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Abstract

In this paper we find two distinct combinatorial interpretations for a family
of summations with several free parameters. In one case we used partition
with attached parts and in the other partitions with “N copies of N”. There
are interesting special cases including another description for an infinite family
of partitions identities in parts that are congruent to j (mod k).

1 Introduction

In a series of two papers Slater, [5] and [6], gave more than one hundred identities.
To prove those identities it was fundamental the use of the g-anologue of Gauss
summation formula.
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where we use the standard notation
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and
(A@)oo = [] (1 — Ag™), |g < 1.
n=1

To prove our main theorem we use, also, this formula to get two distinct de-
scriptions for partitions in parts that are congruent to j (mod k).

Among the identities given by Slater are the two famous Rogers-Ramanujan
identities that were generalized by Gordon [3] in 1961.



In a recent paper by Andrews and Santos [2] in 1997 a new family of partition
identities was given including two of the Stater’s identitives as special cases. In this
family there are descripitions of partitions with attached odd parts.

In theorems 3.1 and 3.2 we have, also, results in which attached parts occurs.

Some results in the theory of partitions have been obtained by using multisets.
Among them we have, due to MacMahon [4], that
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where 7(n) denote the number of plane partition of n which is equal to the number
of partitions of n with parts in the multiset

MU - {117 217 227 317 327 337 417 427 437 447 }

In Section 2 we give a combinatorial interpretation for a sum with four free
parameters. In Section 3 we have a combinatorial interpretation, using attached
parts for a specialization of the sum given in Section 2. In Section 4 we present our

main result. In Section 5 we have some interesting special cases.

2 Partitions with parts in multisets

We define for [ > 1,1 < j < k and 7 < 2(l — 1) the following set:
Aijrg = {(ak +71j+20 —i —1)j091-5-1 € Mola,7 > 0} .

Theorem 2.1 Let f(n) denote the number of partitions of n in distinct parts

belonging to A;;k,; such that when o = (ak +7j +20 — i — 1),j49-i—1 and § =

(bk + sj +20 —i— 1)442—i—1 are consecutive parts, « > 3,ak > (b+ s)k + 2.
Then,
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Proof. We define f(m,n) to be the number of partitions of the type enumerated
by f(n) with the added restriction that the number of parts is exactly m. Then the
following equation is verified by f(m,n):

f(m,n) = f(m,n—km)+ f(m—1,n—=2lm+i+1)+ (2.2)
f(m,n—km+k—j)— f(m,n—2km+k —j).

To prove this we split the partitions enumerated by f(m,n) into three classes:
(a) those in which there is no part of the form Ry, (b) those in which (20 —i—1)9_;_1
is a part and (c) those in which Ry is a part for R > 2] — i — 1.

If in those from class (a) we substract k from each part without changing the
subscript we are left with a partition of n — km in exactly m parts and these are
the ones enumerated by f(m,n — km). From those in class (b) we drop the element
(20l — 1 — 1)y ;1 and subtract 2/ from each of the remaining parts keeping the
subscript. In doing so we are left with a partition of n —2lm +i+ 1 in exactly m —1
parts and these are the ones enumerated by f(m —1,n — 2lm +i+ 1). Finally from
those in class (c) if we replace the element Ry by (R — j)r—;) and substract & from
each of the remaining parts without changing the subscript, we get a partition of
n — km + k — j which is enumerated by f(m,n — km + k — j). We have to observe
that by this transformation we get only those partitions of n — km + k — j into m
parts which contain a part of the form “Rz” with R > 2] — ¢ — 1. For this reason
the partitions of class (c¢) can be put in an one to one correspondence with those
that are enumerated by f(m,n—km+k —j) — f(m,n —2km +k — j).

The transformations just described are possible by the following reasons:
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(i) the elements in class (a) for not having part of the form “Rjz” all of its parts
are, then, of the form (ak +rj+ 2l —i —1),j19;_1 with a > 1.

(ii) the parts of a partition in class (b) that are distinct from (20 — i — 1)9 ;1
are greater than or equal to 4/ —i —1 because of the restriction given in the theorem
i.e., for (ak +7j+ 20 — i — 1)pjpoi-1+ (20 — i — 1) (1) we have ak > 2.

(iii) due to the transformation done in class (a) the partitions of n —km +k —j
with m parts without having part of the form “Rp” are enumerated by
f(m,n —2km+k — j).

Now we define



and using (2.2) we get:
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= F(2¢";q) + 2" F(2¢*q) + ¢ " F (2" q) — ¢ F(2¢%;q).  (2.3)

Assuming that
F(zq) = > v(g,n)z"
n=0

and using (2.3) we may compare coefficients of 2™ obtaining:

2ln—i—1 kn—k+j _ 2kn—k+j

v(g,n) = ¢"v(q,n) + ¢ Y(g,n—1)+¢q (g, n) —q v(g,n)
7.e
(L= g™ =" 7 4 " F)y(g,n) = " y(g,m = 1),

Therefore,



2ln—i—1
q

= . -1 2.4
v(g,n) 0= = qkn_kﬂ)v(q, n—1) (2.4)
and observing that v(¢,0) = 1 we may iterate (2.4) to get
In?+(l—i—1)n
Ygn) = — N
(473 ¢*)n(q*; ¢*)n
From this
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and we can finish the proof by observing that
o0 0o 00 o] qln2+(l7i71)n
fn)q" = fm,n)q" = F(l;q) = :
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O
3 Partitions with attached parts
If we take [ = k on the right side of (2.1) we have
o0 kn?+(k—i—1)n
> (3.1)

=0 (@75 6%)n (4" ¢%)n
In our next theorem we give a different combinatorial interpretation for(3.1). In
order to do this we define for 1 < j < k and 2k — ¢ — 1 > 1 the following sets:

Bije=1{rk+j,2+s)k—(i+1)r,s >0}

Theorem 3.1 Let h(n) denote the number of partitions of n with parts in B;
which satisfy:

(a) if “rk — (i4+1)” and “sk — (¢ + 1)” are parts then |r — s| > 2,

(b) tk+7 is a part (repetitions allowed)only if “(¢+1)k—(i+1)” or “(t+2)k—(i+1)”
occurs as a part.

Then for 1 < j < k and 2k —i — 1 > 1 we have f(n) = h(n),i.e.:
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where i #2k —j—landi#k—j — 1.
Proof. First we define h(m,n) as the number of partitions of the type enumerated
by h(n) with the added condition that the number of parts in each partition is
exactly m.

Our goal is to prove that.

00 n kn?+(k—i—1)n

Uijr(z) == i i h(m,n)z"q" = Z -1

n=0m=0 n=0 (qu; qk)n(qka qk)n

= Vijw(2) (3-3)

We have the following functional equation:

. 00 ankn2+(k—i—1)n 1 qkn
Vi — Vi — . e .
Jk(Z) ,J,k(Zq ) 7;) (qu+g; q’“)nfl(q’“; q’“)n (1 — z2¢7 1— qun+j>
1 i ank;n2+(k7i71)n
(1= 2¢7) (1 = 2657 = (20275 ¢8) 1 (685 ¢F) s
2k—i—1
B cq - 2k
(1= 2¢9)(1 — zqkﬂ')‘/;’?’k(zq )
that is,
) sg?hil ok
Viik(2) = Vijr(2¢") + (1= 2q)(1 = quﬂ-)‘/%,j,k(zq ). (3.4)

We observe that (3.4), together with V;;(0) = 1, uniquely determine V; ; (%)
as a double power series in z and gq.

On the other side, due to the definition of B, ;j and the condition (b) of the
theorem, U, j x(2) —U; j 1 (2¢") enumerates all those partitions of the type enumerated
by U jx(2) that contain any number of j’s attached to an appearence of “2k—(i+1)”
or any (k+j)'s attached to an appearence of “2k —(i+1)” and not to an appearence
of “3k — (i +1)”. This, together with condition (a), tell us that the partitions in
Uijk(2) — Ui jx(2¢") are generated by

ZqQkfzfl

(1= 2¢7)(1 = zg7**

) Ui,j,k (zq%) .

6



Considering that U; jx(0) = 1 we may conclude that (3.3) is true, and to finish
the proof we just observe that

() 0o 00 00 qk;n2+(k;7i71)n
h(n)q" = h(m,n)q" =U; k(1) = . .
nz::o ") ,;n;o ) ikl nz;; (*: 4*)n(7; 4%)n

(|

In our next theorem we have a combinatorial interpretation for the sum on

the right side of (3.2) for the cases not considered in the theorem (3.1), i.e, for
1=2k—j7—1andi=Fk—j— 1. To do this we define

Bijr={[2+s)k—(i+ 1D, [rk + jlo|r,s > 0}.

Theorem 3.2 Let h(n) denote the number of partitions of n with parts in B, ;
which satisfy: (a) if [rk — (i +1)]; and [sk — (i + 1)]; are parts then |r —s| > 2. (b)
[tk+j]2 is a part (repetitions allowed) only if [(tk+1)k—(i+1)]; or [(t+2)k—(i+1)];
occurs as a part.

Then, for1 <j<kandi=2k—j—1lori=k—j—1, f(n) =h(n).

The proof of this theorem follows by the same arguments used in the proof of
Theorem (3.1) just adding the subscript 1 to the elements sk — (i + 1) and the
subscript 2 to tk 4+ j. For i =2k — j — 1 we get

0o o0 kn2+(j—k)n

S hin)g" = —1 (3.5)

n=0 n=0 (@5.0")n(d%5 ¢")n
and fort =k —j7—1

[eS) kn?+jn

i;h(n)qn S

= (@75 4)n(d%; 4% )n

(3.6)

4 The main theorem

If in (1.1) we make the following substitution ¢ — ¢*, a,b — oo and, after this, take
¢ = ¢’ we have:
kn2+(j—k)n 1

o0 q B
nzz‘; (@75 ¢")n(d*; %) (075 0%) oo (4.1)

7



Note that the left side of (4.1) is the same as the right side of (3.5) This obser-
vation, together with Theorems 2.1 and 3.2, can be used to prove our next theorem.
In order to do that we define

Cj,k = {(ak +’I“j)rj € M0|a > 0,’/“ > 1}.

We have to observe that this set C; is, in fact, the set A; ;; for i =2k —j -1
and [ = k.

Defining g(n) as the number of partitions of n with parts congruent to j (mod
k) we have:

Theorem 4.1 Let ¢(n) be the number of partitions of n in distinct parts belonging
to C,; such that when o = (ak + rj),; and § = (bk + sj)s; are consecutive parts,
a> f,a>b+s. Then for 1 < j < k we have

Proof. The fact that h(n) = g(n) follows from (4.1) and (3.5) and the equality
¢(n) = h(n) from Theorems 2.1 and 3.2

(|

The table below has the partitions of 20 for j = 2 and £ = 3 when ¢ = 2k —j —1.

h(20) ¢(20) 4(20)

20, 2040 20

14, 4+ 25 + 2, + 2, 20,4 14424242

11, 450 + 2, + 2, 205 11454242

8 + 8, + 2+ 2, 20, 8+8+2+42

81 + 5y + 5y + 21 1812 + 25 | 84+5+5+2

8142 +...+2+2; 1864+2 [8424+2+...+2
5o+ 5y +2 4+ ... 4+2+2 | 165 +44 | 5+54+5+5

59 + 5o + 5y + 5y 156+52 [54+54+2+...+2
Dot 29 +2 1454+ 66 |2424...42




5 Particular Cases

If we take 1 =0;5 =1;k =2 and [ =1 in Theorem 2.1 we have

2

i_O:O TS )

(G920 =
Considering that, by identity 79 of Slater [6], this sum is equal to:

(1 _ q20n—8)(1 _ q20n—12)(1 _ q20n)(1 + q2n—1)

1 =

we have the following theorem:

Theorem 5.1 Fori=0;5 =1;k =2 and [ = 1 the number of partitions of n in
parts that are distinct odd or even # 0,+8 (mod 20) is equal to f(n).
We illustrate this for n =7

I 7

75 6+1

73 o+2

71 443

64+ 1 4+2+1
62+ 1 342+2

91 + 2y 2424241

We mention now an interesting case that we get by taking: =2;j =1Lk=101=2
in Theorem 4.1. In this case we have the identity

o] q2n2—n 1

>y _

= (G D (¢ o

and from our Theorem 4.1 we get, by using Euler’s theorem, the following result:

Theorem 5.2 The number of partitions of n in distinct parts is equal to ¢(n) for
i=2j=1land k=1=2.
We illustrate this for n = 8



8g 8

86 7+1

84 642

89 543
73+ 1 5+2+1
7+ 1 44-3+1

Now, by taking i =j=1and k=1 =2in (2.1), we get:

00 2n?

q
= (¢:9)2n

which, by identity (39) of Slater [6], is equal to:
11 L+ ) A+ ¢ )1 - ¢*)
n=1 (]' o an)

For the case we are considering the set of partitions enumerated by h(n) in our

Theorem 3.1 is exactly the same as Cy2(n) given in Theorem 1 of Andrews and
Santos [2] that is :

“the number of partitions of n wherein: 2 appears as a part at most 1 time, (b)
the total number of appearences of 2j and 2j + 2 together is at most 1 and (¢)2j + 1
is allowed to appear (and may be repeated if it appears) only if the total number of
appearences of 25 and 2j + 2 together is precisely 17
and from these results we have proved the following theorem:

Theorem 5.3 The number of partitions of n into parts that are either even but
# 0,46,8 (mod 16) or odd and = £3 (mod 8) is equal to the number of partitions
of n into parts that are even but # 0 (mod 8) or distinct, odd and = £3 (mod 8)
and this number is, also, equal to h(n) and f(n).

The table below has the partitions of 10 in the order presented in the Theorem
5.3

5+5 10 10 1049
o+3+2 6-+4 8+2 10g
4+4+-2 6-+2+2 6+2+1+1 10¢
4+3+3 5+3+2 4+3+3 104

4424242 | 4+4+2 3+3+2+1+1 | 10,
3434242 | 4424242 | 34+2+14...4+1 | 84 + 25
24..42 24..42 24+1+...+1 8y + 29
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We mention that there are more sums in the literature that can be interpreted
by our results by particular values of the parameters ¢, 7,k and [. For instance the
case t = —1;5 = 1; k = 2 and [ = 1 give us a combinatorial interpretation for
identity (99) of Slater [6].
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