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1 Graphial onstrution

Consider a spatial birth and death proess with a birth rate given by

�(x; �) = 

1

� 

2

1fmind(x; y

i

) � t

0

g (1.1)

where 0 � 

2

� 

1

and � = fy

1

; y

2

; : : :g an be identi�ed with the point proess on R

d

given by

� =

P

i

Æ

y

i

and a onstant death rate equals to 1.

The above proess has generator given by

Af(�) =

Z

(f(� + Æ

x

)� f(�))�(x; �)dx +

Z

(f(� � Æ

x

)� f(�))�(dx) (1.2)

for \suitable" funtions f .

1.1 Marked Poisson proesses

In order to get a graphial onstrution for the proess with generator (1.2), we begin with a



1

-homogeneous Poisson point proess on R

d

� [0;1). Denote N = f(�

1

; T

1

); (�

2

; T

2

); : : :g. For

eah point (�

i

; T

i

), assoiate two independent marks S

i

� exp(1) and Z

i

� b(1; 

2

=

1

).
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Interpretation We an see the marked point proess C = (f(�

i

; T

i

; S

i

; Z

i

); i = 1; 2; : : :g as the

graphial representation of a birth and death proess with onstant birth rate 

1

and onstant

death rate 1 (all this proess �) and Z

i

will be used as the indiator of \allowed" births.

From now on, a marked point (�

i

; T

i

; S

i

; Z

i

) will be identi�ed with a marked ylinder ((�

i

+

B(0; t

0

)) � [T

i

; T

i

+ S

i

); Z

i

) with basis �

i

, birth time T

i

, lifetime S

i

and ag Z

i

. Calling C =

(�; t; s; z), we use the notation

Basis (C) = �; Birth (C) = t; Life (C) = [t; t+ s℄; Flag (C) = z: (1.3)

De�ne inompatibility between ylinders C and C

0

by

C

0

6� C if and only if d(Basis (C);Basis (C

0

)) � t

0

and Life (C) \ Life (C

0

) 6= ;; (1.4)

otherwise C

0

� C (ompatible).

1.2 Finite-volume onstrution

The onstrution of the spatial birth and death proess in a �nite box � with an initial on�g-

uration �

0

= f'

1

; '

2

; : : :g using the Poisson proesses is straightforward. We use only the �nite

set f(�

i

; T

i

; S

i

; Z

i

) : �

i

2 �g. Let C

�

= fC 2 C : Basis (C) 2 �g. To eah point '

j

present in

the initial on�guration �

0

we independently assoiate an exponential time

~

S

j

and a ylinder

('

j

; 0;

~

S

j

; 0). The olletion of initial ylinders is alled C

�

0

. We realize the dynamis �

t

as a

(deterministi) funtion of C

�

and C

�

0

.

We onstrut indutively K

�

[0;t℄

, the set of kept ylinders at time t. The omplementary set

orresponds to erased ylinders. First inlude all ylinders of C

�

0

in K

�

[0;t℄

. Then, move forward

in time and onsider the �rst T

i

: The orresponding ylinder C

i

is erased if: Flag (C

i

) = 1 and it

is inompatible with any of the ylinders already in K

�

[0;t℄

, otherwise it is kept. This proedure

is suessively performed mark by mark until all ylinders born before t are onsidered. De�ne

�

�

t

2 X

�

as

�

�

t

() = fBasis (C) : C 2K

�

[0;t℄

; Life (C) 3 tg; (1.5)

that is, �

�

t

is the point proess that ontains all basis of a kept ylinder that is alive at time

t. We leave to the reader to show that �

�

t

has generator A

�

de�ned as in (1.2) restriting the

2



sums to the on�gurations ontained in �. It is easy to �nd an invariant measure �

�

for this

proess (through the equation

R

A�(�) = 0). Some regeneration argument should show that �

�

t

onverges in distribution to �

�

for any initial on�guration �. This in partiular implies that

�

�

is the unique invariant measure for �

�

t

.

Using the same Poisson marks for �

�

t

and �

t

(the proess with onstant birth rate 

1

and

onstant death rate 1), we have

�

�

t

(A) � �

t

(A); (1.6)

for all A � � beause in the proess �

t

all ylinders are kept. This implies

�

�

f� : �(A) = 0g � Pf� : �(A) = 0g: (1.7)

1.3 Bakwards oriented perolation

If we try to perform an analogous onstrution in in�nite volume we are onfronted with the

problem that there is not a �rst mark. To overome this we follow the original approah of

Harris (1972) (see also Durrett (1997)) and introdue the notion of perolation. The goal is to

partition the set of ylinders in �nite subsets to whih the previous mark-by-mark onstrution

an be applied.

Consider the total order � in the set of ylinders indued by the birth times. That is C � C

0

if and only if Birth (C) � Birth (C

0

).

For an arbitrary spae-time point (x; t) de�ne the set

A

x;t

1

= fC 2 C ; d(x;Basis (C)) � t

0

; Life (C) 3 tg (1.8)

the set of ylinders ontaining the point (x; t).

For any ylinder C de�ne the set of anestors of C as the set

A

C

1

= fC

0

2 C ; C

0

� C ; C

0

6� Cg (1.9)

Notie that the de�nition of anestor does not depend on the lifetime of C. Reursively for

n � 1, the nth generation of anestors are de�ned as

A

x;t

n

= fC

00

: C

00

2 A

C

0

1

for some C

0

2 A

x;t

n�1

g: (1.10)
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and for a given ylinder C,

A

C

n

= fC

00

: C

00

2 A

C

0

1

for some C

0

2 A

C

n�1

g: (1.11)

We say that there is bakward oriented perolation in C if there exists a spae-time point

(x; t) suh that A

x;t

n

6= ; for all n, that is, there exists a point with in�nitely many generations

of anestors. Let the lan of the spae-time point (x; t) be the union of its anestors:

A

x;t

=

[

n�1

A

x;t

n

(1.12)

and C[0; t℄ = fC 2 C : Birth (C) 2 [0; t℄g.

In the next theorem we give a suÆient ondition for the existene of the in�nite-volume

proess in any �nite time interval in terms of bakwards perolation.

Theorem 1.13 If with probability one A

x;t

\C[0; t℄ is �nite for any x;2 R

d

and t � 0, then

for any box � � R

d

, the proess with generator A

�

is well de�ned and has at least one invariant

measure �

�

.

Proof. We onstrut the proess for � = R

d

. The onstrution for other � is analogous. The

initial distribution is denoted �

0

= f'

1

; '

2

; : : :g. For eah '

j

2 �

0

let S

j

be an independent expo-

nentially distributed random time of mean 1. The time S

j

represents the lifetime of the ylinder

with basis '

j

, birth time 0 and ag 0. We all C(0) the set of ylinders f('

j

; 0; S

j

; 0);'

j

2 �

0

g.

Sine the ylinders in C(0) have no anestors in C[0; t℄, under the hypothesis of the theorem,

every ylinder in C(0)[C[0; t℄ has a �nite number of anestors in C[0; t℄. We partition this set

as follows. As in the �nite-volume ase, we onstrut a set of kept ylinders, denoted by K, and

a set of deleted ylinders denoted by D. Let

K

(1)

0

[0; t℄ = C(0) [ fC 2 C[0; t℄ : A

C

1

= ;g (1.14)

be the set of ylinders with no anestors and

K

(2)

0

[0; t℄ = fC 2 C[0; t℄ : A

C

1

2 K

0

[0; t℄ and Flag (C) = 0g (1.15)

and

D

0

[0; t℄ = fC 2 C[0; t℄ : A

C

1

2 K

0

[0; t℄ and Flag (C) = 1g (1.16)
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be the set of ylinders with anestors in K

(1)

0

[0; t℄, the ones with Flag equals to 0 are kept,

otherwise they are erased. Let

K

0

[0; t℄ = K

(1)

0

[0; t℄ [K

(2)

0

[0; t℄ (1.17)

U

0

[0; t℄ = K

0

[0; t℄: (1.18)

Indutively, for k � 1 let

K

(1)

k

[0; t℄ = K

k�1

[0; t℄ [

n

C 2 U

k

[0; t℄ : A

C

1

\K

k�1

[0; t℄ = ;

o

(1.19)

K

(2)

k

[0; t℄ =

n

C 2 U

k

[0; t℄ : A

C

1

\K

k�1

[0; t℄ 6= ; and Flag (C) = 0

o

(1.20)

D

k

[0; t℄ = D

k�1

[0; t℄ [

n

C 2 U

k

[0; t℄ : A

C

1

\K

k�1

[0; t℄ 6= ; and Flag (C) = 1

o

(1.21)

K

k

[0; t℄ = K

(1)

k

[0; t℄ [K

(2)

k

[0; t℄ (1.22)

where

U

k

[0; t℄ =

n

C 2 C[0; t℄ n

h

[

k�1

i=0

U

i

[0; t℄

i

: A

C

1

\U

k�1

[0; t℄ 6= ;

o

(1.23)

is the set of ylinders being lassi�ed at step k. De�ning

K[0; t℄ = [

k�0

K

k

[0; t℄; D[0; t℄ = [

k�0

D

k

[0; t℄; (1.24)

we have

C[0; t℄ = K[0; t℄

_

[D[0; t℄: (1.25)

The proess is now de�ned as in (1.5) by

�

t

= fBasis (C) : C 2K[0; t℄; Life (C) 3 tgg: (1.26)

The reader an hek that if we apply the above onstrution to the set of ylinders in C

�

[0; t℄

we obtain K

�

[0; t℄ as de�ned in Setion 1.2.

Display (1.26) says that the presene in �

t

of a point � an be established by lassifying the

anestors of (�; t) in kept and erased ylinders. Sine there is no bakwards oriented perolation,

this lassi�ation an be aomplished in a �nite number of steps. This idea is used in Ferrari

and Garia (1998) to prove ergodiity of a one-dimensional loss network and in Fern�andez,

Ferrari and Garia (1998) to get graphial representation of Peierls ontours.
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It is possible to show that �

t

has generator A given by (1.2).

We show in the next theorem that the proess an be onstruted for times in the whole real

line. Sine the onstrution is time-translation invariant, the distribution of �

t

will be invariant.

Theorem 1.27 If with probability one there is no bakwards oriented perolation in C, then

the proess with generator A an be onstruted in (�1;1) in suh a way that the marginal

distribution of �

t

is invariant.

Proof. The proof follows exatly the same steps as Theorem ?? of Fern�andez, Ferrari and

Garia (1998).

The lak of perolation allows us to onstrut a set K � C as K[0; t℄ was onstruted from

C(0) [ C[0; t℄ in the proof of the previous theorem. Note that K is both spae and time-

translation invariant by onstrution. Analogously to the previous theorem we de�ne �

t

as the

setion of K at time t:

�

t

= fBasis (C) : C 2 K; Life (C) 3 tgg: (1.28)

By onstrution, the distribution of �

t

does not depend on t, hene its distribution is an invariant

measure for the proess.

De�nition 1.29 The distribution of �

t

is alled �.

Obs.: Mimiking the proof of Theorem 4.2 one onludes that the spatial birth and death

proess in a �nite box � an be onstruted for all t 2 R. In this ase one onstruts the set

K

�

using the same spei�ation used to onstrut K but using only ylinders in C

�

.

2 Perolation

2.1 The key theorem

The following theorem shows that all that is needed is the absene of bakwards and non-oriented

perolation. We need a ontinuous-time onstrution of the bakwards perolation lan. To do

6



this in the in�nite-volume ase, we need to introdue a notion of non-oriented perolation in a

time interval. Fix a time interval (s; t) and for any spae-time point (x; t

0

) de�ne

G

x;t

0

0

[s; t℄ = fC

0

2 C[s; t℄ : d(x;Basis (C)) � t

0

;Life (C

0

) 3 t

0

g (2.1)

and

G

x;t

0

n

[s; t℄ = fC 2 C[s; t℄ : d(Basis (C);Basis (C

0

)) � t

0

; for some C

0

2 G

x;t

0

n�1

g: (2.2)

Notie that in the de�nition of G

n

there is no exigeny that the birth time of C

0

be previous

to the birth time of C or that the lifetimes interset. Let

G

x;t

0

[s; t℄ = [

k�0

G

x;t

0

k

: (2.3)

We say that there is no (non-oriented) perolation in [s; t℄ if for any spae-time point (x; t

0

),

G

x;t

0

[s; t℄ ontains a �nite number of ylinders.

We will show later that the ondition 

1

� m

d

(B(0; t

0

)) is suÆient for the existene of an

h suh that the probability that there is no non-oriented perolation in [0; h℄ is one.

Let the time-length and the spae-width of the family of ylinders A

x;t

be respetively

TL (A

x;t

) = t� supfs : Life (C) 3 s; for some C 2 A

x;t

g; (2.4)

SW (A

x;t

) = j [

C2A

x;t Basis (C)j: (2.5)

We say that two sets of ylinders A and A

0

are inompatible if there is a ylinder in A

inompatible with a ylinder in A

0

:

A 6� A

0

if and only if C 6� C

0

for some C 2 A and C

0

2 A

0

: (2.6)

Theorem 2.7 Assume that there is no bakwards oriented perolation with probability one.

Then,

1. Uniqueness. The measure � is the unique invariant measure for the proess �

t

.

2. Time onvergene. For any ompat set A,

lim

t!1

sup

A

jE�

�

t

(A)� E�(A)j = 0: (2.8)
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Furthermore,

sup

A

jE�(A) � E�

�

t

(A)j

� P([

x2A

fA

x;t

6� C(0) or TL (A

x;t

) > tg) (2.9)

�

�

P([

x2A

TL (A

x;0

) > bt) + e

�(1�b)t

E (SW (A

x;0

))

�

(2.10)

for any b 2 (0; 1).

Existene of � has been proven in Theorem 4.2. In the rest of the setion we prove uniqueness,

spae and time onvergene.

2.2 Time onvergene and uniqueness

We use the same Poisson marks to onstrut simultaneously the stationary proess �

t

and a

proess starting at time zero with an arbitrary initial on�guration �. The seond proess is

alled �

�

t

, where �

�

0

= �. The proess �

�

t

ignores the ylinders in C with birth times less than 0

and onsiders C(0) = f('

j

; 0; S

j

; 0) : '

j

2 �g, the set of ylinders with basis given by the initial

on�guration � and birth time zero |the times S

j

are exponentially distributed with mean 1

and independent of everything.

It is enough to prove that

sup

A

P(j�

t

(A) � �

�

t

(A)j > 0)! 0 (2.11)

as t!1.

Sine we are using C to onstrut �

t

and C[0; t℄ [C(0) to onstrut �

�

t

, it follows

j�

�

t

(A)� �

t

(A)j �

X

x2A

1

n�

A

x;t

6� C(0) or TL (A

x;t

) > t

�o

(2.12)

Note that A

x;t

6= ; for �nitely many x 2 A. The proof of the above results is done similarly

as in Fern�andez, Ferrari and Garia (1998). The di�erene is in estimates for the moments of

TL (A

x;t

and SW (A

x;t

), whih is done through the a dominating branhing proess (Setion

3).

The arguments prove that the proess onverges, uniformly in the initial on�guration, to

the invariant measure �. An immediate onsequene is that � is the unique invariant measure.
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3 Branhing proesses. Time length and spae width

In this setion we show that the ondition 

1

< (m

d

(B(0; t

0

)))

�1

implies hypothesis of Theorems

1.13 and 2.7.We also show that under those onditions there is an exponential upper bound for

the time length and spae width of A

x;t

. The tool is a domination of the bakwards perolation

proess with a branhing proess.

3.1 Branhing proesses

Note that the olletion of hyperubes

C = f(Basis (C) +B(0; t

0

))� Life(C);C 2 Cg (3.1)

is a boolean model (Hall, 1985) and for any x 2 R

d

and t � 0 we have

P((x; t) not overed) = P((x; t) 62 ((Basis (C) +B(0; t

0

))� Life(C) for anyC 2 C)

= e

�m

d

(B(0;t

0

))

1

: (3.2)

Therefore, the number of hyperubes that over (x; t) is Poisson distributed with mean

m

d

(B(0; t

0

))

1

.

De�ne a Galton-Watson branhing proess B

n

2 N as follows. Let Y

n

i

be i.i.d. non negative

integer valued random variables with Poisson distribution with mean m

d

(B(0; t

0

))

1

. De�ne

B

0

= 1 and

B

n+1

=

B

n

X

i=1

Y

n

i

(3.3)

(with the onvention

P

0

i=1

Y

n

i

= 0). It is possible to ouple the BO-luster A

x;t

and (B

n

)

n�0

in suh a way that the number of anestors in the nth generation of (x; t) is less than or equal

to B

n

. The total number of anestors of (x; t) is bounded by

kA

x;t

k �

X

n�0

B

n

: (3.4)

Therefore, there is no bakward oriented perolation if the proess is subritial, that is,



1

< (2t

0

)

�d

(3.5)
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De�ning the time length and spae width of this lan as in (2.4) and (2.5), we get

SW (A

x;0

) � m

d

(B(0; t

0

))B (3.6)

TL (A

x;0

) �

B

X

i=1

~

S

i

(3.7)

where

B =

X

n�0

B

n

(3.8)

and

~

S

i

; i � 1 are i.i.d. exponentially distributed random variables with mean 1.

Sine

E [B℄ =

1

1�m

d

(B(0; t

0

))

1

(3.9)

we have

E [SW (A

x;0

)℄ �

1

(2t

0

)

�d

� 

1

(3.10)

E [TL (A

x;0

)℄ �

1

1�m

d

(B(0; t

0

))

1

: (3.11)

Moreover, the moment generating funtion of TL (A

x;0

) is given by

E [a

TL (A

x;0

)

℄ = F

B

[(1 � log a)

�1

℄ (3.12)

where by (13.3) of Harris (1963) F (b), the generating funtion of Z, must satisfy the equation

F (b) = bf(F (b)): (3.13)

The largest solution of this is

�

b = �a=f(�a) (3.14)

where �a is the solution of

f

0

(a) =

f(a)

a

: (3.15)

In this ase, it is easy to see that

f

0

(a) = m

d

(B(0; t

0

))

1

f(a) (3.16)

and �a is given by

�a =

1

m

d

(B(0; t

0

))

1

(3.17)
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Therefore,

�

b =

1

m

d

(B(0; t

0

))

1

e

1�m

d

(B(0;t

0

))

1

: (3.18)

and onsequently,

P[TL (A

x;0

) > bt℄ � F

B

(

�

b)e

�bt

: (3.19)

4 Another birth rate

Consider a spatial birth and death proess with a birth rate

�(x; �) = 

1

+ 

2

1fmin d(x; y

i

) � t

0

g (4.1)

where � = fy

1

; y

2

; : : :g an be identi�ed with � =

P

i

Æ

y

i

the point proess on R

d

and a onstant

death rate equals to 1.

The graphial onstrution in this ase is very similar, exept that we begin with a superpo-

sition of two independent homogeneous Poisson point proess on R

d

� [0;1) with rates 

1

and



2

. For simpliity we all green the proess with rate 

1

and red the proess with rate 

2

. De-

note N

j

= f(�

j

1

; T

j

1

); (�

j

2

; T

j

2

); : : :g, j 2 fG;Rg. For eah point (�

G

i

; T

G

i

), assoiate a independent

mark S

i

� exp(1) and for eah point (�

G

i

; T

G

i

) assoiate two independent marks S

i

� exp(1)

and Z

i

� b(1; 

2

=(

1

+ 2)).

As before, a marked point (�

i

; T

i

; S

i

; Z

i

) will be identi�ed with a marked ylinder ((�

i

+

[�t

0

; t

0

℄

d

)� [T

i

; T

i

+S

i

); Z

i

) with basis �

i

, birth time T

i

, lifetime S

i

and ag Z

i

, we will say that

all green ylinders have ag equal to 0. Inompatibility between ylinders will be onsidered

only for red ylinders and it is de�ned as (1.4).

Interpretation: The onstrution, in this ase, will follow similar steps as the previous ase,

exept that all green ylinders will be kept and we have to deide whih red ylinders are going

to be erased.

In order to onstrut the proess in in�nite volume, in partiular R

d

, we de�ne the set of

anestors of ylinders and points onsidering both types of ylinders and onsidering only red

ylinders denoting these with a subsript R. In the next theorem we prove that no bakward
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perolation of red ylinders is a suÆient ondition for the graphial onstrution of the birth

and death proess with rate given by (4.1) and existene of an invariant measure.

Theorem 4.2 If with probability one A

x;t

R

\C[0; t℄ is �nite for any x;2 R

d

and t � 0, then

for any box � � R

d

, the proess with generator A

�

is well de�ned and has at least one invariant

measure �

�

.

Proof. We onstrut the proess for � = R

d

. The onstrution for other � is analogous. The

initial distribution is denoted �

0

= f'

1

; '

2

; : : :g. For eah '

j

2 �

0

let S

j

be an independent expo-

nentially distributed random time of mean 1. The time S

j

represents the lifetime of the ylinder

with basis '

j

, birth time 0 and ag 0. We all C(0) the set of ylinders f('

j

; 0; S

j

; 0);'

j

2 �

0

g.

Call these ylinders green. We partition C(0) [ C[0; t℄ as follows. As before, we onstrut a

set of kept ylinders, denoted by K, and a set of deleted ylinders denoted by D. Put all green

ylinders in K. Let

K

(1)

0

[0; t℄ = C(0) [ fC 2 C[0; t℄ : A

C

1

ontains a green ylinderg (4.3)

be the set of ylinders with green anestors and

K

(2)

0

[0; t℄ = fC 2 C[0; t℄ : A

C

1

= ; Flag (C) = 0g (4.4)

D

0

[0; t℄ = fC 2 C[0; t℄ : A

C

1

= ; Flag (C) = 1g (4.5)

be the set of ylinders with no anestors, the ones with Flag equals to 0 are kept, otherwise

they are erased. Let

K

0

[0; t℄ = K

(1)

0

[0; t℄ [K

(2)

0

[0; t℄ (4.6)

U

0

[0; t℄ = K

0

[0; t℄: (4.7)

Indutively, for k � 1 let

K

(1)

k

[0; t℄ = K

k�1

[0; t℄ [

n

C 2 U

k

[0; t℄ : A

C

1

\K

k�1

[0; t℄ 6= ;

o

(4.8)

K

(2)

k

[0; t℄ =

n

C 2 U

k

[0; t℄ : A

C

1

\K

k�1

[0; t℄ = ; and Flag (C) = 0

o

(4.9)

D

k

[0; t℄ = D

k�1

[0; t℄ [

n

C 2 U

k

[0; t℄ : A

C

1

\K

k�1

[0; t℄ = ; and Flag (C) = 1

o

(4.10)

K

k

[0; t℄ = K

(1)

k

[0; t℄ [K

(2)

k

[0; t℄ (4.11)
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where

U

k

[0; t℄ =

n

C 2 C[0; t℄ n

h

[

k�1

i=0

U

i

[0; t℄

i

: A

C

1

\U

k�1

[0; t℄ 6= ;

o

(4.12)

is the set of ylinders being lassi�ed at step k. De�ning

K[0; t℄ = [

k�0

K

k

[0; t℄; D[0; t℄ = [

k�0

D

k

[0; t℄; (4.13)

we have

C[0; t℄ = K[0; t℄

_

[D[0; t℄: (4.14)

The proess is now de�ned as in (1.26) by

�

t

= fBasis (C) : C 2K[0; t℄; Life (C) 3 tgg: (4.15)

5 Representation through stohasti equations

Consider a birth and death proess �

t

with birth rate given by �(x; �) and onstant death

rate an be represented as the solution of a system of stohasti equations, see Garia (1995).

ConsiderN to be a Poisson randommeasure on R

d

�[0;1)

3

with mean measurem

d

�m�e

�r

�m

and N

0

be a Poisson random measure, independent of N on R

d

� [0;1) with mean measure

m

d

� e

�r

(to represent the initial on�guration). The birth and death proess �

t

satis�es the

stohasti equation:

�

t

(A) =

Z

A�[0;1)

2

�[0;t℄

1

[0;�(x;�

s�

)℄

(u)1

[t�s;1)

(r)N(dx; du; dr; ds) +

Z

A�[t;1)

N

0

(dx; dr) (5.1)

Results

R1. The proess �

t

is stationary, that is

E [�

t

(A)℄ = m

d

(A) (5.2)

for some onstant .

R2. If �(x; �) is non-dereasing, in the sense �(x; n

1

) � �(x; n

2

) for n

1

� n

2

, then the proess

�

t

is attrative, that is

�

1

0

� �

2

0

implies �

1

t

� �

2

t

(5.3)

for all t � 0.
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R3. It is true that

E [�(x; �

t

℄ =  (5.4)

for the same onstant  as (5.2).

Proof. We have

E [�

t

(A)℄(1 � e

�t

) =

Z

t

0

Z

A

E [�(x; �

s

)℄e

�(t�s)

dx ds

km

d

(A)(1 � e

�t

) =

Z

t

0

Z

A

E [�(x; �

s

)℄e

�(t�s)

dx ds

and (5.4) follows.

R4. Let �

;

t

be the birth and death proess with empty initial on�guration, then for any

proess with arbitrary initial on�guration �

0

and for A ompat we have

E [�

t

(A)� �

;

t

(A)℄ =

Z

A�[0;1)

2

�[0;t℄

(1

[0;�(x;�

s�

)℄

(u)� 1

[0;�(x;�

;

s

)℄

(u))1

[t�s;1)

(r)N(dx; du; dr; ds)

+E [

Z

A�[t;1)

N

0

(dx; dr)℄

=

Z

t

0

Z

A

E [�(x; �

s�

)� �(x; �

;

s

)℄e

�(t�s)

dx ds+ e

�t

�(A) (5.5)

R5. These proesses an be de�ned starting at time �T . In fat let N to be a Poisson random

measure on R

d

� [0;1)

2

� (�1;1) with mean measure m

d

�m� e

�r

�m and N

0

be a

Poisson random measure, independent of N on R

d

� [0;1) with mean measure m

d

� e

�r

(to represent the initial on�guration). De�ne a birth and death proess �

T

t

satisfying the

stohasti equation:

�

T

t

(A) =

Z

A�[0;1)

2

�[�T;t�T ℄

1

[0;�(x;�

T

s�

)℄

(u)1

[t�T�s;1)

(r)N(dx; du; dr; ds)+

Z

A�[t;1)

N

0

(dx; dr)

(5.6)

then

N

T

T

D

= N

T

: (5.7)

R6. If �(x; �) is non-dereasing for eah x and

�

� = sup

x;n

�(x; n) <1: (5.8)
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then we have ergodiity in ertain ases.

Proof. In fat, we an onstrut two proesses N and N suh that

N = lim

T!1

N

T

(5.9)

N = lim

T!1

N

T

(5.10)

where N

T

andN

T

satisfy (R5) with initial on�gurationsN

0

� Æ

;

and N

0

� Poisson(R

d

�

[0;1);

�

�m

d

� e

�r

). Sine N

T

is stohastially bounded by the birth and death proess

with onstant birth rate

�

� and unit death rate, the limit in (5.9) exists. The monotoniity

of � guarantees the existene of the limit (5.10).

Therefore, for initial on�gurations all full (homogeneous birth and death proess) and

all empty we have onvergene in distribution. The question now is: are the two limits

equal?

Construt a sequene of proesses N

k

and N

k

as

N

0

t

(A) =

Z

A�[0;1)

2

�(�1;t℄

1

[0;

�

�℄

(u)1

[�s;1)

(r)N(dx; du; dr; ds) (5.11)

N

k

t

(A) =

Z

A�[0;1)

2

�(�1;t℄

1

[0;�(x;N

k�1

s

�)℄

(u)1

[�s;1)

(r)N(dx; du; dr; ds) (5.12)

and

N

0

t

(A) = 0

N

k

t

(A) =

Z

A�[0;1)

2

�(�1;t℄

1

[0;�(x;N

k�1

s

�)℄

(u)1

[�s;1)

(r)N(dx; du; dr; ds): (5.13)

Therefore, it is easy to see that

lim

k!1

N

k

0

= lim

T!1

N

T

T

(5.14)

lim

k!1

N

k

0

= lim

T!1

N

T

T

(5.15)

and ergodiity follows if (5.14) and (5.15) oinide.

But for any A ompat we have by the stationarity of the proesses, see (5.2) N and N



k+1

m

d

(A) = E [N

k+1

0

(A)�N

k+1

0

(A)℄ =

Z

0

�1

Z

A

E [�(x;N

k

s

)� �(x;N

k

s

)℄ e

s

dx ds: (5.16)
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Case 1: If �(x; n) = 

1

+ 

2

1fd(x; n) � t

0

g then (5.16) is bounded by

Z

0

�1

Z

A



2

E [N

k

s

(B(x; t

0

))�N

k

s

(B(x; t

0

))℄ e

s

dx ds (5.17)

�

Z

0

�1

Z

A



2

m

d

(B(x; t

0

)) 

k

m

d

(A): (5.18)

and



k+1

� 

2

m

d

(B(x; t

0

)) 

k

(5.19)

whih onverges if 

2

m

d

(B(x; t

0

)) < 1.

Case 2: Take any �(x; n) = �(d(x; n)), with �(�) non-inreasing real funtion. Then, for

any N

2

� N

1

we have

�(d(x;N

2

))� �(d(x;N

1

)) �

Z

(�(x� y)� �(1))(N

2

�N

1

)(dy) (5.20)

then, by (R1) we have

E [�(d(x;N

2

))� �(d(x;N

1

))℄ � 

Z

(�(x� y)� �(1)) dy: (5.21)

Substituting (5.21) into (5.16) we get



k+1

m

d

(A) �

Z

0

�1

Z

A

(�(x� y)� �(1)) e

s

dx ds = 

k

Z

(�(x� y)� �(1)) dy m

d

(A)

(5.22)

whih onverges if

R

(�(x� y)� �(1)) dy < 1.

R7. If �(x; �) is non-inreasing for eah x and

�

� = sup

x;n

�(x; n) <1: (5.23)

then we have ergodiity in ertain ases.

Proof. Under these hypothesis onstrut a sequene of proesses N

k

as (5.11) and (5.12).

This sequene has the property:

N

0

� N

2

� : : : � N

2`

� : : : � N

2`+1

� : : : � N

3

� N

1

: (5.24)

Ergodiity will follow from

lim

`!1

℄N

2`

0

= lim

`!1

℄N

2`+1

0

: (5.25)

16



Taking any �(x; n) = �(d(x; n)), with �(�) non-dereasing real funtion. From (5.2) we

have



`

m

d

(A) = E [N

2`

0

(A)�N

2`+1

0

(A)℄ � 

`�1

m

d

(A)

Z

(�(1)� �(y)) dy (5.26)

whih onverges if

R

(�(1)� �(y)) dy < 1.
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