
A FAMILY OF PARTITIONS WITH ATTACHED

PARTS AND \N COPIES OF N"

Jos�e Pl��nio O. Santos

and

Paulo Mondek

Abstra
t

In this paper we �nd two distin
t 
ombinatorial interpretations for a family

of summations with several free parameters. In one 
ase we used partition

with atta
hed parts and in the other partitions with \N 
opies of N". There

are interesting spe
ial 
ases in
luding another des
ription for an in�nite family

of partitions identities in parts that are 
ongruent to j (mod k).

1 Introdu
tion

In a series of two papers Slater, [5℄ and [6℄, gave more than one hundred identities.

To prove those identities it was fundamental the use of the q-anologue of Gauss

summation formula.
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=
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(1.1)

where we use the standard notation

(A; q)

n

= (1� A)(1� Aq) : : : (1� Aq

n�1

)

and

(A; q)

1

=

1

Y

n=1

(1� Aq

n

); jqj < 1:

To prove our main theorem we use, also, this formula to get two distin
t de-

s
riptions for partitions in parts that are 
ongruent to j (mod k).

Among the identities given by Slater are the two famous Rogers-Ramanujan

identities that were generalized by Gordon [3℄ in 1961.
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In a re
ent paper by Andrews and Santos [2℄ in 1997 a new family of partition

identities was given in
luding two of the Stater's identitives as spe
ial 
ases. In this

family there are des
ripitions of partitions with atta
hed odd parts.

In theorems 3.1 and 3.2 we have, also, results in whi
h atta
hed parts o

urs.

Some results in the theory of partitions have been obtained by using multisets.

Among them we have, due to Ma
Mahon [4℄, that

1
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�(n)q

n

=

1

Y

n=1

1

(1� q
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)
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;

where �(n) denote the number of plane partition of n whi
h is equal to the number

of partitions of n with parts in the multiset

M

0

= f1

1

; 2

1

; 2

2

; 3

1

; 3

2

; 3

3

; 4

1

; 4

2

; 4

3

; 4

4

; :::g:

In Se
tion 2 we give a 
ombinatorial interpretation for a sum with four free

parameters. In Se
tion 3 we have a 
ombinatorial interpretation, using atta
hed

parts for a spe
ialization of the sum given in Se
tion 2. In Se
tion 4 we present our

main result. In Se
tion 5 we have some interesting spe
ial 
ases.

2 Partitions with parts in multisets

.

We de�ne for l � 1; 1 � j < k and i � 2(l � 1) the following set:

A

i;j;k;l

= f(ak + rj + 2l � i� 1)

rj+2l�i�1

2M

0

ja; r � 0g :

Theorem 2.1 Let f(n) denote the number of partitions of n in distin
t parts

belonging to A

i;j;k;l

su
h that when � = (ak + rj + 2l � i � 1)

rj+2l�i�1

and � =

(bk + sj + 2l � i� 1)

sj+2l�i�1

are 
onse
utive parts, � > �; ak � (b + s)k + 2l:

Then,

1

X

n=0

f(n)q

n
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+(l�i�1)n

(q
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n

(q

k

; q

k

)

n

(2.1)
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Proof. We de�ne f(m;n) to be the number of partitions of the type enumerated

by f(n) with the added restri
tion that the number of parts is exa
tly m. Then the

following equation is veri�ed by f(m;n):

f(m;n) = f(m;n� km) + f(m� 1; n� 2lm + i+ 1) + (2.2)

f(m;n� km + k � j)� f(m;n� 2km + k � j):

To prove this we split the partitions enumerated by f(m;n) into three 
lasses:

(a) those in whi
h there is no part of the form R

R

, (b) those in whi
h (2l�i�1)

2l�i�1

is a part and (
) those in whi
h R

R

is a part for R > 2l � i� 1.

If in those from 
lass (a) we substra
t k from ea
h part without 
hanging the

subs
ript we are left with a partition of n � km in exa
tly m parts and these are

the ones enumerated by f(m;n� km). From those in 
lass (b) we drop the element

(2l � i � l)

2l�i�1

and subtra
t 2l from ea
h of the remaining parts keeping the

subs
ript. In doing so we are left with a partition of n�2lm+ i+1 in exa
tly m�1

parts and these are the ones enumerated by f(m� 1; n� 2lm+ i+1). Finally from

those in 
lass (
) if we repla
e the element R

R

by (R� j)

(R�j)

and substra
t k from

ea
h of the remaining parts without 
hanging the subs
ript, we get a partition of

n� km+ k � j whi
h is enumerated by f(m;n� km+ k � j). We have to observe

that by this transformation we get only those partitions of n � km + k � j into m

parts whi
h 
ontain a part of the form \R

R

" with R � 2l � i � 1. For this reason

the partitions of 
lass (
) 
an be put in an one to one 
orresponden
e with those

that are enumerated by f(m;n� km+ k � j)� f(m;n� 2km + k � j).

The transformations just des
ribed are possible by the following reasons:

(i) the elements in 
lass (a) for not having part of the form \R

R

" all of its parts

are, then, of the form (ak + rj + 2l � i� 1)

rj+2l�i�1

with a � 1.

(ii) the parts of a partition in 
lass (b) that are distin
t from (2l � i � 1)

2l�i�1

are greater than or equal to 4l� i�1 be
ause of the restri
tion given in the theorem

i:e:, for (ak + rj + 2l � i� 1)

rj+2l�i�1

+ (2l � i� 1)

(2l�i�1)

we have ak � 2l.

(iii) due to the transformation done in 
lass (a) the partitions of n� km+ k� j

with m parts without having part of the form \R

R

" are enumerated by

f(m;n� 2km+ k � j).

Now we de�ne

3



F (z; q) =

1

X

n=0

1

X

m=0

f(m;n)z

m

q

n

and using (2.2) we get:

F (z; q) =

1

X

n=0

1

X

m=0

f(m;n� km)z

m

q

n

+

1

X

n=0

1

X

m=0

f(m� 1; n� 2lm+ i + 1)z

m

q

n

+

1

X

n=0

1

X

m=0

f(m;n� km + k � j)z

m

q

n

�

1

X

n=0

1

X

m=0

f(m;n� 2km+ k � j)z

m

q

n

=

1

X

n=0

1

X

m=0

f(m;n� km)(zq

k

)

m

q

n�km

+zq

2l�i�1

1

X

n=0

1

X

m=0

f(m� 1; n� 2lm + i+ 1)(zq

2l

)

m�1

q

n�2lm+i+1

+q

j�k

1

X

n=0

1

X

m=0

f(m;n� km + k � j)(zq

k

)

m

q

n�km+k�j

�q

j�k

1

X

n=0

1

X

m=0

f(m;n� 2km+ k � j)(zq

2k

)

m

q

n�2km+k�j

= F (zq

k

; q) + zq

2l�i�1

F (zq

2l

; q) + q

j�k

F (zq

k

; q)� q

j�k

F (zq

2k

; q): (2.3)

Assuming that

F (z; q) =

1

X

n=0


(q; n)z

n

and using (2.3) we may 
ompare 
oeÆ
ients of z

n

obtaining:


(q; n) = q

kn


(q; n) + q

2ln�i�1


(q; n� 1) + q

kn�k+j


(q; n)� q

2kn�k+j


(q; n)

i:e

(1� q

kn

� q

kn�k+j

+ q

2kn�k+j

)
(q; n) = q

2ln�i�1


(q; n� 1):

Therefore,
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(q; n) =

q

2ln�i�1

(1� q

kn

)(1� q

kn�k+j

)


(q; n� 1) (2.4)

and observing that 
(q; 0) = 1 we may iterate (2.4) to get


(q; n) =

q

ln

2

+(l�i�1)n

(q

j

; q

k

)

n

(q

k

; q

k

)

n

:

From this

F (z; q) =

1

X

n=0

q

ln

2

+(l�i�1)n

z

n

(q

j

; q

k

)

n

(q

k

; q

k

)

n

and we 
an �nish the proof by observing that

1

X

n=0

f(n)q

n

=

1

X

n=0

1

X

m=0

f(m;n)q

n

= F (1; q) =

1

X

n=0

q

ln

2

+(l�i�1)n

(q

j

; q

k

)

n

(q

k

; q

k

)

n

2

3 Partitions with atta
hed parts

.

If we take l = k on the right side of (2.1) we have

1

X

n=0

q

kn

2

+(k�i�1)n

(q

j

; q

k

)

n

(q

k

; q

k

)

n

(3.1)

In our next theorem we give a di�erent 
ombinatorial interpretation for(3.1). In

order to do this we de�ne for 1 � j < k and 2k � i� 1 � 1 the following sets:

B

i;j;k

= frk + j; (2 + s)k � (i + 1)jr; s � 0g

Theorem 3.1 Let h(n) denote the number of partitions of n with parts in B

i;j;k

whi
h satisfy:

(a) if \rk � (i+ 1)" and \sk � (i+ 1)" are parts then jr � sj � 2,

(b) tk+j is a part (repetitions allowed)only if \(t+1)k�(i+1)" or \(t+2)k�(i+1)"

o

urs as a part.

Then for 1 � j < k and 2k � i� 1 � 1 we have f(n) = h(n); i:e::
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1

X

n=0

f(n)q

n

=

1

X

n=0

h(n)q

n

=

1

X

n=0

q

kn

2

+(k�i�1)n

(q

j

; q

k

)

n

(q

k

; q

k

)

n

(3.2)

where i 6= 2k � j � 1 and i 6= k � j � 1.

Proof. First we de�ne h(m;n) as the number of partitions of the type enumerated

by h(n) with the added 
ondition that the number of parts in ea
h partition is

exa
tly m.

Our goal is to prove that.

U

i;j;k

(z) :=

1

X

n=0

1

X

m=0

h(m;n)z

m

q

n

=

1

X

n=0

z

n

q

kn

2

+(k�i�1)n

(zq

j

; q

k

)

n

(q

k

; q

k

)

n

:= V

i;j;k

(z) (3.3)

We have the following fun
tional equation:

V

i;j;k

(z)� V

i;j;k

(zq

k

) =

1

X

n=0

z

n

q

kn

2

+(k�i�1)n

(zq

k+j

; q

k

)

n�1

(q

k

; q

k

)

n

 

1

1� zq

j

�

q

kn

1� zq

kn+j

!

=

1

(1� zq

j

)(1� zq

k+j

)

1

X

n=1

z

n

q

kn

2

+(k�i�1)n

(zq

2k+j

; q

k

)

n�1

(q

k

; q

k

)

n�1

=

zq

2k�i�1

(1� zq

j

)(1� zq

k+j

)

V

i;j;k

(zq

2k

)

that is,

V

i;j;k

(z) = V

i;j;k

(zq

k

) +

zq

2k�i�1

(1� zq

i

)(1� zq

k+j

)

V

i;j;k

(zq

2k

): (3.4)

We observe that (3.4), together with V

i;j;k

(0) = 1, uniquely determine V

i;j;k

(z)

as a double power series in z and q.

On the other side, due to the de�nition of B

i;j;k

and the 
ondition (b) of the

theorem, [

i;j;k

(z)�[

i;j;k

(zq

k

) enumerates all those partitions of the type enumerated

by [

i;j;k

(z) that 
ontain any number of j's atta
hed to an appearen
e of \2k�(i+1)"

or any (k+j)

0

s atta
hed to an appearen
e of \2k�(i+1)" and not to an appearen
e

of \3k � (i + 1)". This, together with 
ondition (a), tell us that the partitions in

[

i;j;k

(z)� [

i;j;k

(zq

k

) are generated by

zq

2k�i�1

(1� zq

j

)(1� zq

j+k

)

[

i;j;k

(zq

2k

):
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Considering that [

i;j;k

(0) = 1 we may 
on
lude that (3.3) is true, and to �nish

the proof we just observe that

1

X

n=0

h(n)q

n

=

1

X

n=0

1

X

m=0

h(m;n)q

n

= [

i;j;k

(1) =

1

X

n=0

q

kn

2

+(k�i�1)n

(q

k

; q

k

)

n

(q

j

; q

k

)

n

:

2

In our next theorem we have a 
ombinatorial interpretation for the sum on

the right side of (3.2) for the 
ases not 
onsidered in the theorem (3.1), i:e, for

i = 2k � j � 1 and i = k � j � 1. To do this we de�ne

B

i;j;k

= f[(2 + s)k � (i + 1)℄

1

; [rk + j℄

2

jr; s � 0g:

Theorem 3.2 Let h(n) denote the number of partitions of n with parts in B

i;j;k

whi
h satisfy: (a) if [rk� (i+ 1)℄

1

and [sk� (i+1)℄

1

are parts then jr� sj � 2. (b)

[tk+j℄

2

is a part (repetitions allowed) only if [(tk+1)k�(i+1)℄

1

or [(t+2)k�(i+1)℄

1

o

urs as a part.

Then, for 1 � j < k and i = 2k � j � 1 or i = k � j � 1; f(n) = h(n).

The proof of this theorem follows by the same arguments used in the proof of

Theorem (3.1) just adding the subs
ript 1 to the elements sk � (i + 1) and the

subs
ript 2 to tk + j. For i = 2k � j � 1 we get

1

X

n=0

h(n)q

n

=

1

X

n=0

q

kn

2

+(j�k)n

(q

j

; q

k

)

n

(q

k

; q

k

)

n

(3.5)

and for i = k � j � 1

1

X

n=0

h(n)q

n

=

1

X

n=0

q

kn

2

+jn

(q

j

; q

k

)

n

(q

k

; q

k

)

n

(3.6)

4 The main theorem

If in (1:1) we make the following substitution q ! q

k

; a; b!1 and, after this, take


 = q

j

we have:

1

X

n=0

q

kn

2

+(j�k)n

(q

j

; q

k

)

n

(q

k

; q

k

)

n

=

1

(q

j

; q

k

)

1

(4.1)
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Note that the left side of (4:1) is the same as the right side of (3:5) This obser-

vation, together with Theorems 2.1 and 3.2, 
an be used to prove our next theorem.

In order to do that we de�ne

C

j;k

= f(ak + rj)

rj

2M

0

ja � 0; r � 1g:

We have to observe that this set C

j;k

is, in fa
t, the set A

i;j;k;l

for i = 2k� j � 1

and l = k.

De�ning g(n) as the number of partitions of n with parts 
ongruent to j (mod

k) we have:

Theorem 4.1 Let 
(n) be the number of partitions of n in distin
t parts belonging

to C

j;k

su
h that when � = (ak + rj)

rj

and � = (bk + sj)

sj

are 
onse
utive parts,

� > �; a > b+ s. Then for 1 � j < k we have


(n) = h(n) = g(n)

Proof. The fa
t that h(n) = g(n) follows from (4:1) and (3:5) and the equality


(n) = h(n) from Theorems 2.1 and 3.2

2

The table below has the partitions of 20 for j = 2 and k = 3 when i = 2k�j�1.

h(20) 
(20) g(20)

20

1

20

20

20

14

1

+ 2

2

+ 2

2

+ 2

1

20

14

14+2+2+2

11

1

+ 5

2

+ 2

2

+ 2

1

20

8

11+5+2+2

8

2

+ 8

1

+ 2

2

+ 2

1

20

2

8+8+2+2

8

1

+ 5

2

+ 5

2

+ 2

1

18

12

+ 2

2

8+5+5+2

8

1

+ 2

2

+ : : :+ 2

2

+ 2

1

18

6

+ 2

2

8 + 2 + 2 + : : :+ 2

5

2

+ 5

2

+ 2

2

+ : : :+ 2

2

+ 2

1

16

4

+ 4

4

5+5+5+5

5

2

+ 5

2

+ 5

2

+ 5

1

15

6

+ 5

2

5 + 5 + 2 + : : :+ 2

2

2

+ : : :+ 2

2

+ 2

1

14

2

+ 6

6

2 + 2 + : : :+ 2
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5 Parti
ular Cases

If we take i = 0; j = 1; k = 2 and l = 1 in Theorem 2.1 we have

1

X

n=0

q

n

2

(q; q)

2n

=

1

X

n=0

f(n)q

n

:

Considering that, by identity 79 of Slater [6℄, this sum is equal to:

1

Y

n=0

(1� q

20n�8

)(1� q

20n�12

)(1� q

20n

)(1 + q

2n�1

)

(1� q

2n

)

we have the following theorem:

Theorem 5.1 For i = 0; j = 1; k = 2 and l = 1 the number of partitions of n in

parts that are distin
t odd or even 6� 0;�8 (mod 20) is equal to f(n).

We illustrate this for n = 7

7

7

7

7

5

6+1

7

3

5+2

7

1

4+3

6

4

+ 1

1

4+2+1

6

2

+ 1

1

3+2+2

5

1

+ 2

2

2+2+2+1

We mention now an interesting 
ase that we get by taking i = 2; j = 1; k = l = 2

in Theorem 4.1. In this 
ase we have the identity

1

X

n=0

q

2n

2

�n

(q; q)

2n

=

1

(q; q

2

)

1

and from our Theorem 4.1 we get, by using Euler's theorem, the following result:

Theorem 5.2 The number of partitions of n in distin
t parts is equal to 
(n) for

i = 2; j = 1 and k = l = 2.

We illustrate this for n = 8
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8

8

8

8

6

7+1

8

4

6+2

8

2

5+3

7

3

+ 1

1

5+2+1

7

1

+ 1

1

4+3+1

Now, by taking i = j = 1 and k = l = 2 in (2:1), we get:

1

X

n=0

q

2n

2

(q; q)

2n

whi
h, by identity (39) of Slater [6℄, is equal to:

1

Y

n=1

(1 + q

8n�3

)(1 + q

8n�5

)(1� q

8n

)

(1� q

2n

)

For the 
ase we are 
onsidering the set of partitions enumerated by h(n) in our

Theorem 3.1 is exa
tly the same as C

2;2

(n) given in Theorem 1 of Andrews and

Santos [2℄ that is :

\the number of partitions of n wherein: 2 appears as a part at most 1 time, (b)

the total number of appearen
es of 2j and 2j +2 together is at most 1 and (
)2j +1

is allowed to appear (and may be repeated if it appears) only if the total number of

appearen
es of 2j and 2j + 2 together is pre
isely 1"

and from these results we have proved the following theorem:

Theorem 5.3 The number of partitions of n into parts that are either even but

6� 0;�6; 8 (mod 16) or odd and � �3 (mod 8) is equal to the number of partitions

of n into parts that are even but 6� 0 (mod 8) or distin
t, odd and � �3 (mod 8)

and this number is, also, equal to h(n) and f(n).

The table below has the partitions of 10 in the order presented in the Theorem

5.3

5+5 10 10 10

10

5+3+2 6+4 8+2 10

8

4+4+2 6+2+2 6+2+1+1 10

6

4+3+3 5+3+2 4+3+3 10

4

4+2+2+2 4+4+2 3+3+2+1+1 10

2

3+3+2+2 4+2+2+2 3+2+1+...+1 8

4

+ 2

2

2+...+2 2+...+2 2+1+...+1 8

2

+ 2

2
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We mention that there are more sums in the literature that 
an be interpreted

by our results by parti
ular values of the parameters i; j; k and l. For instan
e the


ase i = �1; j = 1; k = 2 and l = 1 give us a 
ombinatorial interpretation for

identity (99) of Slater [6℄.
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