1}
$$

where C_{1} is positive constant.
Hence

$$
h_{m}^{\prime}(t) \leq \frac{C_{4}^{2}}{\rho}+2 h_{m}(t)+\frac{1}{\rho} \max _{0 \leq t \leq T}|\nabla f(t)|^{2}+\frac{C_{3}}{\rho^{\frac{1}{2}}} h_{m}(t)
$$

Thus,

$$
\begin{equation*}
\frac{d}{d t} h_{m}(t) \leq C_{5}\left(1+h_{m}(t)\right), \quad 0 \leq t \leq T \tag{31}
\end{equation*}
$$

where

$$
C_{5}=\max \left\{\frac{C_{4}^{2}}{\rho}+\frac{1}{\rho} \max _{0 \leq t \leq T}|\nabla f(t)|^{2}, 2, \frac{C_{3}}{\rho^{\frac{1}{2}}}\right\}>0
$$

From (31), we can easily see that, there exists a positive constant C_{6} such that for all $t \in[0, T]$

$$
h_{m}(t) \leq C_{6} \text { in }[0, T]
$$

This implies that

$$
\frac{1}{\mu(t)}\left[\left|\nabla u_{m}^{\prime}(t)\right|^{2}+\left|\Delta u_{m}(t)\right|^{2}\right]+\left|\Delta u_{m}^{\prime}(t)\right|^{2}<C_{6}
$$

Therefore,

$$
\begin{equation*}
\left[\left|\nabla u_{m}^{\prime}(t)\right|^{2}+\left|\Delta u_{m}(t)\right|^{2}\right]+\rho\left|\Delta u_{m}^{\prime}(t)\right|^{2}<C_{7}, \quad 0 \leq t \leq T \tag{32}
\end{equation*}
$$

where $C_{7}>0$ is a constant independent of t and m.
Whence,

$$
\begin{align*}
& \left(u_{m}\right) \text { is bounded in } L^{\infty}\left(0, T ; H^{2}(\Omega)\right), \tag{33}\\
& \left(u_{m}^{\prime}\right) \text { is bounded in } L^{\infty}\left(0, T ; H^{2}(\Omega)\right) . \tag{34}
\end{align*}
$$

Estimate (iii). Setting $v=-\Delta u_{m}^{\prime \prime}(t)$ in (13), we obtain

$$
\begin{aligned}
\left|\nabla u_{m}^{\prime \prime}(t)\right|^{2}+ & \left(\Delta u_{m}(t), \Delta u_{m}^{\prime \prime}(t)\right)+M\left(a\left(u_{m}(t)\right)\right)\left|\Delta u_{m}^{\prime \prime}(t)\right|^{2} \\
& +\left(F\left(u_{m}(t)\right),-\Delta u_{m}^{\prime \prime}(t)\right)=\left(f(t),-\Delta u_{m}^{\prime \prime}(t)\right) .
\end{aligned}
$$

Let $\mu(t)=M\left(a\left(u_{m}(t)\right)\right) \geq \rho>0$. Dividing both sides of the last equality by $\mu(t)$, applying Cauchy-Schwartz's inequality and using hypothesis (A.1), we get

$$
\begin{align*}
\frac{1}{\mu(t)}\left|\nabla u_{m}^{\prime \prime}(t)\right|^{2}+\left|\Delta u_{m}^{\prime \prime}(t)\right|^{2} \leq & \frac{1}{\rho}\left|\Delta u_{m}^{\prime \prime}(t)\right|+\frac{1}{\rho}|f(t)|\left|\Delta u_{m}^{\prime \prime}(t)\right| \tag{35}\\
& +\frac{\left|F\left(u_{m}(t)\right)\right|\left|\Delta u_{m}^{\prime \prime}(t)\right|}{\alpha\left\|u_{m}(t)\right\|}
\end{align*}
$$

Using (19), $|f(t)| \leq C|\nabla f(t)|$ and recalling that $\left|\Delta u_{m}^{\prime}(t)\right|$ is bounded by the second estimate in (35), we obtain that

$$
\begin{align*}
\frac{1}{\mu(t)}\left|\nabla u_{m}^{\prime \prime}(t)\right|^{2}+\left|\Delta u_{m}^{\prime \prime}(t)\right|^{2} \leq & \frac{C_{7}^{2}}{\rho^{2}}+\frac{1}{4}\left|\Delta u_{m}^{\prime \prime}(t)\right|^{2}+\frac{C^{2}}{\rho^{2}}|\nabla f(t)|^{2} \tag{36}\\
& +\frac{1}{4}\left|\Delta u_{m}^{\prime \prime}(t)\right|^{2}+\frac{C^{2}}{\alpha^{2}}+\frac{1}{4}\left|\Delta u_{m}^{\prime \prime}(t)\right|^{2}
\end{align*}
$$

In particular we have

$$
\left|\Delta u_{m}^{\prime \prime}(t)\right|^{2} \leq 4\left(\frac{C_{7}^{2}}{\rho^{2}}+\frac{C^{2}}{\alpha^{2}}+\frac{C^{2}}{\rho^{2}} \max _{0 \leq t \leq T}|\nabla f(t)|^{2}\right)<C_{8}
$$

where $C_{8}>0$ is a constant independent of t and m.
Hence,

$$
\begin{equation*}
\left(u_{m}^{\prime \prime}\right) \text { is bounded in } L^{\infty}\left(0, T ; H^{2}(\Omega)\right) . \tag{37}
\end{equation*}
$$

4 Proof of Theorem

By estimates (22), (23), (24), (33), (34) and (37) there exists a subsequence of $\left(u_{m}\right)_{m \in N}$ which we still denote by $\left(u_{m}\right)_{m \in N}$, and a function u such that:

$$
\begin{gather*}
u_{m} \rightarrow u \text { weak }- \text { star in } L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right), \tag{38}\\
u_{m}^{\prime} \rightarrow u^{\prime} \text { weak }- \text { star in } L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right), \tag{39}\\
u_{m}^{\prime \prime} \rightarrow u^{\prime \prime} \text { weak }- \text { star in } L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right) . \tag{40}
\end{gather*}
$$

From (38), (39) and (40), via Lemma 1, there exists a subsequence (still represented by $\left.\left(u_{m}\right)_{m \in N}\right)$ such that:

$$
\begin{equation*}
u_{m} \rightarrow u \text { strongly in } C\left(0, T ; D\left(A^{\alpha}\right)\right) \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{m}^{\prime} \rightarrow u^{\prime} \text { strongly in } C\left(0, T ; D\left(A^{\alpha}\right)\right) \tag{42}
\end{equation*}
$$

for all $\alpha \in\left[\frac{1}{2}, 1\right)$
As a consequence,

$$
\begin{equation*}
M\left(a\left(u_{m}(t)\right)\right) \rightarrow M(a(u(t))) \text { strongly in } C\left(0, T ; D\left(A^{\alpha}\right)\right) \tag{43}
\end{equation*}
$$

Now, by (40), we have

$$
\begin{gather*}
\Delta u_{m}^{\prime \prime} \rightarrow \Delta u^{\prime \prime} \text { weaklyin } L^{p}\left(0, T ; L^{2}(\Omega)\right) 1 \leq p<\infty \tag{44}\\
\Delta u_{m}^{\prime \prime} \rightarrow \Delta u^{\prime \prime} \text { weakly }-\operatorname{startin} L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \tag{45}
\end{gather*}
$$

Thus, by (43) and (44) we get
$M\left(a\left(u_{m}(t)\right)\right) \Delta u_{m}^{\prime \prime}(t) \rightarrow M(a(u(t))) \Delta u^{\prime \prime}(t)$ weakly in $L^{p}\left(0, T ; L^{2}(\Omega)\right), 1 \leq p<\infty$.
Since that F is Lipschitzian, the convergence in (41) implies that

$$
\begin{equation*}
F\left(u_{m}(t)\right) \rightarrow F(u(t)) \text { strongly in } L^{p}\left(0, T ; L^{2}(\Omega)\right) . \tag{47}
\end{equation*}
$$

The established convergences make it easy to pass to the limit in the approximate problem (13) and obtain the existence of a strong solution to problem (1).

To prove the continuity established in the Theorem 1, we observe that (from Lemma 2)

$$
\begin{equation*}
u_{m} \in C\left(0, T ; D\left(A^{\alpha}\right)\right) \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{m}^{\prime} \in C\left(0, T ; D\left(A^{\alpha}\right)\right) \tag{49}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
u_{m} \in C^{1}\left(0, T ; D\left(A^{\alpha}\right)\right) \tag{50}
\end{equation*}
$$

In order to check up that $u(0)=u_{0}$, it is sufficient to use (48). Analogously, by using (49), it can be shown that $u^{\prime}(0)=u_{1}$.
remark 4.1 If M^{\prime} satisfies (H.1) then it is possible to show that $u^{\prime \prime \prime} \in$ $L^{2}\left(0, T ; H^{-1}(\Omega)\right)$. Consequently, by interpolation, we have that $u^{\prime \prime} \in C\left([0, T] ; L^{2}(\Omega)\right)$ and, thus the equation $K u+F(u)=f$ is satisfied a.e. in t.

5 Uniqueness

We prove the uniqueness in Theorem 1 as follows.
Let u, v be solutions of (5) in the class of Theorem 1. It follows that $w=u-v$ is a solution of:

$$
\begin{align*}
& w^{\prime \prime}-\Delta w-M(a(u(t))) \Delta w^{\prime \prime}-[M(a(v(t)))-M(a(u(t)))] \Delta v^{\prime \prime} \tag{51}\\
&+F(u(t))-F(v(t))=0, \\
& w(0)=0, \tag{52}\\
& w^{\prime}(0)=0 . \tag{53}
\end{align*}
$$

We shall prove that $w=0$ in $[0, T]$. In fact, taking the inner product in $L^{2}(\Omega)$ of (50) by $2 w^{\prime} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, we get

$$
\begin{array}{r}
\frac{d}{d t}\left[\left|w^{\prime}(t)\right|^{2}+|\nabla w(t)|^{2}+M(a(u(t))) a\left(w^{\prime}(t)\right)\right]=\frac{d}{d t}(M(a(u(t)))) a\left(w^{\prime}(t)\right) \tag{54}\\
+[M(a(v(t)))-M(a(u(t)))] 2 a\left(v^{\prime \prime}(t), w^{\prime}(t)\right) \\
-2\left(F(u(t))-F(v(t)), w^{\prime}(t)\right)
\end{array}
$$

i.e.,

$$
\begin{align*}
& \frac{d}{d t}\left[\left|w^{\prime}(t)\right|^{2}+|\nabla w(t)|^{2}+M(a(u(t))) a\left(w^{\prime}(t)\right)\right] \tag{55}\\
\leq & \left|\frac{d}{d t}(M(a(u(t))))\right|\left|a\left(w^{\prime}(t)\right)\right| \\
& +|M(a(v(t)))-M(a(u(t)))| 2\left|a\left(v^{\prime \prime}(t), w^{\prime}(t)\right)\right| \\
& +|F(u(t))-F(v(t))|\left|w^{\prime}(t)\right| .
\end{align*}
$$

Observe also that

$$
|M(a(v(t)))-M(a(u(t)))|=\left|M^{\prime}(\xi)\right|\left|\|v(t)\|^{2}-\|u(t)\|^{2}\right|
$$

where

$$
\xi=(1-\theta)\|u(t)\|^{2}+\theta\|v(t)\|^{2}, 0 \leq \theta \leq 1
$$

Hence,

$$
\begin{aligned}
\left|M^{\prime}(\xi)\right|\left|\|u(t)\|^{2}-\|v(t)\|^{2}\right| & =\left|M^{\prime}(\xi)\right||(\|u(t)\|-\|v(t)\|)(\|u(t)\|+\|v(t)\|)| \\
& \leq C_{2}|\nabla w(t)|(\|u(t)\|+\|v(t)\|)
\end{aligned}
$$

because

$$
\left|M^{\prime}(\xi)\right| \leq C_{2} \text { if } \xi \in(a(u(t)), a(v(t))) \text { with } t \in[0, T]
$$

Then,

$$
\begin{align*}
& 2|M(a(u(t)))-M(a(v(t)))|\left|a\left(v^{\prime \prime}(t), w^{\prime}(t)\right)\right| \tag{56}\\
\leq & 2 C_{2}|\nabla w(t)|(\|u(t)\|+\|v(t)\|)\left|\Delta v^{\prime \prime}(t)\right|\left|w^{\prime}(t)\right| .
\end{align*}
$$

Using (6), (8) and the Poincaré's inequality in (55) we obtain that

$$
\begin{align*}
& |M(a(v(t)))-M(a(u(t)))| 2\left|a\left(v^{\prime \prime}(t), w^{\prime}(t)\right)\right| \tag{57}\\
\leq & C_{9}\left(|\nabla w(t)|^{2}+\left|\nabla w^{\prime}(t)\right|^{2}\right) .
\end{align*}
$$

Also we have that

$$
\begin{align*}
\left|\frac{d}{d t} M(a(u(t)))\right| & =\left|M^{\prime}(a(u(t)))\right| 2\left|a\left(u(t), u^{\prime}(t)\right)\right| \tag{58}\\
& \leq C_{2}|\Delta u(t)|\left|u^{\prime}(t)\right| \leq C_{10}
\end{align*}
$$

hence

$$
\begin{equation*}
\left|\frac{d}{d t} M(a(u(t)))\right| a\left(w^{\prime}(t)\right) \leq C_{10} a\left(w^{\prime}(t)\right) \tag{59}
\end{equation*}
$$

In the last term of inequality (54), we observe that

$$
\begin{align*}
\left|2\left(F(u(t))-F(v(t)), w^{\prime}(t)\right)\right| & \leq 2|F(u(t))-F(v(t))|\left|w^{\prime}(t)\right| \tag{60}\\
& \leq 2 C|w(t)|\left|w^{\prime}(t)\right| \\
& \leq C_{11}\left[|\nabla w(t)|^{2}+\left|\nabla w^{\prime}(t)\right|^{2}\right] .
\end{align*}
$$

Using (56), (58) and (59) in (54) we obtain

$$
\begin{align*}
& \frac{d}{d t}\left[\left|w^{\prime}(t)\right|^{2}+|\nabla w(t)|^{2}+M(a(u(t))) a\left(w^{\prime}(t)\right)\right] \tag{61}\\
\leq & C_{12}\left[|\nabla w(t)|^{2}+\left|\nabla w^{\prime}(t)\right|^{2}\right]
\end{align*}
$$

where

$$
C_{12}=\max \left\{C_{9}, C_{10}, C_{11}\right\}>0
$$

Integrating (60) from 0 to t and applying the hypothesis (A.1) we have

$$
\begin{align*}
& \left|w^{\prime}(t)\right|^{2}+|\nabla w(t)|^{2}+\rho\left|\nabla w^{\prime}(t)\right|^{2} \tag{62}\\
\leq & C_{12} \int_{0}^{t}\left[|\nabla w(s)|^{2}+\left|\nabla w^{\prime}(s)\right|^{2}\right] d s
\end{align*}
$$

hence by Gronwall inequality we conclude

$$
w=0 \text { in }[0, T] .
$$

Thus, the proof of Theorem 1 is completed.
REMARK 2. In the forthcoming work we will try to study the equation (5) when $M(\lambda)$ has zero points, that is, degenerate case and $F(s)$ is a continuous function such that $s F(s) \geq 0$ for all $s \in R$.

6 Acknowledgments

The first author (J. Ferreira) was partially supported by CAPES-Brasilia/Brazil under grant BEX2480/95-6 when he visited the Università di Pisa, Italy, in
a Post-Doctoral Program (1996/1997), where part of this work was completed. The second author (M.A. Rojas-Medar) is supported by UEM-Brazil as a Visiting Professor at the Universidade Estadual de Maringá, a grant 300116/93-4 from CNPq-Brazil and FAPESP-Brazil under grant 1997/37110 .

References

[1] A.H. LOVE, A treatise on the mathematical theory of elasticity. Dover New York, 1994.
[2] W.A. STRAUSS, A weak solution of semilinear hyperbolic equations. Anais Acad. Bras. de Ciências, vol. 42 (1970) 645-651.
[3] Y. EBIHARA and D.C. PEREIRA, On a global classical solution of a quasilinear hyperbolic equation. Internat. J. Math. and Math. Sci., vol. 12 (1) (1989) 29-38.
[4] Y. EBIHARA, L.A. MEDEIROS and M.M. MIRANDA, Local solutions for a nonlinear degenerate hyperbolic equation. Nonlinear Analysis, Theory Methods and Applications, 10 (1986) 27-40.
[5] M. HOSOYA and Y. YAMADA, On some nonlinear wave equations I local existence and regularity of solutions. Journal Fac.Sci. of Tokyo, Sec. IA, vol. 38 (2) (1881) 225-238.
[6] Y. YAMADA, Some nonlinear degenerate wave equations. Nonlinear Analysis, Theory Methods and Applications, 11 (1987) 1155-1168.
[7] P. D'ANCONA and S. SPAGNOLO, Nonlinear perturbations of the Kirchhoff equation. Univ. Pisa Lecture Notes, (1992).
[8] A. AROSIO and S. SPAGNOLO, Global solutions to the Cauchy problem for a nonlinear hyperbolic equation. Nonlinear Partial Differential Equation and Their Applications, Collège de France Seminar. Vol. 6, Edited by H. Brezis and J.L. Lions, Pitman London, (1984).
[9] K. JÖRGENS, Über die anfangewertproblem in grossen für eine klossenith-tlinearer wellengleichun, Math. Zeit., 77 (1961) 395-408.
[10] J.L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969.
[11] J.L. LIONS, On some questions in boundary value problems of mathematical physics, Contemporary Development in Continuum Mechanics and PDE - Edited by G.M. De La Penha - L.A. Medeiros, North Holland, Amsterdam 1978.
[12] D.C. PEREIRA, Problema misto para uma equação de vibrações não lineares. Boletim da Soc. Paranaense de Matemática, 2a. Sér. vol. 9 (1988) 31-42.
[13] J. FERREIRA and D.C. PEREIRA, Existence of global weak solutions for an equation of nonlinear vibrations. Boletim da Soc. Paranaensede Matemática, 11 (02) (1990) 70-90.
[14] M.P. MATOS, Mathematical analysis of the nonlinear model for the vibrations of a string. Nonlinear Analysis, Theory Methods and Applications, 17 (12) (1991) 125-137.
[15] K. NISHIHARA, On a global solution of some quasilinear hyperbolic equation. Tokyo Journal of Math. 7 (1984).
[16] S.I. POHOZAEV, On a class of quasilinear hyperbolic equations. Mat. USSR Sbornik, 25 (1) (1975) 145-148.
[17] J. SIMON, Nonhomogeneous viscous incompressible fluids: existence of velocity, density and pressure, SIAM J. Math. Anal., 21 (1990), 10931117.
[18] R. TEMAM, Navier-Stokes equations, Theory and numerical analysis.North-Holland, Second Edition 1979.
J. FERREIRA

UEM/DMA, Av. Colombo, 5790
Zona 7, 87020-900, Maringá-PR, Brazil.
Email adress: jorgefe@gauss.dma.uem.br
M.A. ROJAS-MEDAR

UNICAMP-IMECC,C.P. 6065, 13081-970, Campinas,
São Paulo, Brazil
Email adress: marko@ime.unicamp.br

[^0]: * 1991 Mathematics Subject Classifications: 35L70,35Q72

 Key words and phrases:global regular solution, extensional or torsional vibrations of thin rod, quasilinear hyperbolic equation.

