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1 Graphi
al 
onstru
tion

Consider a spatial birth and death pro
ess with a birth rate given by

�(x; �) = 


1

� 


2

1fmind(x; y

i

) � t

0

g (1.1)

where 0 � 


2

� 


1

and � = fy

1

; y

2

; : : :g 
an be identi�ed with the point pro
ess on R

d

given by

� =

P

i

Æ

y

i

and a 
onstant death rate equals to 1.

The above pro
ess has generator given by

Af(�) =

Z

(f(� + Æ

x

)� f(�))�(x; �)dx +

Z

(f(� � Æ

x

)� f(�))�(dx) (1.2)

for \suitable" fun
tions f .

1.1 Marked Poisson pro
esses

In order to get a graphi
al 
onstru
tion for the pro
ess with generator (1.2), we begin with a




1

-homogeneous Poisson point pro
ess on R

d

� [0;1). Denote N = f(�

1

; T

1

); (�

2

; T

2

); : : :g. For

ea
h point (�

i

; T

i

), asso
iate two independent marks S

i

� exp(1) and Z

i

� b(1; 


2

=


1

).
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Interpretation We 
an see the marked point pro
ess C = (f(�

i

; T

i

; S

i

; Z

i

); i = 1; 2; : : :g as the

graphi
al representation of a birth and death pro
ess with 
onstant birth rate 


1

and 
onstant

death rate 1 (
all this pro
ess �) and Z

i

will be used as the indi
ator of \allowed" births.

From now on, a marked point (�

i

; T

i

; S

i

; Z

i

) will be identi�ed with a marked 
ylinder ((�

i

+

B(0; t

0

)) � [T

i

; T

i

+ S

i

); Z

i

) with basis �

i

, birth time T

i

, lifetime S

i

and 
ag Z

i

. Calling C =

(�; t; s; z), we use the notation

Basis (C) = �; Birth (C) = t; Life (C) = [t; t+ s℄; Flag (C) = z: (1.3)

De�ne in
ompatibility between 
ylinders C and C

0

by

C

0

6� C if and only if d(Basis (C);Basis (C

0

)) � t

0

and Life (C) \ Life (C

0

) 6= ;; (1.4)

otherwise C

0

� C (
ompatible).

1.2 Finite-volume 
onstru
tion

The 
onstru
tion of the spatial birth and death pro
ess in a �nite box � with an initial 
on�g-

uration �

0

= f'

1

; '

2

; : : :g using the Poisson pro
esses is straightforward. We use only the �nite

set f(�

i

; T

i

; S

i

; Z

i

) : �

i

2 �g. Let C

�

= fC 2 C : Basis (C) 2 �g. To ea
h point '

j

present in

the initial 
on�guration �

0

we independently asso
iate an exponential time

~

S

j

and a 
ylinder

('

j

; 0;

~

S

j

; 0). The 
olle
tion of initial 
ylinders is 
alled C

�

0

. We realize the dynami
s �

t

as a

(deterministi
) fun
tion of C

�

and C

�

0

.

We 
onstru
t indu
tively K

�

[0;t℄

, the set of kept 
ylinders at time t. The 
omplementary set


orresponds to erased 
ylinders. First in
lude all 
ylinders of C

�

0

in K

�

[0;t℄

. Then, move forward

in time and 
onsider the �rst T

i

: The 
orresponding 
ylinder C

i

is erased if: Flag (C

i

) = 1 and it

is in
ompatible with any of the 
ylinders already in K

�

[0;t℄

, otherwise it is kept. This pro
edure

is su

essively performed mark by mark until all 
ylinders born before t are 
onsidered. De�ne

�

�

t

2 X

�

as

�

�

t

(
) = fBasis (C) : C 2K

�

[0;t℄

; Life (C) 3 tg; (1.5)

that is, �

�

t

is the point pro
ess that 
ontains all basis of a kept 
ylinder that is alive at time

t. We leave to the reader to show that �

�

t

has generator A

�

de�ned as in (1.2) restri
ting the
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sums to the 
on�gurations 
ontained in �. It is easy to �nd an invariant measure �

�

for this

pro
ess (through the equation

R

A�(�) = 0). Some regeneration argument should show that �

�

t


onverges in distribution to �

�

for any initial 
on�guration �. This in parti
ular implies that

�

�

is the unique invariant measure for �

�

t

.

Using the same Poisson marks for �

�

t

and �

t

(the pro
ess with 
onstant birth rate 


1

and


onstant death rate 1), we have

�

�

t

(A) � �

t

(A); (1.6)

for all A � � be
ause in the pro
ess �

t

all 
ylinders are kept. This implies

�

�

f� : �(A) = 0g � Pf� : �(A) = 0g: (1.7)

1.3 Ba
kwards oriented per
olation

If we try to perform an analogous 
onstru
tion in in�nite volume we are 
onfronted with the

problem that there is not a �rst mark. To over
ome this we follow the original approa
h of

Harris (1972) (see also Durrett (1997)) and introdu
e the notion of per
olation. The goal is to

partition the set of 
ylinders in �nite subsets to whi
h the previous mark-by-mark 
onstru
tion


an be applied.

Consider the total order � in the set of 
ylinders indu
ed by the birth times. That is C � C

0

if and only if Birth (C) � Birth (C

0

).

For an arbitrary spa
e-time point (x; t) de�ne the set

A

x;t

1

= fC 2 C ; d(x;Basis (C)) � t

0

; Life (C) 3 tg (1.8)

the set of 
ylinders 
ontaining the point (x; t).

For any 
ylinder C de�ne the set of an
estors of C as the set

A

C

1

= fC

0

2 C ; C

0

� C ; C

0

6� Cg (1.9)

Noti
e that the de�nition of an
estor does not depend on the lifetime of C. Re
ursively for

n � 1, the nth generation of an
estors are de�ned as

A

x;t

n

= fC

00

: C

00

2 A

C

0

1

for some C

0

2 A

x;t

n�1

g: (1.10)
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and for a given 
ylinder C,

A

C

n

= fC

00

: C

00

2 A

C

0

1

for some C

0

2 A

C

n�1

g: (1.11)

We say that there is ba
kward oriented per
olation in C if there exists a spa
e-time point

(x; t) su
h that A

x;t

n

6= ; for all n, that is, there exists a point with in�nitely many generations

of an
estors. Let the 
lan of the spa
e-time point (x; t) be the union of its an
estors:

A

x;t

=

[

n�1

A

x;t

n

(1.12)

and C[0; t℄ = fC 2 C : Birth (C) 2 [0; t℄g.

In the next theorem we give a suÆ
ient 
ondition for the existen
e of the in�nite-volume

pro
ess in any �nite time interval in terms of ba
kwards per
olation.

Theorem 1.13 If with probability one A

x;t

\C[0; t℄ is �nite for any x;2 R

d

and t � 0, then

for any box � � R

d

, the pro
ess with generator A

�

is well de�ned and has at least one invariant

measure �

�

.

Proof. We 
onstru
t the pro
ess for � = R

d

. The 
onstru
tion for other � is analogous. The

initial distribution is denoted �

0

= f'

1

; '

2

; : : :g. For ea
h '

j

2 �

0

let S

j

be an independent expo-

nentially distributed random time of mean 1. The time S

j

represents the lifetime of the 
ylinder

with basis '

j

, birth time 0 and 
ag 0. We 
all C(0) the set of 
ylinders f('

j

; 0; S

j

; 0);'

j

2 �

0

g.

Sin
e the 
ylinders in C(0) have no an
estors in C[0; t℄, under the hypothesis of the theorem,

every 
ylinder in C(0)[C[0; t℄ has a �nite number of an
estors in C[0; t℄. We partition this set

as follows. As in the �nite-volume 
ase, we 
onstru
t a set of kept 
ylinders, denoted by K, and

a set of deleted 
ylinders denoted by D. Let

K

(1)

0

[0; t℄ = C(0) [ fC 2 C[0; t℄ : A

C

1

= ;g (1.14)

be the set of 
ylinders with no an
estors and

K

(2)

0

[0; t℄ = fC 2 C[0; t℄ : A

C

1

2 K

0

[0; t℄ and Flag (C) = 0g (1.15)

and

D

0

[0; t℄ = fC 2 C[0; t℄ : A

C

1

2 K

0

[0; t℄ and Flag (C) = 1g (1.16)
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be the set of 
ylinders with an
estors in K

(1)

0

[0; t℄, the ones with Flag equals to 0 are kept,

otherwise they are erased. Let

K

0

[0; t℄ = K

(1)

0

[0; t℄ [K

(2)

0

[0; t℄ (1.17)

U

0

[0; t℄ = K

0

[0; t℄: (1.18)

Indu
tively, for k � 1 let

K

(1)

k

[0; t℄ = K

k�1

[0; t℄ [

n

C 2 U

k

[0; t℄ : A

C

1

\K

k�1

[0; t℄ = ;

o

(1.19)

K

(2)

k

[0; t℄ =

n

C 2 U

k

[0; t℄ : A

C

1

\K

k�1

[0; t℄ 6= ; and Flag (C) = 0

o

(1.20)

D

k

[0; t℄ = D

k�1

[0; t℄ [

n

C 2 U

k

[0; t℄ : A

C

1

\K

k�1

[0; t℄ 6= ; and Flag (C) = 1

o

(1.21)

K

k

[0; t℄ = K

(1)

k

[0; t℄ [K

(2)

k

[0; t℄ (1.22)

where

U

k

[0; t℄ =

n

C 2 C[0; t℄ n

h

[

k�1

i=0

U

i

[0; t℄

i

: A

C

1

\U

k�1

[0; t℄ 6= ;

o

(1.23)

is the set of 
ylinders being 
lassi�ed at step k. De�ning

K[0; t℄ = [

k�0

K

k

[0; t℄; D[0; t℄ = [

k�0

D

k

[0; t℄; (1.24)

we have

C[0; t℄ = K[0; t℄

_

[D[0; t℄: (1.25)

The pro
ess is now de�ned as in (1.5) by

�

t

= fBasis (C) : C 2K[0; t℄; Life (C) 3 tgg: (1.26)

The reader 
an 
he
k that if we apply the above 
onstru
tion to the set of 
ylinders in C

�

[0; t℄

we obtain K

�

[0; t℄ as de�ned in Se
tion 1.2.

Display (1.26) says that the presen
e in �

t

of a point � 
an be established by 
lassifying the

an
estors of (�; t) in kept and erased 
ylinders. Sin
e there is no ba
kwards oriented per
olation,

this 
lassi�
ation 
an be a

omplished in a �nite number of steps. This idea is used in Ferrari

and Gar
ia (1998) to prove ergodi
ity of a one-dimensional loss network and in Fern�andez,

Ferrari and Gar
ia (1998) to get graphi
al representation of Peierls 
ontours.
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It is possible to show that �

t

has generator A given by (1.2).

We show in the next theorem that the pro
ess 
an be 
onstru
ted for times in the whole real

line. Sin
e the 
onstru
tion is time-translation invariant, the distribution of �

t

will be invariant.

Theorem 1.27 If with probability one there is no ba
kwards oriented per
olation in C, then

the pro
ess with generator A 
an be 
onstru
ted in (�1;1) in su
h a way that the marginal

distribution of �

t

is invariant.

Proof. The proof follows exa
tly the same steps as Theorem ?? of Fern�andez, Ferrari and

Gar
ia (1998).

The la
k of per
olation allows us to 
onstru
t a set K � C as K[0; t℄ was 
onstru
ted from

C(0) [ C[0; t℄ in the proof of the previous theorem. Note that K is both spa
e and time-

translation invariant by 
onstru
tion. Analogously to the previous theorem we de�ne �

t

as the

se
tion of K at time t:

�

t

= fBasis (C) : C 2 K; Life (C) 3 tgg: (1.28)

By 
onstru
tion, the distribution of �

t

does not depend on t, hen
e its distribution is an invariant

measure for the pro
ess.

De�nition 1.29 The distribution of �

t

is 
alled �.

Obs.: Mimi
king the proof of Theorem 4.2 one 
on
ludes that the spatial birth and death

pro
ess in a �nite box � 
an be 
onstru
ted for all t 2 R. In this 
ase one 
onstru
ts the set

K

�

using the same spe
i�
ation used to 
onstru
t K but using only 
ylinders in C

�

.

2 Per
olation

2.1 The key theorem

The following theorem shows that all that is needed is the absen
e of ba
kwards and non-oriented

per
olation. We need a 
ontinuous-time 
onstru
tion of the ba
kwards per
olation 
lan. To do

6



this in the in�nite-volume 
ase, we need to introdu
e a notion of non-oriented per
olation in a

time interval. Fix a time interval (s; t) and for any spa
e-time point (x; t

0

) de�ne

G

x;t

0

0

[s; t℄ = fC

0

2 C[s; t℄ : d(x;Basis (C)) � t

0

;Life (C

0

) 3 t

0

g (2.1)

and

G

x;t

0

n

[s; t℄ = fC 2 C[s; t℄ : d(Basis (C);Basis (C

0

)) � t

0

; for some C

0

2 G

x;t

0

n�1

g: (2.2)

Noti
e that in the de�nition of G

n

there is no exigen
y that the birth time of C

0

be previous

to the birth time of C or that the lifetimes interse
t. Let

G

x;t

0

[s; t℄ = [

k�0

G

x;t

0

k

: (2.3)

We say that there is no (non-oriented) per
olation in [s; t℄ if for any spa
e-time point (x; t

0

),

G

x;t

0

[s; t℄ 
ontains a �nite number of 
ylinders.

We will show later that the 
ondition 


1

� m

d

(B(0; t

0

)) is suÆ
ient for the existen
e of an

h su
h that the probability that there is no non-oriented per
olation in [0; h℄ is one.

Let the time-length and the spa
e-width of the family of 
ylinders A

x;t

be respe
tively

TL (A

x;t

) = t� supfs : Life (C) 3 s; for some C 2 A

x;t

g; (2.4)

SW (A

x;t

) = j [

C2A

x;t Basis (C)j: (2.5)

We say that two sets of 
ylinders A and A

0

are in
ompatible if there is a 
ylinder in A

in
ompatible with a 
ylinder in A

0

:

A 6� A

0

if and only if C 6� C

0

for some C 2 A and C

0

2 A

0

: (2.6)

Theorem 2.7 Assume that there is no ba
kwards oriented per
olation with probability one.

Then,

1. Uniqueness. The measure � is the unique invariant measure for the pro
ess �

t

.

2. Time 
onvergen
e. For any 
ompa
t set A,

lim

t!1

sup

A

jE�

�

t

(A)� E�(A)j = 0: (2.8)
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Furthermore,

sup

A

jE�(A) � E�

�

t

(A)j

� P([

x2A

fA

x;t

6� C(0) or TL (A

x;t

) > tg) (2.9)

�

�

P([

x2A

TL (A

x;0

) > bt) + e

�(1�b)t

E (SW (A

x;0

))

�

(2.10)

for any b 2 (0; 1).

Existen
e of � has been proven in Theorem 4.2. In the rest of the se
tion we prove uniqueness,

spa
e and time 
onvergen
e.

2.2 Time 
onvergen
e and uniqueness

We use the same Poisson marks to 
onstru
t simultaneously the stationary pro
ess �

t

and a

pro
ess starting at time zero with an arbitrary initial 
on�guration �. The se
ond pro
ess is


alled �

�

t

, where �

�

0

= �. The pro
ess �

�

t

ignores the 
ylinders in C with birth times less than 0

and 
onsiders C(0) = f('

j

; 0; S

j

; 0) : '

j

2 �g, the set of 
ylinders with basis given by the initial


on�guration � and birth time zero |the times S

j

are exponentially distributed with mean 1

and independent of everything.

It is enough to prove that

sup

A

P(j�

t

(A) � �

�

t

(A)j > 0)! 0 (2.11)

as t!1.

Sin
e we are using C to 
onstru
t �

t

and C[0; t℄ [C(0) to 
onstru
t �

�

t

, it follows

j�

�

t

(A)� �

t

(A)j �

X

x2A

1

n�

A

x;t

6� C(0) or TL (A

x;t

) > t

�o

(2.12)

Note that A

x;t

6= ; for �nitely many x 2 A. The proof of the above results is done similarly

as in Fern�andez, Ferrari and Gar
ia (1998). The di�eren
e is in estimates for the moments of

TL (A

x;t

and SW (A

x;t

), whi
h is done through the a dominating bran
hing pro
ess (Se
tion

3).

The arguments prove that the pro
ess 
onverges, uniformly in the initial 
on�guration, to

the invariant measure �. An immediate 
onsequen
e is that � is the unique invariant measure.
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3 Bran
hing pro
esses. Time length and spa
e width

In this se
tion we show that the 
ondition 


1

< (m

d

(B(0; t

0

)))

�1

implies hypothesis of Theorems

1.13 and 2.7.We also show that under those 
onditions there is an exponential upper bound for

the time length and spa
e width of A

x;t

. The tool is a domination of the ba
kwards per
olation

pro
ess with a bran
hing pro
ess.

3.1 Bran
hing pro
esses

Note that the 
olle
tion of hyper
ubes

C = f(Basis (C) +B(0; t

0

))� Life(C);C 2 Cg (3.1)

is a boolean model (Hall, 1985) and for any x 2 R

d

and t � 0 we have

P((x; t) not 
overed) = P((x; t) 62 ((Basis (C) +B(0; t

0

))� Life(C) for anyC 2 C)

= e

�m

d

(B(0;t

0

))


1

: (3.2)

Therefore, the number of hyper
ubes that 
over (x; t) is Poisson distributed with mean

m

d

(B(0; t

0

))


1

.

De�ne a Galton-Watson bran
hing pro
ess B

n

2 N as follows. Let Y

n

i

be i.i.d. non negative

integer valued random variables with Poisson distribution with mean m

d

(B(0; t

0

))


1

. De�ne

B

0

= 1 and

B

n+1

=

B

n

X

i=1

Y

n

i

(3.3)

(with the 
onvention

P

0

i=1

Y

n

i

= 0). It is possible to 
ouple the BO-
luster A

x;t

and (B

n

)

n�0

in su
h a way that the number of an
estors in the nth generation of (x; t) is less than or equal

to B

n

. The total number of an
estors of (x; t) is bounded by

kA

x;t

k �

X

n�0

B

n

: (3.4)

Therefore, there is no ba
kward oriented per
olation if the pro
ess is sub
riti
al, that is,




1

< (2t

0

)

�d

(3.5)
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De�ning the time length and spa
e width of this 
lan as in (2.4) and (2.5), we get

SW (A

x;0

) � m

d

(B(0; t

0

))B (3.6)

TL (A

x;0

) �

B

X

i=1

~

S

i

(3.7)

where

B =

X

n�0

B

n

(3.8)

and

~

S

i

; i � 1 are i.i.d. exponentially distributed random variables with mean 1.

Sin
e

E [B℄ =

1

1�m

d

(B(0; t

0

))


1

(3.9)

we have

E [SW (A

x;0

)℄ �

1

(2t

0

)

�d

� 


1

(3.10)

E [TL (A

x;0

)℄ �

1

1�m

d

(B(0; t

0

))


1

: (3.11)

Moreover, the moment generating fun
tion of TL (A

x;0

) is given by

E [a

TL (A

x;0

)

℄ = F

B

[(1 � log a)

�1

℄ (3.12)

where by (13.3) of Harris (1963) F (b), the generating fun
tion of Z, must satisfy the equation

F (b) = bf(F (b)): (3.13)

The largest solution of this is

�

b = �a=f(�a) (3.14)

where �a is the solution of

f

0

(a) =

f(a)

a

: (3.15)

In this 
ase, it is easy to see that

f

0

(a) = m

d

(B(0; t

0

))


1

f(a) (3.16)

and �a is given by

�a =

1

m

d

(B(0; t

0

))


1

(3.17)
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Therefore,

�

b =

1

m

d

(B(0; t

0

))


1

e

1�m

d

(B(0;t

0

))


1

: (3.18)

and 
onsequently,

P[TL (A

x;0

) > bt℄ � F

B

(

�

b)e

�bt

: (3.19)

4 Another birth rate

Consider a spatial birth and death pro
ess with a birth rate

�(x; �) = 


1

+ 


2

1fmin d(x; y

i

) � t

0

g (4.1)

where � = fy

1

; y

2

; : : :g 
an be identi�ed with � =

P

i

Æ

y

i

the point pro
ess on R

d

and a 
onstant

death rate equals to 1.

The graphi
al 
onstru
tion in this 
ase is very similar, ex
ept that we begin with a superpo-

sition of two independent homogeneous Poisson point pro
ess on R

d

� [0;1) with rates 


1

and




2

. For simpli
ity we 
all green the pro
ess with rate 


1

and red the pro
ess with rate 


2

. De-

note N

j

= f(�

j

1

; T

j

1

); (�

j

2

; T

j

2

); : : :g, j 2 fG;Rg. For ea
h point (�

G

i

; T

G

i

), asso
iate a independent

mark S

i

� exp(1) and for ea
h point (�

G

i

; T

G

i

) asso
iate two independent marks S

i

� exp(1)

and Z

i

� b(1; 


2

=(


1

+ 
2)).

As before, a marked point (�

i

; T

i

; S

i

; Z

i

) will be identi�ed with a marked 
ylinder ((�

i

+

[�t

0

; t

0

℄

d

)� [T

i

; T

i

+S

i

); Z

i

) with basis �

i

, birth time T

i

, lifetime S

i

and 
ag Z

i

, we will say that

all green 
ylinders have 
ag equal to 0. In
ompatibility between 
ylinders will be 
onsidered

only for red 
ylinders and it is de�ned as (1.4).

Interpretation: The 
onstru
tion, in this 
ase, will follow similar steps as the previous 
ase,

ex
ept that all green 
ylinders will be kept and we have to de
ide whi
h red 
ylinders are going

to be erased.

In order to 
onstru
t the pro
ess in in�nite volume, in parti
ular R

d

, we de�ne the set of

an
estors of 
ylinders and points 
onsidering both types of 
ylinders and 
onsidering only red


ylinders denoting these with a subs
ript R. In the next theorem we prove that no ba
kward

11



per
olation of red 
ylinders is a suÆ
ient 
ondition for the graphi
al 
onstru
tion of the birth

and death pro
ess with rate given by (4.1) and existen
e of an invariant measure.

Theorem 4.2 If with probability one A

x;t

R

\C[0; t℄ is �nite for any x;2 R

d

and t � 0, then

for any box � � R

d

, the pro
ess with generator A

�

is well de�ned and has at least one invariant

measure �

�

.

Proof. We 
onstru
t the pro
ess for � = R

d

. The 
onstru
tion for other � is analogous. The

initial distribution is denoted �

0

= f'

1

; '

2

; : : :g. For ea
h '

j

2 �

0

let S

j

be an independent expo-

nentially distributed random time of mean 1. The time S

j

represents the lifetime of the 
ylinder

with basis '

j

, birth time 0 and 
ag 0. We 
all C(0) the set of 
ylinders f('

j

; 0; S

j

; 0);'

j

2 �

0

g.

Call these 
ylinders green. We partition C(0) [ C[0; t℄ as follows. As before, we 
onstru
t a

set of kept 
ylinders, denoted by K, and a set of deleted 
ylinders denoted by D. Put all green


ylinders in K. Let

K

(1)

0

[0; t℄ = C(0) [ fC 2 C[0; t℄ : A

C

1


ontains a green 
ylinderg (4.3)

be the set of 
ylinders with green an
estors and

K

(2)

0

[0; t℄ = fC 2 C[0; t℄ : A

C

1

= ; Flag (C) = 0g (4.4)

D

0

[0; t℄ = fC 2 C[0; t℄ : A

C

1

= ; Flag (C) = 1g (4.5)

be the set of 
ylinders with no an
estors, the ones with Flag equals to 0 are kept, otherwise

they are erased. Let

K

0

[0; t℄ = K

(1)

0

[0; t℄ [K

(2)

0

[0; t℄ (4.6)

U

0

[0; t℄ = K

0

[0; t℄: (4.7)

Indu
tively, for k � 1 let

K

(1)

k

[0; t℄ = K

k�1

[0; t℄ [

n

C 2 U

k

[0; t℄ : A

C

1

\K

k�1

[0; t℄ 6= ;

o

(4.8)

K

(2)

k

[0; t℄ =

n

C 2 U

k

[0; t℄ : A

C

1

\K

k�1

[0; t℄ = ; and Flag (C) = 0

o

(4.9)

D

k

[0; t℄ = D

k�1

[0; t℄ [

n

C 2 U

k

[0; t℄ : A

C

1

\K

k�1

[0; t℄ = ; and Flag (C) = 1

o

(4.10)

K

k

[0; t℄ = K

(1)

k

[0; t℄ [K

(2)

k

[0; t℄ (4.11)
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where

U

k

[0; t℄ =

n

C 2 C[0; t℄ n

h

[

k�1

i=0

U

i

[0; t℄

i

: A

C

1

\U

k�1

[0; t℄ 6= ;

o

(4.12)

is the set of 
ylinders being 
lassi�ed at step k. De�ning

K[0; t℄ = [

k�0

K

k

[0; t℄; D[0; t℄ = [

k�0

D

k

[0; t℄; (4.13)

we have

C[0; t℄ = K[0; t℄

_

[D[0; t℄: (4.14)

The pro
ess is now de�ned as in (1.26) by

�

t

= fBasis (C) : C 2K[0; t℄; Life (C) 3 tgg: (4.15)

5 Representation through sto
hasti
 equations

Consider a birth and death pro
ess �

t

with birth rate given by �(x; �) and 
onstant death

rate 
an be represented as the solution of a system of sto
hasti
 equations, see Gar
ia (1995).

ConsiderN to be a Poisson randommeasure on R

d

�[0;1)

3

with mean measurem

d

�m�e

�r

�m

and N

0

be a Poisson random measure, independent of N on R

d

� [0;1) with mean measure

m

d

� e

�r

(to represent the initial 
on�guration). The birth and death pro
ess �

t

satis�es the

sto
hasti
 equation:

�

t

(A) =

Z

A�[0;1)

2

�[0;t℄

1

[0;�(x;�

s�

)℄

(u)1

[t�s;1)

(r)N(dx; du; dr; ds) +

Z

A�[t;1)

N

0

(dx; dr) (5.1)

Results

R1. The pro
ess �

t

is stationary, that is

E [�

t

(A)℄ = 
m

d

(A) (5.2)

for some 
onstant 
.

R2. If �(x; �) is non-de
reasing, in the sense �(x; n

1

) � �(x; n

2

) for n

1

� n

2

, then the pro
ess

�

t

is attra
tive, that is

�

1

0

� �

2

0

implies �

1

t

� �

2

t

(5.3)

for all t � 0.
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R3. It is true that

E [�(x; �

t

℄ = 
 (5.4)

for the same 
onstant 
 as (5.2).

Proof. We have

E [�

t

(A)℄(1 � e

�t

) =

Z

t

0

Z

A

E [�(x; �

s

)℄e

�(t�s)

dx ds

km

d

(A)(1 � e

�t

) =

Z

t

0

Z

A

E [�(x; �

s

)℄e

�(t�s)

dx ds

and (5.4) follows.

R4. Let �

;

t

be the birth and death pro
ess with empty initial 
on�guration, then for any

pro
ess with arbitrary initial 
on�guration �

0

and for A 
ompa
t we have

E [�

t

(A)� �

;

t

(A)℄ =

Z

A�[0;1)

2

�[0;t℄

(1

[0;�(x;�

s�

)℄

(u)� 1

[0;�(x;�

;

s

)℄

(u))1

[t�s;1)

(r)N(dx; du; dr; ds)

+E [

Z

A�[t;1)

N

0

(dx; dr)℄

=

Z

t

0

Z

A

E [�(x; �

s�

)� �(x; �

;

s

)℄e

�(t�s)

dx ds+ e

�t

�(A) (5.5)

R5. These pro
esses 
an be de�ned starting at time �T . In fa
t let N to be a Poisson random

measure on R

d

� [0;1)

2

� (�1;1) with mean measure m

d

�m� e

�r

�m and N

0

be a

Poisson random measure, independent of N on R

d

� [0;1) with mean measure m

d

� e

�r

(to represent the initial 
on�guration). De�ne a birth and death pro
ess �

T

t

satisfying the

sto
hasti
 equation:

�

T

t

(A) =

Z

A�[0;1)

2

�[�T;t�T ℄

1

[0;�(x;�

T

s�

)℄

(u)1

[t�T�s;1)

(r)N(dx; du; dr; ds)+

Z

A�[t;1)

N

0

(dx; dr)

(5.6)

then

N

T

T

D

= N

T

: (5.7)

R6. If �(x; �) is non-de
reasing for ea
h x and

�

� = sup

x;n

�(x; n) <1: (5.8)
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then we have ergodi
ity in 
ertain 
ases.

Proof. In fa
t, we 
an 
onstru
t two pro
esses N and N su
h that

N = lim

T!1

N

T

(5.9)

N = lim

T!1

N

T

(5.10)

where N

T

andN

T

satisfy (R5) with initial 
on�gurationsN

0

� Æ

;

and N

0

� Poisson(R

d

�

[0;1);

�

�m

d

� e

�r

). Sin
e N

T

is sto
hasti
ally bounded by the birth and death pro
ess

with 
onstant birth rate

�

� and unit death rate, the limit in (5.9) exists. The monotoni
ity

of � guarantees the existen
e of the limit (5.10).

Therefore, for initial 
on�gurations all full (homogeneous birth and death pro
ess) and

all empty we have 
onvergen
e in distribution. The question now is: are the two limits

equal?

Constru
t a sequen
e of pro
esses N

k

and N

k

as

N

0

t

(A) =

Z

A�[0;1)

2

�(�1;t℄

1

[0;

�

�℄

(u)1

[�s;1)

(r)N(dx; du; dr; ds) (5.11)

N

k

t

(A) =

Z

A�[0;1)

2

�(�1;t℄

1

[0;�(x;N

k�1

s

�)℄

(u)1

[�s;1)

(r)N(dx; du; dr; ds) (5.12)

and

N

0

t

(A) = 0

N

k

t

(A) =

Z

A�[0;1)

2

�(�1;t℄

1

[0;�(x;N

k�1

s

�)℄

(u)1

[�s;1)

(r)N(dx; du; dr; ds): (5.13)

Therefore, it is easy to see that

lim

k!1

N

k

0

= lim

T!1

N

T

T

(5.14)

lim

k!1

N

k

0

= lim

T!1

N

T

T

(5.15)

and ergodi
ity follows if (5.14) and (5.15) 
oin
ide.

But for any A 
ompa
t we have by the stationarity of the pro
esses, see (5.2) N and N




k+1

m

d

(A) = E [N

k+1

0

(A)�N

k+1

0

(A)℄ =

Z

0

�1

Z

A

E [�(x;N

k

s

)� �(x;N

k

s

)℄ e

s

dx ds: (5.16)
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Case 1: If �(x; n) = 


1

+ 


2

1fd(x; n) � t

0

g then (5.16) is bounded by

Z

0

�1

Z

A




2

E [N

k

s

(B(x; t

0

))�N

k

s

(B(x; t

0

))℄ e

s

dx ds (5.17)

�

Z

0

�1

Z

A




2

m

d

(B(x; t

0

)) 


k

m

d

(A): (5.18)

and




k+1

� 


2

m

d

(B(x; t

0

)) 


k

(5.19)

whi
h 
onverges if 


2

m

d

(B(x; t

0

)) < 1.

Case 2: Take any �(x; n) = �(d(x; n)), with �(�) non-in
reasing real fun
tion. Then, for

any N

2

� N

1

we have

�(d(x;N

2

))� �(d(x;N

1

)) �

Z

(�(x� y)� �(1))(N

2

�N

1

)(dy) (5.20)

then, by (R1) we have

E [�(d(x;N

2

))� �(d(x;N

1

))℄ � 


Z

(�(x� y)� �(1)) dy: (5.21)

Substituting (5.21) into (5.16) we get




k+1

m

d

(A) �

Z

0

�1

Z

A

(�(x� y)� �(1)) e

s

dx ds = 


k

Z

(�(x� y)� �(1)) dy m

d

(A)

(5.22)

whi
h 
onverges if

R

(�(x� y)� �(1)) dy < 1.

R7. If �(x; �) is non-in
reasing for ea
h x and

�

� = sup

x;n

�(x; n) <1: (5.23)

then we have ergodi
ity in 
ertain 
ases.

Proof. Under these hypothesis 
onstru
t a sequen
e of pro
esses N

k

as (5.11) and (5.12).

This sequen
e has the property:

N

0

� N

2

� : : : � N

2`

� : : : � N

2`+1

� : : : � N

3

� N

1

: (5.24)

Ergodi
ity will follow from

lim

`!1

℄N

2`

0

= lim

`!1

℄N

2`+1

0

: (5.25)
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Taking any �(x; n) = �(d(x; n)), with �(�) non-de
reasing real fun
tion. From (5.2) we

have




`

m

d

(A) = E [N

2`

0

(A)�N

2`+1

0

(A)℄ � 


`�1

m

d

(A)

Z

(�(1)� �(y)) dy (5.26)

whi
h 
onverges if

R

(�(1)� �(y)) dy < 1.
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