Invariant measures for some spatial birth and death processes

Nancy L. Garcia

Universidade Estadual de Campinas

Thomas G. Kurtz

Unwversity of Wisconsin - Madison

Abstract

Key words: spatial birth death processes, graphical representation, percolation.
AMS Classification: Primary: 60K35 82B 82C

1 Graphical construction

Counsider a spatial birth and death process with a birth rate given by
Az,n) = c1 — col{mind(z,y;) < to} (1.1)

where 0 < ¢2 < ¢ and n = {y1,y2,...} can be identified with the point process on R given by
n =)0y and a constant death rate equals to 1.

The above process has generator given by

Af(n) = / (F(0+ 6) — F)A (@, ) + / (F(n— 62) — f(n)n(da) (1.2)

for “suitable” functions f.

1.1 Marked Poisson processes

In order to get a graphical construction for the process with generator (1.2), we begin with a
c1-homogeneous Poisson point process on R? x [0, 00). Denote N = {(&,,T1), (&2, T3),...}. For

each point (&;,7;), associate two independent marks S; ~ exp(1) and Z; ~ b(1,c2/c1).
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Interpretation We can see the marked point process C = ({(&;,T;, Si, Zi),i = 1,2,...} as the
graphical representation of a birth and death process with constant birth rate ¢; and constant
death rate 1 (call this process ) and Z; will be used as the indicator of “allowed” births.
From now on, a marked point (&;,T;, S;, Z;) will be identified with a marked cylinder ((&; +
B(0,t9)) x [T;,T; + S;), Z;) with basis &;, birth time T;, lifetime S; and flag Z;. Calling C =

(&,t,8,2), we use the notation
Basis (C) =&, Birth(C) =t, Life(C) =[t,t+s], Flag(C) ==z. (1.3)
Define incompatibility between cylinders C and C’ by
C' # C if and only if d(Basis (C),Basis (C")) <ty and Life(C)NLife(C') #0,  (1.4)

otherwise C' ~ C (compatible).

1.2 Finite-volume construction

The construction of the spatial birth and death process in a finite box A with an initial config-
uration 7y = {®1, @2, ...} using the Poisson processes is straightforward. We use only the finite
set {(&,T;,Si,2;) : & € A}. Let C* = {C € C : Basis (C) € A}. To each point ¢; present in
the initial configuration 7y we independently associate an exponential time S'j and a cylinder
(¢4, 0, S'j, 0). The collection of initial cylinders is called Cf)\. We realize the dynamics 7; as a
(deterministic) function of C* and C}.

We construct inductively Kf}m, the set of kept cylinders at time ¢. The complementary set
corresponds to erased cylinders. First include all cylinders of C{)\ in Kfé’t]. Then, move forward
in time and consider the first Tj: The corresponding cylinder Cj is erased if: Flag (C;) = 1 and it
is incompatible with any of the cylinders already in Kf}m, otherwise it is kept. This procedure
is successively performed mark by mark until all cylinders born before ¢ are considered. Define

nit € XN as
i (y) = {Basis(C): C € Kfy, Life (C) 3 t}, (1.5)

that is, né\ is the point process that contains all basis of a kept cylinder that is alive at time

t. We leave to the reader to show that 7 has generator A" defined as in (1.2) restricting the



sums to the configurations contained in A. It is easy to find an invariant measure p for this
process (through the equation [ Au(n) = 0). Some regeneration argument should show that 7;*
converges in distribution to g for any initial configuration 7. This in particular implies that
p is the unique invariant measure for 7;.

Using the same Poisson marks for 7} and «; (the process with constant birth rate ¢; and

constant death rate 1), we have

i (A) < ar(4), (1.6)

for all A C A because in the process «; all cylinders are kept. This implies

M (4) = 0} > Pla: a(4) = 0}. (L.7)

1.3 Backwards oriented percolation

If we try to perform an analogous construction in infinite volume we are confronted with the
problem that there is not a first mark. To overcome this we follow the original approach of
Harris (1972) (see also Durrett (1997)) and introduce the notion of percolation. The goal is to
partition the set of cylinders in finite subsets to which the previous mark-by-mark construction
can be applied.

Consider the total order < in the set of cylinders induced by the birth times. That is C' < C’
if and only if Birth (C) < Birth (C”).

For an arbitrary space-time point (z,t¢) define the set
AY = {C € C; d(z,Basis (C)) < to, Life(C) >t} (1.8)

the set of cylinders containing the point (z, ).

For any cylinder C define the set of ancestors of C as the set
A ={C'ecC;C'<C;C £C} (1.9)

Notice that the definition of ancestor does not depend on the lifetime of C'. Recursively for

n > 1, the nth generation of ancestors are defined as
ADE={C": C" e A{" for some C' € A™ }. (1.10)
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and for a given cylinder C,
AC ={C":C" e AY for some C' € AC_,}. (1.11)

We say that there is backward oriented percolation in C if there exists a space-time point
(x,t) such that A%' £ () for all n, that is, there exists a point with infinitely many generations
of ancestors. Let the clan of the space-time point (z,t) be the union of its ancestors:

Ao =] APt (1.12)
n>1

and C[0,t] = {C € C : Birth (C) € [0,]}.
In the next theorem we give a sufficient condition for the existence of the infinite-volume

process in any finite time interval in terms of backwards percolation.

Theorem 1.13 If with probability one A™' N C0,t] is finite for any z,€ R and t > 0, then
for any boz A C R?, the process with generator A® is well defined and has at least one invariant

measure IMA .

Proof. We construct the process for A = R?. The construction for other A is analogous. The
initial distribution is denoted 79 = {@1, @2, ...}. For each ¢; € ng let S; be an independent expo-
nentially distributed random time of mean 1. The time S; represents the lifetime of the cylinder
with basis ¢;, birth time 0 and flag 0. We call C(0) the set of cylinders {(¢;,0,S5;,0); p; € mo}.
Since the cylinders in C(0) have no ancestors in C[0, ], under the hypothesis of the theorem,
every cylinder in C(0) U C[0, t] has a finite number of ancestors in C[0,%]. We partition this set
as follows. As in the finite-volume case, we construct a set of kept cylinders, denoted by K, and

a set of deleted cylinders denoted by D. Let
K{"[0,4 = C(0)u{C € C[0,4] : AC =} (1.14)

be the set of cylinders with no ancestors and

KP[0,4 = {C € C[0,4: AC € Ko[0,#] and Flag(C) =0} (1.15)
and
Dy[0,¢] = {C € C[0,t] : AY € K([0,¢] and Flag (C) =1} (1.16)
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be the set of cylinders with ancestors in K(()l)[O,t], the ones with Flag equals to 0 are kept,

otherwise they are erased. Let

Kol0,f] = K0, UK{[0,1] (1.17)
Uol0,] = Kof0,1]. (1.18)
Inductively, for £ > 1 let
K('0,4] = Kia[0,U{C € UL0,4: AT N Ky 1[0,1] = 0} (1.19)
K?Mﬂ::{CEUwMLA%ﬂQAMﬂ#QaM m%«n:@ (1.20)
Di[0,f] = Dy 1[0,]U {C € Usf0,1]: A{ NKy 1[0,1] # 0 and Flag(C) = 1}1.21)
K0, = K{[0,6] UK{[0,1] (1.22)
where

U0,4 = {C € C0, 4]\ [V Ui[0,4]] : AT N UL 1[0,4] # 0} (1.23)

is the set of cylinders being classified at step k. Defining
KI[0,t] = UkZOKk[Ou ], DI[0,t] = UkZODk[OJ t], (1.24)

we have

Cl0, 4] = K[0, ] UDI0, ¢]. (1.25)

The process is now defined as in (1.5) by
n: = {Basis (C) : C € K]0, t], Life (C) > t}}. (1.26)

The reader can check that if we apply the above construction to the set of cylinders in C* 0, t]
we obtain K[0,] as defined in Section 1.2.

Display (1.26) says that the presence in 7; of a point £ can be established by classifying the
ancestors of (£,t) in kept and erased cylinders. Since there is no backwards oriented percolation,
this classification can be accomplished in a finite number of steps. This idea is used in Ferrari
and Garcia (1998) to prove ergodicity of a one-dimensional loss network and in Ferndndez,

Ferrari and Garcia (1998) to get graphical representation of Peierls contours.



It is possible to show that 7, has generator A given by (1.2). O
We show in the next theorem that the process can be constructed for times in the whole real

line. Since the construction is time-translation invariant, the distribution of 7, will be invariant.

Theorem 1.27 If with probability one there is no backwards oriented percolation in C, then
the process with generator A can be constructed in (—oo,00) in such a way that the marginal

distribution of ny is invariant.

Proof. The proof follows exactly the same steps as Theorem 77 of Fernandez, Ferrari and
Garcia (1998).

The lack of percolation allows us to construct a set K C C as K[0,¢] was constructed from
C(0) U C[0,¢t] in the proof of the previous theorem. Note that K is both space and time-
translation invariant by construction. Analogously to the previous theorem we define 7; as the

section of K at time ¢:

ne = {Basis (C) : C € K, Life (C) > t}}. (1.28)

By construction, the distribution of 7; does not depend on ¢, hence its distribution is an invariant
measure for the process. [
Definition 1.29 The distribution of 1y is called p.

Obs.: Mimicking the proof of Theorem 4.2 one concludes that the spatial birth and death
process in a finite box A can be constructed for all £ € R. In this case one constructs the set

K" using the same specification used to construct K but using only cylinders in C*.

2 Percolation

2.1 The key theorem

The following theorem shows that all that is needed is the absence of backwards and non-oriented

percolation. We need a continuous-time construction of the backwards percolation clan. To do



this in the infinite-volume case, we need to introduce a notion of non-oriented percolation in a

time interval. Fix a time interval (s,t) and for any space-time point (z,t') define
Go''s, 4] = {C" € Cls,t] : d(=, Basis (C)) < to, Life (C") 5 '} (2.1)
and
G2 [s,t] = {C € CJs, 1] : d(Basis (C), Basis (C")) < to, for some C' € Gfl’fl}. (2.2)

Notice that in the definition of G,, there is no exigency that the birth time of C’ be previous

to the birth time of C or that the lifetimes intersect. Let
G [5,1] = Upso G2 (2.3)

We say that there is no (non-oriented) percolation in [s, ] if for any space-time point (z,t'),
G#![s,t] contains a finite number of cylinders.

We will show later that the condition ¢; < m?(B(0,ty)) is sufficient for the existence of an
h such that the probability that there is no non-oriented percolation in [0, k] is one.

Let the time-length and the space-width of the family of cylinders A®! be respectively

TL (A®") = t—sup{s:Life(C) > s, for some C € A*'}, (2.4)

SW (A®!) = |Ugceaw Basis (O)]. (2.5)

We say that two sets of cylinders A and A’ are incompatible if there is a cylinder in A

incompatible with a cylinder in A':
A £ A’ if and only if C # C' for some C € A and C' € A'. (2.6)

Theorem 2.7 Assume that there is no backwards oriented percolation with probability one.

Then,

1. Uniqueness. The measure p is the unique invariant measure for the process ny.

2. Time convergence. For any compact set A,
lim sup |[En/ (A) — En(A4)| = 0. (2.8)
t—oo 4
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Furthermore,

sup [En(A) — Eny (A)]
< P(Ugea{A™" £ C(0) or TL (A™') > t}) (2.9)

< (P(Uxe ATL (A™0) > bt) + e~ (=D E(SW (A“’))) (2.10)
for any b € (0,1).

Existence of i1 has been proven in Theorem 4.2. In the rest of the section we prove uniqueness,

space and time convergence.

2.2 Time convergence and uniqueness

We use the same Poisson marks to construct simultaneously the stationary process 7; and a
process starting at time zero with an arbitrary initial configuration 1. The second process is
called n;, where ] =n. The process 7 ignores the cylinders in C with birth times less than 0
and considers C(0) = {(¢;,0,5;,0) : ¢; € n}, the set of cylinders with basis given by the initial
configuration 1 and birth time zero —the times S; are exponentially distributed with mean 1
and independent of everything.

It is enough to prove that
sup (| (4) = n{ (A)] >0) =0 (2.11)
as t — oo.
Since we are using C to construct 7, and C[0,¢] U C(0) to construct n/, it follows

n(4) = ()] <3 1{ (A% % C(0) or TL (A% > 1) | (2.12)

TEA

Note that A% # () for finitely many = € A. The proof of the above results is done similarly
as in Ferndndez, Ferrari and Garcia (1998). The difference is in estimates for the moments of
TL (A%! and SW (A%!), which is done through the a dominating branching process (Section
3).

The arguments prove that the process converges, uniformly in the initial configuration, to

the invariant measure p. An immediate consequence is that p is the unique invariant measure.



3 Branching processes. Time length and space width

In this section we show that the condition ¢; < (m?(B(0,%)))~" implies hypothesis of Theorems
1.13 and 2.7.We also show that under those conditions there is an exponential upper bound for
the time length and space width of A%!. The tool is a domination of the backwards percolation

process with a branching process.

3.1 Branching processes

Note that the collection of hypercubes
C = {(Basis (C) + B(0,%9)) x Life(C);C € C} (3.1)
is a boolean model (Hall, 1985) and for any z € R? and ¢ > 0 we have

P((z,t) not covered) = P((z,t) ¢ ((Basis (C) + B(0,ty)) x Life(C) for anyC € C)

= (B0, (3.2)

Therefore, the number of hypercubes that cover (z,t) is Poisson distributed with mean
m®(B(0,ty))cy.

Define a Galton-Watson branching process B, € N as follows. Let Y;" be i.i.d. non negative
integer valued random variables with Poisson distribution with mean m®(B(0,%g))c;. Define
By =1 and

By
By =) Y (3.3)
=1

(with the convention Z?:l Y" = 0). It is possible to couple the BO-cluster A™" and (By,)n>0
in such a way that the number of ancestors in the nth generation of (z,t) is less than or equal

to By,. The total number of ancestors of (z,t) is bounded by

“Aaz,t

<> B, (3.4)

n>0

Therefore, there is no backward oriented percolation if the process is subcritical, that is,

c1 < (2t) ¢ (3.5)



Defining the time length and space width of this clan as in (2.4) and (2.5), we get

SW (429 < m%(B(0,t))B (3.6)
B
TL(A™) < 3§ (3.7)
=1
where
B = Z B, (3.8)
n>0

and S;,i > 1 are i.i.d. exponentially distributed random variables with mean 1.

Since
1
EB| = 3.9
Pl = 1B 0, W) (39)
we have
1
E A" < ————— 1
SW (4] £ G (3.10)
1
E[TL (A™° : 3.11
e &1
Moreover, the moment generating function of TL (A%?) is given by
E[aTL (Awso)] = Fp[(1 —loga)™!] (3.12)

where by (13.3) of Harris (1963) F'(b), the generating function of Z, must satisfy the equation

F(b) =bf(F(b)). (3.13)
The largest solution of this is
b=a/f(a) (3.14)
where a is the solution of
f'(a) = @. (3.15)
a
In this case, it is easy to see that
f'(a) = m*(B(0,to))e1 f(a) (3.16)
and a is given by
1
O6= —— (3.17)



Therefore,

7 1
' md(B(0,ty))c el -m!(B(0to))er” (3.18)

and consequently,

P[TL (A%°%) > bt] < Fp(b)e . (3.19)

4 Another birth rate

Consider a spatial birth and death process with a birth rate
Az,n) = c1 + col{mind(z,y;) < to} (4.1)

where 7 = {y1,92, ...} can be identified with n =}, §,, the point process on R? and a constant
death rate equals to 1.

The graphical construction in this case is very similar, except that we begin with a superpo-
sition of two independent homogeneous Poisson point process on RY x [0, 00) with rates ¢; and
co. For simplicity we call green the process with rate ¢; and red the process with rate cz. De-
note N7 = {( {,Tf), (§%,T2j), ...}, j € {G, R}. For each point (£¢7,T), associate a independent
mark S; ~ exp(1) and for each point (£&, 7)) associate two independent marks S; ~ exp(1)
and Z; ~ b(1,ca/(c1 + ¢2)).

As before, a marked point (&;,7;,S;, Z;) will be identified with a marked cylinder ((&; +
[—to, to]?) x [T}, T; + S;), Z;) with basis &;, birth time T;, lifetime S; and flag Z;, we will say that
all green cylinders have flag equal to 0. Incompatibility between cylinders will be considered
only for red cylinders and it is defined as (1.4).

Interpretation: The construction, in this case, will follow similar steps as the previous case,
except that all green cylinders will be kept and we have to decide which red cylinders are going
to be erased.

In order to construct the process in infinite volume, in particular R, we define the set of
ancestors of cylinders and points considering both types of cylinders and considering only red

cylinders denoting these with a subscript R. In the next theorem we prove that no backward
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percolation of red cylinders is a sufficient condition for the graphical construction of the birth

and death process with rate given by (4.1) and existence of an invariant measure.

Theorem 4.2 If with probability one A}C;{’t N C[0,t] is finite for any z,€ R and t > 0, then
for any box A C R?, the process with generator A™ is well defined and has at least one invariant

measure /.LA .

Proof. We construct the process for A = R?. The construction for other A is analogous. The
initial distribution is denoted 7y = {@1, @2, ...}. For each ¢; € ng let S; be an independent expo-
nentially distributed random time of mean 1. The time S; represents the lifetime of the cylinder
with basis ¢;, birth time 0 and flag 0. We call C(0) the set of cylinders {(y;,0,S5;,0); p; € mo}.
Call these cylinders green. We partition C(0) U C[0,t] as follows. As before, we construct a
set of kept cylinders, denoted by K, and a set of deleted cylinders denoted by D. Put all green

cylinders in K. Let
K[(]l)[O,t] = C(0) U{C € C[0,1] : A{ contains a green cylinder} (4.3)

be the set of cylinders with green ancestors and

K?[0,£] = {CeCl0,4:Af =0 Flag(C) =0} (4.4)
Dy[0,¢] = {C € C[0,t] : AY =0 Flag(C) =1} (4.5)

be the set of cylinders with no ancestors, the ones with Flag equals to 0 are kept, otherwise

they are erased. Let

Kol0,1] = Kg'[0,¢] U K§[0,1] (4.6)
Uol0,t] = Kofo,1]. (4.7)

Inductively, for £ > 1 let
K('0,1] = Kia[0,U{C e UL0,4: AT N Ky 1[0,1) # 0} (4.8)
K20, = {C € UL, : AC NKy_1[0,¢] =0 and Flag (C) = 0} (4.9)

Dk[O,t] = Dk,l[O,t] U {C € Uk[O,t] : A? N kal[o,t] =0 and Flag (O) = 1}(4.10)

K0, = K{[0,40K7[0,1] (4.11)
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where
UL[0,4] = {C € C[0,4]\ [uf;(}Ui[o,t]} CAY N UL [0, 8] £ (Z)} (4.12)
is the set of cylinders being classified at step k. Defining
K[0,#] = Ug>0K[0,7],  DI0,#] = Ug>0Dk[0, ], (4.13)
we have
CJ0,t] = K[0, t] UDIJ0,t]. (4.14)
The process is now defined as in (1.26) by

n: = {Basis (C) : C € K]0, t], Life (C) > t}}. (4.15)

5 Representation through stochastic equations

Consider a birth and death process 7; with birth rate given by A(z,7n) and constant death
rate can be represented as the solution of a system of stochastic equations, see Garcia (1995).

d

Consider N to be a Poisson random measure on R? x [0, 00)? with mean measure m?xmxe™" xm

and Ny be a Poisson random measure, independent of N on R? x [0,00) with mean measure
m® x e~ (to represent the initial configuration). The birth and death process 7; satisfies the

stochastic equation:

77t(A) = / 1[0,/\(22,7]3_)} (’LL) l[tfs,oo) (T‘)N(dI, du, dr, ds) + / Ng(dI, d’l“) (51)
AXx[0,00)2x[0,¢] AX[t,00)

Results
R1. The process 7; is stationary, that is
E[n: (A)] = cm?(A) (5.2)

for some constant c.

R2. If A\(z,-) is non-decreasing, in the sense A(z,n1) < A(z,n2) for ny < ng, then the process
7; is attractive, that is
o <o implies 7y <77 (5.3)

for all £ > 0.
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R3.

R4.

R5.

R6.

It is true that

EA(z,n] = ¢ (5.4)
for the same constant c as (5.2).

Proof. We have

t

B[ (A)](1 —et) = B[\ (z,m5)]e %) d ds

t

Em(A)(1 —et) = B[ (z,m5)]e %) dz ds

J
)

T

and (5.4) follows. O

Let 7]? be the birth and death process with empty initial configuration, then for any

process with arbitrary initial configuration 7y and for A compact we have

]E[Wt (A) - n?(A)] = / (l[O,A(x,nsf)} (“) - 1[07,\(,;77,2)] (U))l[t—s,oo) (T)N(d:v,du, dr, ds)
Ax[0,00)2x]0,t]
—HE[/ No(dz,dr)]
AX[t,00)

= /t/AE[)\(:L“, ns—) — Mz, n2)]e™ %) da ds + et (A) (5.5)
0

These processes can be defined starting at time —7". In fact let N to be a Poisson random

d

measure on R? x [0,00)? x (—00,00) with mean measure m? x m x e~" x m and Ny be a

d r

Poisson random measure, independent of N on R? x [0, 00) with mean measure m? x e~
(to represent the initial configuration). Define a birth and death process 1/ satisfying the

stochastic equation:

77?(14) = / 1[0,)\(9:,777l )] (’LL) l[thfs,oo) (T)N(d:l)‘, du, dr, d8)+/ No (d:l)', dT‘)
Ax[0,00)2x[~T,t—T] # Ax[t,00)
(5.6)
then
NE 2 Ny (5.7)

If A\(z,-) is non-decreasing for each z and

A =sup A(z,n) < 0. (5.8)

,n
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then we have ergodicity in certain cases.

Proof. In fact, we can construct two processes N and N such that

N = limn N' (5.9)
T—o0

N = lim N7 (5.10)
T—o0

where N and N7 satisfy (R5) with initial configurations N, = § and N ~ Poisson(R¢ x
[0,00), Am® x e~"). Since N s stochastically bounded by the birth and death process
with constant birth rate A and unit death rate, the limit in (5.9) exists. The monotonicity

of A guarantees the existence of the limit (5.10).

Therefore, for initial configurations all full (homogeneous birth and death process) and
all empty we have convergence in distribution. The question now is: are the two limits

equal?

Construct a sequence of processes N* and NF as
No(4) = / Lo 3y ()1 o) (r) N (d, dus, di, ) (5.11)
Ax[0,00)2 x (—00,t]
N 4) = /A et e (T ()N o dudr ) (12)
and
N{(4) = 0

Nb(4) = / Lot 1) (@)L ) ()N (der, du, dr, ds).  (5.13)
Ax[0,00)2x(—00,t]

Therefore, it is easy to see that

lim Np = lim Ny (5.14)
k—o0 T—o00
lim N¥ = lim N% (5.15)
k—o0 T—o00

and ergodicity follows if (5.14) and (5.15) coincide.
But for any A compact we have by the stationarity of the processes, see (5.2) N and N

FTmd(A) :E[N’g“(A)—Mg“(A)]:/O /E[A(x,ﬁf)—)\(:r,ﬂf)] e* dxds. (5.16)
—oo0 JA
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R7.

Case 1: If A(z,n) = ¢1 + col{d(z,n) < to} then (5.16) is bounded by

0
/ /ACQIE[N];(B(:E,tO))—ﬂf(B(:r,to))] ¢* da ds (5.17)
0
g/_ /A@md(B(:v,tg))ckmd(A). (5.18)
and
HFL < ey m(B(z, 1)) (5.19)

which converges if co m?(B(z,tg)) < 1.

Case 2: Take any \(z,n) = A(d(z,n)), with A(-) non-increasing real function. Then, for

any N? > N'! we have
Ad(z, N?)) = Md(z, N')) < /(A(:r — 1) = A(00))(N? — N*)(dy) (5.20)
then, by (R1) we have
E[A(d(z, N?)) = A(d(z, N')| < ¢ /(A(fv —y) = A(e0)) dy. (5.21)
Substituting (5.21) into (5.16) we get

0
FHmd(4) < /_ /A(A(I _y) = Aoo)) € da ds = ¥ /()\(:1: ) = A(o0)) dy m(A)

(5.22)
which converges if [(A(z —y) — A(00)) dy < 1.
If A(z,-) is non-increasing for each z and
A = sup Az, n) < oo. (5.23)

z,n

then we have ergodicity in certain cases.

Proof. Under these hypothesis construct a sequence of processes N as (5.11) and (5.12).

This sequence has the property:

N >N'>.. . >N > . >N > >N >NW. (5.24)
Ergodicity will follow from
lim [No' = lim|No (5.25)
£—00 £—00
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Taking any A(z,n) = A(d(z,n)), with A(-) non-decreasing real function. From (5.2) we

have
< md(A) =EN(4) - Ne

which converges if [(A(o0) — A(y))dy < 1.
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