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variables method (see, for example [22℄ and also [17℄ or [19℄) families of expliit
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x1 Introdution

The modern study of hamoni surfaes in Riemannian homogeneous spaes started

with Calabi [8℄, Chern [9℄ and Eells [13℄ and now, after Uhlenbek [23℄ is very well

understood in the ase of harmoni maps from S

2

to a homogeneous symmetri

spae. It was a very important step to omplexity the problem, and this was done

by Eells-Wood [14℄, Din-Zakarewski [11℄ and Glaser-Stora [15℄.

Muh less attention was given to the ase where the target is a non homoge-

neous non-symmetri spaes like ag manifolds. Blak's book [2℄ disusses this ase,

relating this study with the understanding of f -strutures on ag manifolds whih

is intimaly onneted with the Eells-Wood's Theorem, this study therefore gives a

natural relationship between Theory of twistors and harmoni maps into ags. The

main interest in this ase relies heavily with its onnetion with symmetri spaes

like Grassmannians, as well their similarities with the variational approah to prob-

lems in low dimensional topology. For related material see, for example [1℄, [12℄ or

[20℄.

In this paper we give some expliit examples of harmoni and non�-holomorphi

tori on G

r

(IC

n

) for arbitrary values of r; 1 � r � n� 1. There are several theories of
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suh tori in projetive spaes as its is desribed by Burstall in [6℄ or Jensen-Liao in

[16℄. The ase G

2

(IC

n

) was disussed by Udagawa [21℄.

Let (L

1

; L

2

; : : : ; L

n

) an arbitrary element of F (n). We de�ne:

k(i

1

; i

2

; : : : ; i

r

) : F (n) �! G

r

(IC

n

)

(L

1

; L

2

; : : : ; L

n

) 7�! L

i

1

^ L

i

2

^ : : : ^ L

i

r

Now onsider u = (�

1

; �

2

; : : : ; �

n

) : IR

2

! (F (n); ds

2

^=(�

ij

)

) given by: �

i

(x; y) =

exp(B

1

x + B

2

y):E

i

: exp(�B

1

x � B

2

y) with B

1

; B

2

2 u(n) and [B

1

; B

2

℄ = 0. The

main result in this note is:

Theorem. There are in�nitely many B

1

; B

2

like above, with [B

1

;

P

�

ij

E

i

B

1

E

j

℄+

[B

2

;

P

�

ij

E

i

B

2

E

j

℄ = 0 suh that k(i

1

; i

2

; : : : ; i

r

) Æ u : T

2

! G

r

(IC

n

) is harmoni and

non �-holomorphi.

Using the above theorem, we an produe expliit families of harmoni and non

�-holomorphi tori in G

r

(IC

n

) for arbitrary values of r. In partiular, these examples

generalize the tori in IRP

n

obtained by Uhlenbek in [22℄. Here we omplexify the

problem: we just see IRP

n

being totally geodesially embeded in ICP

n

as the set of

real points.

These examples may be related to a Moser question as desribed by Uhlenbek

in [22℄.
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x2 On the omplex geometry of Grassmannians

and ag manifolds

The omplex Grassmann manifold, denoted by G

k

(IC

n

), an be seen as the homo-

geneous symmetri spae obtained as a quotient of U(n) via its natural ation on
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G

k

(IC

n

). We an easily see that the isotropy subgroup of suh ation an be onsi-

dered as U(k)� U(n� k).

If we endow U(n) with its anonial Killing form metri (given by the trae)

then the normal metri on G

k

(IC

n

)

�

wih is di�eomorphi to

U(n)

U(k)� U(n� k)

�

, is

the well known Fubini-Studi metri. Throughout this paper, G

k

(IC

n

) is equipped

with this K�ahler metri (or a onstant multiple of it).

We will now desribe some basi properties enjoyed by the maximal ag manifold

F (n) =

U(n)

T

, where T = U(1)� � � � � U(1)

| {z }

n times

, is any maximal torus in U(n). It is

entirely similar to deal with the generalized ag manifold F (N ; r

1

; : : : ; r

k

)

�

whih

is di�eomorphi to

U(N)

U(r

1

)� � � � � U(r

k

)

(r

1

+ � � �+ r

k

= N)

�

and F (k).

We onsider now invariant almost omplex strutures J : p! p; J

2

= �I. Borel

and Hirzebruh [5℄ showed that there are 2

(

n

2

)

suh invariant strutures.

Example 2.1. We onsider n = 3 and J : p! p de�ned in the following way

J

2

6

4

0

B

�

0 a

12

a

13

�a

12

0 a

23

�a

13

�a

23

0

1

C

A

3

7

5

=

0

B

�

0 "

1

p

�1a

12

"

2

p

�1a

13

"

1

p

�1a

12

0 "

3

p

�1a

23

"

2

p

�1a

13

"

3

p

�1a

23

0

1

C

A

where "

i

= �1; i = 1; 2 and 3. There are 2

(

3

2

)

= 2

3

= 8 distint invariant almost

omplex strutures.

Suh a hoie learly de�nes a tournament �

J

with n players f1; 2; : : : ; ng. More

preisely, we de�ne: J [(a

ij

)℄ = (a

0

ij

); 1 � i 6= j � n where

i! j(i < j), a

0

ij

=

p

�1a

ij

or

i j(i < j), a

0

ij

= �

p

�1a

ij

:

. Hene there is a 1� 1 orrespondene between J and �

J

.

Fixing the usual Hermitian inner produt on IC

n

then IC

n

=

n

M

i=1

E

i

. At the Lie

algebra level we have:

u(n)

IC

�

=

IC

n

�

=

Hom(IC

n

; C

n

)

�

=

(IC

n

)

�


 C

n

�

=

�

=

(E

1

� � � � � E

n

)
 (E

1

� � � � � E

n

)

�

=

(u(1)� � � � � u(1)

| {z }

n times

)�
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�

�

i<j

(E

i

E

j

� E

j

E

i

)

�

, where E

i

is equal to the subspae of IC

n

generated by e

i

.

Eah real vetor spae D

ij

has two invariant almost omplex strutures.

Aording to [7℄, we see that any U(n)-invariant almost omplex struture J on

F (n) is haraterized by hoosing one of these two strutures on eah D

ij

. Let

u(n)

IC

�

=

p

(1;0)

� p

(0;1)

. Then p

(1;0)

=

M

i!j

E

i

E

j

. See [7℄ for more details.

In [4℄, Borel has studied the left invariant metris on F (n): let A and B in p

and onsider the following olletion of inner produts:

hA;Bi

ds

2

�=(�

ij

)

:=

X

tr(�

ij

E

i

AE

j

B

�

);

where E

i

is the matrix with 1 in the (i; i)-position and zero elsewhere, �

ij

= �

ji

> 0

and �

ii

= 0; 1 � i; j � n.

x3 Harmoni and �-holomorphi equations on F (n)

Equi-harmoni maps

From now on, M will always denote a losed and oriented Riemann surfae. Let

~

� :

M ! U(n) be the lift map of � :M ! F (n), i.e. � = � Æ

e

� where � : U(n)! F (n)

is the natural projetion. Let e

1

; : : : ; e

n

the anonial basis on IC

n

.

We denote by �

j

the matrix of the orthogonal projetion onto the subspae of IC

n

generated by e

j

whih is denoted by E

j

. Then �

j

:M ! gl(n; IC)

�

=

M(n�n; IC) = IC

n

satis�es that A

0

ji

(e

1

; : : : ; e

n

) = (e

1

; : : : ; e

n

)A

ij

z

where A

ij

z

= �

i

��

j

�z

.

For V 2 �(�

�

T (F (n))) we set q = �

�

�(V ) where �

�

� : �

�

T (F (n))! M � u(n)

is the pull-bak of the Maurer-Cartan form on U(n). De�ne a variation of � by:

�

t

(x) := �(exp(�tq)

~

�)

Denote its assoiate objets by �

j

(t); A

ij

z

(t), et. We have:

Lemma 3.1. 1) Æ�

j

=

�

�t

�

�

�

�

t=0

�

j

(t) = [�

j

; q℄

2)

�

�z

[�

j

; q℄ =

"

��

j

�z

; q

#

+

"

�

j

;

�q

�z

#

3) Æ(A

ij

z

) =

�

�t

�

�

�

�

t=0

A

ij

z

(t) = [A

ij

z

; q℄� �

i

�q

�z

�

j
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Proof. See [17℄ or [18℄.

The Killing inner produt on gl(n; IC) is de�ned by:

hA;Bi := tr(A:B

�

); 8A;B 2 gl(n; IC)

�

=

IC

n

It is easy to see that hA;Bi = hB;Ai and hA; [B;C℄i = h[B

�

; A℄; Ci. In partiular

we have:

hA;Bi+ hB;Ai = 2RehA;Bi:

De�nition 3.2. Let � = (�

i

) :M

2

! (F (n); ds

2

�=(�

ij

)

). We de�ne the energy of �

as:

E(�) :=

Z

M

X

�

ij

jA

ij

z

j

2

v

g

:

Let (�

t

) the variation of � above de�ned. Then

d

dt

�

�

�

�

t=0

E(�

t

) =

Z

M

X

�

ij

�

�t

�

�

�

�

t=0

jA

ij

z

(t)j

2

v

g

=

2Re

Z

M

X

�

ij

*

A

ij

z

;

�

�t

�

�

�

�

t=0

A

ij

z

(t)

+

v

g

=

= 2Re

Z

M

X

�

ij

*

A

ij

z

; [A

ij

z

; q℄� �

i

�q

�z

�

j

+

v

g

so we obtain:

1

2

ÆE(Æ�) =

1

2

d

dt

�

�

�

�

t=0

E(�

t

) = I + II where

I = Re

Z

M

X

�

ij

hA

ij

z

; [A

ij

z

; q℄iv

g

II = �Re

Z

M

X

�

ij

*

A

ij

z

; �

i

�q

�z

�

j

+

v

g

But we an prove that I = 0 (See [17℄ or [18℄ for details). On the other hand, if we

use Stokes'theorem we have:

II = �Re

Z

M

X

�

ij

*

A

ij

z

;

�q

�z

+

v

g

=

= Re

Z

M

X

�

ij

*

�A

ij

z

�z

; q

+

� Re

Z

M

X

�

ij

�

�z

hA

z

; qiV

g

= Re

Z

M

*

�A

�

z

�z

; q

+

v

g

; where A

�

z

:=

X

�

ij

A

ij

z

5



and

�A

�

z

�z

:M ! u(n).

Proposition 3.3. � = (�

i

)

n

i=1

: (M; g)! (F (n); ds

2

�=(�

ij

)

) is harmoni if, and only

if

�A

�

x

�x

+

�A

�

y

�y

= 0 where A

�

x

:=

P

�

ij

�

i

��

j

�x

; A

�

y

:=

X

�

ij

�

i

��

j

�y

.

Proof. In fat

4

�A

�

z

�z

=

X

�

ij

 

�

�x

+

p

�1

�

�y

!

(A

ij

x

�

p

�1A

ij

y

) =

=

�

�x

(A

�

x

) +

�

�y

)(A

�

y

) + (�)

where

1

p

�1

(�) =

X

�

ij

 

�A

ij

x

�y

�

�A

ij

�x

!

=

=

X

�

ij

"

�

�y

 

�

i

��

j

�x

!

�

�

�x

 

�

i

��

j

�y

!#

= 0

beause �

ij

= �

ji

.

De�nition 3.4. Let E

�

and E

�

denote the �-and �-energy respetively, de�ned

by:

E

�

(�) =

X

i!j

Z

M

�

ij

jA

ij

z

j

2

v

g

and E

�

(�) =

X

i!j

Z

M

�

ij

jA

ij

z

j

2

v

g

Therefore � = (�

1

; : : : ; �

n

) : (M

2

; J

1

) ! (F (n); J) is holomorphi with

respet to the almost omplex struture determined by �

J

if, and only if E

�

(�) =

X

i!j

Z

M

�

ij

jA

ij

z

j

2

v

g

= 0 i.e. A

ij

z

:A

ji

z

= 0; 8i! j.

De�nition 3.5. A map � :M

2

! G=H with a non-empty set of G-invariant me-

tris is said to be equi-harmoni if it is harmoni with respet to eah G-invariant

metri on G=H.

We now onsider the family of Borel-type metris in F (n) (i.e. metris U(n)-

invariants) and  = (�

i

)

i

: M

2

! F (n) = U(n)=T an equi-harmoni map. We

de�ne:

k

(i

1

;i

2

;:::;i

r

)

: F (n) �! G

r

(IC

n

) by :

(L

1

; L

2

; : : : ; L

n

) 7�! L

i

1

^ L

i

2

^ : : : ^ L

i

r
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where 1 � i

1

< i

2

< � � � < i

r

� n.

Theorem 3.6 ([2℄) The map k

(i

1

;i

2

;:::;i

r

)

Æ  : (M

2

; g) ! (G

r

(IC

n

), Killing form

metri) is harmoni.

Proof: See [2℄ for details.

x4 Examples of tori in G

r

(IC

n

)

We will produe families of harmoni and non �-holomorphi tori in G

r

(IC

n

) for

arbitrary values of r. For r = 1 we will see that all these examples have aording

to Chern-Wolfson [10℄ K�ahler angle 0.

Our method was based on Uhlenbek's one as it is given in [22℄.

Suppose � = (�

1

; : : : ; �

n

) : IR

2

! F (n) is de�ned by: � = � Æ

e

� where

e

�(x; y) =

exp(B

1

x+B

2

y); B

1

; B

2

2 u(n) and [B

1

; B

2

℄ = 0. Then:

e

�(x; y) = exp(B

2

y) exp(B

1

x)

�

e

�

�x

=

e

�B

1

�

e

�

�

�x

=

 

�

e

�

�x

!

�

= �B

1

e

�

�

Therefore

��

i

�x

=

�

�x

(

e

�:E

i

:

e

�

�

) =

e

�[B

1

; E

i

℄

e

�

�

. So A

ji

x

= �

j

��

i

�x

=

e

�E

j

[B

1

; E

i

℄

e

�

�

=

e

�E

j

B

1

E

i

e

�

�

. Similarly: A

ji

y

=

e

�E

j

B

2

E

i

e

�

�

. Hene

A

ij

z

=

e

�E

j

�E

i

e

�

�

where � =

1

2

(B

1

�

p

�1B

2

)

Now we an investigate the harmoniity of �. We have:

�A

ij

x

�x

=

�

�x

(

e

�E

i

B

1

E

j

e

�

�

) =

e

�[B

1

; E

i

B

1

E

j

℄

e

�

�

and

�A

ij

y

�x

=

e

�[B

2

; E

i

B

2

E

j

℄

e

�

�

Therefore aording to Proposition 3.3 we have:

7



Proposition 4.1. Suppose that � : IR

2

! F (n) is doubly periodi. Then � is

harmoni with respet to ds

2

�=(�

ij

)

if, and only if

[B

1

;

X

�

ij

E

i

B

1

E

j

℄ + [B

2

;

X

�

ij

E

i

B

2

E

j

℄ = 0

We an now prove the following result:

Theorem 4.2. Let �

1

; : : : ; �

k

; �

1

; : : : ; �

k

2 Q� f0g and

X =

 

0 1

1 0

!

; B

1

j

=

 

�

j

X 0

0 �

j

X

!

B

2

j

=

 

�

j

X 0

0 �

j

X

!

; j = 1; : : : ; k �

n

4

:

We onsider

B

1

=

p

�1

0

B

B

B

B

B

B

B

B

B

B

�

B

1

1

.

.

.

B

1

k

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

A

B

2

=

p

�1

0

B

B

B

B

B

B

B

B

B

B

�

B

2

1

.

.

.

B

2

k

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

A

Then:

(i) �(x; y) = �(exp(B

1

x +B

2

y)) is doubly periodi.

(ii) � : T

2

! F (n) is equi-harmoni.

8



Proof: (i) For l 2 f1; 2; : : :g

B

l

2

= (

p

�1)

l

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

�

l

1

X

l

�

l

1

X

l

.

.

.

�

l

k

X

l

�

l

k

X

l

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

where X

l

=

(

X if l is odd

I

2

if l is even

where I

2

=

 

1 0

0 1

!

.

So

exp(B

1

x) = I +B

1

x +

B

2

1

x

2

2!

+ � � � =

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

os�

1

xI

2

os �

1

xI

2

.

.

.

os�

k

xI

2

os �

k

xI

2

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

+

p

�1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

sin�

1

X

sin�

1

xX

.

.

.

sin�

k

xX

sin�

k

xX

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Combining with [B

1

; B

2

℄ = 0, there exists a � 2 Q� f0g suh that

9



�(x+ 2�n�; y + 2�n�) = �(x; y):

Hene we have

� : T

2

=

IR

2

2��(ZZ � ZZ)

! F (n)

(ii) For any left-invariant metri ds

2

�

on F (n) we have

X

�

ij

E

i

B

1

E

j

=

p

�1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

�

1

�

12

X

�

1

�

34

X

.

.

.

�

k

�

4k�3;4k�2

X

�

k

�

4k�1;4k

X

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

so

B

1

(

X

�

ij

E

i

B

1

E

j

) = �

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

�

2

1

�

12

X

2

�

2

1

�

34

X

2

.

.

.

�

2

k

�

4k�3;4k�2

X

2

�

2

k

�

4k�1;4k

X

2

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

= (

P

�

ij

E

i

B

1

E

j

):B

1

). So [B

1

;

P

�

ij

E

i

B

1

E

j

℄ = 0. Similarly we have [B

2

;

P

�

ij

E

i

B

2

E

j

℄ =

0. Therefore aording to Proposition 4.1 we see that � is equi-harmoni.

Theorem 4.3. Let �

1

; : : : ; �

k

2 Q� f0g; 2k � n;X =

 

0 1

1 0

!

and

10



B

1

= B

2

=

0

B

B

B

B

B

B

B

B

B

B

B

B

�

�

1

X

�

2

X

.

.

.

�

k

X

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

Then � : T

2

! F (n)

(x; y) 7! �(exp(B

1

(x + y))) is an equi-harmoni map.

Proof: We proeed like in the prove of Theorem 4.2.

Theorem 4.4. Let �

1

= �

2

= � � � = �

k

2 IR � f0g; 2k � n;X =

0

B

B

B

�

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1

C

C

C

A

and

B

1

= B

2

=

0

B

B

B

B

B

B

B

B

B

B

B

B

�

�

1

X

�

1

X

.

.

.

�

1

X

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

Then � : T

2

! F (n) de�ned by:

(x; y) 7! �(exp(B

1

(x + y))) is an equi-harmoni map.

Proof: Just use proposition 4.1.

We are now in the position of stating and prove the main result of this note:

Theorem 4.5. Let � = (�

1

; : : : ; �

i

1

; : : : ; �

i

r

; : : : ; �

n

) : T

2

! F (n) families of equi-

harmoni tori as in theorems 4.2, 4.3 or 4.4 and i

�

� n 8 � 2 [1; r℄ \ IN . Then

u = k

(i

1

;i

2

;:::;i

r

)

Æ � = �

i

1

^ : : : ^ � � � ^ �

i

r

: T

2

! G

r

(IC

n

) is a full harmoni map but

not �-holomorphi.

11



Proof: Sine � is equi-harmoni we an use Theorem 3.6 and we obtain that u is

harmoni.

On the other hand:

�

i

1

�1

�u

�z

= �

i

1

�1

�

i

1

�z

+ �

i

1

�1

��

i

2

�z

+ � � �+ �

i

1

�1

��

i

r

�z

= A

i

1

�1;i

1

z

whih is non-zero in any example so

�u

�z

6= 0. Similarly

�u

�z

6= 0. So u is not �-

holomorphi.

We will now onsider r = 1. Therefore in this ase we have �

i

: T

2

! ICP

n�1

; 1 �

i � 4k.

Let dA the area form on T

2

de�ned by �

�

i

(ds

2

ICP

n�1

) and the orientation of M

and let S

�

i

= fx 2 T

2

; dA(x) = 0g.

The K�ahler angle of �

i

is a funtion on T

2

� S

�

i

, whih takes values in [0; �℄: it

is de�ned by �

�

i


 = os �dA where 
 is the K�ahler form on ICP

n�1

.

We an prove that � = 0 if, and only if �

i

is +-holomorphi and � = � if, and

only if �

i

is �-holomorphi. Therefore the K�ahler angle gives a measurament of the

distane that our funtion from a �-holomorphi one.

De�nition 4.6. We say that �

i

: T

2

! ICP

n�1

is totally real or weakly Lagrangian

or super-onformal if � = �=2.

Proposition 4.7. Every  = �

i

: T

2

! ICP

n�1

full harmoni but not�-holomorphi

map obtained applying theorem 4.5 is totally real.

Proof: Is is known that  

�


 = (jA

 

z

j � jA

 

z

j

2

):dA then os � = jA

 

z

j � jA

 

z

j

2

. But:

jA

ij

z

j

2

= hA

ij

z

; A

ij

z

i = h

e

 E

i

XE

j

e

 

�

; ;

e

 E

i

XE

j

e

 

�

i =

tr(

e

 E

i

XE

j

e

 

�

e

 E

j

X

�

E

i

e

 

�

E

i

e

 

�

) = hE

i

XE

j

; E

i

XE

j

i

But E

i

�E

j

=

1

2

E

i

(B

1

�

p

�1B

2

)E

j

=

1

2

(B

ij

1

�

p

�1B

ij

2

).

Without loss of generality we an assume  = �

1

. Therefore:

jA

 

z

j

2

=

n

X

j=2

hE

1

�E

j

; E

1

�E

j

i =

1

2

X

j

(jB

1j

1

j

2

+jB

1j

2

j

2

). Similarly jA

 

z

j

2

=

1

2

X

j

(jB

1j

1

j

2

+

jB

1j

2

j

2

).

Therefore os � = jA

 

z

j

2

� jA

 

z

j

2

= 0 then � = �=2 i.e.  is weakly Lagrangian.
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Remark 4.8. � It is a nie question to lassify every tori obtained via this adpted

Uhlenbek's separation of variables argument.

� It will be interesting to understand the stability properties of these tori in

G

r

(IC

n

).

� We notie that in partiular the harmoni, totally real tori in ICP

n

found

here ould only exist if n � 3. This fat was expeted sine they are not

�-holomorphi neither satisfy Toda's equations [3℄.
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