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Abstract

We can write the likelihood function for the non-homogeneous pure birth process on a
compact set through the method of projection introduced by Kurtz (1989) and studied by Garcia
(1995), as the projection of the likelihood function. The fact that the projected likelihood can
be interpreted as an expectation suggests that MCMC stochastic approximation could be useful
in computing parameter estimates. In this case, we obtain a.s. convergence and distributional
results for the convergence of the approximants to the maximum likelihood estimator.
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1 Introduction

Maximum likelihood estimation for pure birth process has been extensively studied for the one-
dimensional case, see for example Keiding (1974), Beyer, Keiding and Simonsen (1976), Moran

(1951). However, very little is known for the non-homogeneous spatial pure birth process, that
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is, the birth rate is a function of the size of the population and the location of its elements. We
shall discuss parametric maximum likelihood estimation under three different sampling schemes:
(A) Permanent observation in a fixed time interval [0,77;

(B) Observation after a fixed period of time T

(C) Observation until a fixed number of points k.

Note that in schemes (B) and (C), we just have the observation of the location of the points,
but not the birth times.

In Section 2 we describe the projection method for the the spatial pure birth process and
get the full likelihood function under scheme (A). In Section 3 we find the likelihood funtion
for the process under scheme (B), which is find as the projection of the full likelihood. A
MCMC procedure is described to get an approximant for the MLE estimator of a parameter.
In Section 4, scheme (C) is studied and another Monte Carlo procedure is used in order to get
approximants for the MLE. Section 5 is devoted to simulation studies to show the applicability

of the methods described in the previous sections.

2 Pure Birth Process

A pure birth process can be obtained easily using the projection method introduced by Kurtz
(1989) described by Garcia (1995). The basic idea of the projection method is the construction
of point processes (say on R?) from higher-dimensional Poisson processes by constructing a
random subset of the higher-dimensional space and projecting the points of the Poisson process
lying in that set onto the lower-dimensional subspace. We identify a point process with the
counting measure N given by assigning unit mass to each point, that is, N(A) is the number of
points in a set A. With this identification in mind, let A'(R?) denote the collection of counting

measures on R%.

Consider a spatial pure birth process (]\7 ) in a region K C RY. We specify this process in
terms of a nonnegative function A : R? x N(R?) — [0,00). The meaning of X is that if the
point configuration at time ¢ is n € N(R?), then the probability that a point is added to the

configuration in a neighborhood of the point = having area AA in the next interval of length



At is approximately A(z,n)AAAt.
Let N be a Poisson process on K x [0, 00) with Lebesgue mean measure. We need to construct
a family of random sets I'; and hence of point processes N; such that:

( . ~

7(0,2) =0
Ny(B) = N(I'y N B x [0,00))

Iy ={(z,y);z € R, 0<y < 7(t,2)}

\

with I'; a stopping set with respect to the filtration {Fa} (Fa = o(N(B); B C A)).

If K is compact, the system above consists of finitely many differential equations, and it
is straightforward to see that there exists a unique solution of the system ( 2.1). Moreover,
it gives an easy procedure to simulate pure birth processes. The projected process N; is the
point process corresponding to a spatial pure birth process with space-time intensity given by

A. That is,
~ t ~
N(B) — / / Mz, N,)dz ds (2.2)
0 JB

is an {Fr, }-martingale measure.
Let N(B x [0,t]) = N¢(B). The distribution of N restricted to K x [0,7] is absolutely
continuous with respect to the distribution of the Poisson process on K x [0,7] with Lebesgue

mean measure. The Radon-Nikodym derivative was obtained by Kurtz(1989) and is given by

Lyp(n) = exp{/KX[O,T] log A(z,ns—)n(dx x ds) — /KX[ (AMx,ns) — 1)dx ds}. (2.3)

0,7
For example, suppose that A(z,ns) = exp{— [ p(B,2 — y)ns(dy)}, with p € C? and p'(x)
uniformely bounded for z bounded away from zero, being completely known. Let (z;,v;),7 =

1,...,Np(K) denote the points of N in K x [0,T]. Then Ly becomes

Li(n) = exp{~ " p(B,z; — z;) - /[0 . /K(exp{— > P(Bw =3y, <y} = 1)da ds}  (2.4)

1<j

and finding the value of § that maximizes Ly (n) is straightforward.



3 Likelihood function for a process observed after a

fixed period of time

If we observe the process N; at a fixed time ¢ = 7', we have interest in studying the Radon-
Nikodym derivative of the distribution of Ny with respect to the distribution of the Poisson
process with mean measure T'm (T times Lebesgue measure) on K. Since the Poisson process
on K x[0,7T] with Lebesgue mean measure has the property that its projection on K is a Poisson
process with mean measure T'm and, conditioned on the projection on K, the third coordinates
of the points are independent and uniformly distributed on [0, 7], it follows (Kurtz, 1989) that
the Radon-Nikodym derivative for Ny can be obtained by “integrating out” the third coordinate

in (2.4). In this case, “projected” Radon-Nikodym derivative is

LT(JL'l, e ,zk) =

_ Tk/OT"'/OTeXP{—Zp(ﬂ’xi_xj)

1<J

_ /OT /K(eXP{— ;P(ﬂ,x —zi) <1} — Ddx ds}dyl - dyg. (3.1)

Equation (3.1) gives a likelihood for the distribution of Ny and hence provides the basis
for maximum likelihood estimation of 3. The k-fold integral in the right side of (3.1) makes
the desired maximization difficult. For estimation purposes, we can see (3.1) as the likelihood
function for a missing data problem. The EM algorithm (Dempster et al., 1977) cannot be
used in this case since it requires closed-form expressions for the conditional expectation in the
E-step. Monte Carlo EM (Wei and Tanner, 1990; Guo and Thompson, 1991) can be used but
it does not give an estimate for the error. Since the complete data likelihood is known, Monte
Carlo maximum likelihood can be used (Thompson and Guo, 1991) and the Monte Carlo error

can be estimated (Geyer, 1994).

The full likelihood can be written as

L(B,x,y) = (3.2)
= exp{—Y_p(B,zi —z;) — /[0 / /K(exp{— Z p(B, % — mi) 1y, <53} — )dz ds}

1<J



and the projected likelihood

1
DO X) = g [ DB y)dy. (33)

Observe that we can rewrite (3.3) as

L(57x7y) -1
L(B,%) = L(B, / Y (v, Bo)d / ,Bo)d 3.4
(B0 =Lt [ | FEE el by [ olvlx )] (3.4)
where g(y|x, 8y) is the conditional distribution of Y given X = x and fy. Thus, if {YU), j =

1,...,m} are drawn from an ergodic Markov chain with stationary distribution g(y|x, ), a

Monte Carlo approximant for (3.4) is

L3 = LB %)~ gjl . (3.5
Note that we have to generate a sample from the distribution
oty ) x £ ) (3.
which is known up to a constant. Let the log-likelihood be
[(8,x) = log L(f,x) — log L(f, x)
and its Monte Carlo approximant
Im(8,x) = log Ly, (8,x) — log L(By, x). (3.7)

Denote 3, = arg maxly,(3) and 3 = arg max((3), the maximum likelihood estimator of /.

Theorem 3.8 If the parameter space is compact and does not contain zero and B 1S unique,

then Bm — B a.s. as m — oo.

Proof: Since the maps f — L(0,x,y) are continuous, it is enough to prove that [,, converges
uniformly to [ on compact sets a.s.. For this, it is enough to prove that |l (3, x)| < C(x) for
all 8. To do this note that

0
%lm(ﬁu X) =



.o =)= [ ] (expl= 3080 — il = Do ds)]

™ L(B, 7\[(j) 0
> eyl gge e+ [ [ el 2B, = xlycn))
) <]

—Zp(ﬂ,w ©1) 1y, <) )dw ds}]

D o et e — ey}
- ZP B,x — x; 1{yi<s} Jdz ds}] < oo (3.9)

N
wn
=
=
Q>
kS
>
=
53

if 8 is bounded away from zero.

The convergence Bm — B a.s. follows immediately from Theorem 4, Geyer (1994). .

Theorem 3.10 Under conditions of Theorem 3.8, there exists a positive constant 02(3) de-
pending on ff such that

VilBm = ) 5 N(0,1)

()

as m — 00.

Proof. We have to verify the conditions of Theorem 7, Geyer (1994). This theorem states that
if:

(a) m/?V1,,(B) 5 N(0,A(pB)) for some covariance matrix A(f3).

(b) B(B) = —V2I(p) is positive definite.

(¢) V31,,(8) is bounded in probability uniformly in a neighborhood of 3.

Then —V2,,,(6,n) — B(f) in probability and

n'(B, = B) 5 N(0,B(B) AB)BB) ).
Note that, in our case, we have a one-dimensional parameter and
o’ (B) = B(B)*A(B). (3.11)

6



All the conditions except (a) are fairly straightforward and can be verified. In our case, we

have
2
o LB, % ¥)dy|” = fio90 LB, %, ¥)dy fig.rpe 252 L(B, %, y)dy

[f[o,T}k LB, x, }’)d}’] i

is positive and can be estimated using the same Metropolis-Hastings algorithm used for com-

B =

puting B,. Moreover, V31,,(B) is bounded for 3 bounded away from zero. Therefore, Theorem

3.10 can be used to get .
A(B)
B(p)?

if condition (a) is satisfied. This condition involves a Markov chain Central Limit Theorem. The

m2(B,, — B) 5 N(0,

Kipnis-Varadhan theorem (Kipnis and Varadhan, 1986) requires reversibility and summabiblity
of the autocovariances. It is pointed by P. Green in Besag (1986) that a Metropolis-Hastins
algorithm can always be designed so that the Markov chain is reversible. The summability
condition is hard to verify, but it is related only to the Metropolis-Hastings generation procedure,

not the maximum likelihood problem. Note that

Z] 1 6?3L(ﬁ7x Y )/L(ﬂo,x YJ))

Vi () = 3.12
m( ) Z] IL(BJXY )/L(/B07XY )) ( )
where {YU),j =1,...,m} are drawn from a Markov chain with stationary distribution g(y|x, 5;)
defined by (3.6). Then
Bl e i i P AN DY) pyix, By) d 3.13
2 L YD) T [OTkL(ﬂo,xy) ol o) dy (3:13)
and 5 (.)) a L )
gz L(B,x, YV 1 B, x,y
a3 /
il N BN o (ylx, o) d 3.14
Z L(Bo, %, YO) TF Joops L(ﬁo,x y) g(ylx, Bo) dy (3.14)
almost surely as m — oo. Let
Vo=Vt = Cov<%L(ﬁ’x’Y(j)) %L(B’X’Y(ﬁt)))
- L(1307X7Y(])) ’ L(1307X7Y(j+t))
and v2 = 3°7° ;. If 2 < oo we have (Kipnis and Varadhan, 1986) that
m'2Vi,(8) 5 N(0, A)
where
L(B,x,y) 2
A =~? / I : 3.15
ul 0.17* L(ﬁo,x,Y(”)g(y'X’ﬁO)} 19
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Both factors in (3.15) can be estimated, the second factor by the Metropolis-Hastings algo-

1 & L(B,x, YW)\ 2
(E Z L(fo, x, Y<J’>)>

Jj=1

rithm as

and 72 by standard time series methods (Geyer, 1992). It is important to notice that m 1 A(8)/B(8)?
is the estimated variance of the Monte Carlo method in calculating B, i.e., the error involved
in using the Monte Carlo estimate Bm to approximate the exact MLE B The error involved in
using the exact MLE to approximate the true parameter 3 is given, under the usual regularity

conditions, by the inverse Fisher information, which is estimated by B(8)~'. O

4 Likelihood function for a process observed until a

fixed number of points are born

Theorem 3.8 and Theorem 3.10 give us nice asymptotic results but the summability condition is
hard to verify depending on the Metropolis-Hastings algorithm used. However, a modification
in the stopping time of observation can simplify the results. Instead of observing the process
during a fixed period of time, we observe the process until a fixed number of particles are born

(say, k), that is, we observe the process until a random time
7 = inf{t > 0; N;(K) = k}

denoting (z;,y;),i = 1,...,k, the points of N in K x [0, 7], then (2.3) becomes
dpP
Li(x.y) = G5 = exp{ = S o8 ~ Z / (exp{— X p(Boo — )}~ 1)y;)
1<J 0;<j—1
where o is a permutation of {1, 2, ..., k} such that (z4,,y(1)), (o5, Y2))s - -+ (Tors Yik)) (Y(1)s - - Yik)
are the order statistics of y1,...,yx). Under the unit Poisson process (Q) y1,y2, ..., yx are i.i.d.

exp(m(K)) random variables. Note that
o
EC [e %Y%) =/ e " (K)e ™y =
0

Consequently,

E[exp{— Z/ (exp{— > p(B,z—z)}— 1)yy}|0] =

0;<j—1
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exp{= [ (expl= 3 plBw —ai)} = yy}lo]

k
];[ 0;<j—1

: m(K)

1;[ ) + Jxlexp{—X5.<j 1 (B0 — i)} — 1)dz’

Under @, o is uniform random permutation and the projected Radon-Nikodym derivative is

Li(z1, ..., 2%) = E?[Ly(n)|x]

m(K)
= expi{— , Tj — 4.1
P 2 (B ll ;an Teorl Ty o0 @ (4D
If k is large, the calculation in (4.1) is prohibitive and one suggestion is to use Monte Carlo
methods. Let (M), 0@ ... ¢(™ be random permutations of {1,2,...,k} and
. 1 & m(K)
g™ = exp{— Y p(B,z;— — . (4.2)
* t Z; ' [m l:ZU:Hl Jxexpl=2 0, p(Bx —wi)}dl‘]
Consider
d(B,x) = L )d 43
(57){) - H exp{ Z P B? LE}) ( . )
o j=1 0i<j
and k .
m K k—1 m
(o) = "B ST [ o= 3 ol - 2! (4.4
1= 1 ] 1 (m)<]

then, for any fixed
dm(B,x) = d(f,x) a.s.. (4.5)

The log-likelihood, given the observation x can be written as

1<g
and its Monte Carlo approximant as
ZP ,3,.’1,‘2— logd (BJX)' (47)
1<J
Then, for any fixed 3
m(6,x) = 1(8,x) a.s. (4.8)

by (4.5). Let 3 = arg maxg (5, x) and B = arg maxg by, (3, ).



Theorem 4.9
B — B a.s. (4.10)

Proof. Since (4.5) and (4.8) hold for # on a dense set, we have
B — [ as. (4.11)

by Theorem 4, Geyer (1994). Note that the convergence here refers to the convergence of the

Monte Carlo approximant to the maximum likelihood estimator of 3. O

Theorem 4.12 Given x, we have

V(J,’I“g(gl (Ua /@7 X))

m(B— Bm) 3 N0, _ _ _ 4.13
V=) SN e e ) - Bl )
where
0
91(07 Bu X) = %92(07 57 X) (4'14)
g2(0, 6, %) H / exp{— 3" p(B,x — z;)da})”! (4.15)

0;<J
Moreover, the expected values on the variance expression can be easily approzimated by standard

Monte Carlo methods.

Proof. Given x

3, B Var, (g1 (o, 3,x))
95 53 8 40:2)) S N (0 oy ) (419

as m — oo, where g1 and g2 are given by (4.14) and (4.15) respectively.
Since %lm(ﬁm,x) =0 and %l(ﬁ,x) = 0 we have from (4.16)

\/_( log dm (0, %) —

8 0

~ D Va'ra(gl(o—aﬁax))
\/_( g™ m(B,%) — ﬁlm(ﬂm,x))%N(O, ¥ (92(0, . %)) ) (4.17)
By Taylor’s expansion
9,
Vin(gtm(8%) - ﬁ (B X)) =
2
= VU = ) 5t () + BB ) (4.18)

10



with

L . 3
Ram (B o) = V(B = B 55 (€. 3)
and
Rum (B, Bm) = 0 as. (4.19)
as m — oo by (4.11). Moreover,
0? 5 0% 4
a—@lm(ﬂ,x) — 8—521(ﬂ,x) a.s. (4.20)

as m — oo. By (4.17), (4.18), (4.19) and (4.20) we have the desired result. [J

5 Simulation study

Suppose that we generate a pure birth process with space-time intensity given by

Aw,m) = exp{— [ B — y|~n(dy)}, (1)

with o > 0. In this case, using the projection method given by equation (2.1), it is very easy to

simulate the pure birth process.
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