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1 Introduction

In this paper, we focus on mathematical aspects of a model of the motion of a viscous,
nonhomogeneous incompressible fluids by assuming that the kinematic viscosity is
density dependent.

This model inclued as particular case the classical Navier-Stokes equations. This
case has been much studied (see for instance, Ladyzhenskaya [17], Lions [20], Temam
[33] and the referencees there in).

When the kinematic viscosity is a positive constante was studied by Kazhikov
[15], (see also [3],[21]), there he proved the existence of weak solution of “Hopf-
Type”. These results were generalized by Simon [30], [31],[32] and Kim [16] to case
that the density is a non-negative constant. The mencionated authors used the
semi-Galerkin method.

Stronger local and global solutions were obtained by Ladyzhenskaya and Solon-
nikov [18] by linearization, fixed point theorem and potential theory and, by Okamoto
[23] using evolution operators techniques and also fixed point theorem.

The more constructive spectral semi-Galerkin method was used by Salvi [29] to
obtain local in time strong solutions and to study conditions for regularity at t = 0
and, by Boldrini and Rojas-Medar [4], [5] to obtain global strong solutions. Others
works were done by [10], [24], [25] and [12].

The case when the kinematic viscosity depend up density was studied by An-
tonzev, Kazhikov and Monakhov [3] p.119 under the Holder condition.

Analogous results has been obtained by An Ton [2], he proved the existence
of a weak solution of Hopf-Type, by using linearization and the method of suces-
sive approximations; but he assumed restrict hypotheses on the dependence of the
kinematic viscosity on the density (see [2], p.101). An Ton, also write “That the
Galerkin method or of its variants seems to give rise to difficulties”. This apparent
difficult was avoided by Ferndndez-Caras and Guillén [11] (see also Lions [22]).

The strong solutions were showed by Lemoine [19] by using analogous arguments
those given by Ladyzhenskaya and Solonnikov [18]. In fact, these results can be
proved by spectral semi-Galerkin approximations as in [29] and [5].

In this work, we study the convergences rates in several norms for the spectral
semi-Galerkin approximations. Although this is not a too interesting case from the
practical point view, we hope that the techniques that we developed here could be
adapted in the important case where the full discretizations are used. This question
is presently under investigation.

Before we describe our results, let us briefly comment related results.



Rautmann[26] gave a systematic development of error estimates for spectral
Galerkin approximations of the classical Navier-Stokes equations(see also[13],[27]).
Boldrini and Rojas-Medar gave analogous error estimates for the model of non-
homogeneous viscous incompressible fluids when the viscosity is an one positive
constant[6],[7](see also [28])

The paper is organized as follows: in Section 2 we state some preliminaries
results that will be useful in the rest of the paper; we describe the approximation
method and state the results of existence and uniqueness of Lemoine[19] as also
some estimates apriori that form the theoretical basis for the problem. In Section 3
we derive a L?-error estimate for the velocity and a LP-error estimate for the density.
Finally, in Section 4 we derive H'-error estimates for velocity .

Finally, we would like to say that, as it usual in this context, to simplify the
notation in the expressions we will denote by C, M generics finites positives constants
depending only on 2 and the other fixed parameters of the problem (like the initial
data) that may have different values in different expressions. In a few points, to
emphasize the fact that the constants are different we use Cy,Cs, ..., My, Ms, ...
and so on.

2 Preliminaries

The equations for the motion of a nonhomogeneous incompressible fluid are as fol-
lows. Being Q C IR",n = 2 or 3, a C"'-regular bounded domain, 7' > 0, these
equations are

0
P V)u— V() (Vu+! Vu) + Vp = pf in 9,
divu = 0 in €,
u 0 on 0010, T,

p(z,0) = po(z) in
u(z,0) = wup(x) in €,

where [0,77] is the interval of time being considered; €2 is the container where the
fluid is in; u(x,t) € IR™ denotes the velocity of the fluid at point = € 2 and time
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t € [0, T[;p(x,t) € IR and p(z,t) € IR denote respectively, the density and the
hydrostatic pressure of the fluid; ug(z) and py(z) are the initial velocity and density
respectively; f(z,t) is the density by unit of mass of the external force acting on
the fluid and p(.) is the viscosity of fluid ; the fluid adheres to the wall 9Q of
the container which is at rest. The expressions V, A and div denote the gradient,

0
Laplacian and divergence operators, respectively (we also denote 8_1; by u;); the 7t
.. - auz o dp
component of u.Vu is given by [(u.V)u]; = > Ui and u.Vp =3 ujzr. The first
- T
J J

equation in (1.1) corresponds to the balance of linear momentum; the third equation
to the balance of mass and the second one states that fluid is incompressible. The
unknowns in the problem are u, p and p.

Let 2 C IR™, n =2 or 3, be a bounded domain with smooth boundary I" (class
Ch! is enough).

We will consider the usual Sobolev spaces

Wm’q(D) = {f - Lq(D), ||8af||Lq(D) < +OO, |Oé| S m}

m=0,1,2,...,1 < ¢ < 400, D=Qor Ox|0,T[, 0 < T < +o00, with the usual
norm. When ¢ = 2, we denote by H™(D) = W™?(D) and H*(D) = closure of
Cy°(D) in H™(D). If B is a Banach space, we denote by L?(0,7; B) the Banach
space of the B-valued functions defined in the interval [0, 7] that are L?-integrables
in the sense of Bochner. We shall consider the following spaces of divergence free
functions

CS?G(Q) ={ve (Cyr(2)" /dive=0 in Q},
H = closure of C§o(Q) in (L*(Q))",
V= closure of C§2(Q) in (H'(Q))"

Throughout the paper, P denotes the orthogonal projection from (L?*(£2))" into
H and A = —PA with D(A) =V N H?(Q) is the usual Stokes operator.

We will denote by ¢™(z) and A, the eigenfunction and eigenvalue of A. It is
well know that {¢"}>°, form an orthogonal complete system in the spaces H, V
and H?(Q) NV, with their usual inner products (u,v), (Vu, Vv) and (Au, Av) re-
spectively.

For each n € IN, we denote by P, the orthogonal projections from L?(2) onto
Vi = span{¢'(z),...,"(x)} . To more details on the Stokes operator see Temam
33].



We observe that for the regularity of the Stokes operator, it is usually assumed
that  is of class C?; this being in order to use Cattabriga’s results[9]. We use instead
the stronger results of Amrouche and Girault[1] which implies, in particular, that
when Au € L?(Q), then u € H?(Q) and ||u||g> and ||Au|| are equivalent norms when
Q is of Class C"'. Here || - || denotes the L?-norm; also in this paper we will denote
the inner product in L?(Q2) by (-, ).

The following assumptions on the initial data was employed by Lemoine[19] :
(A1) The initial value py belongs to C*(€2) and satisfies

min pg(z) > 0.
e

Hereafter he put M; = m1n po(x) and My = max po(x).
€Q

(A2) The initial value uo belongs to W2~ 2/‘1"1(9), where V.ug = 0,uglaq = 0 with
q > 3.

(A3) p e CH]0,00]), u(a) > py > 0 for all a > 0,

(A4) f € LU(Qr).

remark 2.1 Since p € C'(]0,00[),we have that for all T > 0 finite, there ewist
positives constants jug iy, 1ty such that

0 < < pfa) < po,
0 < py < pl(a) < ph

Under these hypotheses, he proved the following result:

Theorem 1 ([19], p.698). There exists Ty < T such that the equations (2.1) have
a solution (u, Vp, p) wich satisfies

u € Wi (@), Vp € LYQr,), p € CH(Qry).
Moreover, there exists R > 0 depending on ), u, T, py such that if

[fllzo@r) + [lwollwe-2raae) < R,



then (u, Vp, p) is a solution of (2.1) for Ty =T.

Here W2 (Q¢) denote the space of distributions u € L9(0, T; W9(Q)) such that
Owu € LI((Q);) with their natural norm.

We can rewrite the problem (2.1), by using the orthogonal projection P, as
follows

% +u.Vp = 0 (ae (x,t) € Q2x]0,T]),
P(p(t)g—? = V. ((ulp()(Vu +"'Vu))) = P(=p(t)u.Vu+ p(t)f) (2)
0 < t<T),
u(0) = uo(z),  p(x,0) = po().

or, equivalently

(pr+u-Vp=0 for (z,t) € Qx(0,7T),

(pu - Vu,v) + (1(p)(Vu +* Vu), Vo)

(put,v)—i- (3)
=(pf,v) for 0<t<T, YveV,

\ U(JI, 0) = UU(‘T)J p(.’E,O) = po(l', 0) = pO(:E)

The spectral semi-Galerkin approximations for (u, p) are defined for each n € N
as the solution (u", p") € C*([0,T1;V,) x CH(Qr,) of
(pp +u"-Vp" =0 for (z,t) € Qx(0,7),

(pul,v) + (p"u™ - Vu™, v) + (pu(p")(Vu" +* Vu™), Vo) (1)
=(p"f,v) for 0 <t <T, Yv eV,

u™(z,0) = Pyug(x), p"(x,0) = po(x),z € .

\

Applying the analogous arguments of Lemoine, we obtain

Corollary 2.2 The approximations of spectral semi-Galerkin satisfy the following
estimates uniform in n

V@) + [ () Par < €, )
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t
4@l < ¢ (6)
Il < C, ™
Vo ||z < C, (8)
Il < C. )

We note that whence p, u satifies (2.1)i, we have p, = —div(pu), then for v,w €
H'(Q), using integration by parts, result

(0, w) = —(div (pu)o,w) = (pu.Vo,w) + (pu. Ve, v). (10)
Also,
() = 2120 = L (pw, ) (1)
ty th 2 tw .

To prove our results we use the following results.
Lemma 2.3 Let u € V then the following estimate holds (see[25])
lullzs < Cllull2[[Vul]2.
Moreover, if uw €V N H*Q) (see [8])

lullz= < ClIVul] ]| Aul|*2.

Lemma 2.4 Let v € V N H?(Q) and consider the helmoltz decomposition of —/Awv,
that s,

—Av =Av+ Vg,

where ¢ € H'(Q) is taken such that [oqdx = 0 (recall that A is the Stokes
operator). Then, for every e > 0 there ezists a positive constant C. independent of
v such that the following estimate holds

lgll < Cel[ Vol + =l[Av]].



To prove our results we will precise more regularity on the initial data.
We assume the following
(A1) po € CHQ)
(A2 up € D(A)
(43)  feL*0,T; H'(Q)
(A4)  fe € L*(Qr).

With these regularity, we will prove the following more strong result.

Proposition 2.5 We assume (Al") , (A2'), (A3') and (A4"). The dimension of (2
may be two or three. The unique solution given by the Theorem 2.1 satisfies

pE Cl(ﬁ X [O,TU]),
u e L2([0,To]; D(A)),
ug € L°([0,Ty); H) N L*(0, Ty; V).

Moreover, there hold the following estimates uniformly in n for the approxima-
tions

t
l @1 + [ I7u2 () dr
sup [[Au” (1) "

VANVAN
Q Q
= =
RS

Proof the estimate (2.12):
Differentiating the velocity equation (2.4) with respect to ¢, we have

(i + pugy, v) = (V (' (p") i (V" +° V"), 0) = (V((u(p") (Ve + Vi), v)
= (' f0) + (" fr,0) = ("0 Vu")y, )
and setting v = u}(t) € V and using (2.11) with w = u},we have
1d

n n n n 7 n n n 1 n, n n
2 dtH(P )I/ZUt ||2 + || (ue(p )1/2vut ||2 = (Pt /5 Ut) + (p ftJUt) + _(Pt “ta“t)

2
—((p" "V u"), uf) + (W (") P} VU, Vug).
On the other hand,
((p"u".Vu"),up) = (ppu”. Vu, up) + (p"up . Vu™, up) + (p"u".Vuy, uy).
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Consequently,

) 2+ ) 2 rugup) = (prut.Vu", uyl)

N |

2 dt Pe
plug . Vu up) + (p"u" Vg, ul)
P}

(
—(
( ftaut) (p ftut)
+((1 (") o VU, Vi),

On the other hand, recalling the estimates (2.7) and (2.9), we have

_I_

(o, uf)l < llor el [P < O],

(0" fr,ui)l < o™ e uf L fell < Cllu|* + Cllf*
Also, using the Lemma 2.3
10" W oo [l o [V ][ || o
OlIva llug 2] Vg |2
CellVu | lluf I* + el Va1,

(" " Vi, uif)]

ININ TN

10" oo [l s [ V[ | o
Cllup ||V [[|Vug|[*2
CllVu|[Hlug|* + el Vuy|?,

|(P uy . Vu" Ut)|

IN AN A

and

107 [|zoe [[a™ || s V" [[[[ ] o

(. v u)| - <
< OVt + 2T

Choosing € = % and in (2.13) integrating of 0 to ¢, we obtain

6" @) 2 O + [ V() e
< ) 2 )1+ € [ ()
+O+cﬁnvwvmnwwmdf

t
< Clluf (O +C + 0/0 IVu™ (o)1l (7)[[*d7

9
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by using (2.5) and the hypotheses on f. From (2.2), easily we deduce

[y Q)] < CllA™(O)[] + ClAu™(O) [[|Vu™(0) ]| + Cllpg F(O)]
< C.

Consequently, since ||(p")Y2ul(t)[|? > M;||ul(t)||?, we have
t t
Ml @I+ [ V()P < €+ [ [Vur @) ux(r)|dr
and using the Gronwall’s inequality
t
My (O + o [ IV (r)]dr

<O x exp(/ot IV (1) |[*dr)
<C (15)

by virtue (2.5).
Proof the estimate (2.13):
Taking v = Au™ in (2.4), we find

—(V.((u(p" () (Vu" +' Vu")), Au") = (p"f, Au") — (p"uf, Au") — (p"u".Vu", Au")
Using the identity
V.((u(p" () (Vu" +' Vu™)) = p'(p")Vp" (Vu" +' Vu") + p(p") Au”. (16)

where Vp*(Vu" +¢ Vu™) denotes the vector field whose i component is given
by [Vp*(Vu" +! Vu™)]; = (Vp", Vul +! Vul') pn, we find

—(u(p")Au™, Au™) = (p"f, Au™) — (p"uy, Au") — (p"u".Vu", Au™)
+( (p")V ™ (Vu™ + Vu™), Au™)
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Since Au™ # —Au", we need the Helmholtz decomposition —Au" = Au" + V",
for some ¢" with [, ¢" =0, and the following estimates given by Lemma 2.4: there
exist C' > 0 and, for any ¢ > 0, C. > 0, constants independent of n and such that

lg"[] < Cel|[ V|| +f| Au”|| and [l¢"|}y < C[|Au”|]. (17)
Consequently,
(u(p™)Au™, Au™) = (p"f, Au") — (p"uy, Au") — (p"u".Vu", Au™)
+H(W (P)V " (Vu" +' V™), Au™) — (u(p") V", Au™)
We observe that, because divAu™ = 0,
(1(p")Vq", Au") = —(¢", divp(p") Au™) = —(q", p'(p")V p" Au").
Consequently, by using (2.16)

|(u(p")V g™, Aum)| - < i [lg" [IIV " || oe || Au”]
< Cllg"[[Vp™ || e[| Au™|
< C(CIVur + el Au DIV p" || oo [| Au™|
< CelIVp L IV |2 + 2Cl|V p" [ | Au™|*

Thus, we have
n 1 7l ‘ n 7l n
[Au"|| < E(Ilp Iz LFI] + Cllp" oo [[uf | + £ 1V " o0 V")
C ‘ n n C T n
10" |z lu" s [V |12 + — 1V 0" [T VU |1%.
M1 H1
Now, by using the Lemma 2.3,we have

C

P lloe [u" [ o[ V™[] o

IN

C 7 n n
1 e 1V 172 Aw |2

IN

C o 1
_ Oovn?) _An'
L S A BT
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Using the above estimate together with Corollary 2.2 , we obtain the estimate
(2.13).

From the above estimates follows the regularity of the solution (u, p) give by the
Proposition 2.5.

The following results can be found in Rautmann [26].

Lemma 2.6 Ifu €V and w € Hy(Q2), then there holds
2 1 2
[ = Pyul]” < Vull”.
An+1

Also, if u € VN H?*(Q) , we have

1

e~ Pl < 15
k+1

[t

1
IVu = VPl < || Aul?
k+1

3 L’-error estimates for velocity and L’-error es-
timates for density

From now on, for simplicity of notation, we will write Ty = T
In this section we give the H'-error estimate for the velocity and L"-error esti-
mate for density. The analysis is more difficult that in the case of constant viscosity

Let (u, p) be the strong solution of problem (2.2) (or (2.3)) given by PROPOSI-
TION 2.5 and (u", p™) the approximate solution of problem (2.4).
We define

w'=Pu—u", o"=p—p", n"=u-— P,u.
With these notations, we observe that w™ and o” satisfy the following equations

(pwit,v) + (p(p)Vw", Vo) = (6" f,v) + (6"u},v) — (6"u.Vu,v)
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—(p"w".Vu,v) — (p"u".Vw",v) = ((u(p) — p(p"))Vu", Vv)
—(pni',v) = (P"n"Vu,v) — (p"u" V", v) — (u(p) V", Vv) (3.1)

o +u".Vo" = —w".Vp—n"Vp. (3.2)

To obtain the H!-estimate, we will need the following Lemma.

Lemma 3.1 Under the conditions of Proposition 2.5, for 2 < r < 6, we have

W < [ (e

Lr)dT.

lo™ (¢ 2+ lln™(7)

Proof. Since  is bounded, we have L5 « L" for 2 < r < 6 , moreover it is
sufficient to prove the Lemma for » = 6.
Multiplying (3.2) by |¢"|® and integrating over (2, we obtain

1
6dt/ 0" 8dz = —/Qw".Vp|a”|5dx—é/Qu”.V|a”|6d:r—/Qn”.Vp|a”|5dx
1
< /|w"||Vp||a"|5dx+—/ div u”|a”|6dx—|—/ IV pllo™ P dae
Q 6 Ja Q
< IVelle= [ w0 Pde + Vol | nllo" Pda

C’{(/Q|w”|6dx>1/6+</ﬂ|77"|6dx>1/6}</ﬂ|a”|6dx>5/6

where we used the estimate (2.8). This implies

VAN

1d
510" lzs < Ol lus + [l [le)llo™ |z
but,
1d, , s Ao
& 0l = o™ 1 2 10" e

consequently, we obtain

d n n n
10" e < C(lw™|[ze + [In"||e).

Integrating from 0 to ¢ the last inequality and applying the Cauchy-Schwartz in-
equality, we have
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n t n t n
lo"@)llzs < C [ Nw(s)lzeds +C [ (s)lods.
0 0

Proposition 3.2 Under the hypotheses of Proposition 2.5, we have

Gi(t) n Gi(t)

t
@I + [ IV (s)Pds < 5+ T

Proof. Setting v = w"(¢) in (3.1), we get

Ld

S )20 P + o) 2V P =

—(pnt, w™). (3.4)

By using the Holder’s inequality and Sobolev imbedding H? < L>°, H' — L5,
we obtain the following estimates

|5 (™ wh) < Cllp | [Jw" |,
(0" fw™)| < Cello™ L [1flILs + el Ve |I%,
(0" u.Vu,w")| < Cello™ [P Aull* + [ V||,
(" w"™ Vu, w™)[ <l || lw" [[[[ Vel s ][] o
< Cellp"[Zee 1 Aul Pl 1* + £ Ve 1%,
[(p"u™ V™, w)| < Cellp [0 | Au™|P[lw"[]* + £l V|7,
(((u(p) = u(p) V", Vu)| < Cclo™||7a ]| Au™|)* + ]| Vo™ |1%,
(o, w™)] < Cellpllze I 1” + £ Ve 1%,
(o™ ugt, wh)] < Cello™P[lug I* + el V|7,
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(P Vu, w™)| < Cellp™ |7 | AulPl[n™]|* + el V™|,
[(p"u" V", w™)| = (" Vp"n",w") + (p"u" V", n")|
< Cllp"IP + IV IP) | Aul P [l" |17 + e[ Vw™|1?,
[(u(p) Vi, V™) < CL||Vi |2 +e||[Vuw" |2

By using the above estimates, Corollary 2.2 and the Proposition 2.5, we obtain

1 d n n n n n
5 7 l1(p) w2 + IIV I < Cllw™P+ CQ A+ [[uf M) llo™]* + Cllo™|IZs

2 dt
+C[" 1 + ClIV™ I + Cling 1.

Integrating in ¢ the last inequality, we get

0D 2 @ 4+ o [ V0" (5)Pds < o(0) 2 @) +C [l (s)]%ds
+C [N () e ds +-C [ s
+C [(IVds + ¢ [ (s) s
+C [ o) P+ ufl3e)ds  (35)

By other hand, using the Lemma 3.1, Young inequality and Lemma 2.6, we have

¢ [N 6)ds < ¢ [ {/ (o™ (DIl + [0 (7)) dr }ds.
") + () 3 dr
"IV @lldr +CT [ I IV o)ldr

n(7)||2dT+50T/ V" (r)|2dr

VA [
Q Q
~ ~
;\\lér\ﬁ
B ?

VA
S
~
é?‘}
T &

e [ @+t [ 19 @) |Pdr

VAN

C’T/ lw™ (7)) d¢+50T/ V" (7)||2dr

o [ Au) P+ 5 [ AutPar
n+1 n+1 0
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Also, the estimates given in Corollary 2.2 imply

or  Cr?
+ +5T/ IVw"(s)||2ds. (3.6)

)‘n—l—l )‘n+1

C [ No () uds < C.T [ [l (s)Pds + 5

This last estimate when is used in (3.5 ) furnishes

t c
Myl @ +po [ [V (s)Pds < € [l (s)]Pds + o +
0 )‘n-i-l Ant1

t
ver [/ ||Vw”(s)||2d8+—/ IV (s)|Pds.
0 Ant1 Jo

Taking ¢ = py/2T , after of use Gronwall’s inequality we obtain the estimate
(3.3).

(3.7)

Theorem 2 Suppose the assumptions of Proposition 2.5 hold. Then, the approxi-
mations u"satisfies

) = OIF + [ 19(3) = T ()]s < SO 4

for any ¢ € [0,7]. The continuous function G,(¢) depend on ¢ .
Proof. We have from the Lemma 2.6 and Proposition 3.2

| Au]? (3:8)

()~ wOIF + [ 1Vu(s) - Var(s)|Pds < [ @)1 + [ (IVwr(s)]ds

@I+ [ 19 2)ds

1 1
+

< (Galt) + AulP) (g + 5
n—+ n

).

Corollary 3.3 Under the hypotheses of the Proposition 2.5, we have for any 2 <
r<6

n 2 Gl(t)
ool < S

Aul|?
+ sl
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4 H'-error estimates for velocity.

Proposition 4.1 Under the hypotheses of Proposition 2.5, we have

! Gat) | Gs(t)
Vuw"(t 2—|—M/ w”(7)||2dr < =22+ : 4.9
Ivar? + o [ o par < 2O 4 S0 (19
Proof. Setting v = w}*(t) in (3.1 ), we obtain
1
1) 2w P + (e Ve, V) = 5 (o™ wf) + (0", wf) — (™., )
_(pnwn'vua w?) + (O—nu?7 w?) (410)

—(p"u" V", wi') — (((1(p) — u(p"))Vu", Vuy).

We observe that (u(p) V", Vwy) = 5 & ll(1(p)/* V' ||> =5 (1 (p) p. V™, Vo),
consequently in the last inequality we have

1d

— () V" |* =

/2, n2 | -~
o)t + 5

(pew”, wi) + (0" f, w}') — (0" u.Vu, wy)
(((u(p) = ulp") V", Vi) + (0" uf', wy')
—(p"u".Vuw", wy) — (p"w".Vu,wy) (4.11)

(W (p)pVw", V).

Now, we estimate the hand-rihgt side of the above inequality of the following
manner

1

5" wi)l < Cellplie[Jw|* + eflwr |,

(0" u.Vu,w)| < o™ |ellullpo [[Vullollwi | < Cello™ ||z | Aull* + &[lw? |,
<

(o™ frw)l < o™zl fellZsllwr | < Cello™[[Zall flle +ellwf'|[*.

Analogously,
(" w" Vu, wi)| < Cul|p | Do | Aul P Vo™ |* + '] %,
(0w, wi)| < Cello™ ||l Vag||* + eflw? |1,
("™ V" wi)| < Cel|p [ Lo | Au™ [ V™ [ + e lwp ||
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The other terms are estimate as follows

S V0" Vur)| < Sl [Vur?
[((1p) — w(p"))Vu", Vu)| < | pulp) — p(p") |os [[Vu"||s [[Vwy|]
< Cllo"||sl| Au™[[[| Vi
< Cllo" ||zl Au™{| (V|| + [V [])
[(e(p) V", Vw)| < [V [[[[ V||
< IV [V | + [[Vai]]).

By using the estimates from Proposition 2.5 | the above estimates together with
(4.3) imply the following integral inequality

t
pol Ve () + My [ [ () Par
<0 [ @I + IVe" @I + o (7) [3:)dr

+C [0 () lls + 197 (D) olr)dr

+C [ @) P+ 0 [ (r) s

where ¢(t) = [|[Vu||+||Vul|| , we observe that the estimate given in Proposition
2.5 implies ¢(.) € L?(0,T).

Applying the Proposition 3.2 and Corollary 3.4 we obtain the desired result
with Go(t) = TG1(t) + CGi(t) + CT and Gs(t) = (CGy(t) + C)/2®(t) , where
®(t) = (fo(¢(7))*dr)' /.

Theorem 3 Under the hypotheses of Proposition 2.5, we have

90— ) O1 + [ llus) = i s)] s (112

Gs(t) n Gs(t)
)\n+1 V )\n+1 .

for any t € [0,T]. The continuous function G5(t) depends on t.
Proof. We have from the Lemma 2.6 and Proposition 4.1
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19u(t) = V@I + [ llus) — b G Pds < (190" @1F + [ o2(r) s
HIVP @I+ [ () Par

< (Galt) + [AulP+ [ flur () )

Ga(t)
Vg

Corollary 4.2 Under the hypotheses of the Proposition 2.5, we have

1

)\n+1

_|_

Gilt) | Gslt)
)\n+1 V )\n+1 ’

for any t € [0,T]. The continuous function G4(t) and G5(t) depends on t.
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/Ot Au(r) — Au(r)|Pdr < (4.13)
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