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Abstra
t

We 
an write the likelihood fun
tion for the non-homogeneous pure birth pro
ess on a


ompa
t set through the method of proje
tion introdu
ed by Kurtz (1989) and studied by Gar
ia

(1995), as the proje
tion of the likelihood fun
tion. The fa
t that the proje
ted likelihood 
an

be interpreted as an expe
tation suggests that MCMC sto
hasti
 approximation 
ould be useful

in 
omputing parameter estimates. In this 
ase, we obtain a.s. 
onvergen
e and distributional

results for the 
onvergen
e of the approximants to the maximum likelihood estimator.

Key words: Spatial pure birth pro
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tion method, Monte Carlo approximants.
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1 Introdu
tion

Maximum likelihood estimation for pure birth pro
ess has been extensively studied for the one-

dimensional 
ase, see for example Keiding (1974), Beyer, Keiding and Simonsen (1976), Moran

(1951). However, very little is known for the non-homogeneous spatial pure birth pro
ess, that
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is, the birth rate is a fun
tion of the size of the population and the lo
ation of its elements. We

shall dis
uss parametri
 maximum likelihood estimation under three di�erent sampling s
hemes:

(A) Permanent observation in a �xed time interval [0; T ℄;

(B) Observation after a �xed period of time T ;

(C) Observation until a �xed number of points k.

Note that in s
hemes (B) and (C), we just have the observation of the lo
ation of the points,

but not the birth times.

In Se
tion 2 we des
ribe the proje
tion method for the the spatial pure birth pro
ess and

get the full likelihood fun
tion under s
heme (A). In Se
tion 3 we �nd the likelihood funtion

for the pro
ess under s
heme (B), whi
h is �nd as the proje
tion of the full likelihood. A

MCMC pro
edure is des
ribed to get an approximant for the MLE estimator of a parameter.

In Se
tion 4, s
heme (C) is studied and another Monte Carlo pro
edure is used in order to get

approximants for the MLE. Se
tion 5 is devoted to simulation studies to show the appli
ability

of the methods des
ribed in the previous se
tions.

2 Pure Birth Pro
ess

A pure birth pro
ess 
an be obtained easily using the proje
tion method introdu
ed by Kurtz

(1989) des
ribed by Gar
ia (1995). The basi
 idea of the proje
tion method is the 
onstru
tion

of point pro
esses (say on R

d

) from higher-dimensional Poisson pro
esses by 
onstru
ting a

random subset of the higher-dimensional spa
e and proje
ting the points of the Poisson pro
ess

lying in that set onto the lower-dimensional subspa
e. We identify a point pro
ess with the


ounting measure N given by assigning unit mass to ea
h point, that is, N(A) is the number of

points in a set A. With this identi�
ation in mind, let N (R

d

) denote the 
olle
tion of 
ounting

measures on R

d

.

Consider a spatial pure birth pro
ess (

~

N) in a region K � R

d

. We spe
ify this pro
ess in

terms of a nonnegative fun
tion � : R

d

� N (R

d

) ! [0;1). The meaning of � is that if the

point 
on�guration at time t is n 2 N (R

d

), then the probability that a point is added to the


on�guration in a neighborhood of the point x having area �A in the next interval of length
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�t is approximately �(x; n)�A�t.

Let N be a Poisson pro
ess onK�[0;1) with Lebesgue mean measure. We need to 
onstru
t

a family of random sets �

t

and hen
e of point pro
esses

~

N

t

su
h that:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

_�(t; x) = �(x;

~

N

t

)

�(0; x) = 0

~

N

t

(B) = N(�

t

\B � [0;1))

�

t

= f(x; y);x 2 R

d

; 0 � y � �(t; x)g

(2.1)

with �

t

a stopping set with respe
t to the �ltration fF

A

g (F

A

= �(N(B);B � A)).

If K is 
ompa
t, the system above 
onsists of �nitely many di�erential equations, and it

is straightforward to see that there exists a unique solution of the system ( 2.1). Moreover,

it gives an easy pro
edure to simulate pure birth pro
esses. The proje
ted pro
ess

~

N

t

is the

point pro
ess 
orresponding to a spatial pure birth pro
ess with spa
e-time intensity given by

�. That is,

~

N

t

(B)�

Z

t

0

Z

B

�(x;

~

N

s

)dx ds (2.2)

is an fF

�

t

g-martingale measure.

Let

~

N(B � [0; t℄) =

~

N

t

(B). The distribution of

~

N restri
ted to K � [0; T ℄ is absolutely


ontinuous with respe
t to the distribution of the Poisson pro
ess on K � [0; T ℄ with Lebesgue

mean measure. The Radon-Nikodym derivative was obtained by Kurtz(1989) and is given by

L

T

(n) = exp

n

Z

K�[0;T ℄

log �(x; n

s�

)n(dx� ds)�

Z

K�[0;T ℄

(�(x; n

s

)� 1)dx ds

o

: (2.3)

For example, suppose that �(x; n

s

) = expf�

R

�(�; x � y)n

s

(dy)g, with � 2 C

3

and �

0

(x)

uniformely bounded for x bounded away from zero, being 
ompletely known. Let (x

i

; y

i

); i =

1; : : : ;

~

N

T

(K) denote the points of

~

N in K � [0; T ℄. Then L

T

be
omes

L

T

(n) = exp

n

�

X

i<j

�(�; x

i

� x

j

)�

Z

[0;T ℄

Z

K

(expf�

X

i

�(�; x� x

i

)I

fy

i

<sg

g � 1)dx ds

o

(2.4)

and �nding the value of � that maximizes L

T

(n) is straightforward.
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3 Likelihood fun
tion for a pro
ess observed after a

�xed period of time

If we observe the pro
ess

~

N

t

at a �xed time t = T , we have interest in studying the Radon-

Nikodym derivative of the distribution of

~

N

T

with respe
t to the distribution of the Poisson

pro
ess with mean measure Tm (T times Lebesgue measure) on K. Sin
e the Poisson pro
ess

onK�[0; T ℄ with Lebesgue mean measure has the property that its proje
tion onK is a Poisson

pro
ess with mean measure Tm and, 
onditioned on the proje
tion on K, the third 
oordinates

of the points are independent and uniformly distributed on [0; T ℄, it follows (Kurtz, 1989) that

the Radon-Nikodym derivative for

~

N

T


an be obtained by \integrating out" the third 
oordinate

in (2.4). In this 
ase, \proje
ted" Radon-Nikodym derivative is

^

L

T

(x

1

; : : : ; x

k

) =

= T

�k

Z

T

0

� � �

Z

T

0

exp

n

�

X

i<j

�(�; x

i

� x

j

)

�

Z

T

0

Z

K

(expf�

X

i

�(�; x � x

i

)I

fy

i

<sg

g � 1)dx ds

o

dy

1

: : : dy

k

: (3.1)

Equation (3.1) gives a likelihood for the distribution of

~

N

T

and hen
e provides the basis

for maximum likelihood estimation of �. The k-fold integral in the right side of (3.1) makes

the desired maximization diÆ
ult. For estimation purposes, we 
an see (3.1) as the likelihood

fun
tion for a missing data problem. The EM algorithm (Dempster et al., 1977) 
annot be

used in this 
ase sin
e it requires 
losed-form expressions for the 
onditional expe
tation in the

E-step. Monte Carlo EM (Wei and Tanner, 1990; Guo and Thompson, 1991) 
an be used but

it does not give an estimate for the error. Sin
e the 
omplete data likelihood is known, Monte

Carlo maximum likelihood 
an be used (Thompson and Guo, 1991) and the Monte Carlo error


an be estimated (Geyer, 1994).

The full likelihood 
an be written as

L(�;x;y) = (3.2)

= expf�

X

i<j

�(�; x

i

� x

j

)�

Z

[0;T ℄

Z

K

(expf�

X

i

�(�; x� x

i

)1

fy

i

<sg

g � 1)dx dsg
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and the proje
ted likelihood

L(�;x) =

1

T

k

Z

[0;T ℄

k

L(�;x;y)dy: (3.3)

Observe that we 
an rewrite (3.3) as

L(�;x) = L(�

0

;x)

h

Z

[0;T ℄

k

L(�;x;y)

L(�

0

;x;y)

g(yjx; �

0

)dy

ih

Z

[0;T ℄

k

g(yjx; �

0

)dy

i

�1

(3.4)

where g(yjx; �

0

) is the 
onditional distribution of Y given X = x and �

0

. Thus, if fY

(j)

; j =

1; : : : ;mg are drawn from an ergodi
 Markov 
hain with stationary distribution g(yjx; �

0

), a

Monte Carlo approximant for (3.4) is

L

m

(�;x) = L(�

0

;x):

1

m

m

X

j=1

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

: (3.5)

Note that we have to generate a sample from the distribution

g(yjx; �

0

) /

L(�

0

;x;y)

L(�

0

;x)

(3.6)

whi
h is known up to a 
onstant. Let the log-likelihood be

l(�;x) = logL(�;x)� logL(�

0

;x)

and its Monte Carlo approximant

l

m

(�;x) = logL

m

(�;x)� logL(�

0

;x): (3.7)

Denote

^

�

m

= arg max l

m

(�) and

^

� = arg max l(�), the maximum likelihood estimator of �.

Theorem 3.8 If the parameter spa
e is 
ompa
t and does not 
ontain zero and

^

� is unique,

then

^

�

m

!

^

� a.s. as m!1.

Proof: Sin
e the maps � 7! L(�;x;y) are 
ontinuous, it is enough to prove that l

m


onverges

uniformly to l on 
ompa
t sets a.s.. For this, it is enough to prove that jl

0

m

(�;x)j � C(x) for

all �. To do this note that

�

��

l

m

(�;x) =
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=

�

m

X

j=1

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

�

�1

m

X

j=1

�

��

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

=

�

m

X

j=1

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

�

�1

�

m

X

j=1

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

�

��

[�

X

i<j

�(�; x

i

� x

j

)�

Z

[0;T ℄

Z

K

(expf�

X

i

�(�; x� x

i

j)1

fy

i

<sg

g � 1)dx dsg℄

=

�

m

X

j=1

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

�

�1

�

m

X

j=1

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

[�

X

i<j

�

��

�(�; x

i

� x

j

) +

Z

[0;T ℄

Z

K

(expf�

X

i

�(�; x� x

i

)1

fy

i

<sg

g

�

X

i

�(�; x � x

i

)1

y

i

<sg

)dx dsg℄

� sup

�

[

X

i<j

�

��

�(�; x

i

� x

j

) +

Z

[0;T ℄

Z

K

(expf�

X

i

�(�; x� x

i

)1

fy

i

<sg

g

�

X

i

�(�; x � x

i

)1

fy

i

<sg

)dx dsg℄ <1 (3.9)

if � is bounded away from zero.

The 
onvergen
e

^

�

m

!

^

� a.s. follows immediately from Theorem 4, Geyer (1994). .

Theorem 3.10 Under 
onditions of Theorem 3.8, there exists a positive 
onstant �

2

(

^

�) de-

pending on

^

� su
h that

p

m(

^

�

m

�

^

�)

�(

^

�)

L

! N(0; 1)

as m!1.

Proof. We have to verify the 
onditions of Theorem 7, Geyer (1994). This theorem states that

if:

(a) m

1=2

rl

m

(�)

L

! N(0; A(�)) for some 
ovarian
e matrix A(�).

(b) B(�) = �r

2

l(�) is positive de�nite.

(
) r

3

l

m

(�) is bounded in probability uniformly in a neighborhood of

^

�.

Then �r

2

l

m

(

^

�

m

)! B(

^

�) in probability and

n

1=2

(

^

�

m

�

^

�)

L

! N(0; B(

^

�)

�1

A(

^

�)B(

^

�)

�1

):

Note that, in our 
ase, we have a one-dimensional parameter and

�

2

(

^

�) = B(

^

�)

�2

A(

^

�): (3.11)
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All the 
onditions ex
ept (a) are fairly straightforward and 
an be veri�ed. In our 
ase, we

have

B =

h

R

[0;T ℄

k

�

��

L(�;x;y)dy

i

2

�

R

[0;T ℄

k

L(�;x;y)dy

R

[0;T ℄

k

�

2

��

2

L(�;x;y)dy

h

R

[0;T ℄

k

L(�;x;y)dy

i

2

is positive and 
an be estimated using the same Metropolis-Hastings algorithm used for 
om-

puting

^

�

m

. Moreover, r

3

l

m

(�) is bounded for � bounded away from zero. Therefore, Theorem

3.10 
an be used to get

m

1=2

(

^

�

m

�

^

�)

L

! N(0;

A(

^

�)

B(

^

�)

2

)

if 
ondition (a) is satis�ed. This 
ondition involves a Markov 
hain Central Limit Theorem. The

Kipnis-Varadhan theorem (Kipnis and Varadhan, 1986) requires reversibility and summabiblity

of the auto
ovarian
es. It is pointed by P. Green in Besag (1986) that a Metropolis-Hastins

algorithm 
an always be designed so that the Markov 
hain is reversible. The summability


ondition is hard to verify, but it is related only to the Metropolis-Hastings generation pro
edure,

not the maximum likelihood problem. Note that

rl

m

(�) =

P

m

j=1

�

��

L(�;x;Y

(j)

)=L(�

0

;x;Y

(j)

)

P

m

j=1

L(�;x;Y

(j)

)=L(�

0

;x;Y

(j)

)

(3.12)

where fY

(j)

; j = 1; : : : ;mg are drawn from a Markov 
hain with stationary distribution g(yjx; �

0

)

de�ned by (3.6). Then

1

m

m

X

j=1

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

!

1

T

k

Z

[0;T ℄

k

L(�;x;y)

L(�

0

;x;y)

g(yjx; �

0

) dy (3.13)

and

1

m

m

X

j=1

�

��

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

!

1

T

k

Z

[0;T ℄

k

�

��

L(�;x;y)

L(�

0

;x;y)

g(yjx; �

0

) dy (3.14)

almost surely as m!1. Let




t

= 


�t

= Cov

�

�

��

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

;

�

��

L(�;x;Y

(j+t)

)

L(�

0

;x;Y

(j+t)

)

�

and 


2

=

P

1

t=�1




t

. If 


2

<1 we have (Kipnis and Varadhan, 1986) that

m

1=2

rl

m

(�)

L

! N(0; A)

where

A = 


2

h

Z

[0;T ℄

k

L(�;x;y)

L(�

0

;x;Y

(j)

)

g(yjx; �

0

)

i

2

: (3.15)
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Both fa
tors in (3.15) 
an be estimated, the se
ond fa
tor by the Metropolis-Hastings algo-

rithm as

�

1

m

m

X

j=1

L(�;x;Y

(j)

)

L(�

0

;x;Y

(j)

)

�

2

and 


2

by standard time series methods (Geyer, 1992). It is important to noti
e thatm

�1

A(�)=B(�)

2

is the estimated varian
e of the Monte Carlo method in 
al
ulating

^

�, i.e., the error involved

in using the Monte Carlo estimate

^

�

m

to approximate the exa
t MLE

^

�. The error involved in

using the exa
t MLE to approximate the true parameter � is given, under the usual regularity


onditions, by the inverse Fisher information, whi
h is estimated by B(�)

�1

.

4 Likelihood fun
tion for a pro
ess observed until a

�xed number of points are born

Theorem 3.8 and Theorem 3.10 give us ni
e asymptoti
 results but the summability 
ondition is

hard to verify depending on the Metropolis-Hastings algorithm used. However, a modi�
ation

in the stopping time of observation 
an simplify the results. Instead of observing the pro
ess

during a �xed period of time, we observe the pro
ess until a �xed number of parti
les are born

(say, k), that is, we observe the pro
ess until a random time

�

k

= infft � 0;

~

N

t

(K) = kg

denoting (x

i

; y

i

); i = 1; : : : ; k, the points of

~

N in K � [0; �

k

℄, then (2.3) be
omes

L

k

(x;y) =

dP

dQ

= exp

n

�

X

i<j

�(�; x

i

� x

j

)�

k

X

j=1

Z

K

(expf�

X

�

i

�j�1

�(�; x� x

i

)g � 1)y

j

o

where � is a permutation of f1; 2; : : : ; kg su
h that (x

�

1

; y

(1)

); (x

�

2

; y

(2)

); : : : ; (x

�

k

; y

(k)

) (y

(1)

; : : : ; y

(k)

are the order statisti
s of y

1

; : : : ; y

k

). Under the unit Poisson pro
ess (Q) y

1

; y

2

; : : : ; y

k

are i.i.d.

exp(m(K)) random variables. Note that

E

Q

[e

�uy

j

℄ =

Z

1

0

e

�ux

m(K)e

�m(K)x

dx =

m(K)

m(K) + u

:

Consequently,

E [expf�

k

X

j=1

Z

K

(expf�

X

�

i

�j�1

�(�; x� x

i

)g � 1)y

j

o

j�℄ =

8



=

k

Y

j=1

E [expf�

Z

K

(expf�

X

�

i

�j�1

�(�; x � x

i

)g � 1)y

j

o

j�℄

=

k

Y

j=1

m(K)

m(K) +

R

K

(expf�

P

�

i

�j�1

�(�; x� x

i

)g � 1)dx

:

Under Q, � is uniform random permutation and the proje
ted Radon-Nikodym derivative is

^

L

k

(x

1

; : : : ; x

k

) = E

Q

[L

k

(n)jx℄

= expf�

X

i<j

�(�; x

i

� x

j

)g

h

1

k!

X

�

k

Y

i=1

m(K)

R

K

expf�

P

�

i

�j�1

�(�; x� x

i

)gdx

i

(4.1)

If k is large, the 
al
ulation in (4.1) is prohibitive and one suggestion is to use Monte Carlo

methods. Let �

(1)

; �

(2)

; : : : ; �

(m)

be random permutations of f1; 2; : : : ; kg and

^

L

(m)

k

= expf�

X

i<j

�(�; x

i

� x

j

)g

h

1

m

m

X

l=1

k

Y

i=1

m(K)

R

K

expf�

P

�

(l)

i

�j�1

�(�; x� x

i

)gdx

i

: (4.2)

Consider

d(�;x) =

[m(K)℄

k�1

k!

X

�

(

k�1

Y

j=1

Z

K

expf�

X

�

i

�j

�(�; x� x

i

)dxg)

�1

(4.3)

and

d

m

(�;x) =

[m(K)℄

k�1

m

m

X

i=1

(

k�1

Y

j=1

Z

K

expf�

X

�

(m)

i

�j

�(�; x� x

i

)dxg)

�1

(4.4)

then, for any �xed �

d

m

(�;x)! d(�;x) a.s.. (4.5)

The log-likelihood, given the observation x 
an be written as

l(�;x) = �

X

i<j

�(�; x

i

� x

j

)� log d(�;x) (4.6)

and its Monte Carlo approximant as

l

m

(�;x) = �

X

i<j

�(�; x

i

� x

j

)� log d

m

(�;x): (4.7)

Then, for any �xed �

l

m

(�;x)! l(�;x) a.s. (4.8)

by (4.5). Let

^

� = argmax

�

l(�;x) and

^

�

m

= argmax

�

l

m

(�; x).
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Theorem 4.9

^

�

m

!

^

� a.s. (4.10)

Proof. Sin
e (4.5) and (4.8) hold for � on a dense set, we have

^

�

m

!

^

� a.s. (4.11)

by Theorem 4, Geyer (1994). Note that the 
onvergen
e here refers to the 
onvergen
e of the

Monte Carlo approximant to the maximum likelihood estimator of �.

Theorem 4.12 Given x, we have

p

m(

^

� �

^

�

m

)

D

! N

�

0;

Var

�

(g

1

(�;

^

�;x))

E(

�

��

g

1

(�;

^

�;x))E(g

2

(�;

^

�;x))� E

2

(g

1

(�;

^

�;x))

�

(4.13)

where

g

1

(�; �;x) =

�

��

g

2

(�; �;x) (4.14)

g

2

(�; �;x) =

k�1

Y

j=1

Z

K

expf�

X

�

i

�j

�(�; x� x

i

)dxg)

�1

: (4.15)

Moreover, the expe
ted values on the varian
e expression 
an be easily approximated by standard

Monte Carlo methods.

Proof. Given x

p

m

�

�

��

log d

m

(�;x) �

�

��

log d(�;x)

�

D

! N

�

0;

Var

�

(g

1

(�; �;x))

E

2

�

(g

2

(�; �;x))

�

(4.16)

as m!1, where g

1

and g

2

are given by (4.14) and (4.15) respe
tively.

Sin
e

�

��

l

m

(

^

�

m

;x) = 0 and

�

��

l(

^

�;x) = 0 we have from (4.16)

p

m

�

�

��

l

m

(

^

�;x)�

�

��

l

m

(

^

�

m

;x)

�

D

! N

�

0;

Var

�

(g

1

(�; �;x))

E

2

�

(g

2

(�; �;x))

�

: (4.17)

By Taylor's expansion

p

m

�

�

��

l

m

(

^

�;x)�

�

��

l

m

(

^

�

m

;x)

�

=

=

p

m(

^

� �

^

�

m

)

�

2

��

2

l

m

(

^

�;x) +R

nm

(

^

�;

^

�

m

)) (4.18)
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with

R

nm

(

^

�;

^

�

m

) =

p

m(

^

� �

^

�

m

)

2

�

3

��

3

l

m

(�;x)

and

R

nm

(

^

�;

^

�

m

)! 0 a.s. (4.19)

as m!1 by (4.11). Moreover,

�

2

��

2

l

m

(

^

�;x)!

�

2

��

2

l(

^

�;x) a.s. (4.20)

as m!1. By (4.17), (4.18), (4.19) and (4.20) we have the desired result.

5 Simulation study

Suppose that we generate a pure birth pro
ess with spa
e-time intensity given by

�(x; n) = expf�

Z

�

�

jx� yj

��

)n(dy)g; (5.1)

with � > 0. In this 
ase, using the proje
tion method given by equation (2.1), it is very easy to

simulate the pure birth pro
ess.
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