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Abstract

In this note we construct via an adaptation of Uhlenbeck’separation of
variables method (see, for example [22] and also [17] or [19]) families of explicit
examples of harmonic and non 4-holomorphic tori in complex Grassmann
manifolds.
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§1 Introduction

The modern study of hamonic surfaces in Riemannian homogeneous spaces started
with Calabi [8], Chern [9] and Eells [13] and now, after Uhlenbeck [23] is very well
understood in the case of harmonic maps from S? to a homogeneous symmetric
space. It was a very important step to complexity the problem, and this was done
by Eells-Wood [14], Din-Zakarewski [11] and Glaser-Stora [15].

Much less attention was given to the case where the target is a non homoge-
neous non-symmetric spaces like flag manifolds. Black’s book [2] discusses this case,
relating this study with the understanding of f-structures on flag manifolds which
is intimaly connected with the Eells-Wood’s Theorem, this study therefore gives a
natural relationship between Theory of twistors and harmonic maps into flags. The
main interest in this case relies heavily with its connection with symmetric spaces
like Grassmannians, as well their similarities with the variational approach to prob-
lems in low dimensional topology. For related material see, for example [1], [12] or
[20].

In this paper we give some explicit examples of harmonic and non £-holomorphic
tori on G, (@) for arbitrary values of 7,1 < r < mn — 1. There are several theories of



such tori in projective spaces as its is described by Burstall in [6] or Jensen-Liao in
[16]. The case Go(@") was discussed by Udagawa [21].
Let (Ly, Lo, ..., L,) an arbitrary element of F'(n). We define:

k(iy,izy... i) : F(n) — G,.@")
(Ll,LQ,...,Ln) — Lil /\LZ2 /\/\LZT
Now consider u = (11,72, ..., ;) : IR? = (F(n),ds}_,,,)) given by: m(z,y) =
exp(Bix + Bay).E;. exp(—Bix — Byy) with By, By € u(n) and [By, Bs] = 0. The
main result in this note is:

Theorem. There are infinitely many B, By like above, with [By, > A E;B1 E;]+
[BQ, E)\”EzBQE]] = 0 such that k(il, 19, ... ;ir) ou:T?— Gr(d:m) is harmonic and
non *+-holomorphic.

Using the above theorem, we can produce explicit families of harmonic and non
+-holomorphic tori in G, (@) for arbitrary values of r. In particular, these examples
generalize the tori in JRP™ obtained by Uhlenbeck in [22]. Here we complexify the
problem: we just see IRP" being totally geodesically embeded in@'P™ as the set of
real points.

These examples may be related to a Moser question as described by Uhlenbeck
in [22].
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§2 On the complex geometry of Grassmannians
and flag manifolds

The complex Grassmann manifold, denoted by Gi(@'™), can be seen as the homo-
geneous symmetric space obtained as a quotient of U(n) via its natural action on



Gr@™). We can easily see that the isotropy subgroup of such action can be consi-
dered as U(k) x U(n — k).
If we endow U(n) with its canonical Killing form metric (given by the trace)
U(n) ,
Uk) % U(n — k-))’ "
the well known Fubini-Studi metric. Throughout this paper, G@") is equipped
with this Kéhler metric (or a constant multiple of it).

We will now describe some basic properties enjoyed by the maximal flag manifold
U
F(n) = %, where T = U(1) x --- x U(1), is any maximal torus in U(n). It is

then the normal metric on G, @") <Wich is diffeomorphic to

"

n times

entirely similar to deal with the generalized flag manifold F(N;ry,...,7%) <Which

U(N) v e T — an
U(Tl)x"'XU(Tk)(T1+ + Tk N)> d F(k).

We consider now invariant almost complex structures J : p — p; J? = —1I. Borel

is diffeomorphic to

and Hirzebruch [5] showed that there are 2(3) such invariant structures.

Example 2.1. We consider n = 3 and J : p — p defined in the following way

0 a2 Q13 0 eiv—lay e2v/—lags
J —Q12 0 93 = g1V —1612 0 g3V —1a23
—a —Qa93 0 g9V —1613 g3V —1623 0

where ¢;, = £1,7 = 1,2 and 3. There are 2(3) = 93 — 8 distinct invariant almost
complex structures.

Such a choice clearly defines a tournament 7, with n players {1,2,...,n}. More
precisely, we define: J[(a;;)] = (aj;),1 <i# j < n where

1 —> ](Z < ]) ~ a;j = _]-aij
or
14— ](Z < ]) = a;j = —V —1%
. Hence there is a 1 — 1 correspondence between .J and 7.

Fixing the usual Hermitian inner product on @™ then @™ = @) E;. At the Lie
i=1
algebra level we have:
u(n)¥ =@, =2 Hom@",C") = (G/m) ®C" =
2E,®--0E,)0(E®--0E,) = ul)e - oul)d

"

n times



(@iq’ (EE; @ E]Ei)), where E; is equal to the subspace of @™ generated by e;.

Each real vector space D;; has two invariant almost complex structures.
According to [7], we see that any U(n)-invariant almost complex structure .J on
F(n) is characterized by choosing one of these two structures on each D;;. Let
u(n) 22 pt0 @ pO@b Then p9 = P E;E;. See [7] for more details.

1—]

In [4], Borel has studied the left invariant metrics on F'(n): let A and B in p

and consider the following collection of inner products:

<A, B>ds/2\ ) = Z tT‘()\Z]EZAE]B*),

=(A;j
where E; is the matrix with 1 in the (¢, 7)-position and zero elsewhere, \;; = A\;; > 0
and )\uzo,lgl,jgn

§3 Harmonic and £-holomorphic equations on F'(n)
Equi-harmonic maps

From now on, M will always denote a closed and oriented Riemann surface. Let b
M — U(n) be the lift map of ¢ : M — F(n), i.e. ¢ =mo¢ where 7:U(n) — F(n)
is the natural projection. Let eq,...,e, the canonical basis on@'".
We denote by 7; the matrix of the orthogonal projection onto the subspace of@™
generated by e; which is denoted by £E;. Then 7; : M — gl(n,0") =2 M(nxnQ) =0,
y y or;
satisfies that A%;(e1,...,e,) = (e1,...,e,)AY where AY = m%.
z
For Ve I'(¢p*T(F(n))) we set ¢ = ¢*B(V) where ¢*( : ¢*T(F(n)) — M x u(n)
is the pull-back of the Maurer-Cartan form on U(n). Define a variation of ¢ by:

¢i(w) 1= m(exp(—tq)e)

Denote its associate objects by m;(t), AY(t), etc. We have:

Lemma 3.1. 1) ér; = mi(t) = 7}, q]

0
0 om; 0q
2) a[ﬂ—])d = [a—;7Q] + [ﬂ—jaal

g 0 y y Jq
3) 0(AY) = % t—oAzJ (t) =[AY, q] — ﬂ'iaﬂ'j




Proof. See [17] or [18].

The Killing inner product on gl(n,0') is defined by:
(A,B) :=tr(A.B*),YA, B € gl(n0) =@,
It is easy to see that (A, B) = (B, A) and (A, [B,C]) = ([B*, A],C). In particular

we have:

(A, B) + (B, A) = 2Re(A, B).
Definition 3.2. Let ¢ = (m;) : M? — (F(n),ds3_,, 1)) We define the energy of ¢
as:
[ 30 ala7 2,
Let (¢;) the variation of ¢ above defined. Then

d o) 0 y
—= L 1) 2 _
0ty ) /Z/\”at‘ |AY (1) [P,

2Re [ 370 <A” ‘ A% (1 > v, =
M
ij oA dq
_2Re/ >N AY [ Aj,q]—ma—wj Vg
z

1d
2dt |-

—Re/ S i (A7 [AY ]y,

= —Re /M Z )\ij <Aij, Wi%ﬂ'j> Ug

But we can prove that I =0 (See [17] or [18] for details). On the other hand, if we
use Stokes’theorem we have:

I = —Re/ Z)\”<AU ‘9q> v, =

0z

DAY 0
= Re/ Z)‘Zﬂ< - >—R6/M2Aij£<14zaq>v;]
A

= Re/M< o ,q> vg, where A} =" \;AY

5

so we obtain: —5E((5¢) (¢t) = [ + II where




A}

o : M — u(n).
Proposition 3.3. ¢ = (m)i, : (M,g) — (F(n),ds3_, )) is harmonic if, and only
AN QAR
if aa—; ayy = 0 where A% := % )\”m 87r] AA > )\”m

Proof. In fact

- o)
) o,
= -4 )+a—y)(A ) + (%)

1
where Aii
\/_ Z J (

SNAETER

Definition 3.4. Let Fy and E5 denote the 0-and O-energy respectively, defined
by:

A” 0AY )
because \;; = Aj;.

)= [ Nl AVE, and Ep(9) =3 [ AlAZL

1—] 1—]

Therefore ¢ = (m,...,m,) : (M?* J;) — (F(n),J) is holomorphic with
respect to the almost complex structure determined by 7, if, and only if F5(¢) =

Z/ Nij| A2 Pu, = 0 ie. AY AT = 0,Vi — j.

1—]

Definition 3.5. A map ¢ : M? — G/H with a non-empty set of G-invariant me-
trics is said to be equi-harmonic if it is harmonic with respect to each G-invariant
metric on G/H.

We now consider the family of Borel-type metrics in F'(n) (i.e. metrics U(n)-
invariants) and ¢ = (m); : M? — F(n) = U(n)/T an equi-harmonic map. We
define:

k(il;i2;"'yi7‘) : F(n) — GT( n) by :
(Ll,LQ,...,Ln) — Li1 /\LZ'2 /\/\LM

6



where 1 <4 <t <+ <1 <.

Theorem 3.6 ([2]) The map kg, .5 0¥ : (M?g) = (G,@"), Killing form
metric) is harmonic.

Proof: See [2] for details.

§4 Examples of tori in G, (")

We will produce families of harmonic and non #-holomorphic tori in G,(@") for
arbitrary values of r. For r = 1 we will see that all these examples have according
to Chern-Wolfson [10] Kéhler angle 0.

Our method was based on Uhlenbeck’s one as it is given in [22].

Suppose ¢ = (my,...,m,) : IR* — F(n) is defined by: ¢ = wo ¢ where gg(x, y) =
exp(Byx + Byy), B, By € u(n) and [By, By] = 0. Then:

¢(x,y) = exp(Bay) exp(B1v)

06 -~
9 ¢B,
a&k _ agg ’ _ e
or (%) =—Bie
87@- 8 ~ ~ ~ ~ . 877'1- ~ ~
S 2 %) — 1% [ — OF. 1% —
Therefore = D (¢.E;.¢%) = ¢ B, Ej]¢*. So Al' =, 9 OE;[By, Ei]¢

OF; B, E;¢*. Similarly: Ai = ¢F,; B, E;¢*. Hence
E;B\E;¢". Similarly: AJi = 3B, ¢, H

L - 1
AY = ¢FE;xFE;¢* where x = §(Bl —V—1By)

Now we can investigate the harmonicity of ¢. We have:

aA;] 0~ e e e
5 = 9p PEiBLE;¢") = ¢ B1, BB Ej]é
and y
gAY .
L = 3By, EiB,E,)0

Therefore according to Proposition 3.3 we have:



Proposition 4.1. Suppose that ¢ : IR* — F(n) is doubly periodic. Then ¢ is
harmonic with respect to ds?\:()\m if, and only if

We can now prove the following result:

Theorem 4.2. Let ay,...,ax,01,...,0 € @ — {0} and

(0 1 L (X0
(0 a) ()

X 0 n
B2-:<67 >,j:1,...,k<—.
0 Oth

We consider

B}
B, =v-1 B
0
B}
B, =-1 B
0

Then:
(i) ¢(x,y) = w(exp(Bix + Byy)) is doubly periodic.
(i) ¢ : T? — F(n) is equi-harmonic.



Proof: (i) Forle {1,2,...}

al X!
pX!
By = (V=1
where X! = { .lfl Is odd
I, iflis even
1 0
Wher612:<0 1).
So
2,2
exp(Bix) =1 + Bz + ;' 4.
cosayxls
cos (rxlsy
sin a; X
sin Gy X

+V/-1

al X!
s
0
cos ozl
cos Brxly
0
sin apr X
sin Bpx X

0

Combining with [By, Bs] = 0, there exists a v € () — {0} such that




é(x 4 2mnv, y + 2mnv) = ¢z, y).

Hence we have

2 B2

“mzez) ™

o:T

(ii) For any left-invariant metric ds3 on F(n) we have

041>\12X
BrAza X
QpAak—3,4k—2X
Y NijBEiBIEj = v-1 BrAak—1,46X
0
0
SO
OJ%OQQXZ
BiAza X?
A ap—3,4k—2X >
Bi(>_ MijEiB\Ej) = — Birak 1,46 X>
0

== (Z )\szzBlEj)Bl) So [Bl, Z )\zyEzBlE]] = 0. Slmllarly we have [Bg, Z )\”ElBgEJ] =
0. Therefore according to Proposition 4.1 we see that ¢ is equi-harmonic.

Theorem 4.3. Let aq,..., o € Q —{0},2k <n, X = < (1) é ) and

10




Ole

OfQX
B1 = B2 = Oth
0
0
Then ¢ : T? — F(n)
(x,y) — m(exp(By(x + y))) is an equi-harmonic map.
Proof: We proceed like in the prove of Theorem 4.2.
0100
1 000
Theorem 4.4. Let a; =y =--- =, € R—{0},2k <n,X = 00 0 1
0 010
and
OélX
OélX
Bl = B2 = Ole
0
0

Then ¢ : T? — F(n) defined by:
(x,y) — m(exp(Bi(x + y))) is an equi-harmonic map.

Proof: Just use proposition 4.1.

We are now in the position of stating and prove the main result of this note:
Theorem 4.5. Let ¢ = (m1,..., T, .., T s..., 7)o T — F(n) families of equi-
harmonic tori as in theorems 4.2, 4.3 or 4.4 and i, <n V « € [1,r] N IN. Then
u=Fkg iy iy =my A A A, 2 T? = G, (@) is a full harmonic map but

not £-holomorphic.

11



Proof: Since ¢ is equi-harmonic we can use Theorem 3.6 and we obtain that u is
harmonic.

On the other hand:

ou i on;, on;,
ﬂ-ilfl_—i_,ﬂ—ilfl +”'+7ri171

Ty —17= = — —
"oz Z 0z

4=l
_AE ’

which is non-zero in any example so a—Q_L # 0. Similarly a—u # 0. So u is not +-
Z z

holomorphic.

We will now consider = 1. Therefore in this case we have 7; : T? —@'P" 1,1 <
i < 4k.

Let dA the area form on T2 defined by 7} (ds?p.—.) and the orientation of M
and let S;, = {z € T? dA(z) = 0}.

The Kéhler angle of 7; is a function on 7% — S, which takes values in [0, 7]: it
is defined by 77Q = cos 0dA where Q is the Kéhler form on@'P" !,

We can prove that 6 = 0 if, and only if 7; is +-holomorphic and 0 = = if, and
only if 7; is —-holomorphic. Therefore the Kéhler angle gives a measurament of the
distance that our function from a #£-holomorphic one.

Definition 4.6. We say that m; : T? —@'P"~! is totally real or weakly Lagrangian
or super-conformal if § = 7/2.

Proposition 4.7. Every ¢ = m; : 7% —@P" full harmonic but not £-holomorphic
map obtained applying theorem 4.5 is totally real.

Proof: Is is known that ¢*Q = (|AY| — |A2|?).dA then cosf = |AY| — |AY|2. But:

|AD 2 = (AY, AY) = (WEXE)", Yy EXE") =
tr(YEX B0 E; X *Exp* Ex*) = (E; X E;, B; X E;)

1 1, i
But EZXE] = iEl(Bl -V _]_BQ)E] == E(Bi] -V —lB;J)
Without loss of generality we can assume ¢ = 7;. Therefore:

[AZ[* = D _(BixE), BEaxEj) = 5 S_(1BYP+]B,'). Similarly |AZ | = 3 > (1B [+

=2
Byp. ] ]
Therefore cos# = |AY|? — |AY|? = 0 then # = 7/2 i.e. ¢ is weakly Lagrangian.

12



Remark 4.8. e [t is a nice question to classify every tori obtained via this adpted
Uhlenbeck’s separation of variables argument.

e It will be interesting to understand the stability properties of these tori in

G.@m).

e We notice that in particular the harmonic, totally real tori in 'P™ found
here could only exist if n > 3. This fact was expected since they are not
+-holomorphic neither satisfy Toda’s equations [3].
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