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Abstrat

We an write the likelihood funtion for the non-homogeneous pure birth proess on a

ompat set through the method of projetion introdued by Kurtz (1989) and studied by Garia

(1995), as the projetion of the likelihood funtion. The fat that the projeted likelihood an

be interpreted as an expetation suggests that MCMC stohasti approximation ould be useful

in omputing parameter estimates. In this ase, we obtain a.s. onvergene and distributional

results for the onvergene of the approximants to the maximum likelihood estimator.
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1 Introdution

Maximum likelihood estimation for pure birth proess has been extensively studied for the one-

dimensional ase, see for example Keiding (1974), Beyer, Keiding and Simonsen (1976), Moran

(1951). However, very little is known for the non-homogeneous spatial pure birth proess, that

�
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is, the birth rate is a funtion of the size of the population and the loation of its elements. We

shall disuss parametri maximum likelihood estimation under three di�erent sampling shemes:

(A) Permanent observation in a �xed time interval [0; T ℄;

(B) Observation after a �xed period of time T ;

(C) Observation until a �xed number of points k.

Note that in shemes (B) and (C), we just have the observation of the loation of the points,

but not the birth times.

In Setion 2 we desribe the projetion method for the the spatial pure birth proess and

get the full likelihood funtion under sheme (A). In Setion 3 we �nd the likelihood funtion

for the proess under sheme (B), whih is �nd as the projetion of the full likelihood. A

MCMC proedure is desribed to get an approximant for the MLE estimator of a parameter.

In Setion 4, sheme (C) is studied and another Monte Carlo proedure is used in order to get

approximants for the MLE. Setion 5 is devoted to simulation studies to show the appliability

of the methods desribed in the previous setions.

2 Pure Birth Proess

A pure birth proess an be obtained easily using the projetion method introdued by Kurtz

(1989) desribed by Garia (1995). The basi idea of the projetion method is the onstrution

of point proesses (say on R

d

) from higher-dimensional Poisson proesses by onstruting a

random subset of the higher-dimensional spae and projeting the points of the Poisson proess

lying in that set onto the lower-dimensional subspae. We identify a point proess with the

ounting measure N given by assigning unit mass to eah point, that is, N(A) is the number of

points in a set A. With this identi�ation in mind, let N (R

d

) denote the olletion of ounting

measures on R

d

.

Consider a spatial pure birth proess (

~

N) in a region K � R

d

. We speify this proess in

terms of a nonnegative funtion � : R

d

� N (R

d

) ! [0;1). The meaning of � is that if the

point on�guration at time t is n 2 N (R

d

), then the probability that a point is added to the

on�guration in a neighborhood of the point x having area �A in the next interval of length
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�t is approximately �(x; n)�A�t.

Let N be a Poisson proess onK�[0;1) with Lebesgue mean measure. We need to onstrut

a family of random sets �

t

and hene of point proesses

~

N

t

suh that:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

_�(t; x) = �(x;

~

N

t

)

�(0; x) = 0

~

N

t

(B) = N(�

t

\B � [0;1))

�

t

= f(x; y);x 2 R

d

; 0 � y � �(t; x)g

(2.1)

with �

t

a stopping set with respet to the �ltration fF

A

g (F

A

= �(N(B);B � A)).

If K is ompat, the system above onsists of �nitely many di�erential equations, and it

is straightforward to see that there exists a unique solution of the system ( 2.1). Moreover,

it gives an easy proedure to simulate pure birth proesses. The projeted proess

~

N

t

is the

point proess orresponding to a spatial pure birth proess with spae-time intensity given by

�. That is,

~

N

t

(B)�

Z

t

0

Z

B

�(x;

~

N

s

)dx ds (2.2)

is an fF

�

t

g-martingale measure.

Let

~

N(B � [0; t℄) =

~

N

t

(B). The distribution of

~

N restrited to K � [0; T ℄ is absolutely

ontinuous with respet to the distribution of the Poisson proess on K � [0; T ℄ with Lebesgue

mean measure. The Radon-Nikodym derivative was obtained by Kurtz(1989) and is given by

L

T

(n) = exp

n

Z

K�[0;T ℄

log �(x; n

s�

)n(dx� ds)�

Z

K�[0;T ℄

(�(x; n

s

)� 1)dx ds

o

: (2.3)

For example, suppose that �(x; n

s

) = expf�

R

�(�; x � y)n

s

(dy)g, with � 2 C

3

and �

0

(x)

uniformely bounded for x bounded away from zero, being ompletely known. Let (x

i

; y

i

); i =

1; : : : ;

~

N

T

(K) denote the points of

~

N in K � [0; T ℄. Then L

T

beomes

L

T

(n) = exp

n

�

X

i<j

�(�; x

i

� x

j

)�

Z

[0;T ℄

Z

K

(expf�

X

i

�(�; x� x

i

)I

fy

i

<sg

g � 1)dx ds

o

(2.4)

and �nding the value of � that maximizes L

T

(n) is straightforward.
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3 Likelihood funtion for a proess observed after a

�xed period of time

If we observe the proess

~

N

t

at a �xed time t = T , we have interest in studying the Radon-

Nikodym derivative of the distribution of

~

N

T

with respet to the distribution of the Poisson

proess with mean measure Tm (T times Lebesgue measure) on K. Sine the Poisson proess

onK�[0; T ℄ with Lebesgue mean measure has the property that its projetion onK is a Poisson

proess with mean measure Tm and, onditioned on the projetion on K, the third oordinates

of the points are independent and uniformly distributed on [0; T ℄, it follows (Kurtz, 1989) that

the Radon-Nikodym derivative for

~

N

T

an be obtained by \integrating out" the third oordinate

in (2.4). In this ase, \projeted" Radon-Nikodym derivative is

^

L

T

(x

1

; : : : ; x

k

) =

= T

�k

Z

T

0

� � �

Z

T

0

exp

n

�

X

i<j

�(�; x

i

� x

j

)

�

Z

T

0

Z

K

(expf�

X

i

�(�; x � x

i

)I

fy

i

<sg

g � 1)dx ds

o

dy

1

: : : dy

k

: (3.1)

Equation (3.1) gives a likelihood for the distribution of

~

N

T

and hene provides the basis

for maximum likelihood estimation of �. The k-fold integral in the right side of (3.1) makes

the desired maximization diÆult. For estimation purposes, we an see (3.1) as the likelihood

funtion for a missing data problem. The EM algorithm (Dempster et al., 1977) annot be

used in this ase sine it requires losed-form expressions for the onditional expetation in the

E-step. Monte Carlo EM (Wei and Tanner, 1990; Guo and Thompson, 1991) an be used but

it does not give an estimate for the error. Sine the omplete data likelihood is known, Monte

Carlo maximum likelihood an be used (Thompson and Guo, 1991) and the Monte Carlo error

an be estimated (Geyer, 1994).

The full likelihood an be written as

L(�;x;y) = (3.2)

= expf�

X

i<j

�(�; x

i

� x

j

)�

Z

[0;T ℄

Z

K

(expf�

X

i

�(�; x� x

i

)1

fy

i

<sg

g � 1)dx dsg
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and the projeted likelihood

L(�;x) =

1

T

k

Z

[0;T ℄

k

L(�;x;y)dy: (3.3)

Observe that we an rewrite (3.3) as

L(�;x) = L(�

0

;x)

h

Z

[0;T ℄

k

L(�;x;y)

L(�

0

;x;y)

g(yjx; �

0

)dy

ih

Z

[0;T ℄

k

g(yjx; �

0

)dy

i

�1

(3.4)

where g(yjx; �

0

) is the onditional distribution of Y given X = x and �

0

. Thus, if fY

(j)

; j =

1; : : : ;mg are drawn from an ergodi Markov hain with stationary distribution g(yjx; �

0

), a

Monte Carlo approximant for (3.4) is

L

m

(�;x) = L(�

0

;x):

1

m

m

X

j=1

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

: (3.5)

Note that we have to generate a sample from the distribution

g(yjx; �

0

) /

L(�

0

;x;y)

L(�

0

;x)

(3.6)

whih is known up to a onstant. Let the log-likelihood be

l(�;x) = logL(�;x)� logL(�

0

;x)

and its Monte Carlo approximant

l

m

(�;x) = logL

m

(�;x)� logL(�

0

;x): (3.7)

Denote

^

�

m

= arg max l

m

(�) and

^

� = arg max l(�), the maximum likelihood estimator of �.

Theorem 3.8 If the parameter spae is ompat and does not ontain zero and

^

� is unique,

then

^

�

m

!

^

� a.s. as m!1.

Proof: Sine the maps � 7! L(�;x;y) are ontinuous, it is enough to prove that l

m

onverges

uniformly to l on ompat sets a.s.. For this, it is enough to prove that jl

0

m

(�;x)j � C(x) for

all �. To do this note that

�

��

l

m

(�;x) =
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=

�

m

X

j=1

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

�

�1

m

X

j=1

�

��

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

=

�

m

X

j=1

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

�

�1

�

m

X

j=1

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

�

��

[�

X

i<j

�(�; x

i

� x

j

)�

Z

[0;T ℄

Z

K

(expf�

X

i

�(�; x� x

i

j)1

fy

i

<sg

g � 1)dx dsg℄

=

�

m

X

j=1

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

�

�1

�

m

X

j=1

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

[�

X

i<j

�

��

�(�; x

i

� x

j

) +

Z

[0;T ℄

Z

K

(expf�

X

i

�(�; x� x

i

)1

fy

i

<sg

g

�

X

i

�(�; x � x

i

)1

y

i

<sg

)dx dsg℄

� sup

�

[

X

i<j

�

��

�(�; x

i

� x

j

) +

Z

[0;T ℄

Z

K

(expf�

X

i

�(�; x� x

i

)1

fy

i

<sg

g

�

X

i

�(�; x � x

i

)1

fy

i

<sg

)dx dsg℄ <1 (3.9)

if � is bounded away from zero.

The onvergene

^

�

m

!

^

� a.s. follows immediately from Theorem 4, Geyer (1994). .

Theorem 3.10 Under onditions of Theorem 3.8, there exists a positive onstant �

2

(

^

�) de-

pending on

^

� suh that

p

m(

^

�

m

�

^

�)

�(

^

�)

L

! N(0; 1)

as m!1.

Proof. We have to verify the onditions of Theorem 7, Geyer (1994). This theorem states that

if:

(a) m

1=2

rl

m

(�)

L

! N(0; A(�)) for some ovariane matrix A(�).

(b) B(�) = �r

2

l(�) is positive de�nite.

() r

3

l

m

(�) is bounded in probability uniformly in a neighborhood of

^

�.

Then �r

2

l

m

(

^

�

m

)! B(

^

�) in probability and

n

1=2

(

^

�

m

�

^

�)

L

! N(0; B(

^

�)

�1

A(

^

�)B(

^

�)

�1

):

Note that, in our ase, we have a one-dimensional parameter and

�

2

(

^

�) = B(

^

�)

�2

A(

^

�): (3.11)
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All the onditions exept (a) are fairly straightforward and an be veri�ed. In our ase, we

have

B =

h

R

[0;T ℄

k

�

��

L(�;x;y)dy

i

2

�

R

[0;T ℄

k

L(�;x;y)dy

R

[0;T ℄

k

�

2

��

2

L(�;x;y)dy

h

R

[0;T ℄

k

L(�;x;y)dy

i

2

is positive and an be estimated using the same Metropolis-Hastings algorithm used for om-

puting

^

�

m

. Moreover, r

3

l

m

(�) is bounded for � bounded away from zero. Therefore, Theorem

3.10 an be used to get

m

1=2

(

^

�

m

�

^

�)

L

! N(0;

A(

^

�)

B(

^

�)

2

)

if ondition (a) is satis�ed. This ondition involves a Markov hain Central Limit Theorem. The

Kipnis-Varadhan theorem (Kipnis and Varadhan, 1986) requires reversibility and summabiblity

of the autoovarianes. It is pointed by P. Green in Besag (1986) that a Metropolis-Hastins

algorithm an always be designed so that the Markov hain is reversible. The summability

ondition is hard to verify, but it is related only to the Metropolis-Hastings generation proedure,

not the maximum likelihood problem. Note that

rl

m

(�) =

P

m

j=1

�

��

L(�;x;Y

(j)

)=L(�

0

;x;Y

(j)

)

P

m

j=1

L(�;x;Y

(j)

)=L(�

0

;x;Y

(j)

)

(3.12)

where fY

(j)

; j = 1; : : : ;mg are drawn from a Markov hain with stationary distribution g(yjx; �

0

)

de�ned by (3.6). Then

1

m

m

X

j=1

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

!

1

T

k

Z

[0;T ℄

k

L(�;x;y)

L(�

0

;x;y)

g(yjx; �

0

) dy (3.13)

and

1

m

m

X

j=1

�

��

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

!

1

T

k

Z

[0;T ℄

k

�

��

L(�;x;y)

L(�

0

;x;y)

g(yjx; �

0

) dy (3.14)

almost surely as m!1. Let



t

= 

�t

= Cov

�

�

��

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

;

�

��

L(�;x;Y

(j+t)

)

L(�

0

;x;Y

(j+t)

)

�

and 

2

=

P

1

t=�1



t

. If 

2

<1 we have (Kipnis and Varadhan, 1986) that

m

1=2

rl

m

(�)

L

! N(0; A)

where

A = 

2

h

Z

[0;T ℄

k

L(�;x;y)

L(�

0

;x;Y

(j)

)

g(yjx; �

0

)

i

2

: (3.15)
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Both fators in (3.15) an be estimated, the seond fator by the Metropolis-Hastings algo-

rithm as

�

1

m

m

X

j=1

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

�

2

and 

2

by standard time series methods (Geyer, 1992). It is important to notie thatm

�1

A(�)=B(�)

2

is the estimated variane of the Monte Carlo method in alulating

^

�, i.e., the error involved

in using the Monte Carlo estimate

^

�

m

to approximate the exat MLE

^

�. The error involved in

using the exat MLE to approximate the true parameter � is given, under the usual regularity

onditions, by the inverse Fisher information, whih is estimated by B(�)

�1

.

4 Likelihood funtion for a proess observed until a

�xed number of points are born

Theorem 3.8 and Theorem 3.10 give us nie asymptoti results but the summability ondition is

hard to verify depending on the Metropolis-Hastings algorithm used. However, a modi�ation

in the stopping time of observation an simplify the results. Instead of observing the proess

during a �xed period of time, we observe the proess until a �xed number of partiles are born

(say, k), that is, we observe the proess until a random time

�

k

= infft � 0;

~

N

t

(K) = kg

denoting (x

i

; y

i

); i = 1; : : : ; k, the points of

~

N in K � [0; �

k

℄, then (2.3) beomes

L

k

(x;y) =

dP

dQ

= exp

n

�

X

i<j

�(�; x

i

� x

j

)�

k

X

j=1

Z

K

(expf�

X

�

i

�j�1

�(�; x� x

i

)g � 1)y

j

o

where � is a permutation of f1; 2; : : : ; kg suh that (x

�

1

; y

(1)

); (x

�

2

; y

(2)

); : : : ; (x

�

k

; y

(k)

) (y

(1)

; : : : ; y

(k)

are the order statistis of y

1

; : : : ; y

k

). Under the unit Poisson proess (Q) y

1

; y

2

; : : : ; y

k

are i.i.d.

exp(m(K)) random variables. Note that

E

Q

[e

�uy

j

℄ =

Z

1

0

e

�ux

m(K)e

�m(K)x

dx =

m(K)

m(K) + u

:

Consequently,

E [expf�

k

X

j=1

Z

K

(expf�

X

�

i

�j�1

�(�; x� x

i

)g � 1)y

j

o

j�℄ =
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=

k

Y

j=1

E [expf�

Z

K

(expf�

X

�

i

�j�1

�(�; x � x

i

)g � 1)y

j

o

j�℄

=

k

Y

j=1

m(K)

m(K) +

R

K

(expf�

P

�

i

�j�1

�(�; x� x

i

)g � 1)dx

:

Under Q, � is uniform random permutation and the projeted Radon-Nikodym derivative is

^

L

k

(x

1

; : : : ; x

k

) = E

Q

[L

k

(n)jx℄

= expf�

X

i<j

�(�; x

i

� x

j

)g

h

1

k!

X

�

k

Y

i=1

m(K)

R

K

expf�

P

�

i

�j�1

�(�; x� x

i

)gdx

i

(4.1)

If k is large, the alulation in (4.1) is prohibitive and one suggestion is to use Monte Carlo

methods. Let �

(1)

; �

(2)

; : : : ; �

(m)

be random permutations of f1; 2; : : : ; kg and

^

L

(m)

k

= expf�

X

i<j

�(�; x

i

� x

j

)g

h

1

m

m

X

l=1

k

Y

i=1

m(K)

R

K

expf�

P

�

(l)

i

�j�1

�(�; x� x

i

)gdx

i

: (4.2)

Consider

d(�;x) =

[m(K)℄

k�1

k!

X

�

(

k�1

Y

j=1

Z

K

expf�

X

�

i

�j

�(�; x� x

i

)dxg)

�1

(4.3)

and

d

m

(�;x) =

[m(K)℄

k�1

m

m

X

i=1

(

k�1

Y

j=1

Z

K

expf�

X

�

(m)

i

�j

�(�; x� x

i

)dxg)

�1

(4.4)

then, for any �xed �

d

m

(�;x)! d(�;x) a.s.. (4.5)

The log-likelihood, given the observation x an be written as

l(�;x) = �

X

i<j

�(�; x

i

� x

j

)� log d(�;x) (4.6)

and its Monte Carlo approximant as

l

m

(�;x) = �

X

i<j

�(�; x

i

� x

j

)� log d

m

(�;x): (4.7)

Then, for any �xed �

l

m

(�;x)! l(�;x) a.s. (4.8)

by (4.5). Let

^

� = argmax

�

l(�;x) and

^

�

m

= argmax

�

l

m

(�; x).
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Theorem 4.9

^

�

m

!

^

� a.s. (4.10)

Proof. Sine (4.5) and (4.8) hold for � on a dense set, we have

^

�

m

!

^

� a.s. (4.11)

by Theorem 4, Geyer (1994). Note that the onvergene here refers to the onvergene of the

Monte Carlo approximant to the maximum likelihood estimator of �.

Theorem 4.12 Given x, we have

p

m(

^

� �

^

�

m

)

D

! N

�

0;

Var

�

(g

1

(�;

^

�;x))

E(

�

��

g

1

(�;

^

�;x))E(g

2

(�;

^

�;x))� E

2

(g

1

(�;

^

�;x))

�

(4.13)

where

g

1

(�; �;x) =

�

��

g

2

(�; �;x) (4.14)

g

2

(�; �;x) =

k�1

Y

j=1

Z

K

expf�

X

�

i

�j

�(�; x� x

i

)dxg)

�1

: (4.15)

Moreover, the expeted values on the variane expression an be easily approximated by standard

Monte Carlo methods.

Proof. Given x

p

m

�

�

��

log d

m

(�;x) �

�

��

log d(�;x)

�

D

! N

�

0;

Var

�

(g

1

(�; �;x))

E

2

�

(g

2

(�; �;x))

�

(4.16)

as m!1, where g

1

and g

2

are given by (4.14) and (4.15) respetively.

Sine

�

��

l

m

(

^

�

m

;x) = 0 and

�

��

l(

^

�;x) = 0 we have from (4.16)

p

m

�

�

��

l

m

(

^

�;x)�

�

��

l

m

(

^

�

m

;x)

�

D

! N

�

0;

Var

�

(g

1

(�; �;x))

E

2

�

(g

2

(�; �;x))

�

: (4.17)

By Taylor's expansion

p

m

�

�

��

l

m

(

^

�;x)�

�

��

l

m

(

^

�

m

;x)

�

=

=

p

m(

^

� �

^

�

m

)

�

2

��

2

l

m

(

^

�;x) +R

nm

(

^

�;

^

�

m

)) (4.18)
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with

R

nm

(

^

�;

^

�

m

) =

p

m(

^

� �

^

�

m

)

2

�

3

��

3

l

m

(�;x)

and

R

nm

(

^

�;

^

�

m

)! 0 a.s. (4.19)

as m!1 by (4.11). Moreover,

�

2

��

2

l

m

(

^

�;x)!

�

2

��

2

l(

^

�;x) a.s. (4.20)

as m!1. By (4.17), (4.18), (4.19) and (4.20) we have the desired result.

5 Simulation study

Suppose that we generate a pure birth proess with spae-time intensity given by

�(x; n) = expf�

Z

�

�

jx� yj

��

)n(dy)g; (5.1)

with � > 0. In this ase, using the projetion method given by equation (2.1), it is very easy to

simulate the pure birth proess.
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