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Abstract

An e�cient non-overlapping domain decomposition algorithm of Neumann-

Neumann type for solving variational inequalities arising from the elliptic

boundary value problems with inequality boundary conditions has been pre-

sented. The discretized problem is �rst turned by the duality theory of convex

programming into a quadratic programming problem with bound and equality

constraints and the latter is further modi�ed by means of orthogonal projec-

tors to the natural coarse space introduced recently by Farhat and Roux. The

resulting problem is then solved by an augmented Lagrangian type algorithm

with an outer loop for the Lagrange multipliers for the equality constraints

and an inner loop for the solution of the bound constrained quadratic pro-

gramming problems. The projectors are shown to guarantee an optimal rate

of convergence of iterative solution of auxiliary linear problems. Reported

theoretical results and numerical experiments indicate high numerical and

parallel scalability of the algorithm.

Key words and phrases:

Domain decomposition, natural coarse subspace, variational inequalities,

quadratic programming
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1 Introduction

Duality based domain decomposition methods proved to be practical and e�cient

tools for parallel solution of elliptic boundary value problems [18, 19, 30]. A given

spatial domain is partitioned into non-overlapping subdomains, for each subdomain

is de�ned an elliptic problem with Neumann boundary conditions on the subdomain

interfaces, and intersubdomain �eld continuity is enforced via Lagrange multipliers.

The Lagrange multipliers are evaluated by solving a relatively well conditioned dual

problem of small size that may be e�ciently solved by a suitable variant of the

conjugate gradient algorithm. The �rst practical implementations by Farhat and

Roux [18, 19] exploited only the favorable distribution of the spectrum of the matrix

of the smaller problem [29] known also as the dual Schur complement matrix, but

such algorithm was e�cient only with a small number of subdomains. Later, they

introduced a \natural coarse problem" whose solution was implemented by auxiliary

projectors so that the resulting algorithm became optimal [20, 30].

It has been soon observed that the duality based domain decomposition meth-

ods may be at least as successful for the solution of variational inequalities as they

are for linear problems. The �rst observation was that the duality not only reduces

the dimension and improves conditioning of the original problem, but also reduces

all the inequalities to simple bounds on variables [8, 9, 13] so that the dual problem

may be solved much more e�ciently than the primal problem [22, 10, 12].

Our goal here is to exploit the projector to the solution of the \natural coarse

problem" to improve numerical scalability of our previous algorithms for numerical

solution of variational inequalities. In particular, it turns out that application of

the projectors decomposes the Hessian of the augmented Lagrangian so that it has

at most one point of the spectrum outside the span of the spectrum of the dual

Schur complement, and that iterative solution of auxiliary linear problems with

such Hessian has an optimal rate of convergence. Since this feature of the algorithm

is not exploited in the solution of linear problems, we believe that the algorithm

will be at least as useful for the solution of variational inequalities as the related

algorithm by Farhat and Roux is for linear problems.

The applications include the problem of �nding the stresses and displacements

of a system of linear elastic bodies without friction [28, 27] or the contact problem

with a \given" Coulomb friction [27] that may be used to compute the solution of

contact problems with Coulomb friction [27, 15]. Some other problems of this type

may be found in Duvant and Lions [16] or Glowinski et al. [25].

To simplify our exposition, we restrict our considerations to a simple semico-

ercive model problem, that is described both in continuous and discrete versions in

Sections 2 and 3. Then, in section 4, we use duality theory to reduce the discretized

problem to a quadratic programming problem with simple bounds and equality

constraints. The modi�cation of the problem to enhance projectors to the natural
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coarse space is described in Section 5 together with results about distribution of

the spectrum of the augmented Lagrangian of the modi�ed problem. Details on

the quadratic programming algorithms that we use are given in Section 6. First

we describe the algorithm for quadratic programming problems with equality con-

straints and simple bounds. The approximations of the Lagrange multipliers for the

equalities are generated in the outer loop of the augmented Lagrangian algorithm

while the bound constrained subproblems are solved in the inner loop. We have

adapted the basic scheme proposed by Conn, Gould and Toint [6] for the solution of

more general problems. However, we have used the special structure of our problem

to improve the performance of the algorithm. The precision of the solution of the

auxiliary problems in the inner loop is controlled by the norm of feasibility of the

current iterate and an estimate of the rate of convergence is given that has no term

that accounts for the inexact solution of the auxiliary problems. Then we describe

the algorithm for solving the bound constrained quadratic programming problems

[22, 10, 21, 23, 4] in the inner loop. Our active set type algorithm generates search

directions by the conjugate gradient mehod with optional preconditioning [3], ex-

ploits the projections on the feasible set, and uses the adaptive precision control for

computing the solution of auxiliary problems. Theoretical results on convergence,

robustness and optimality of the algorithm are reported. Results of numerical exper-

iments that demonstrate the power of our algorithms are given in Section 7. Finally,

in Section 8, some comments and conclusions are presented.

2 A Model Problem

To simplify our exposition, we shall restrict our attention to a variational inequality

problem arising from the variational formulation of a model problem with inequality

boundary conditions. For completeness, we shall also brie
y sketch the derivation

of the inequality and results on the existence and uniqueness of the solution.

In particular, we shall consider the problem of �nding a su�ciently smooth u

so that

��u = f in 
 = 


1

[ 


2

(2.1)

u

1

= 0 on �

1

u

(2.2)

@u

i

@n

i

= 0 on �

i

f

; i = 1; 2 (2.3)

u

2

� u

1

� 0 on �

c

= �

1

c

= �

2

c

(2.4)

@u

2

@n

2

� 0 on �

c

(2.5)
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@u

2

@n

2

�

u

2

� u

1

�

= 0 on �

c

(2.6)

@u

1

@n

1

+

@u

2

@n

2

= 0 on �

c

: (2.7)

Here




1

= (0; 1)� (0; 1) and 


2

= (1; 2)� (0; 1)

denote open domains with boundaries �

1

, �

2

and their parts �

1

u

, �

i

f

, �

i

c

, formed by

the sides of 


i

; i = 1; 2 as in Figure 1, and n

k

(x) denote the components of the outer

unit normal at x 2 �

i

.

Ω
1

Ω
2

Γ
u

1
Γ

f

1
Γ

c

1
Γ

c

2
Γ

f

2

Figure 1: Domain of the model problem

The solution u of (2.1)-(2.7) may be interpreted as a vertical displacement of

two membranes stretched by normalized horizontal forces and pressed together by

vertical forces with density f . The inequality (2.4) describes the non-interpenetration

of the adjacent edges of the membranes, with the edge of the right membrane above

the edge of the left membrane. The right membrane can press the left membrane
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down (2.5) at the points that are in contact (2.6)-(2.7). If there is no contact at

x 2 �

c

, i.e. u

2

(x) > u

1

(x), then the membranes are stretched by the horizontal force

in the same way as at x 2 �

i

f

. Other interpretations may be found in [16, 25].

To derive the variational inequality whose smooth solutions satisfy (2.1)-(2.7),

letH

1

(


i

) denote the Sobolev space of �rst order on the space L

2

(


i

) of the functions

on 


i

whose squares are integrable in the sense of Lebesgue. Thus, f 2 H

1

(


i

) i�

both f and its generalized �rst derivatives belong to L

2

(


i

). Let

V

1

=

n

v 2 H

1

(


1

) : v

1

= 0 on �

1

u

o

denote the closed subspace of H

1

(


1

), V

2

= H

1

(


2

), and let

V = V

1

� V

2

and K =

n

(v

1

; v

2

) 2 V : v

2

� v

1

� 0 on �

c

o

denote the closed subspace and the closed convex subset of H = H

1

(


1

)�H

1

(


2

),

respectively. The relations on the boundaries are in terms of traces [16, 27]. On H

we shall de�ne a symmetric bilinear form

a(u; v) =

2

X

i=1

Z




i

 

@u

i

@x

@v

i

@x

+

@u

i

@y

@v

i

@y

!

d


and a linear form

`(v) =

2

X

i=1

Z




i

f

i

v

i

d
:

Let u denote a smooth solution of (2.1)-(2.7). After multiplication of (2.1) by

v 2 V and application of the Green theorem with simpli�cations based on (2.2)-(2.3),

we get

a(u; v)� `(v) =

Z

�

c

(

@u

1

@n

1

v

1

+

@u

2

@n

2

v

2

)

d�:

In particular, for v = w � u and w 2 K,

a(u; w � u)� `(w � u) =

Z

�

c

(

@u

1

@n

1

(w

1

� u

1

) +

@u

2

@n

2

(w

2

� u

2

)

)

d�: (2:8)

At the points of �

c

with u

1

> u

2

we have, due to (2.6)-(2.7),

@u

1

@n

1

=

@u

2

@n

2

= 0; (2:9)

so that the integrand in (2.8) vanishes at such points. At the points of �

c

with

u

1

= u

2

we have, by (2.5) and (2.7),
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@u

1

@n

1

(w

1

� u

1

) +

@u

2

@n

2

(w

2

� u

2

) =

@u

1

@n

1

w

1

+

@u

2

@n

2

w

2

=

@u

2

@n

2

(w

2

� w

1

) � 0: (2:10)

Thus the integral in (2.8) is nonnegative for any w 2 K and the solution u of

(2.1)-(2.7) solves also the problem of �nding u 2 K such that

a(u; w � u)� `(w � u) � 0 for all w 2 K: (2:11)

Using the well known technique described e.g. in [16, 25, 27], it is also possible

to prove that any smooth solution u 2 K of (2.11) is a solution of (2.1)-(2.7). Since

the expression on the left of inequality (2.11) is the gradient of the energy functional

J(v) =

1

2

a(v; v)� `(v)

at u, it follows that problem (2.11) is equivalent to the problem

min J(v) s:t: v 2 K: (2:12)

Let us brie
y examine the existence of solution of (2.12). First, it may be

checked that J(v) is convex but not coercive, i.e. kvk ! 1 for v 2 K does not

necessarily imply J(v)!1. To this purpose, let us de�ne e 2 K by

e(x

1

; x

2

) = (0; 1) for x

i

2 


i

(2:13)

with 


i

denoting the closure of 


i

. Since �e 2 K for � � 0 and

J(�e) = ��

Z




f e d
 = ��

Z




2

f d
;

it follows that J(�e) does not increase with � if the last integral is non-negative.

However, using the technique of [27, section 1.1.6] , it can be proved that J(v) is

coercive on K provided

Z




2

f d
 < 0: (2:14)

The well known result on the existence and uniqueness of the minimum of convex

coercive functionals (e.g. [24]) then guarantees that problems (2.11) and (2.12) have

unique solution if f satis�es (2.14). Thus, in what follows, we shall assume that f

satis�es condition (2.14).
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3 Discretization and Domain Decomposition

Let (�

h

; �

h

) de�ne a partitioning of 
 into triangles T

j

2 �

h

with vertices at N

k

2 �

h

that matches the decomposition of 
 into 


1

and 


2

so that �

c

is covered by the

sides of adjacent triangles.

For i = 1; 2, let P

i

h

denote the piecewise linear �nite element subspaces of

H

1

(


i

), let V

i

h

= P

i

h

\ V

i

, and de�ne

V

h

= V

1

h

� V

2

h

and K

h

= K \ V

h

(3:1)

so that the solution of the problem (2.12) is approximated by the �nite element

problem of �nding

min J(v

h

) s:t: v

h

2 K

h

: (3:2)

The functions p

i

h

2 P

i

h

are fully determined by the values x

i

k

= p

i

h

(N

i

k

) at

the nodes N

i

k

2 


i

. In particular, assuming that the nodes of 


i

n �

u

are indexed

independently by indices 1; 2; : : : ; s

i

and denoting by e

i

k

the functions of the standard

basis od V

i

k

so that e

i

k

(N

i

j

) = �

kj

(the Kronecker symbol), we can write any v

i

h

2 V

i

h

in the form

v

i

h

=

s

i

X

k=1

x

i

k

e

i

k

: (3:3)

Substituting (3.3) into the expressions for J(u) gives

J(v

h

) =

1

2

x

T

Ax� f

T

x

with A = diag[A

1

; A

2

] symmetric positive semide�nite matrix, A

i

= [a

i

jk

]; a

i

jk

=

a(e

i

j

; e

i

k

),

f =

"

f

1

f

2

#

; x =

"

x

1

x

2

#

;

f

i

= [f

i

j

]; f

i

j

= `(e

i

j

) and x

i

= [x

i

j

]. The vector x is the vector of the nodal unknowns.

To complete the discretization of (2.2), we have to describe conditions on x

i

k

that correspond to

2

X

i=1

s

i

X

k=1

x

i

k

e

i

k

2 K

h

:

To this end, notice that the nodes on the interface �

c

are doubled as in Figure 2.

Thus, condition x

1

j

� x

2

k

may be written in the form
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Ω
1

Ω
2

Γ
u

1

N
j

1
Ν

k
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Γ
c

1
= Γ

c

2
= Γ

c

Figure 2: Matching nodes
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bx � 0

with b = [b

1

; b

2

] a row vector with zero entries except b

1

j

= 1 and b

2

k

= �1. Forming

rows b

`

for all m couples of nodes on �

c

and denoting

B

I

=

2

6

6

4

b

1

.

.

.

b

m

3

7

7

5

;

we get the discretized version of problem (2.12) as follows

min

1

2

x

T

Ax� f

T

x s:t: B

I

x � 0: (3:4)

The matrix A is positive semide�nite. It may be easily veri�ed that the kernel of A

is spanned by the discrete analogue of e given by (2.13).

So far, we have used only the natural decomposition of the spatial domain 


into 


1

and 


2

. However, we can optionally decompose each 


i

into subdomains




i;1

; : : : ;


i;p

i

with interfaces �

i;jk

as in Figure 3.

Ω
i, j

Ω
i, k

Γ c
i, jk

= Γ c
i, kj

Figure 3: Auxiliary decomposition of 


i
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Let us assume that we are given the auxiliary decomposition of each subdomain




i

that is compatible with the partitioning (�

h

; �

h

) so that each subdomain 


i;j

is

partitioned by a subset of (�

h

; �

h

). Indexing contiguously the nodes and entries of

corresponding vectors in subdomains 


i;j

and using the �nite element discretization

of the problem (2.12) with the basis functions that are zero extensions of P

h

(


i;j

)

for i = 1; 2 and j = 1; : : : ; p

i

, we get as above a vector f and a matrix A such that

A = diag(A

1

; A

2

) = diag(A

1

; : : : ; A

p

1

+p

2

) (3:5)

and

J(v

h

) =

1

2

x

T

Ax� f

T

x (3:6)

for all piecewise linear functions v

h

that are continuous in the subdomains 


i;j

.

To enforce continuity across �

i;jk

, let us denote by B

E

a matrix that has, for

each node N 2 �

h

\ �

i;jk

, a row of zeros except 1 and �1 at the positions that

correspond to the indices of N in 


i;j

and 


i;k

, respectively. Some care should be

taken with the corner nodes that belong to four subdomains to keep the rows of B

independent. In our algorithms, we join such four nodes with global indices i; j; k; l

by the rows of the matrix

2

6

4

: : :

p

2=2 : : :

p

2=2 : : : �

p

2=2 : : : �

p

2=2 : : :

: : : 1 : : : �1 : : : 0 : : : 0 : : :

: : : 0 : : : 0 : : : 1 : : : �1 : : :

3

7

5

with zero columns except i; j; k; l. If the nodes do not belong to the contact interface,

the rows are used to formB

E

, otherwise the last two rows go toB

E

to join the couples

of nodes on each side and the �rst row goes to B

I

possibly replacing all other rows

with nonzero columns i; j; k; l.

After the modi�cations described above, we get the full rank matrices B

I

and

B

E

and the discretized version of problem (2.12) with auxiliary decomposition

min

1

2

x

T

Ax� f

T

x s:t: B

I

x � 0 and B

E

x = 0: (3:7)

4 Dual Formulation

The Lagrangian associated with problem (3.7) is

L(x; �

I

; �

E

) =

1

2

x

T

Ax� f

T

x + �

T

I

B

I

x+ �

T

E

B

E

x; (4:1)

where �

I

and �

E

are the Lagrange multipliers associated with inequalities and equal-

ities, respectively. Introducing notation
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� =

"

�

I

�

E

#

and B =

"

B

I

B

E

#

;

we can observe that B is a full rank matrix and write the Lagrangian brie
y as

L(x; �) =

1

2

x

T

Ax� f

T

x+ �

T

Bx:

It is well known [5] that (3.7) is equivalent to the saddle point problem

Find (x; �) s:t: L(x; �) = sup

�

I

�0

inf

x

L(x; �): (4:2)

For �xed �, the Lagrange function L(�; �) is convex in the �rst variable and the

minimizer x of L(�; �) satis�es

Ax� f +B

T

� = 0: (4:3)

Equation (4.3) has a solution i�

f � B

T

� 2 ImA; (4:4)

which can be expressed more conveniently by means of a matrix R whose columns

span the null space of A as

R

T

(f � B

T

�) = 0: (4:5)

Matrix R may be formed directly so that each 
oating subdomain is assigned to a

row of R with ones in positions of the nodal variables that belong to the subdomain

and zeros elsewhere. It may be checked that R

T

B

T

is a full rank matrix. The matrix

R may be also extracted from A [17].

Now assume that � satis�es (4.4) and denote by A

y

any matrix that satis�es

AA

y

A = A: (4:6)

It may be veri�ed directly that if x solves (4.3), then there is a vector � such that

x = A

y

(f � B

T

�) +R�: (4:7)

After substituting expression (4.7) into problem (4.2) and changing signs, we shall

get the minimization problem

min �(�) s:t: �

I

� 0 and R

T

(f �B

T

�) = 0; (4:8)

where

12



�(�) =

1

2

�

T

BA

y

B

T

�� �

T

BA

y

f: (4:9)

Though any matrix A

y

that satis�es (4.6), such as the Moore-Penrose pseudo-

inverse, may be used to get (4.7), we must be more cautious when we consider

e�ective solving our problem. Farhat and Roux [18, 19] proposed to use as A

y

the

left generalized inverse that satis�es (4.6),

A

y

= diag(A

y

1

; : : : ; A

y

p

1

+p

2

);

where A

y

i

= A

�1

i

whenever A

i

is non-singular. If A

i

is singular than it is easy to

check that there is a permutation matrix P

i

and a non-singular matrix T

i

such that

P

T

i

A

i

P

i

=

 

T

i

S

i

S

T

i

S

T

i

T

�1

i

S

i

!

and that

A

y

i

= P

T

i

 

T

�1

i

0

0 0

!

P

i

satis�es (4.6). In this case, A

y

does not necessarily satisfy the other identities that

de�ne the Moore-Penrose pseudoinverse.

Once the solution �; � of (4.8) is known, the vector x that solves (4.2) can be

evaluated, provided that the vector � of (4.7) is known. To �nd the formula that

computes �, notice that the solution of (3.7) satis�es

e

B

I

x = 0 and B

E

x = 0; (4:10)

where

e

B

I

is the matrix formed by the rows b

i

of B

I

that correspond to active

constraints, the latter being characterized by �

i

= 0. After substituting � into (4.7)

and multiplying on the left by

e

B = [

e

B

T

I

; B

T

E

]

T

, we get the equation

e

BA

y

(f � B

T

�) +

e

BR� = 0 (4:11)

that determines �. Solving the normal equation [26] to the equation (4.11) for �

then yields

� = �(R

T

e

B

T

e

BR)

�1

R

T

e

B

T

e

BA

y

(f � B

T

�) (4:12)

which can be substituted into (4.7) to get x.

Using the fact that R

T

B

T

is a full rank matrix, it may be veri�ed that the

Hessian of � is positive de�nite. Moreover, the Hessian is the same as that of the

basic FETI method by Farhat and Roux [18, 19], so that its spectrum is relatively

favorably distributed for application of the conjugate gradient method [29].

13



If there is no optional domain decomposition, then there is neither B

E

nor �

E

in (4.8) and (4.9), but the structure of the dual problem remains the same in the

sense that it is still minimization of a strictly convex quadratic function with respect

to simple bounds and equality constraints. Thus, what follows in the next section

applies to the solution of both problems (3.4) and (3.7).

5 Modi�cations

Even though problem (4.8) is much more suitable for computations than (3.7) and

was used for e�cient solution of the discretized variational inequalities [13], further

improvement may be achieved by adapting some simple observations and the results

of Farhat, Mandel and Roux [20]. We shall reformulate problem (4.8) in such a

way that if we apply the conjugate gradient method to minimize the aumented

Lagrangian, the spectral distribution of the Hessian guarantees that the rate of

convegence does not depend on either penalization or discretization parameters.

Let us denote

F = BA

y

B

T

;

e

d = BA

y

f;

e

G = R

T

B

T

;

e

e = R

T

f

and let T denote a regular matrix that de�nes the orthonormalization of the rows

of

e

G so that the matrix

G = T

e

G

has orthogonal rows. After denoting

e = T

e

e;

problem (4.8) reads

min

1

2

�

T

F�� �

T

e

d s:t �

I

� 0 and G� = e: (5:1)

Next we shall transform the problem of minimization on the subset of the a�ne

space to that on the subset of the vector space by means of arbitrary

e

� that satis�es

G

e

� = e:

To this purpose, we shall look for the solution of (5.1) in the form � = �+

e

�. Since

1

2

�

T

F�� �

T

e

d =

1

2

�

T

F�� �

T

(

e

d� F

e

�) +

1

2

e

�

T

F

e

��

e

�

T

e

d;

problem (5.1) is, after returning to the old notation, equivalent to

min

1

2

�

T

F�� d

T

� s:t G� = 0 and �

I

� �

f

�

I

: (5:2)
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with d =

e

d� F

e

�.

To assess our progress, let us compare the distribution of the spectrum of the

Hessians H

1

= F + �

e

G

T

e

G and H

2

= F + �G

T

G of the augmented Lagrangians for

problems (4.8) and (5.2), respectively. Let us assume that the eigenvalues of F are

in the interval [a; b] and that the nonzero eigenvalues of

e

G

T

e

G are in [
; �]. For each

square matrix A, let �(A) denote its spectrum. Using the analysis of [12, 11], it

follows that

�(H

1

) � [a; b] [ [a + �
; b+ ��] and �(H

2

) � [a; b] [ [a + �; b+ �]:

If � is su�ciently large and 
 < �, than the spectrum of H

1

is distributed in

two intervals with the larger one on the right. In this case, the analysis of Axelsson

[1] shows that the rate of convergence of conjugate gradients for minimization of

the quadratic function with the Hessian H

1

depends on the penalization parameter

�. However, the situation is much more favorable for minimization of the quadratic

function with the Hessian H

2

since, in this case, the spectrum is always distibuted

in two intervals of the same length. It follows by analysis of Axelsson [1] that the

rate of convergence is governed by the e�ective condition number �(H

2

) = 4b=a so

that the number k of the conjugate gradient iterations that are necessary to reduce

the gradient of the augmented Lagrangian for (5.2) by � satis�es

k �

1

2

int

0

@

s

4b

a

ln

�

2

�

�

+ 1

1

A

: (5:3)

This bound is only two times greater than the bound obtained when minimizing

with F and does not depend on the penalization parameter �.

Our �nal step is based on the observation that the augmented Lagrangian for

problem (5.2) may be decomposed by the orthogonal projectors

Q = G

T

G and P = I �Q

on the image space of G

T

and on the kernel of G, respectively. Problem (5.2) is then

equivalent to

min

1

2

�

T

PFP�� �

T

Pd s:t G� = 0 and �

I

� �

f

�

I

; (5:4)

and the Hessian H

3

= PFP + �Q of the augmented Lagrangian

L(�; �; �) =

1

2

�

T

(PFP + �Q)�� �

T

Pd+ �

T

G� (5:5)

is decomposed by projectors P and Q whose image spaces are invariant subspaces of

H

3

. If [a

P

; b

P

] denotes the interval that contains the non-zero eigenvalues of PFP ,

it follows that the eigenvalues of H

3

satisfy
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�(H

3

) � [a

P

; b

P

] [ f�g and [a

P

; b

P

] � [a; b] (5:6)

so that, by the analysis of Axelsson [2], the number k of conjugate gradient iterations

that are necessary to reduce the gradient of the augmented Lagrangian (5.5) by �

satis�es

k �

1

2

int

0

@

s

b

P

a

P

ln

�

2

�

�

+ 3

1

A

: (5:7)

The bound (5.7) is qualitatively better than (5.3). Analysis of the FETI method

by Farhat, Mandel and Roux [20] implies that, for the regular decomposition,

b

P

a

P

� const

H

h

; (5:8)

where h and H are the mesh and subdomain diameters, respectively. Examining

(5.7) and (5.8), we conclude that the rate of convergence for unconstrained minimiza-

tion of the augmented Lagrangian (5.5) does not depend on either the penalization

parameter � or the discretization parameter h provided the aspect ratio of the dis-

cretization and decomposition is close to one and the ratio H=h is kept bounded by

a constant. More discussion of the conjugate gradient method applied to systems

with augmented Lagrangian including numerical experiments may be found in [11].

More detailed derivaton of (5.8) may be found in [20].

The idea of using projectors to preconditioning is close to the older idea of

preconditioning by projector [7], but only the discovery of the role of the natural

coarse space [20] revealed its full power.

6 Solution of Bound and Equality Constrained

Quadratic Programming Problems

Our development of an e�cient algorithm for the solution of (5.4) is based on the

observation that the solution of such problems may be reduced by the augmented

Lagrangian technique [6, 12] to the solution of a sequence of quadratic programming

(QP) problems with simple bounds, and that the latter can be solved much more

e�ciently than more general QP problems due to the possibility to use projections

and results on adaptive precision control in the active set strategy [22, 21, 23, 4, 10].

Here we shall brie
y review these results.

To simplify our notation, let us denote F

P

= PFP so that the augmented

Lagrangian for problem (5.4) and its gradient are given by

L(�; �; �) =

1

2

�

T

F

P

�� �

T

Pd+ �

T

G�+

1

2

�jjQ�jj

2
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and

g(�; �; �) = F

P

�� Pd+G

T

(�+ �G�);

respectively. Also, let I be the set that contains the indices of the constrained entries

of �. Then, the projected gradient g

P

= g

P

(�; �; �) of L at � is given componentwise

by

g

P

i

= g

i

for �

i

> �

f

�

i

or i =2 I and g

P

i

= g

�

i

for �

i

= �

f

�

i

and i 2 I

with g

�

i

= min(g

i

; 0).

The algorithm that we propose here may be considered a variant of the algo-

rithm proposed by Conn, Gould and Toint [6] for identi�cation of stationary points

of more general problems. However, our algorithm is modi�ed in order to exploit the

speci�c structure of our problem to get improved performance. The most important

of such modi�cations consists in including the adaptive precision control of auxiliary

problems in Step 1.

All of the parameters that must be de�ned prior to the application of the algo-

rithm are listed in step 0. Typical values of these parameters for our model problem

are given in brackets.

Algorithm 6.1. (Simple bound and equality constraints)

Step 0. f Initialization of parametersg
Set 0 < � < 1 [� = 0:1] for equality pre-

cision update, 1 < � [� = 10] for penalty update, �

0

> 0 [�

0

= 10

4

] for initial

penalty parameter, �

0

> 0 [�

0

= 0:1] for initial equality precision, M > 0 [M = 10

4

]

for balancing ratio, �

0

[�

0

= 0] and k = 0.

Step 1. Find �

k

so that

jjg

P

(�

k

; �

k

; �

k

)jj �M jjG�

k

jj.

Step 2. If jjg

P

(�

k

; �

k

; �

k

)jj and jjG�

k

jj are su�ciently small

then �

k

is the solution.

Step 3. If jjG�

k

jj � �

k

Step 3a. then �

k+1

= �

k

+ �

k

G�

k

, �

k+1

= �

k

, �

k+1

= ��

k

Step 3b. else �

k+1

= ��

k

, �

k+1

= �

k

end if.

Step 4. Increase k and return to Step 1.

An implementation of Step 1 is carried out by the minimization of the aug-

mented Lagrangian L subject to �

I

� �

f

�

I

by means of the algorithm that we shall
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describe later. The unique solution � = �(�; �) of this auxiliary problem satis�es

the Karush-Kuhn-Tucker conditions

g

P

(�; �; �) = 0: (6:1)

Even though there are many parameters in Algorithm 6.1, only �

0

and M

seem to be essentially problem dependent. Theoretical results of [14, Corollary

2.7] suggest that the rate of convergence of the Lagrange multipliers increases very

little with M considerable less than jj(GF

�1

G

T

)

�1

jj � jjF jj and that �

0

should be

larger thanM . The algorithm is designed so that � adjusts to the other parameters,

includingM . Let us recall here that the large penalty parameter does not necessarily

slow down the convergence of the conjugate gradient iterations [11].

The salient feature of this algorithm is that it deals with each type of constraint

completely separately and that it accepts inexact solutions for the auxiliary box

constrained problems in Step 1. For parallel implementation, it is necessary to keep

the factors that form F

P

since the latter is just used in the matrix-vector products.

The action of A

y

may be evaluated by means of a Cholesky decomposition. Besides,

the matrix G of problem (5.4) that is used to compute the projections P and Q

may be generated by means of the QR decomposition of

e

G. We shall present more

details on implementation elsewhere.

The algorithm has been proved [12] to converge for any set of parameters that

satisfy the prescribed relations. Moreover, it has been proved that the asymptotic

rate of convergence is the same as for the algorithm with exact solution of auxiliary

quadratic programming problems (i.e. M = 0) and that the penalty parameter is

uniformly bounded. These results with the above discussion on elimination of the

negative e�ect of penalization give theoretical support to algorithm 6.1.

In the rest of this section we shall describe in more detail implementation of

Step 1 of Algorithm 6.1. In particular, we shall assume that � and � are �xed and

we shall denote

�(�) = L(�; �; �):

Let us recall that we assume that the set of indices of our dual variables �

i

is decom-

posed into two disjoint sets I and E with I denoting the indices of the constrained

entries of �, and let us denote by A(�) and F(�) the active set and free set of indices

of �, respectively, i.e.

A(�) = fi 2 I : �

i

= �

f

�

i

g and F(�) = fi : �

i

> �

f

�

i

or i 2 Eg: (6.2)

The chopped gradient g

C

and the inner gradient g

I

of �(�) are de�ned by

g

I

i

= g

i

for i 2 F(�) and g

I

i

= 0 for i 2 A(�) (6.3)

g

C

i

= 0 for i 2 F(�) and g

C

i

= g

�

i

for i 2 A(�): (6.4)
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Hence the Karush-Kuhn-Tucker conditions for the solution of the problem of �nding

min �(�) s:t: �

I

� �

f

�

I

(6:5)

are satis�ed i� the projected gradient g

P

= g

I

+ g

C

vanishes.

An e�cient algorithm for the solution of convex QP problems with simple

bounds has been proposed independently by Friedlander and Mart��nez [22, 21, 23, 4]

and Dost�al [10]. The algorithm may be considered a modi�cation of the Polyak

algorithm that controls the precision of the solution of auxiliary problems by the

norm of g

C

in each inner iterate y

i

.

If for � > 0 the inequality

jjg

C

(y

i

)jj � �jjg

I

(y

i

)jj

holds then we call y

i

proportional [10]. The algorithm explores the face

W

J

= fy : y

i

= �

f

�

i

for i 2 Jg

with a given active set J � I as long as the iterates are proportional. If y

i

is not

proportional, we generate y

i+1

by means of the descent direction d

i

= �g

C

(y

i

) in a

step that we call proportioning, and then we continue exploring the new face de�ned

by J = A(y

i+1

). The class of algorithms driven by proportioning may be de�ned as

follows.

Algorithm 6.2 (General Proportioning Scheme - GPS)

Let a feasible �

0

and � > 0 [� = 1] be given. For i > 0, choose �

i+1

by the following

rules:

(i) If �

i

is not proportional, de�ne �

i+1

by proportioning.

(ii) If �

i

is proportional, choose a feasible �

i+1

so that

�(�

i+1

) � �(�

i

)

and �

i+1

satis�es at least one of the conditions: A(�

i

) � A(�

i+1

); �

i+1

is not pro-

portional, or �

i+1

minimizes � subject to � 2 W

J

; J = A(�

i

).

The set relation � is used in the strict sense so that it is satis�ed if the set on

the left is a proper subset of the set on the right. Basic theoretical results have been

proved in [22, 10, 21, 23, 4].

Theorem 6.3. Let �

k

denote an in�nite sequence generated by Algorithm GPS with

given �

0

and � > 0. Let �(�) be a strictly convex quadratic function. Then the

following statements are true:
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(i) �

k

converges to the solution

�

� of (6.5).

(ii) If problem (6.5) is not dual degenerate, then there is k such that

�

� = �

k

.

(iii) If � � �(�

��

)

1=2

, where � denotes the spectral condition number, then there is

k such that

�

� = �

k

.

Step (ii) of Algorithm GPS may be implemented by means of the conjugate

gradient method. The most simple implementation of this step starts from y

0

=

�

k

and generates the conjugate gradient iterations y

1

; y

2

; : : : for minf�(y) : y 2

W

J

; J = A(y

0

)g until y

i

is found that is not feasible or not proportional or minimizes

�(�) subject to �

I

� �

f

�

I

. If y

i

is feasible, then we put �

k+1

= y

i

, otherwise

y

i

= y

i�1

��

i

p

i

is not feasible and we can �nd

e

�

i

so that �

k+1

= y

i

�

e

�

i

p

i

is feasible

and A(�

k

) 6� A(�

k+1

). We shall call the resulting algorithm feasible proportioning

[10].

An obvious drawback of feasible proportioning is that the algorithm is usually

unable to add more than one index to the active set in one iteration. A simple

but e�cient alternative is to replace the feasibility condition by �(Py

i+1

) � �(Py

i

),

where Py denotes the projection on the set 
 = fy : y

i

� �

f

�

i

for i 2 Ig. If the

conjugate gradient iterations are interrupted on condition �(Py

i+1

) > �(Py

i

), then

a new iteration is de�ned by �

k+1

= Py

i

. Resulting modi�cation of the feasible

proportioning algorithm is called monotone proportioning [10].

The algorithm uses the single parameter �. Apparently, a good choice is � � 1,

as it seems reasonable to change the face when the error in the chopped gradient

dominates that in the free gradient as the conjugate gradient method typically re-

duces only the latter.

The performance of the algorithm depends essentially on the rate of conver-

gence of the conjugate gradient method that minimizes � in faces. In our case, the

optimality results (5.7) and (5.8) suggest that examination of faces will be carried

out e�ciently.

7 Numerical Experiments

In this section, we illustrate the practical behavior of our algorithm on solution of

the model problem of Section 2 with f(x; y) = �3 for (x; y) 2 (0; 1) � [0:75; 1),

f(x; y) = 0 for (x; y) 2 (0; 1)� (0; 0:75), f(x; y) = �1 for (x; y) 2 (1; 2)� (0; 0:25)

and f(x; y) = 0 for (x; y) 2 (1; 2)� (0:25; 1). The model problem was discretized by

regular grids de�ned by the stepsize h = 1=n with n+1 nodes in each direction per

subdomain 


i

; i = 1; 2. Each subdomain 


i

was decomposed into n

x

� n

y

identical

rectangles of the dimensions H

x

= 1=n

x

and H

y

= 1=n

y

. Solution of the model

problem for regular decomposition is in Figure 4.

The model problem was solved for h 2 f1=64; 1=128; 1=256; 1=512g with op-
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Figure 4: Solution of the model problem with h = 1=16 and H
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= 1=4
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Table 1.

Convergence with the decomposition into strips

for h = 1=128.

dual Outer cg M� V time

H

x

dim: iter: iter: prod: sec.

1 129 5 45 95 62.9

1=2 387 5 66 137 84.3

1=4 903 5 63 131 82.0

1=8 1935 6 91 188 114.6

1=16 3999 5 147 299 177.9

1=32 8127 5 258 521 292.5

tional secondary decompositions in order to test experimentally the dependance of

the rate of convergence on the discretization, decomposition and penalization pa-

rameters. In all cases, we use the stopping criterium

jjg

P

(�; �; 0)jj � 10

�5

jjdjj and jjG�jj � 10

�5

jjf jj:

The results are summarized in Tables 1-5, that give several discretization and

decomposition parameters together with the number of iterations in the outer loop

of the augmented Lagrangian algorithm, the number of the conjugate gradient iter-

ations in the inner loops of the algorithm for the solution of bound constrained QP

problems, the number of multiplications by the matrix F that dominates the cost

in each inner iteration, and the time spent by the serial implementation, in seconds.

If not speci�ed explicitly, we use the values of parameters suggested at Algorithms

6.1 and 6.2, �

0

= 0 and �

0

= �

e

�.

In particular, Table 1 shows the convergence with decomposition into strips for

the �xed discretization parameter h = 1=128. Horizontal dimension H

x

of vertical

strips is in the �rst column. The primal dimension of the problems ranges from

33153 to 41151. We can observe that the performance deteriorates with an increas-

ing number of subdomains and resulting increase of the aspect ratio. The penalty

parameter � was not updated during the solution.

The e�ect of the aspect ratio may be observed in more detail in Table 2. These

results are comparable with the results reported for linear problems [20].

Table 3 shows the near optimal performance of the algorithm with the natural

coarse space with respect to the ratio of the decomposition parameter H and the

discretization parameter h. The numbers are given for regular decompositions that

are characterized by H

x

= H

y

for some variants of the discretization parameter h.
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Table 2.

E�ect of the subdomain aspect ratio

for h = 1=128.

dual Outer cg M-V time

H

x

H

y

dim. iter. iter. prod. sec.

1=16 1 3999 5 147 299 177.9

1=16 1=2 4286 5 91 187 50.0

1=16 1=4 4860 5 59 123 19.9

1=16 1=8 6008 4 51 106 19.1

1=16 1=16 8304 4 76 157 81.6

Table 3.

Near optimality of regular decompositions

with H = H

x

= H

y

.

primal dual Outer cg M� V time

h H dim: dim: iter: iter: prod: sec:

1=64 1=2 8646 326 4 38 80 2.94

1=128 1=4 34716 1692 5 51 107 15.4

1=256 1=8 139128 7544 6 74 154 89.5

1=512 1=16 557040 31728 6 107 221 586.0
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Table 4.

E�ect of the initial penalty parameter �

0

for H

x

= H

y

= 1=8 and h = 1=128.

�nal Outer cg M� V time

�

0

� iter: iter: prod: sec:

10 10

4

7 84 175 17.5

10

2

10

4

6 67 140 14.1

10

3

10

4

5 62 129 13.1

10

4

10

4

4 60 124 12.6

10

5

10

5

5 75 157 15.8

10

6

10

6

5 86 178 17.9

10

7

10

7

5 98 203 20.4

These results are completed by Table 4, which illustrates the sensitivity of

the algorithm on the initial penalization parameter. Though the linear theory [11]

predicts a little sensitivity of the performance on the penalty parameter in exact

arithmetics, we can observe that large penalty values may cause problems.

We have also implemented our algorithm with preconditioning, using the mod-

i�ed lumped precoditioner in the form C

�1

= PBKB

T

P +(1=�)Q, in an attempt to

reduce the e�ective condition number of the Hessian of the augmented Lagrangian.

The untransformed scheme [3] for preconditioning in faces after the proportioning

step has been used. Comparing the last two columns from Tables 3 and 5, we can

notice that, on average, the number of multiplications by matrix F was reduced by

29:9%, while the time spent by the algorithm was reduced by 27:6%. These pre-

liminary results suggest that, at least for this speci�c value of the ratio H=h, it is

indeed possible to improve the performance of our algorithm by preconditioning.

All of the experiments were run on a SUN sparc Ultra 1 computer, under

SunOS 5.5.1, using the f77 (version 4.0) FORTRAN compiler and double precision.

The auxiliary problems were solved using the QUACON routine [4], developed at the

Institute of Mathematics, Statistics and Scienti�c Computation of Unicamp.

8 Comments and conclusions

We have described a new algorithm for the solution of variational inequalities arising

from the elliptic boundary value problems with boundary conditions that include

inequalities. The algorithm gives directly multipliers for the boundary inequalities.

The approach combines a variant of the domain decomposition method of the
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Table 5.

E�ect of preconditioning for regular decompositions

with H = H

x

= H

y

.

primal dual Outer cg M� V time

h H dim: dim: iter: iter: prod: sec:

1=64 1=2 8646 326 4 26 56 2.11

1=128 1=4 34716 1692 5 34 73 10.6

1=256 1=8 139128 7544 7 51 109 64.6

1=512 1=16 557040 31728 6 76 158 448.6

Neumann-Neumann type based on the duality theory of quadratic programming

with new algorithms for the solution of the quadratic programming problems with

simple bounds and equalities. A new feature of the algorithm is the combination

of the preconditioning by the natural coarse subspace with the adaptive control

of precision of the solution of auxiliary problems with e�ective application of the

projections and penalty technique that preserve the optimal rate of convergence of

the conjugate gradient iterations in faces.

The implementation of the algorithm deals separately with each subdomain, so

that the algorithm is suitable for parallel implementation. The convergence results

have been reported. In particular, it has been shown that the rate of convergence

of the iterative method for the solution of auxiliary problems is not hindered by

the penalty term in the augmented Lagrangian and does not depend either on the

penalty parameter of the augmented Lagrangian or on the grid parameter, provided

that the ratio between the subdomain and grid parameters are kept constant. Nu-

merical experiments con�rm predicted numerical scalability that is similar to related

methods for linear problems. Numerical experiments also indicate that the perfor-

mance of the algorithms may be further improved by suitable implementation of

preconditioners for related type of domain decomposition methods.
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