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Abstract

An e�cient non-overlapping domain decomposition algorithm of

the Neumann-Neumann type for solving both coercive and semico-

ercive contact prolems has been presented. The discretized problem

is �rst turned by the duality theory of convex programming to the

quadratic programming problem with bound and equality constraints

and the latter is further modi�ed by means of orthogonal projectors

to the natural coarse space introduced recently by Farhat and Roux in

the framework of their FETI method. The resulting problem is then

solved by an augmented Lagrangian type algorithm with an outer loop

for the Lagrange multipliers for the equality constraints and an inner

loop for the solution of the bound constrained quadratic programming

problems. The projectors are shown to guarantee an optimal rate

of convergence of iterative solution of auxiliary linear problems and to

comply with e�cient quadratic programming algorithms proposed ear-

lier. Reported theoretical results and numerical experiments indicate

high numerical and parallel scalability of the algorithm.
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1 Introduction

Duality based domain decomposition methods proved to be practical and

e�cient tools for parallel solution of large elliptic boundary value problems

[23, 24, 38]. Using this approach, a body is partitioned into non-overlapping

subdomains, for each subdomain is de�ned an elliptic problem with Neu-

mann boundary conditions on the subdomain interfaces, and intersubdo-

main �eld continuity is enforced via Lagrange multipliers. The Lagrange

multipliers are evaluated by solving a relatively well conditioned dual prob-

lem of small size that may be e�ciently solved by a suitable variant of the

conjugate gradient algorithm. The �rst practical implementations by Farhat

and Roux [23, 24] exploited only the favorable distribution of the spectrum

of the matrix of the smaller problem [37], known also as the dual Schur com-

plement matrix, but such algorithm was e�cient only with a small number

of subdomains. Later, they introduced a \natural coarse problem" whose

solution was implemented by auxiliary projectors so that the resulting algo-

rithm became optimal [25, 38].

It has been soon observed that duality based domain decomposition

methods may also be successful for the solution of variational inequalities

that describe equilibrium of a system of elastic bodies in unilateral contact

[35]. The �rst observation was that duality not only reduces the dimen-

sion and improves conditioning of the original problem, but also reduces

all the inequalities to simple bounds on variables [11, 12, 17] so that the

dual problem may be solved much more e�ciently than the primal problem

[27, 14, 16]. Recently, we have shown how to use the \natural coarse grid"

to the solution of a scalar variational inequality [19].

Our goal here is to exploit the projector to the solution of the \natural

coarse problem" to improve numerical scalability of our previous algorithms

for numerical solution of contact problems. In particular, it turns out that

application of the projectors decomposes the Hessian of the augmented La-

grangian so that it has at most one point of the spectrum outside the span

of the spectrum of the dual Schur complement, and that iterative solution

of auxiliary linear problems with such Hessian has an optimal rate of con-

vergence with respect to both penalization and discretization parameters.

The algorithm preserves all the plausible properties of our duality based al-

gorithms for the solution of contact problems [11, 12, 17], in particular fast

identi�cation of apriori unknown contact interfaces and convergence of the

outer loop with inexact solution of auxiliary problems.

We start our exposition in Section 2 by describing the decomposition of
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a system of elastic bodies in contact into subdomains. Then we review the

conditions of equilibrium of a system of elastic bodies in contact without

friction. After discretization we get an inde�nite quadratic programming

problem with a block diagonal matrix.

In Section 3, we show that the di�culties arising from general inequality

constraints and semide�niteness of the primal problem may be essentially

reduced by application of the duality theory [11, 12, 17]. The matrix of

the dual quadratic form turns out to be positive de�nite with a spectrum

that is favorably distributed for application of conjugate gradient based

methods. Moreover, the inequality constraints of the dual problem are just

those of non-negativity, so that we can use our recent results on application

of projections and adaptive precision control [19].

The dual formulation is modi�ed in Section 4 in order to improve condi-

tioning of the dual Schur complement by enhancing projectors to the natu-

ral coarse space. Results on distribution of the spectrum of the augmented

Lagrangian of the modi�ed problem and on the convergence of auxiliary

problems are presented.

The quadratic programming algorithms that we use are reviewed in Sec-

tion 5. We describe �rst the algorithm for quadratic programming problems

with equality constraints and simple bounds. The approximations of the

Lagrange multipliers for the equalities are generated in the outer loop of

the augmented Lagrangian algorithm while bound constrained problems are

solved in the inner loop. We have adapted the basic scheme proposed by

Conn, Gould and Toint [7] for the solution of more general problems. How-

ever, we use the special structure of our problem to improve the performance

of the algorithm. The precision of the solution of the auxiliary problems in

the inner loop is controlled by the norm of the feasibility residue of the

current iterate and an estimate of the rate of convergence is given that has

no term that accounts for the inexact solution of the auxiliary problems.

We include a description of the algorithm for solving the bound constrained

quadratic programming problems [27, 14, 26, 28, 4] in the inner loop. Our

active set type algorithm generates search directions by conjugate gradients

with optional preconditioning [3], exploits the projections to the feasible

set, and uses the adaptive precision control of the solution of auxiliary prob-

lems. Theoretical results on convergence, robustness and optimality of the

algorithm are reported.

Results of numerical experiments that demonstrate the power of our

algorithms are given in Section 6. Finally, in Section 7, some comments and

conclusions are presented.
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To simplify our exposition, we have restricted our attention to the fric-

tionless contact problems. However, the algorithm may be extended to the

solution of contact problems with Coulomb friction [20] and adhesive friction

[36].

Our exposition of the variational formulation with the basic FETI al-

gorithm for contact problems follows [17] in agreement with the copyright

policy of AMS.

2 Conditions of equilibrium of elastic bodies

Consider a system of s homogeneous isotropic elastic bodies, each of which

occupies, in a reference con�guration, a domain 


p

in IR

d

; d = 2; 3 with suf-

�ciently smooth boundary �

p

as in Figure 1. Suppose that each �

p

consists

of three disjoint parts �

p

U

;�

p

F

and �

p

C

;�

p

= �

p

U

[ �

p

F

[ �

p

C

, and that the

displacements U

p

: �

p

U

! IR

d

and forces F

p

: �

p

F

! IR

d

are given. The

part �

p

C

denotes the part of �

p

that may get into contact with some other

body. In particular, we shall denote by �

pq

C

the part of �

p

that can be, in

the solution, in contact with the body 


q

.

We can also decompose each body into subdomains, as in Figure 2, to

obtain optional secondary decomposition. To simplify our notation and, in

particular, to avoid two indices for subdomains 


pi

of 


p

, we shall denote

by s the total number of the subdomains, renumber all the subdomains so

that they will be identi�ed by just one index, and introduce new `gluing'

conditions on the arti�cial intersubdomain boundary �

G

. For parts of �

G

, we

shall introduce notation in analogy to the notation of the contact boundary,

so that �

pq

G

denotes the part of �

p

that is glued to 


q

and �

p

G

denote the

part of �

p

that is glued to the other subdomains. Obviously �

pq

G

= �

qp

G

.

An auxiliary decomposition of the problem of Figure 1 with renumbered

subdomains and arti�cial intersubdomain boundaries is in Figure 3. The

gluing conditions require continuity of displacements and of their normal

derivatives across �

G

.

Let c

p

ijk`

: 


p

! IR

d

and g

p

: 


p

! IR

d

denote the entries of the elasticity

tensor and a vector of body forces, respectively. For any su�ciently smooth

displacement u : 


1

� : : : � 


s

! IR

d

, the total potential energy is de�ned

by

J(u) =

s

X

p=1

(

1

2

Z




p

a(u

p

;u

p

)d
�

Z




p

(g

p

)

T

u

p

d
�

Z

�

p

F

(F

p

)

T

u

p

d�

)

(2.1)
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where

a

p

(u

p

;v

p

) =

1

2

Z




p

c

ijk`

e

p

ij

(u

p

)e

p

k`

(v

p

)d� (2.2)

e

p

k`

(u

p

) =

1

2

�

@u

p

k

@x

p

`

+

@u

p

`

@x

p

k

�

: (2.3)

We suppose that the elasticity tensor satis�es natural physical restrictions

so that

a

p

(u

p

;v

p

) = a(v

p

;u

p

) and a(u

p

;u

p

) � 0: (2.4)

To describe the linearized non-interpenetration conditions, let us de�ne

for each p < q a one-to-one continuous mapping O

pq

: �

pq

C

! �

qp

C

that

assigns to each x 2 �

pq

C

some point of �

qp

C

that is near to x, as in Figure 4.

The linearized non-interpenetration condition at x 2 �

pq

C

then reads

(u

p

(x)� u

q

(O

pq

(x)))n

p

� (O

pq

(x)� x)n

p

;x 2 �

pq

C

; p < q: (2.5)

Now let us introduce the Sobolev space

V = H

1

(


1

)

d

� : : :�H

1

(


s

)

d

; (2.6)
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Figure 4: Linearized non-interpenetration

and let K = K

E

T

K

I

denote the set of all kinematically admissible dis-

placements, where

IK

E

= fv 2 V : v

p

= U on �

p

U

and v

p

(x) = v

q

(x);x 2 �

pq

G

g

and

K

I

= fv 2 V : (v

p

(x)� v

q

(O

pq

(x)))n

p

� (O

pq

(x)� x)n

p

;x 2 �

pq

C

; p < qg:

The displacement u 2 K of the system of bodies in equilibrium satis�es

J(u) �J(v) for any v 2 K: (2.7)

Conditions that guarantee existence and uniqueness may be expressed in

terms of coercivity of J and may be found, for example, in [34, 35].

More general boundary conditions, such as prescribed normal displace-

ments and zero forces in the tangential plane, may be considered without

any conceptual di�culties.
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3 Discretized contact problem on interface

If there is no secondary decomposition, then �nite element discretization of


 = 


1

[ : : :[


s

with suitable numbering of nodes results in the quadratic

programming (QP) problem

1

2

u

T

Ku� f

T

u! min subject to B

I

u � c; (3.1)

with a symmetric positive de�nite or positive semide�nite block-diagonal

matrix K = diag(K

1

; : : : ;K

s

) of order n, an m � n full rank matrix B

I

,

f 2 IR

n

, and c 2 IR

m

. The matrix B

I

and the vector c describe the linearized

incremental non-interpenetration conditions. The rows b

i

of B

I

are formed

by zeros and appropriately placed coordinates of outer unit normals, so that

the change of normal distance due to the displacement u is given by u

T

b

i

, and

the entry c

i

of c describes the normal distance between the i�th couple of

corresponding nodes on the contact interface in the reference con�guration.

Some care should be taken to guarantee that B

I

is a full rank matrix. The

vector f describes the nodal forces arising from the volume forces and/or

some other imposed tractions. Typically n is large and m is much smaller

than n. The diagonal blocks K

p

that correspond to subdomains 


p

are

positive de�nite or semide�nite sparse matrices. Moreover, we shall assume

that the nodes of the discretization are numbered in such a way that K

p

are

banded matrices that can be e�ectively decomposed, possibly after some

regularization, by means of the Cholesky factorization.

If there is a secondary decomposition, then the continuity of the displace-

ments across auxiliary interfaces requires that u

T

b

i

= 0, where b

i

are vectors

of order n with zero entries except 1 and �1 at appropriate positions. If B

E

is the matrix with rows b

i

, then the discretization of problem (3.1) with the

secondary decomposition results in the QP problem

1

2

u

T

Ku� f

T

u! min subject to B

I

u � c and B

E

u = 0: (3.2)

Some care should be taken to guarantee that B

E

is a full rank matrix when

corner nodes are present. An e�ective treatment of the corner modes may

be found in [19]. An elimination of the corner nodes that is compatible with

our algorithm is described in [38].

Even though (3.1) and (3.2) are standard convex quadratic programming

problems, their formulation is not suitable for numerical solution. The rea-

sons are that K is typically ill conditioned and possibly singular and that
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the feasible set is in general so complex that projections into it can hardly

be e�ectively computed. Under these circumstances, it would be very di�-

cult to achieve fast identi�cation of the active set at the solution and fast

solution of auxiliary linear problems.

The complications mentioned above may be essentially reduced by apply-

ing the duality theory of convex programming (e.g. Dost�al et al. [11, 12, 17]).

Since the dual formulation of problem (3.1) without secondary decomposi-

tion may be considered a special case of the dual formulation of problem

(3.2) and has been discussed earlier [11, 12], we shall restrict our attention

to dual formulation of the latter problem. Moreover, we shall assume that

the matrix K has a nontrivial null space that de�nes the natural coarse

grid. An equivalent assumption is using a decomposition of the domain of

the problem that comprises 
oating subdomains.

The Lagrangian associated with problem (3.2) is

L(u; �

I

; �

E

) =

1

2

u

T

Ku� f

T

u+ �

T

I

(B

I

u� c) + �

T

E

B

E

u; (3.3)

where �

I

and �

E

are the Lagrange multipliers associated with the inequali-

ties and equalities, respectively. Introducing notation

� =

"

�

I

�

E

#

; B =

"

B

I

B

E

#

; and ĉ =

"

c

0

#

;

we can write the Lagrangian brie
y as

L(u; �) =

1

2

u

T

Ku� f

T

u+ �

T

(Bx� ĉ):

It is well known [6] that (3.2) is equivalent to the saddle point problem

Find (û;

^

�) s:t: L(û;

^

�) = sup

�

I

�0

inf

u

L(u; �): (3.4)

For �xed �, the Lagrange function L(�; �) is convex in the �rst variable and

the minimizer u of L(�; �) satis�es

Ku� f +B

T

� = 0: (3.5)

Equation (3.5) has a solution i�

f �B

T

� 2 ImK; (3.6)
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which can be expressed more conveniently by means of a matrix R whose

columns span the null space of K as

R

T

(f �B

T

�) = 0: (3.7)

The matrix R may be formed directly so that each 
oating subdomain is

assigned to a row of R with ones in positions of the nodal variables that

belong to the subdomain and zeros elsewhere. We shall assume that B is

formed properly so that R

T

B

T

is a full rank matrix. The matrix R may be

also extracted from K [22].

Now assume that � satis�es (3.6) and denote by K

y

any matrix that

satis�es

KK

y

K = K: (3.8)

It may be veri�ed directly that if u solves (3.5), then there is a vector �

such that

u = K

y

(f �B

T

�) +R�: (3.9)

After substituting expression (3.9) into problem (3.4) and a change of signs,

we shall get the minimization problem

min �(�) s:t: �

I

� 0 and R

T

(f �B

T

�) = 0; (3.10)

where

�(�) =

1

2

�

T

BK

y

B

T

�� �

T

(BK

y

f � ĉ): (3.11)

Though any matrix K

y

that satis�es (3.8) such as the Moore-Penrose

pseudo-inverse may be used to get (3.9), we must be more cautious when we

consider e�ective solving of our problem. Farhat and Roux [23, 24] proposed

to use for K

y

the left generalized inverse that satis�es (3.8), K

y

p

= K

�1

p

whenever K

p

is non-singular, and

K

y

= diag(K

y

1

; : : : ;K

y

s

)

but does not necessarily satisfy the other identities that de�ne the More-

Penrose or other pseudoinverse. If K

p

is singular then it is easy to check

that there is a permutation matrix P

p

and a non-singular matrix T

p

such

that

P

T

p

K

p

P

p

=

 

T

p

S

p

S

T

p

S

T

p

T

�1

p

S

p

!
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and that

K

y

p

= P

T

p

 

T

�1

p

0

0 0

!

P

p

satis�es (3.8).

Once the solution

^

� of (3.10) is obtained, the vector u that solves (3.4)

can be evaluated provided the vector � of (3.9) is known. To �nd a formula

for �, notice that the solution of (3.2) satis�es

e

B

I

u =

e

c and B

E

u = 0; (3.12)

where [

e

B

I

;

e

c] is the matrix formed by the rows of B

I

and c that correspond

to active constraints, the latter being characterized by

^

�

i

= 0. After multi-

plying (3.9) on the left by

e

B =

"

e

B

I

e

B

E

#

and substituting by (3.12), we get equation

e

c =

e

BK

y

(f �B

T

^

�) +

e

BR� (3.13)

that determines �. Solving the normal equation [32] to (3.13) for � then

yields

� = (R

T

e

B

T

e

BR)

�1

R

T

e

B

T

(

e

c�

e

BK

y

(f �B

T

�)) (3.14)

which can be substituted into (3.9) to get u.

The matrix R

T

B

T

is, under our assumptions, a full rank matrix, so that

the Hessian of � is positive de�nite. Moreover, the Hessian is closely related

to that of the basic FETI method by Farhat and Roux [23, 24], so that its

spectrum is relatively favorably distributed for application of the conjugate

gradient method [37].

4 Modi�cations

Even though problem (3.10) is much more suitable for computations than

(3.2) and was used for e�cient solution of contact problems [17], further

improvement may be achieved by adapting some simple observations and

the results of Farhat, Mandel and Roux [25]. We shall formulate a problem

that is equivalent to (3.10) but its augmented Lagrangian has such a spectral

distribution that the rate of convergence of unconstrained minimization by
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the conjugate gradient method does not depend on either penalisation or

discretization parameters.

Let us denote

F = BK

y

B

T

;

e

d = BK

y

f;

e

G = R

T

B

T

;

e

e = R

T

f

and let T denote a regular matrix that de�nes the orthonormalization of the

rows of

e

G so that the matrix

G = T

e

G

has orthogonal rows. After denoting

e = T

e

e;

problem (3.10) reads

min

1

2

�

T

F�� �

T

e

d s:t �

I

� 0 and G� = e: (4.1)

Next we shall transform the problem of minimization on the subset of the

a�ne space to that on the subset of the vector space by means of arbitrary

� that satis�es

G� = e:

To this purpose, we shall look for the solution of (4.1) in the form � = �+�.

Since

1

2

�

T

F�� �

T

e

d =

1

2

�

T

F�� �

T

(

e

d� F�) +

1

2

�

T

F�� �

T

e

d;

problem (4.1) is, after returning to the old notation, equivalent to

min

1

2

�

T

F�� d

T

� s:t G� = 0 and �

I

� ��

I

: (4.2)

with d =

e

d� F�.

To assess our progress, let us compare the distribution of the spectrum

of the Hessians H

1

= F + �

e

G

T

e

G and H

2

= F + �G

T

G of the augmented

Lagrangians for problems (3.10) and (4.2), respectively. Let us assume that

the eigenvalues of F are in the interval [a; b] and that the nonzero eigenvalues

of

e

G

T

e

G are in [
; �] and, for each square matrix A, let �(A) denote its

spectrum. Using the analysis of [16, 15], it follows that

�(H

1

) � [a; b] [ [a+ �
; b+ ��] and �(H

2

) � [a; b] [ [a+ �; b+ �]:

12



If � is su�ciently large and 
 < �, then the spectrum of H

1

is distributed

in two intervals with the larger one on the right. In this case, the analysis

of Axelsson [1] shows that the rate of convergence of the conjugate gradient

method for minimization of the quadratic function with Hessian H

1

depends

on the penalization parameter �. However, the situation is much more favor-

able for minimization of the quadratic function with the Hessian H

2

since,

in this case, the spectrum is always distibuted in two intervals of the same

length. It follows, by analysis of Axelsson, [1] that the rate of convergence

is governed by the e�ective condition number �(H

2

) = 4b=a so that the

number k of conjugate gradient iterations that are necessary to reduce the

gradient of the augmented Lagrangian for (4.2) by � satis�es

k �

1

2

int

0

@

s

4

b

a

ln

�

2

�

�

+ 1

1

A

: (4.3)

The bound is only twice the bound on minimization with F and does not

depend on the penalization parameter �.

Our �nal step is based on observation that the augmented Lagrangian

for problem(4.2) may be decomposed by the orthogonal projectors

Q = G

T

G and P = I �Q

on the image space of G

T

and on the kernel of G, respectively. Indeed,

problem (4.2) is equivalent to

min

1

2

�

T

PFP�� �

T

Pd s:t G� = 0 and �

I

� ��

I

: (4.4)

and the Hessian H

3

= PFP + �Q of the augmented Lagrangian

L(�; �; �) =

1

2

�

T

(PFP + �Q)�� �

T

Pd+ �

T

G� (4.5)

is decomposed by projectors P and Q whose image spaces are invariant

subspaces of H

3

. If [a

P

; b

P

] denotes the interval that contains the non-zero

eigenvalues of PFP , it follows that the eigenvalues of H

3

satisfy

�(H

3

) � [a

P

; b

P

] [ f�g and [a

P

; b

P

] � [a; b] (4.6)

so that, by the analysis of Axelsson [2], the number k of conjugate gradi-

ent iterations that are necessary to reduce the gradient of the augmented

Lagrangian (4.5) for (4.4) by � satis�es

k �

1

2

int

 

s

b

P

a

P

ln

�

2

�

�

+ 3

!

: (4.7)
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Moreover, analysis of the FETI method by Farhat, Mandel and Roux [25]

implies that, for the regular decomposition,

b

P

a

P

� const

H

h

; (4.8)

where h and H are the mesh and subdomain diameters, respectively. Ex-

amining (4.7) and (4.8), we conclude that the rate of convergence for uncon-

strained minimization of the augmented Lagrangian (4.5) does not depend

on either the penalization parameter � or the discretization parameter h pro-

vided the aspect ratios of both discretization and decomposition are close

to one and the ratio H=h is kept bounded by a constant. More discus-

sion of the conjugate gradient method applied to systems with augmented

Lagrangian including numerical experiments may be found in [15]. More

detailed derivation of (4.8) may be found in [25].

The idea of using projectors in preconditioning is near to the older idea

of preconditioning by projector [8], but only the discovery of the role of the

natural coarse space [25] revealed its full power.

5 Solution of Bound and Equality Constrained

Quadratic Programming Problems

Our development of an e�cient algorithm for the solution of (4.4) is based

on the observation that the solution of such problems may be reduced, by

the augmented Lagrangian technique [7, 16], to the solution of a sequence

of quadratic programming (QP) problems with simple bounds, and that the

latter can be solved much more e�ciently than more general QP problems

due to the possibility of using projections and results on adaptive precision

control in the active set strategy [27, 26, 28, 4, 14]. Here we shall brie
y

review these results.

To simplify our notation, let us denote F

P

= PFP so that the augmented

Lagrangian for problem (4.4) and its gradient are given by

L(�; �; �) =

1

2

�

T

F

P

�� �

T

Pd+ �

T

G�+

1

2

�jjQ�jj

2

and

g(�; �; �) = F

P

�� Pd+G

T

(�+ �G�);

respectively. The projected gradient g

P

= g

P

(�; �; �) of L at � is then given

entrywise by

g

P

i

= g

i

for �

i

> ��

i

or i =2 I and g

P

i

= g

�

i

for �

i

= ��

i

and i 2 I

14



with g

�

i

= min(g

i

; 0), where I is the set of indices of constrained entries of

�.

The algorithm that we propose here may be considered a variant of the

algorithm proposed by Conn, Gould and Toint [7] for identi�cation of sta-

tionary points of more general problems. However, our algorithm is modi�ed

in order to exploit the speci�c structure of our problem to get improved per-

formance. The most important of such modi�cations consists in including

the adaptive precision control of auxiliary problems in Step 1.

All of the parameters that must be de�ned prior to the application of

the algorithm are listed in Step 0. Typical values of these parameters for

our problems are given in brackets.

Algorithm 5.1. (Simple bound and equality constraints)

Step 0. f Initialization of parametersg

Set 0 < � < 1 [� = 0:1] for equality precision update, 1 < � [� = 10]

for penalty update, �

0

> 0 [�

0

= 10

4

] for initial penalty parameter,

�

0

> 0 [�

0

= 0:1] for initial equality precision, M > 0 [M = 10

4

] for

balancing ratio, �

0

[�

0

= 0] and k = 0.

Step 1. Find �

k

so that jjg

P

(�

k

; �

k

; �

k

)jj �M jjG�

k

jj.

Step 2. If jjg

P

(�

k

; �

k

; �

k

)jj and jjG�

k

jj are su�ciently small, then �

k

is

the solution.

Step 3. If jjG�

k

jj � �

k

Step 3a. then �

k+1

= �

k

+ �

k

G�

k

, �

k+1

= �

k

, �

k+1

= ��

k

Step 3b. else �

k+1

= ��

k

, �

k+1

= �

k

end if.

Step 4. Increase k and return to Step 1.

An implementation of Step 1 is carried out by the minimization of the

augmented Lagrangian L subject to �

I

� 0 by means of the algorithm that

we shall describe later. The unique solution

^

� =

^

�(�; �) of this auxiliary

problem satis�es the Karush-Kuhn-Tucker conditions

g

P

(

^

�; �; �) = 0: (5.1)
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Even though there are many parameters in Algorithm 5.1, only �

0

andM

seem to be essentially problem dependent. Theoretical results of [18, Corol-

lary 2.7] suggest that the rate of convergence of the Lagrange multipliers

increases very little with M considerable less than jj(GF

�1

G

T

)

�1

jj � jjF jj

and that �

0

should be larger than M . The algorithm is designed so that �

adjusts to the other parameters includingM . Let us recall here that a large

penalty parameter does not necessarily slow down the convergence of the

conjugate gradient iterations [15].

The salient feature of this algorithm is that it deals completely separately

with each type of constraint and that it accepts inexact solutions of the

auxiliary box constrained problems in Step 1. For parallel implementation,

it is necessary to keep the factors that form F

P

since the latter is just used

in the matrix-vector products. The action of K

y

may be evaluated by means

of a Cholesky decomposition. Besides, the matrix G of problem (4.4) that is

used to compute the projections Q and P may be generated by means of the

QR decomposition of

e

G. We shall present more details on implementation

elsewhere.

It was recognized earlier that the augmented Lagrangian method may be

useful for the solution of contact problems [39]. However, most of these ap-

plications are based on the original scheme proposed by Powel and Hestenes

that looks for the Lagrange multipliers for equality constraints [30]. We

believe that the results presented here give su�cient evidence that the vari-

ant of the augmented Lagrangian method that we proposed is more than

competitive to this older approach.

The algorithm has been proved [16] to converge for any set of parameters

that satisfy the prescribed relations. Moreover, it has been proved that the

asymptotic rate of convergence is the same as for the algorithm with exact

solution of auxiliary quadratic programming problems (i.e. M = 0) and

that the penalty parameter is uniformly bounded. These results, with the

above discussion on elimination of the negative e�ect of penalization, give

theoretical support to Algorithm 5.1.

In the rest of this section we shall describe, in more detail, the imple-

mentation of Step 1 of Algorithm 5.1, assuming that � and � are �xed and

denoting

�(�) = L(�; �; �):

Let us recall that the set of indices of the dual variables �

i

is decomposed

into two disjoint sets I and E with I denoting the indices of the constrained

entries of �, and let us denote by A(�) and F(�) the active set and free set
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of indices of �, respectively, i.e.

A(�) = fi 2 I : �

i

= ��

i

g and F(�) = fi : �

i

> ��

i

or i 2 Eg: (5.2)

The chopped gradient g

C

and the inner gradient g

I

of �(�) are de�ned by

g

I

i

= g

i

for i 2 F(�) and g

I

i

= 0 for i 2 A(�) (5.3)

g

C

i

= 0 for i 2 F(�) and g

C

i

= g

�

i

for i 2 A(�): (5.4)

Hence the Karush-Kuhn-Tucker conditions for the solution of the problem

to �nd

min �(�) s:t: �

I

� ��

I

(5.5)

are satis�ed i� the projected gradient g

P

= g

I

+ g

C

vanishes.

An e�cient algorithm for the solution of convex QP problems with simple

bounds has been proposed independently by Friedlander and Mart��nez [27,

26, 28, 4] and Dost�al [14]. The algorithm may be considered a modi�cation

of the Polyak algorithm that uses projections and controls the precision of

the solution of auxiliary problems by the norm of g

C

in each inner iterate

y

i

.

If the inequality

jjg

C

(y

i

)jj � �jjg

I

(y

i

)jj

holds for � > 0, then we call y

i

proportional [14]. The algorithm explores

the face

W

J

= fy : y

i

= ��

i

for i 2 Jg

with a given active set J � I as long as the iterates are proportional. If

y

i

is not proportional, we generate y

i+1

by means of the descent direction

d

i

= �g

C

(y

i

) in a step that we call proportioning, and then we continue

exploring the new face de�ned by J = A(y

i+1

). The class of algorithms

driven by proportioning may be de�ned as follows.

Algorithm 5.2 (General Proportioning Scheme - GPS)

Let a feasible �

0

and � > 0 [� = 1] be given. For i > 0, choose �

i+1

by the

following rules:

(i) If �

i

is not proportional, de�ne �

i+1

by proportioning.

(ii) If �

i

is proportional, choose �

i+1

feasible so that

�(�

i+1

) � �(�

i

)

and �

i+1

satis�es at least one of the conditions: A(�

i

) � A(�

i+1

); �

i+1

is

not proportional, or �

i+1

minimizes � subject to � 2W

J

; J = A(�

i

).
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The set relation � is used in the strict sense so that it is satis�ed if the

set on the left is a proper subset of the set on the right. Basic theoretical

results have been proved in [27, 14, 26, 28, 4].

Theorem 5.3. Let �

k

denote an in�nite sequence generated by Algorithm

GPS with given �

0

and � > 0. Let �(�) be a strictly convex quadratic

function. Then the following statements are true:

(i) �

k

converges to the solution �

�

of (5.5).

(ii) If problem (5.5) is not dual degenerate, then there is k such that �

�

= �

k

.

(iii) If � � �(�

��

)

1=2

, where � denotes the spectral condition number, then

there is k such that �

�

= �

k

.

Step (ii) of Algorithm GPS may be implemented by means of the conju-

gate gradient method. The most simple implementation of this step starts

from y

0

= �

k

and generates the conjugate gradient iterations y

1

; y

2

; : : : for

minf�(y) : y 2 W

J

; J = A(y

0

)g until y

i

is found that is not feasible or not

proportional or minimizes �(�) subject to �

I

� ��

I

. If y

i

is feasible, then

we put �

k+1

= y

i

, otherwise y

i

= y

i�1

��

i

p

i

is not feasible and we can �nd

~�

i

so that �

k+1

= y

i

� ~�

i

p

i

is feasible and A(�

k

) 6� A(�

k+1

). We shall call

the resulting algorithm feasible proportioning [14].

An obvious drawback of the feasible proportioning algorithm is that it is

usually unable to add more than one index to the active set in one iteration.

A simple but e�cient alternative is to replace the feasibility condition by

�(Py

i+1

) � �(Py

i

), where Py denotes the projection on the set 
 = fy :

y

i

� ��

i

for i 2 Ig. If the conjugate gradient iterations are interrupted by

condition �(Py

i+1

) > �(Py

i

), then a new iteration is de�ned by �

k+1

= Py

i

.

This modi�cation of the feasible proportioning algorithm is called monotone

proportioning [14].

The algorithm uses the single parameter �. We believe that a good

choice is � � 1, as it seems reasonable to change the face when the error in

the chopped gradient dominates that in the free gradient and the conjugate

gradient method typically reduces only the latter.

The performance of the algorithm depends essentially on the rate of

convergence of the conjugate gradient method that minimizes � in faces. In

our case, the optimality results (4.7) and (4.8) suggest that the examination

of faces can be carried out e�ciently.
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6 Numerical experiments

In this section, we illustrate the practical behavior of various implementa-

tions of our algorithm on the solution of a scalar model problem and on

the solution of a semicoercive contact problem of elasticity arising in mining

engineering. We have implemented Algorithm 5.1 to solve the basic dual

problem (3.10) so that we can plug in the orthonormalization of the con-

straints (4.1) or the projectors to the natural coarse space (4.4). We have

implemented our algorithm also with the modi�ed lumped preconditioner

C

�1

= PBKB

T

P + (1=�)Q (6.1)

that is expected to decrease the e�ective condition number of the Hessian

reduced to the face that keeps the penalisation term untouched. An untrans-

formed version of the preconditioned conjugate gradient algorithm [2, 3] is

used for minimizing inside faces after the proportioning step.

Problem 1. This model problem results from the �nite di�erence dis-

cretization of the following continuous problem:

Minimize q(u

1

; u

2

) =

2

X

i=1

�

Z




i

jru

i

j

2

d
�

Z




i

fu

i

d


�

subject to u

1

(0; y) � 0 and u

1

(1; y) � u

2

(1; y) for y 2 [0; 1];

where 


1

= (0; 1) � (0; 1), 


2

= (1; 2) � (0; 1), f(x; y) = �5 for (x; y) 2

(0; 1) � [0:75; 1), f(x; y) = 0 for (x; y) 2 (0; 1) � (0; 0:75), f(x; y) = �1 for

(x; y) 2 (1; 2) � (0; 0:25) and f(x; y) = 0 for (x; y) 2 (1; 2) � (0:25; 1). This

problem is semicoercive due to the lack of Dirichlet data on the boundary

of 


2

.

The solution of the model problem may be interpreted as the displace-

ment of two membranes under the traction f . The left membrane is �xed on

the left and the left edge of the right membrane is not allowed to penetrate

below the edge of the left membrane. The solution is unique because the

right membrane is pressed down. More details about this model problem

including some other results may be found in [19].

The model problem was discretized by regular grids de�ned by the step-

size h = 1=n with n+1 nodes in each direction per subdomain 


i

; i = 1; 2.

Each subdomain 


i

was decomposed into n

x

� n

y

identical rectangles with

dimensions H

x

= 1=n

x

and H

y

= 1=n

y

. The solution of the model problem
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Figure 5: Solution of the model problem with h = 1=16;H

x

= 1=4;H

y

= 1

with the decomposition into strips de�ned by H

x

= 1=4 and H

y

= 1 can be

seen in Figure 5.

The model problem was solved for h 2 f1=64; 1=128; 1=256; 1=512g with

a secondary decomposition in order to test experimentally the dependence of

the rate of convergence on the discretization, decompositon and penalization

parameters. In all cases, we use the stopping criterium

jjg

P

(�; �; 0)jj � 10

�4

jjdjj and jjG�jj � 10

�4

jjf jj:

The results are summarized in Tables 1-4. These tables contain, besides

the discretization and decomposition parameters, the number of iterations

in the outer loop of the augmented Lagrangian algorithm, the number of

the conjugate gradient iterations in the inner loops of the algorithm for the

solution of bound constrained QP problems, the number of multiplications

by the matrix F that dominates the cost in each inner iteration, and the

times of serial implementation in seconds. If not speci�ed explicitly, we

use the values of parameters suggested at Algorithms 6.1 and 6.2, �

0

= 0,

�

0

I

= ��

I

and �

0

E

= 0.

Table 1 shows the performance of the algorithm with decomposition

into strips with H

x

2 f1=2; 1=8; 1=32g for a �xed discretization parameter

h = 1=128 and some variants of our algorithm. The horizontal dimension

H

x

of the vertical strips is in the �rst column. The primal dimension of
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Table 1.

Convergence with the decomposition into strips

for h = 1=128 and H

y

= 1.

Outer cg M-V Time

H

x

Orth. Proj. iter. iter. prod. sec.

1/2 no no 11 115 249 146.1

yes no 9 115 240 140.6

yes yes 4 44 92 59.8

1/8 no no 8 663 1342 805.9

yes no 8 181 370 223.6

yes yes 4 77 158 97.1

1/32 no no 6 6425 12856 7321.7

yes no 6 361 728 409.4

yes yes 5 185 375 212.3

the problems ranges between 33411 and 41151, and their dual dimension

between 387 and 8127. We can observe that the rate of convergence dete-

riorates with an increasing number of subdomains and resulting increasing

aspect ratio, but that orthogonalization (orth.) and projectors to the natural

coarse space (proj.) improve the performance considerably.

Table 2 shows the performance of the algorithm with projections to the

natural coarse space on the regular decomposition for various values of the

discretization parameter h. The regular decompositions are characterized

by H = H

x

= H

y

= 32h. In particular, examining the column with the

number of the conjugate gradient iterations per face, we can observe near

optimal performance of the iterative solver in faces. The results with the

preconditioner (6.1) are in Table 3.

These results are completed by Table 4, which illustrates the sensitivity

of the algorithm with projections to the balancing parameter M and to

the initial penalization parameter �

0

. In particular, we can observe the

elimination of the negative e�ect of the penalization predicted by the theory

using orthogonalization and projectors.

The experiments with the model problem were run on a SUN Sparc
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Table 2.

Near optimality of algorithm with

the natural coarse grid projectors for H = H

x

= H

y

.

Primal Dual Outer cg cg per M-V Time

h H dim dim. iter. iter. face prod. sec.

1/64 1/2 8646 326 4 32 3.56 69 2.6

1/128 1/4 34716 1692 5 47 3.11 100 14.3

1/256 1/8 139128 7544 5 55 5.00 115 66.8

1/512 1/16 557040 31728 6 107 5.63 223 590.5

Table 3.

Near optimality of algorithm with

the preconditioning in faces for H = H

x

= H

y

.

Primal Dual Outer cg cg per M-V Time

h H dim dim. iter. iter face prod. sec.

1/64 1/2 8646 326 4 23 2.56 50 1.9

1/128 1/4 34716 1692 4 35 2.92 75 10.9

1/256 1/8 139128 7544 5 47 3.61 99 58.3

1/512 1/16 557040 31728 6 81 5.40 169 476.2
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Table 4.

E�ect of �

0

and M

for H

x

= H

y

= 1=8 and h = 1=128.

Initial Final Outer cg M-V Time

M �

0

� iter. iter. prod. sec.

10

3

10

3

10

5

5 46 97 9.9

10

4

10

5

4 41 86 8.9

10

5

10

6

4 51 108 11.0

10

6

10

8

4 58 121 12.2

10

4

10

4

10

5

4 41 86 8.9

10

5

10

6

4 51 108 11.0

10

6

10

7

4 58 121 12.2

10

5

10

5

10

6

3 45 93 9.5

10

6

10

7

4 56 117 11.9

Ultra1 computer, under SunOS 5.5.1, using the f77 (version 4.0) FOR-

TRAN compiler and double precision. The auxiliary problems were solved

by QUACON, a routine developed in the Institute of Mathematics, Statistics

and Scienti�c Computation at Unicamp [4].

Problem 2. To test performance of our algorithm on a more realistic

problem, we have also considered a 3D contact problem (Figure 6) proposed

by Hittinger in [33] and solved in [13]. The 2D version of this problem was

solved in [33] and [9, 10, 11]. The problem comprises three elastic blocks

with boundary conditions de�ned by prescribed zero normal displacements

on the vertical boundaries and on the bottom of the model with exception

of the boundaries of the excavation in the bottom block. The blocks are

considered isotropic with Young modulus E=10000MPa and Poisson ratio

0.25. The only external forces considered are gravitational volumetric forces

with density 2.5g/cm

3

. The problem was discretized by the �nite element

method so that the resulting discrete problem comprised 6419 nodal vari-

ables and 382 dual variables. The bandwidth of the sti�ness matrix of each
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block is 165. The problem was solved to the precision

jjg

P

(�; �; 0)jj � 10

�4

jj

~

djj and jjG�jj � 10

�4

jjf jj

de�ned to comply with our earlier experiments with the basic algorithm

without the natural coarse space preconditioning [13]. The solution � of the

problem that is proportional to the contact nodal forces is in Figure 7. The

problem is semicoercive due to the two \
oating" upper blocks. We have not

used any secondary decomposition so that our coarse grid was formed just

by the two dimensional null space of the sti�ness matrix that is generated

by independent vertical movements of the upper two blocks.

Figure 6: Block structure

The performance of our algorithm with various values of the balancing

parameter M and the initial penalty parameter �

0

is reported in Table 5.

We have also used the algorithm with projectors to the natural coarse

grid to solve the problem to the higher feasibility precision

jjg

P

(�; �; 0)jj � 10

�4

jj

~

djj and jjG�jj � 10

�6

jjf jj
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Figure 7: Discretized block structure
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Figure 8: Contact stress between the upper two blocks
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Table 5.

Convergence for block problem

without secondary decomposition.

Final Outer cg M-V

M �

0

Orth. Proj. � iter. iter. prod.

10

2

10

2

no no 10

3

3 381 669

yes no 10

3

3 459 787

yes yes 10

2

4 276 438

10

2

10

3

no no 10

3

3 493 845

yes no 10

3

3 430 740

yes yes 10

3

4 211 298

10

3

10

3

no no 10

3

3 473 843

yes no 10

3

3 503 871

yes yes 10

3

4 211 298

to see the sensitivity of performance on the feasibility tolerance. The re-

sults are in Table 6. The last two columns show the �nal feasibility and

minimization errors labeled by �

f

and �

p

, respectively. The stopping cri-

terium requires �

f

� 2:88 � 10

�4

and �

p

� 1:65 � 10

�4

. We were not able to

solve the problem to higher feasibility precision with the basic algorithm in

comparable time.

The considerably better performance of the algorithm with coarse grid

projections is rather surprising if we take into account that the dimension

of the coarse grid is only two. Again, as predicted by the theory, we observe

no negative e�ect of high penalization parameter on the performance of the

algorithm. We believe that the results indicate that the algorithms presented

are e�cient.

The solution of the contact problem was carried out on a PC-586/200

type computer, DOS operating system, Microsoft Fortran 77 and double

precision. The sti�ness matrices of blocks of Problem 2 were generated

by experimental code of Blaheta and Kohut [5] and the auxiliary problems

were solved by QUACAN, a routine developed in the Institute of Mathematics,

Statistics and Scienti�c Computation at Unicamp [26].
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Table 6.

E�ect of �

0

and M on algorithm with the natural coarse grid

Block problem with higher feasibility precision

Initial Final Outer cg M-V

M �

0

� iter. iter. prod. �

f

�

p

10

1

10

1

10

1

4 230 378 3.45E�7 9.01E�5

10

2

10

2

4 276 438 4.93E�7 1.39E�4

10

3

10

3

4 284 437 9.36E�6 1.60E�4

10

2

10

2

10

2

4 276 438 4.93E�6 1.39E�4

10

3

10

3

4 211 298 8.92E�8 1.50E�4

10

3

10

3

10

3

4 211 298 8.92E�8 1.50E�4

7 Comments and conclusions

We have described a new domain decomposition algorithm for the solu-

tion of coercive and semicoercive frictionless contact problems of elasticity.

The method reduces the problem to the contact interface so that it directly

computes the tractions on the contact interface. The stress and strain dis-

tribution may then be obtained by the solution of standard linear problems

for each body separately.

The approach combines a variant of the FETI method with projectors to

the natural coarse grid and recently developed algorithms for the solution of

special quadratic programming problems. A new feature of these algorithms

is the adaptive control of precision of the solution of auxiliary problems with

e�ective usage of the projections to the natural coarse grid.

The implementation of this approach deals separately with each body or

subdomain, so that it is suitable for parallelization. Theoretical results are

presented that guarantee convergence and high numerical scalability of the

algorithm. In particular, the algorithm is shown to be in a sense optimal with

respect to both penalization and discretization parameters. First numerical

experiments are in agreement with the theory and give further evidence that

the algorithms presented are e�cient.

We believe that the performance of the algorithms may be further im-

proved by adapting the standard regular preconditioners to the uncon-

strained minimization in faces. The �rst reported experimental results are

encouraging but more research is necessary to get insight into the e�ect and
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proper treatment of the preconditioners with the intervening projectors.
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