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Abstrat

In this paper we �nd two distint ombinatorial interpretations for a family

of summations with several free parameters. In one ase we used partition

with attahed parts and in the other partitions with \N opies of N". There

are interesting speial ases inluding another desription for an in�nite family

of partitions identities in parts that are ongruent to j (mod k).

1 Introdution

In a series of two papers Slater, [5℄ and [6℄, gave more than one hundred identities.

To prove those identities it was fundamental the use of the q-anologue of Gauss

summation formula.
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where we use the standard notation

(A; q)

n

= (1� A)(1� Aq) : : : (1� Aq

n�1

)

and

(A; q)

1

=

1

Y

n=1

(1� Aq

n

); jqj < 1:

To prove our main theorem we use, also, this formula to get two distint de-

sriptions for partitions in parts that are ongruent to j (mod k).

Among the identities given by Slater are the two famous Rogers-Ramanujan

identities that were generalized by Gordon [3℄ in 1961.
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In a reent paper by Andrews and Santos [2℄ in 1997 a new family of partition

identities was given inluding two of the Stater's identitives as speial ases. In this

family there are desripitions of partitions with attahed odd parts.

In theorems 3.1 and 3.2 we have, also, results in whih attahed parts ours.

Some results in the theory of partitions have been obtained by using multisets.

Among them we have, due to MaMahon [4℄, that
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where �(n) denote the number of plane partition of n whih is equal to the number

of partitions of n with parts in the multiset
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In Setion 2 we give a ombinatorial interpretation for a sum with four free

parameters. In Setion 3 we have a ombinatorial interpretation, using attahed

parts for a speialization of the sum given in Setion 2. In Setion 4 we present our

main result. In Setion 5 we have some interesting speial ases.

2 Partitions with parts in multisets

.

We de�ne for l � 1; 1 � j < k and i � 2(l � 1) the following set:

A

i;j;k;l

= f(ak + rj + 2l � i� 1)

rj+2l�i�1

2M

0

ja; r � 0g :

Theorem 2.1 Let f(n) denote the number of partitions of n in distint parts

belonging to A

i;j;k;l

suh that when � = (ak + rj + 2l � i � 1)

rj+2l�i�1

and � =

(bk + sj + 2l � i� 1)

sj+2l�i�1

are onseutive parts, � > �; ak � (b + s)k + 2l:

Then,
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Proof. We de�ne f(m;n) to be the number of partitions of the type enumerated

by f(n) with the added restrition that the number of parts is exatly m. Then the

following equation is veri�ed by f(m;n):

f(m;n) = f(m;n� km) + f(m� 1; n� 2lm + i+ 1) + (2.2)

f(m;n� km + k � j)� f(m;n� 2km + k � j):

To prove this we split the partitions enumerated by f(m;n) into three lasses:

(a) those in whih there is no part of the form R

R

, (b) those in whih (2l�i�1)

2l�i�1

is a part and () those in whih R

R

is a part for R > 2l � i� 1.

If in those from lass (a) we substrat k from eah part without hanging the

subsript we are left with a partition of n � km in exatly m parts and these are

the ones enumerated by f(m;n� km). From those in lass (b) we drop the element

(2l � i � l)

2l�i�1

and subtrat 2l from eah of the remaining parts keeping the

subsript. In doing so we are left with a partition of n�2lm+ i+1 in exatly m�1

parts and these are the ones enumerated by f(m� 1; n� 2lm+ i+1). Finally from

those in lass () if we replae the element R

R

by (R� j)

(R�j)

and substrat k from

eah of the remaining parts without hanging the subsript, we get a partition of

n� km+ k � j whih is enumerated by f(m;n� km+ k � j). We have to observe

that by this transformation we get only those partitions of n � km + k � j into m

parts whih ontain a part of the form \R

R

" with R � 2l � i � 1. For this reason

the partitions of lass () an be put in an one to one orrespondene with those

that are enumerated by f(m;n� km+ k � j)� f(m;n� 2km + k � j).

The transformations just desribed are possible by the following reasons:

(i) the elements in lass (a) for not having part of the form \R

R

" all of its parts

are, then, of the form (ak + rj + 2l � i� 1)

rj+2l�i�1

with a � 1.

(ii) the parts of a partition in lass (b) that are distint from (2l � i � 1)

2l�i�1

are greater than or equal to 4l� i�1 beause of the restrition given in the theorem

i:e:, for (ak + rj + 2l � i� 1)

rj+2l�i�1

+ (2l � i� 1)

(2l�i�1)

we have ak � 2l.

(iii) due to the transformation done in lass (a) the partitions of n� km+ k� j

with m parts without having part of the form \R

R

" are enumerated by

f(m;n� 2km+ k � j).

Now we de�ne
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; q) + zq
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F (zq
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F (zq

2k

; q): (2.3)

Assuming that

F (z; q) =

1

X

n=0

(q; n)z

n

and using (2.3) we may ompare oeÆients of z

n

obtaining:

(q; n) = q

kn

(q; n) + q

2ln�i�1

(q; n� 1) + q

kn�k+j

(q; n)� q

2kn�k+j

(q; n)

i:e

(1� q

kn

� q

kn�k+j

+ q

2kn�k+j

)(q; n) = q

2ln�i�1

(q; n� 1):

Therefore,
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(q; n) =

q

2ln�i�1

(1� q

kn

)(1� q

kn�k+j

)

(q; n� 1) (2.4)

and observing that (q; 0) = 1 we may iterate (2.4) to get
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q
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:

From this
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and we an �nish the proof by observing that
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3 Partitions with attahed parts

.

If we take l = k on the right side of (2.1) we have

1
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(3.1)

In our next theorem we give a di�erent ombinatorial interpretation for(3.1). In

order to do this we de�ne for 1 � j < k and 2k � i� 1 � 1 the following sets:

B

i;j;k

= frk + j; (2 + s)k � (i + 1)jr; s � 0g

Theorem 3.1 Let h(n) denote the number of partitions of n with parts in B

i;j;k

whih satisfy:

(a) if \rk � (i+ 1)" and \sk � (i+ 1)" are parts then jr � sj � 2,

(b) tk+j is a part (repetitions allowed)only if \(t+1)k�(i+1)" or \(t+2)k�(i+1)"

ours as a part.

Then for 1 � j < k and 2k � i� 1 � 1 we have f(n) = h(n); i:e::
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where i 6= 2k � j � 1 and i 6= k � j � 1.

Proof. First we de�ne h(m;n) as the number of partitions of the type enumerated

by h(n) with the added ondition that the number of parts in eah partition is

exatly m.

Our goal is to prove that.

U
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(z) :=

1
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We have the following funtional equation:

V
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k
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=

1
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=

zq

2k�i�1
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V
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(zq

2k

)

that is,

V

i;j;k

(z) = V

i;j;k

(zq

k

) +

zq

2k�i�1

(1� zq

i

)(1� zq

k+j

)

V

i;j;k

(zq

2k

): (3.4)

We observe that (3.4), together with V

i;j;k

(0) = 1, uniquely determine V

i;j;k

(z)

as a double power series in z and q.

On the other side, due to the de�nition of B

i;j;k

and the ondition (b) of the

theorem, [

i;j;k

(z)�[

i;j;k

(zq

k

) enumerates all those partitions of the type enumerated

by [

i;j;k

(z) that ontain any number of j's attahed to an appearene of \2k�(i+1)"

or any (k+j)

0

s attahed to an appearene of \2k�(i+1)" and not to an appearene

of \3k � (i + 1)". This, together with ondition (a), tell us that the partitions in

[

i;j;k

(z)� [

i;j;k

(zq

k

) are generated by

zq

2k�i�1

(1� zq

j

)(1� zq

j+k

)

[

i;j;k

(zq

2k

):
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Considering that [

i;j;k

(0) = 1 we may onlude that (3.3) is true, and to �nish

the proof we just observe that
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m=0

h(m;n)q
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= [

i;j;k
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kn

2

+(k�i�1)n

(q

k

; q

k

)

n

(q

j

; q

k

)

n

:

2

In our next theorem we have a ombinatorial interpretation for the sum on

the right side of (3.2) for the ases not onsidered in the theorem (3.1), i:e, for

i = 2k � j � 1 and i = k � j � 1. To do this we de�ne

B

i;j;k

= f[(2 + s)k � (i + 1)℄

1

; [rk + j℄

2

jr; s � 0g:

Theorem 3.2 Let h(n) denote the number of partitions of n with parts in B

i;j;k

whih satisfy: (a) if [rk� (i+ 1)℄

1

and [sk� (i+1)℄

1

are parts then jr� sj � 2. (b)

[tk+j℄

2

is a part (repetitions allowed) only if [(tk+1)k�(i+1)℄

1

or [(t+2)k�(i+1)℄

1

ours as a part.

Then, for 1 � j < k and i = 2k � j � 1 or i = k � j � 1; f(n) = h(n).

The proof of this theorem follows by the same arguments used in the proof of

Theorem (3.1) just adding the subsript 1 to the elements sk � (i + 1) and the

subsript 2 to tk + j. For i = 2k � j � 1 we get
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h(n)q
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1
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q
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2

+(j�k)n
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j

; q

k

)

n

(q

k

; q

k

)
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(3.5)

and for i = k � j � 1

1

X

n=0

h(n)q

n

=

1

X
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q
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+jn

(q

j

; q

k

)
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(3.6)

4 The main theorem

If in (1:1) we make the following substitution q ! q

k

; a; b!1 and, after this, take

 = q

j

we have:

1
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q
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2

+(j�k)n
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j

; q
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)
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k

; q
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=
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(4.1)
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Note that the left side of (4:1) is the same as the right side of (3:5) This obser-

vation, together with Theorems 2.1 and 3.2, an be used to prove our next theorem.

In order to do that we de�ne

C

j;k

= f(ak + rj)

rj

2M

0

ja � 0; r � 1g:

We have to observe that this set C

j;k

is, in fat, the set A

i;j;k;l

for i = 2k� j � 1

and l = k.

De�ning g(n) as the number of partitions of n with parts ongruent to j (mod

k) we have:

Theorem 4.1 Let (n) be the number of partitions of n in distint parts belonging

to C

j;k

suh that when � = (ak + rj)

rj

and � = (bk + sj)

sj

are onseutive parts,

� > �; a > b+ s. Then for 1 � j < k we have

(n) = h(n) = g(n)

Proof. The fat that h(n) = g(n) follows from (4:1) and (3:5) and the equality

(n) = h(n) from Theorems 2.1 and 3.2

2

The table below has the partitions of 20 for j = 2 and k = 3 when i = 2k�j�1.

h(20) (20) g(20)

20

1

20

20

20

14

1

+ 2

2

+ 2

2

+ 2

1

20

14

14+2+2+2

11

1

+ 5

2

+ 2

2

+ 2

1

20

8

11+5+2+2

8

2

+ 8

1

+ 2

2

+ 2

1

20

2

8+8+2+2

8

1

+ 5

2

+ 5

2

+ 2

1

18

12

+ 2

2

8+5+5+2

8

1

+ 2

2

+ : : :+ 2

2

+ 2

1

18

6

+ 2

2

8 + 2 + 2 + : : :+ 2

5

2

+ 5

2

+ 2

2

+ : : :+ 2

2

+ 2

1

16

4

+ 4

4

5+5+5+5

5

2

+ 5

2

+ 5

2

+ 5

1

15

6

+ 5

2

5 + 5 + 2 + : : :+ 2

2

2

+ : : :+ 2

2

+ 2

1

14

2

+ 6

6

2 + 2 + : : :+ 2
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5 Partiular Cases

If we take i = 0; j = 1; k = 2 and l = 1 in Theorem 2.1 we have

1

X

n=0

q

n

2

(q; q)

2n

=

1

X

n=0

f(n)q

n

:

Considering that, by identity 79 of Slater [6℄, this sum is equal to:

1

Y

n=0

(1� q

20n�8

)(1� q

20n�12

)(1� q

20n

)(1 + q

2n�1

)

(1� q

2n

)

we have the following theorem:

Theorem 5.1 For i = 0; j = 1; k = 2 and l = 1 the number of partitions of n in

parts that are distint odd or even 6� 0;�8 (mod 20) is equal to f(n).

We illustrate this for n = 7

7

7

7

7

5

6+1

7

3

5+2

7

1

4+3

6

4

+ 1

1

4+2+1

6

2

+ 1

1

3+2+2

5

1

+ 2

2

2+2+2+1

We mention now an interesting ase that we get by taking i = 2; j = 1; k = l = 2

in Theorem 4.1. In this ase we have the identity

1

X

n=0

q

2n

2

�n

(q; q)

2n

=

1

(q; q

2

)

1

and from our Theorem 4.1 we get, by using Euler's theorem, the following result:

Theorem 5.2 The number of partitions of n in distint parts is equal to (n) for

i = 2; j = 1 and k = l = 2.

We illustrate this for n = 8
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8

8

8

8

6

7+1

8

4

6+2

8

2

5+3

7

3

+ 1

1

5+2+1

7

1

+ 1

1

4+3+1

Now, by taking i = j = 1 and k = l = 2 in (2:1), we get:

1

X

n=0

q

2n

2

(q; q)

2n

whih, by identity (39) of Slater [6℄, is equal to:

1

Y

n=1

(1 + q

8n�3

)(1 + q

8n�5

)(1� q

8n

)

(1� q

2n

)

For the ase we are onsidering the set of partitions enumerated by h(n) in our

Theorem 3.1 is exatly the same as C

2;2

(n) given in Theorem 1 of Andrews and

Santos [2℄ that is :

\the number of partitions of n wherein: 2 appears as a part at most 1 time, (b)

the total number of appearenes of 2j and 2j +2 together is at most 1 and ()2j +1

is allowed to appear (and may be repeated if it appears) only if the total number of

appearenes of 2j and 2j + 2 together is preisely 1"

and from these results we have proved the following theorem:

Theorem 5.3 The number of partitions of n into parts that are either even but

6� 0;�6; 8 (mod 16) or odd and � �3 (mod 8) is equal to the number of partitions

of n into parts that are even but 6� 0 (mod 8) or distint, odd and � �3 (mod 8)

and this number is, also, equal to h(n) and f(n).

The table below has the partitions of 10 in the order presented in the Theorem

5.3

5+5 10 10 10

10

5+3+2 6+4 8+2 10

8

4+4+2 6+2+2 6+2+1+1 10

6

4+3+3 5+3+2 4+3+3 10

4

4+2+2+2 4+4+2 3+3+2+1+1 10

2

3+3+2+2 4+2+2+2 3+2+1+...+1 8

4

+ 2

2

2+...+2 2+...+2 2+1+...+1 8

2

+ 2

2
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We mention that there are more sums in the literature that an be interpreted

by our results by partiular values of the parameters i; j; k and l. For instane the

ase i = �1; j = 1; k = 2 and l = 1 give us a ombinatorial interpretation for

identity (99) of Slater [6℄.
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