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Abstra
t

We introdu
e a new model algorithm for solving nonlinear programming problems.

No sla
k variables are introdu
ed for dealing with inequality 
onstraints. Ea
h itera-

tion of the method pro
eeds in two phases. In the �rst phase, feasibility of the 
urrent

iterate is improved and in se
ond phase the obje
tive fun
tion value is redu
ed in an

approximate feasible set. The point that results from the se
ond phase is 
ompared

with the 
urrent point using a nonsmooth merit fun
tion that 
ombines feasibility

and optimality. This merit fun
tion in
ludes a penalty parameter that 
hanges be-

tween di�erent iterations. A suitable updating pro
edure for this penalty parameter

is in
luded by means of whi
h it 
an be in
reased or de
reased along di�erent itera-

tions. The 
onditions for feasibility improvement at the �rst phase and for optimality

improvement at the se
ond phase are mild, and large-s
ale implementations of the

resulting method are possible. We prove that under suitable 
onditions, that do not

in
lude regularity or existen
e of se
ond derivatives, all the limit points of an in�-

nite sequen
e generated by the algorithm are feasible, and that a suitable optimality

measure 
an be made as small as desired. The algorithm is implemented and tested

against LANCELOT using a set of hard-spheres problems.
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1 Introdu
tion

Feasible methods for solving minimization problems with inequality and equality 
onstraints [1,

2, 17, 19, 20, 21, 22, 27, 28, 29, 30, 31℄ have a strong reputation among pra
titioners of nonlinear

programming and, for this reason, are in
orporated to well known user-oriented libraries. The

reason is that, very frequently, feasible nonoptimal solutions are useful in engineering appli
ations,

whereas nonfeasible approximations are not, even when they are \quasi-optimal". In the 80's very

few papers in the mainstream of the optimization literature were dedi
ated to feasible methods.

That de
ade was dominated by SQP (sequential quadrati
 programming) models and the usual


riti
ism against feasible methods was that it is very diÆ
ult and, frequently, not worthwhile,

to follow very 
urved feasible regions, espe
ially when the 
urrent approximation is far from the

solution. In the last few years (we write in 1998) many resear
hers realized that at least a subfamily

of feasible methods (those based on the barrier approa
h) was perhaps unfairly despised. See [33℄.

Obviously, the barrier approa
h is not appli
able to equality 
onstraints and must be 
ombined

with SQP-like s
hemes in order to deal with equalities.

The preferen
e for feasibility 
annot be ignored in pra
ti
al appli
ations but, on the other

hand, the SQP 
riti
ism based on high-
urvature domains must also be taken into a

ount. These

two fa
ts motivated us to develop (see [18℄) theoreti
ally justi�ed algorithms for 
onstraints of

the form h(x) = 0; ` � x � u where feasibility is 
ontrolled at every iteration, with an internal

me
hanism that automati
ally determines the degree of pre
ision required in the 
onstraints. An

interesting related method that does not use merit fun
tions was introdu
ed in [2℄. We noti
e that

some pra
ti
al SGRA algorithms [20, 21, 22℄ su

essfully used \Inexa
t- Restoration" pro
edures

in appli
ations.

In [18℄ we need to introdu
e sla
k variables for dealing with inequality 
onstraints, so that the

feasible region takes the the 
anoni
al form above. This transformation 
an in
rease the number

of variables in an undesirable way, leading to expensive subproblems. Therefore, it is interesting

to introdu
e Inexa
t{Restoration algorithms that deal with inequality 
onstraints without the

sla
k{variable transformation.

Let us state the nonlinear programming problem in the form

Minimize f(x)

subje
t to C(x) � 0; x 2 
; (1)

where f : IR

n

! IR and C : IR

n

! IR

m

are 
ontinuously di�erentiable and 
 � IR

n

is 
losed

and 
onvex. In pra
ti
e, we are mostly interested in the 
ase in whi
h 
 is a polytope. Ea
h

equality 
onstraint appearing in the original formulation of the nonlinear programming problem


an be transformed into two inequality 
onstraints. It will be seen that this does not in
rease the


omplexity of the method introdu
ed here.

The new model algorithm generates feasible iterates with respe
t to 
 (x

k

2 
 for all k =

0; 1; 2; : : :) Ea
h iteration in
ludes two di�erent pro
edures: Restoration and Minimization. In the

Restoration Step (whi
h is exe
uted on
e per iteration) an intermediate point y

k

2 
 is found su
h

that the infeasibility at y

k

is a fra
tion of the infeasibility at x

k

. Immediately after Restoration

we 
onstru
t an approximation �

k

of the feasible region using available information at y

k

. In the

Minimization Step we 
ompute a trial point z

k;i

2 �

k

su
h that f(z

k;i

) << f(y

k

) (<< means

\suÆ
iently smaller than" here) and kz

k;i

� y

k

k � Æ

k;i

, where Æ

k;i

is a trust-region radius. The

trial point z

k;i

is a

epted as new iterate if the value of a nonsmooth (exa
t penalty) merit fun
tion

at z

k;i

is suÆ
iently smaller than its value at x

k

. If z

k;i

is not a

eptable, the trust-region radius

is redu
ed.

When 
 is a polytope, the approximate feasible region �

k

is a polytope too. So, if k � k is

the sup-norm, the Minimization Step 
onsists of an inexa
t (approximate) minimization of f with
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linear 
onstraints. In that 
ase, the Restoration Step also represents an inexa
t minimization

of infeasibility with linear 
onstraints. Therefore, available algorithms for (large-s
ale) linearly


onstrained minimization (see [13, 14, 23℄) 
an be fully exploited.

As mentioned above, the new algorithm is related to 
lassi
al feasible methods for nonlinear

programming, su
h as the Generalized Redu
ed Gradient (GRG) method and the family of Se-

quential Gradient Restoration algorithms (SGRA). See [1, 2, 17, 20, 21, 22, 27, 28, 29, 30, 31℄.

However, in our approa
h the su

essive approximations to the solution of (1) are not ne
essarily

feasible (or nearly feasible) with respe
t to C(x) � 0. In spite of that, the ne
essity of 
onsidering

and probably improving feasibility is taken a
tively into a

ount at all the iterations. This strategy

is quite di�erent than the one adopted in Sequential Quadrati
 Programming (SQP) algorithms,

where the trial point at ea
h iteration is obtained after 
onsidering only a linear model of the


onstraints.

The 
onvergen
e theory developed in this paper has several points in 
ommon with global


onvergen
e theories for di�erent SQP-like algorithms with trust-regions (see [5, 10, 12, 25, 26℄),

in parti
ular the one developed in [15℄. The new model algorithm is also related to the method

introdu
ed in [18℄ for problems where the 
onstraints are given in the form C(x) = 0; x 2 
. In

[18℄ the merit fun
tion is an augmented Lagrangian, while here we 
onsider the exa
t penalty-like

merit fun
tion used, for example, in [3, 4, 16, 25℄ for for
ing 
onvergen
e of SQP and other nonlinear

programming algorithms. Another remarkable di�eren
e is that the algorithm introdu
ed in this

paper use trust-regions 
entered on the intermediate point y

k

instead of the more usual trust-

regions 
entered on the 
urrent point x

k

. Consequently, only the Minimization Step is repeated

after a redu
tion of the trust-region radius.

A rigorous des
ription of the new model algorithm is given in Se
tion 2, together with further

motivation. In Se
tion 3 we prove that the algorithm is well de�ned, that is, given a 
urrent point

x

k

2 
 that does not satisfy the stopping 
riteria, a new iterate x

k+1

is found after a �nite num-

ber of redu
tions of the trust-region radius. In the same se
tion we prove that, when an in�nite

sequen
e is generated, we obtain points arbitrarily 
lose to feasibility. In Se
tion 4 we prove that

a quantity that measures �rst-order optimality 
an be made as small as desired. In Se
tion 5 we

give an appli
ation and we des
ribe the pra
ti
al implementation oriented to it. In Se
tion 6 we


ompare our implementation against the well-known augmented Lagrangian 
ode LANCELOT.

Con
lusions are given in Se
tion 7.

Notation.

In this work we use two (perhaps di�erent) norms. We denote j � j a monotone norm on IR

m

(jvj � jwj whenever 0 � v � w) and k � k an arbitrary norm on IR

n

.

We denote C

0

(x) 2 IR

m�n

the Ja
obian matrix of C(x) and C

0

j

(x) = rC

j

(x)

T

for all j =

1; : : : ;m.

We also denote C

+

j

(x) = maxfC

j

(x); 0g and C

+

(x) = (C

+

1

(x); : : : ; C

+

m

(x))

T

.

2 Des
ription of the Model Algorithm

Before giving a rigorous des
ription of the algorithm, we will 
omment some of its main features.

2.1 Restoration Step

As we mentioned in the Introdu
tion, given the 
urrent iterate x

k

2 
, the model algorithm


omputes and intermediate \more feasible" point y

k

2 
. The 
onditions that must be satis�ed
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by y

k

are

jC

+

(y

k

)j � rjC

+

(x

k

)j (2)

ky

k

� x

k

k � �jC

+

(x

k

)j: (3)

where r 2 [0; 1) and � > 0 are parameters given independently of k. Condition (2) states the

ne
essity of having an intermediate point at least as feasible as x

k

. Condition (3) imposes that y

k

must be equal to x

k

if the 
urrent point is feasible.

2.2 Approximate Linearized Feasible Region

After the 
omputation of y

k

with the 
onditions (2) and (3) we de�ne a linear approximation of

the feasible region of (1), 
ontaining the intermediate point y

k

. This auxiliary region is given by

�

k

= fx 2 
 j C

j

(y

k

) + C

0

j

(y

k

)(x � y

k

) � C

+

j

(y

k

) whenever C

j

(y

k

) � �pg; (4)

where p > 0 is a parameter given independently of the iteration index k. So, �

k

is the interse
tion

of 
 with the linear approximations of the sets C

j

(x) � C

+

j

(y

k

), ex
luding the indi
es j that


orrespond to 
onstraints that, a

ording to the toleran
e p, are strongly satis�ed at y

k

. If p is

large the approximate feasible region takes into a

ount all the 
onstraints C

j

(x) � 0, indepen-

dently of C

j

(y

k

). On the other hand, if p is small, only the 
onstraints violated at y

k

tend to

be 
onsidered in the de�nition of �

k

. In other words, if C

j

(y

k

) < �p, it is 
onsidered that the

approximation of the set C

j

(x) � 0 that uses information at y

k

is the whole spa
e IR

n

. In prin
iple,

it should be better to use a large p, for this gives a more faithful representation of the true fea-

sible region. However, the subproblem involved in the Minimization Step is simpler when p is small.

2.3 Minimization Step

The obje
tive of the Minimization Step is to obtain z

k;i

2 �

k

\ IB

k;i

su
h that f(z

k;i

) << f(y

k

),

where

IB

k;i

= fx 2 IR

n

j kx� y

k

k � Æ

k;i

g; (5)

and Æ

k;i

> 0 is a trust-region radius. The �rst trial point at ea
h iteration is obtained using a

trust-region radius Æ

k;0

. Su

essive trust-region radius are tried until a point z

k;i

is found su
h

that the merit fun
tion at this point is suÆ
iently smaller than the merit fun
tion at x

k

.

The minimization step is pre
eded by the 
omputation of the Cau
hy-like dire
tion (indepen-

dent of i)

d

k;tan

= P

k

(y

k

� �rf(y

k

))� y

k

; (6)

where P

k

(z) denotes the orthogonal proje
tion of z on �

k

and � > 0 is an arbitrary s
aling

parameter independent of k. It turns out that d

k;tan

is a feasible des
ent dire
tion for f on

�

k

. Its norm will be used to de�ne a 
onvergen
e 
riterion for the algorithm. The trial point

y

k

+ d

k;tan

belongs to �

k

but it does not ne
essarily belong to IB

k;i

. So, we de�ne the breakpoint

y

k

+ t

(k;i;break)

d

k;tan

by

t

(k;i;break)

= sup ft 2 [0; 1℄ j [y

k

; y

k

+ td

k;tan

℄ � IB

k;i

g: (7)

Moreover, the value of the obje
tive fun
tion f at y

k

+ t

(k;i;break)

d

k;tan

is not ne
essarily smaller

than f(y

k

), therefore a suÆ
iently smaller fun
tional value f(y

k

+ t

(k;i;de
)

d

k;tan

) must be obtained

using a 
lassi
al ba
ktra
king pro
edure. Finally, z

k;i

2 �

k

\ IB

k;i

will be any point su
h that

f(z

k;i

) � f(y

k

+ t

(k;i;de
)

d

k;tan

). Alternatively, z

k;i


an be any point of �

k

\ IB

k;i

su
h that
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f(z

k;i

) � f(y

k

)� �

1

Æ

k;i

or f(z

k;i

) � f(y

k

)� �

2

, where �

1

and �

2

are nonnegative parameters of the

algorithm. This means that, for 
omputing the trial point z

k;i

in an eÆ
ient way, we 
an apply

any reasonable algorithm (with a mild 
onvergen
e 
riterion) to the resolution of the minimization

problem

Minimize f(x) subje
t to x 2 �

k

\ IB

k;i

: (8)

Clearly, (8) is a linearly 
onstrained optimization problem if k � k is the sup-norm.

2.4 Merit Fun
tion and Penalty Parameter

The 
omparison of z

k;i

and x

k

involves the evaluation of a merit fun
tion at both points. We

de
ided to use the exa
t penalty-like nonsmooth merit fun
tion, given by

 (x; �) = �f(x) + (1� �)jC

+

(x)j (9)

where � 2 (0; 1℄ is a penalty parameter used to give di�erent weights to the obje
tive fun
tion and

to the feasibility obje
tive. The 
hoi
e of the parameter � at ea
h iteration depends of pra
ti
al

and theoreti
al 
onsiderations. For example, if jC

+

(x

k

)j is large, the weight assigned to f(x) must

be small, for it does not make sense to worry about the fun
tional values if the 
urrent point is

far from the feasible region. Our 
hoi
e of the penalty parameter automati
ally takes into a

ount

this pra
ti
al ne
essity.

Roughly speaking, we wish that the merit fun
tion at the new point should be less than the

merit fun
tion at the 
urrent point x

k

. That is, we want Ared

k;i

> 0, where Ared

k;i

, the \a
tual

redu
tion of the merit fun
tion", is de�ned by

Ared

k;i

=  (x

k

; �

k;i

)�  (z

k;i

; �

k;i

): (10)

So,

Ared

k;i

= �

k;i

[f(x

k

)� f(z

k;i

)℄ + (1� �

k;i

)[jC

+

(x

k

)j � jC

+

(z

k;i

)j℄:

However, as in un
onstrained optimization, merely a redu
tion of the merit fun
tion is not suÆ
ient

to guarantee 
onvergen
e. In fa
t, we need a \suÆ
ient redu
tion" of the merit fun
tion, that will

be de�ned by the satisfa
tion of the following test:

Ared

k;i

� 0:1Pred

k;i

; (11)

where Pred

k;i

is a positive \predi
ted redu
tion" of the merit fun
tion between x

k

and z

k;i

. In

our 
ase, we de�ne

Pred

k;i

= �

k;i

[f(x

k

)� f(z

k;i

)℄ + (1� �

k;i

)[jC

+

(x

k

)j � jC

+

(y

k

)j℄: (12)

The quantity Pred

k;i

de�ned above 
an be nonpositive depending on the value of the penalty

parameter. Fortunately, if �

k;i

is small enough, Pred

k;i

is arbitrarily 
lose to jC(x

k

)j � jC(y

k

)j

whi
h is ne
essarily nonnegative. Therefore, we will always be able to 
hoose �

k;i

2 (0; 1℄ su
h that

Pred

k;i

�

1

2

[jC

+

(x

k

)j � jC

+

(y

k

)j℄: (13)

When the 
riterion (11) is satis�ed, we a

ept x

k+1

= z

k;i

. Otherwise, we redu
e the trust-region

radius.
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2.5 Des
ription of the Model Algorithm

Assume that p > 0, � > 0, � > 0, r 2 [0; 1), Æ

min

> 0, �

1

> 0; �

2

> 0 are algorithmi
 parameters

given independently of k and

P

1

k=0

!

k

is a 
onvergent series of nonnegative terms. Suppose that

x

0

2 
 is an initial approximation to the solution and that �

�1

2 (0; 1) is an initialization of the

penalty parameter. Given x

k

2 
, �

k�1

2 (0; 1℄, Æ

k;0

� Æ

min

, the steps for 
omputing x

k+1

or for

stopping the pro
ess are given by the following algorithm.

Algorithm 2.1

Step 1. Compute y

k

, d

k;tan

and de
ide termination

Compute y

k

2 
 su
h that (2) and (3) hold. If this is not possible, stop the exe
ution of the

algorithm de
laring \failure in improving feasibility". Otherwise, set i 0, de�ne

�

k;�1

= min f1; min f�

�1

; : : : ; �

k�1

g+ !

k

g

and 
ompute d

k;tan

using (6). If C

+

(x

k

) = 0 and d

k;tan

= 0 terminate the exe
ution of the

algorithm de
laring \�nite 
onvergen
e".

Step 2. Minimization Step

Compute t

(k;i;break)

using (7). De�ne t

(k;i;de
)

as the �rst term t of the sequen
e ft

k;1

; t

k;2

; : : :g

su
h that

f(y

k

+ td

k;tan

) � f(x

k

) + 0:1thrf(y

k

); d

k;tan

i; (14)

where ft

k;j

g is de�ned by t

k;1

= t

(k;i;break)

and t

k;j+1

2 [0:1t

k;j

; 0:9t

k;j

℄ for all j = 1; 2; : : :

Compute z

k;i

2 �

k

\ IB

k;i

su
h that

f(z

k;i

) � max ff(y

k

+ t

(k;i;de
)

d

k;tan

); f(y

k

)� �

1

Æ

k;i

; f(y

k

)� �

2

g: (15)

Step 3. Choi
e of the penalty parameter

De�ne, for all � 2 [0; 1℄,

Pred

k;i

(�) = �[f(x

k

)� f(z

k;i

)℄ + (1� �)[jC

+

(x

k

)j � jC

+

(y

k

)j℄:

Choose �

k;i

the supremum of the values of � in the interval [0; �

k;i�1

℄ su
h that

Pred

k;i

(�) �

1

2

[jC

+

(x

k

)j � jC

+

(y

k

)j℄: (16)

Step 4. A

eptan
e or reje
tion of the trial point

De�ne Ared

k;i

and Pred

k;i

as in (10) and (12) respe
tively. If the test (11) is satis�ed, de�ne

x

k+1

= z

k;i

, �

k

= �

k;i

, ia

(k) = i (\ia

" means \a

epted i") and �nish the iteration. If (11)

does not hold, 
hoose Æ

k;i+1

2 [0:1Æ

k;i

; 0:9Æ

k;i

℄, set i i+ 1 and go to Step 2.

2.6 Some Remarks and Elementary Properties

By means of the introdu
tion of the nonnegative parameters !

k

a \moderate" in
rease of the

penalty parameter between di�erent iterations is permitted. This prevents the possibility of in-

heriting arti�
ially small penalty parameters from the very beginning of the iterative pro
ess. It

is easy to see that the sequen
e of penalty parameters �nally used at ea
h iteration f�

k

g is 
on-

vergent. In fa
t, de�ning �

k;small

= min f�

�1

; : : : ; �

k

g and �

k;large

= �

k;small

+ !

k

, we see that

�

k+1

� �

k;large

and �

k

� �

k;small

for all k. Clearly, f�

k;large

g and f�

k;small

g are 
onvergent to the

same limit, so f�

k

g is also 
onvergent. We 
an also prove, by indu
tion, that �

k;i

> 0 for all k; i.
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It is easy to verify that d

k;tan

is a des
ent dire
tion. In fa
t, sin
e y

k

2 �

k

, we have that

k(y

k

� �rf(y

k

))� P

k

(y

k

� �rf(y

k

))k

2

� k(y

k

� �rf(y

k

))� y

k

k

2

:

Therefore,

ky

k

� P

k

(y

k

� �rf(y

k

))k

2

2

+ k�rf(y

k

)k

2

2

+ 2�hP

k

(y

k

� �rf(y

k

))� y

k

;rf(y

k

)i

� k�rf(y

k

)k

2

2

;

so,

hd

k;tan

;rf(y

k

)i � �

1

2�

kd

k;tan

k

2

2

� �




2�

kd

k;tan

k

2

; (17)

where 
 > 0 is a norm-dependent 
onstant. We 
an use 
lassi
al arguments for justifying ba
k-

tra
king with Armijo-like 
onditions (see [11℄, Chapter 6), to show that t

(k;i;de
)

is well de�ned at

Step 2 of Algorithm 2.1. In other words, given the 
urrent point x

k

and the trust-region radius Æ

k;i

it is possible to 
ompute, in �nite time, the trial point z

k;i

.

3 General Assumptions and Consequen
es

>From now on, we will suppose that the nonlinear programming problem (1) satis�es the assump-

tions A1, A2 and A3 stated below. These will be the only assumptions on the problem that are

needed for proving 
onvergen
e. In parti
ular, no regularity assumptions are used in the proofs

and se
ond derivatives of f and C are not assumed to exist.

A1. 
 is 
onvex and 
ompa
t.

A2. The Ja
obian matrix of C(x) exists and satis�es the Lips
hitz 
ondition

kC

0

(y)� C

0

(x)k � L

1

ky � xk for all x; y 2 
: (18)

A3. The gradient of f exists and satis�es the Lips
hitz 
ondition

krf(y)�rf(x)k � L

2

ky � xk for all x; y 2 
: (19)

Due to the equivalen
e of norms on IR

n

, similar 
onditions to (18) and (19) hold if we 
onsider

di�erent norms than k � k. So, in order to simplify the notation, we 
an assume that (18) and (19)

hold with the same 
onstants L

1

and L

2

for all the norms 
onsidered in this work. From these

Lips
hitz 
onditions it follows that

kC(y)� C(x) � C

0

(x)(y � x)k �

L

1

2

ky � xk

2

(20)

and

jf(y)� f(x)� hrf(x); y � xij �

L

2

2

ky � xk

2

(21)

for all x; y 2 
. Again, we 
an assume, without loss of generality, that (20) and (21) hold for

di�erent norms with the same 
onstants and that

jC

j

(y)� C

j

(x)� C

0

j

(x)(y � x)j �

L

1

2

ky � xk

2

(22)

for all j = 1; : : : ;m.
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The assumption on the boundedness of 
 
an be repla
ed by hypotheses that state bounded-

ness of a set of quantities depending on the iterates. This is frequently done in global 
onvergen
e

theories for SQP algorithms. We prefer to state dire
tly Assumption A1 sin
e it seems to be the

only reasonable assumption on the problem that guarantees boundedness of the required quantities.

The following theorem is dire
tly dedu
ed from the general assumptions. It states a bounded

deterioration result for the feasibility of z

k;i

in relation to the feasibility of y

k

. Brie
y speaking,

we prove that only a se
ond order deterioration of feasibility 
an be expe
ted for a trial point x 2 �

k

.

Theorem 3.1. There exists 


1

> 0 (independent of k) su
h that, whenever y

k

2 
 is de�ned

and x 2 �

k

, we have

jC

+

(x)j � jC

+

(y

k

)j+ 


1

kx� y

k

k

2

(23)

Proof. Let j 2 f1; : : : ;mg. By the 
ompa
tness of 
 and the 
ontinuity of C

j

there exists � > 0

su
h that whenever C

j

(y) < �p and C

j

(x) � 0 it holds that kx� yk � �.

If C

+

j

(x) = 0, the inequality

C

+

j

(x) � C

+

j

(y

k

) (24)

holds trivially. If C

+

j

(x) > 0 we analyze three di�erent 
ases.

Case 1: If C

j

(y

k

) � 0 (so C

+

j

(y

k

) = C

j

(y

k

)) we have, by (22) that

C

j

(x) � C

j

(y

k

) + C

0

j

(y

k

)(x � y

k

) +

L

1

2

kx� y

k

k

2

:

So, if x 2 �

k

,

C

j

(x) � C

+

j

(y

k

) +

L

1

2

kx� y

k

k

2

:

Therefore,

C

+

j

(x) � C

+

j

(y

k

) +

L

1

2

kx� y

k

k

2

: (25)

Case 2: If 0 > C

j

(y

k

) � �p (so C

+

j

(y

k

) = 0) and x 2 �

k

we have that C

j

(y

k

)+C

0

j

(y

k

)(x�y

k

) � 0.

But, by (22) we have that

C

j

(x) � C

j

(y

k

) + C

0

j

(y

k

)(x � y

k

) +

L

1

2

kx� y

k

k

2

:

So,

C

j

(x) �

L

1

2

kx� y

k

k

2

= C

+

j

(y

k

) +

L

1

2

kx� y

k

k

2

:

This implies that (25) also holds in this 
ase.

Case 3: Now 
onsider the 
ase C

j

(y

k

) < �p (so C

+

j

(y

k

) = 0). Let us de�ne �

1

= max fC

+

j

(x); x 2


g. Clearly, we have that

C

+

j

(x) � C

+

j

(y

k

) +

�

1

�

2

kx� y

k

k

2

(26)

for all x 2 
.

The desired results follows from the monotoni
ity of the norm j � j using (24), (25) and (26). 2

In the next theorem we 
ompute the de
rease of the obje
tive fun
tion that 
an be expe
ted

when we move from y

k

to z

k;i

.
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Theorem 3.2. There exist 


2

> 0, 


3

> 0 (independent of k) su
h that, whenever y

k

2 
 is

de�ned and z

k;i

is 
omputed at Step 2 of Algorithm 2.1, we have that

f(z

k;i

) � f(y

k

)� min f�

2

; 


2

kd

k;tan

k

2

; �

1

Æ

k;i

; 


3

kd

k;tan

kÆ

k;i

g:

Proof. By (21) we have that

f(y) � f(x) + hrf(x); y � xi+

L

2

2

ky � xk

2

for all x; y 2 
. So, sin
e y

k

+ d

k;tan

2 
 we have, for all t 2 [0; 1℄, that

f(y

k

+ td

k;tan

) � f(y

k

) + thrf(y

k

); d

k;tan

i+

t

2

L

2

2

kd

k;tan

k

2

= f(y

k

) + 0:1thrf(y

k

); d

k;tan

i+ 0:9thrf(y

k

); d

k;tan

i+

t

2

L

2

2

kd

k;tan

k

2

:

So, (17) implies that

f(y

k

+ td

k;tan

) � f(y

k

) + 0:1thrf(y

k

); d

k;tan

i �

0:9
tkd

k;tan

k

2

2�

+

t

2

L

2

2

kd

k;tan

k

2

= f(y

k

) + 0:1thrf(y

k

); d

k;tan

i+

tkd

k;tan

k

2

2

(tL

2

�

0:9


�

):

Therefore, if t �

0:9


�L

2

, we have that

f(y

k

+ td

k;tan

) � f(y

k

) + 0:1thrf(y

k

); d

k;tan

i:

This implies that t

(k;i;de
)

� min ft

(k;i;break)

;

0:09


�L

2

g.

Now, t

(k;i;break)

= min f1;

Æ

k;i

kd

k;tan

k

g. So,

t

(k;i;de
)

� min f1;

0:09


�L

2

;

Æ

k;i

kd

k;tan

k

g:

Thus, by the de�nition of t

(k;i;de
)

, it follows that

f(y

k

+ t

(k;i;de
)

d

k;tan

) � f(y

k

) + min f0:1;

0:009


�L

2

;

0:1Æ

k;i

kd

k;tan

k

ghrf(y

k

); d

k;tan

i:

So, by (17), we obtain

f(y

k

+ t

(k;i;de
)

d

k;tan

) � f(y

k

)� min f

0:1
kd

k;tan

k

2

2�

;

0:009


2

kd

k;tan

k

2

2�

2

L

2

;

0:1
Æ

k;i

kd

k;tan

k

2�

g:

Therefore,

f(y

k

+ t

(k;i;de
)

d

k;tan

) � f(y

k

)� min f


2

kd

k;tan

k

2

; 


3

Æ

k;i

kd

k;tan

kg;

where 


2

= min f

0:1


2�

;

0:009


2

2�

2

L

2

g and 


3

=

0:1


2�

.

The desired result follows from the last inequality and (15). 2
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In the last theorem of this se
tion we prove that Algorithm 2.1 is well de�ned. This amounts

to show that, for small enough Æ

k;i

, the inequality (11) is satis�ed and, so, the trial point z

k;i

is

a

epted as new iterate.

Theorem 3.3. Algorithm 2.1 is well de�ned.

Proof. Observe that

Ared

k;i

� 0:1Pred

k;i

= 0:9�

k;i

[f(x

k

)� f(z

k;i

)℄ + (1� �

k;i

)[jC

+

(x

k

)j � jC

+

(z

k;i

)j℄� 0:1(1� �

k;i

)[jC

+

(x

k

)j � jC

+

(y

k

)j℄

= 0:9�

k;i

[f(x

k

)� f(z

k;i

)℄ + 0:9(1� �

k;i

)[jC

+

(x

k

)j � jC

+

(y

k

)j℄

+(1� �

k;i

)[jC

+

(x

k

)j � jC

+

(z

k;i

)j℄� (1� �

k;i

)[jC

+

(x

k

)j � jC

+

(y

k

)j℄

= 0:9Pred

k;i

+ (1� �

k;i

)[jC

+

(y

k

)j � jC

+

(z

k;i

)j℄:

So, by (13) and (2),

Ared

k;i

� 0:1Pred

k;i

� 0:45[jC

+

(x

k

)j � jC

+

(y

k

)j℄� j(jC

+

(y

k

)j � jC

+

(z

k;i

)j)j

� 0:45(1� r)jC

+

(x

k

)j � j(jC

+

(y

k

)j � jC

+

(z

k;i

)j)j:

Therefore, if jC

+

(x

k

)j > 0, sin
e ky

k

� z

k;i

k � Æ

k;i

and jC

+

(x)j is 
ontinuous, it follows that

Ared

k;i

� 0:1Pred

k;i

� 0 if Æ

k;i

is small enough. So, we proved that the algorithm is well de�ned

if the 
urrent point x

k

is infeasible.

If x

k

is feasible, (3) implies that y

k

= x

k

and jC

+

(y

k

)j = 0. If d

k;tan

6= 0 we have that

f(z

k;i

) < f(y

k

) for all i = 0; 1; 2; : : :. So, the 
ondition (13) is always satis�ed and, 
onsequently,

�

k;i

= �

k;�1

for all i = 0; 1; 2; : : : Therefore, in this 
ase, we have

Ared

k;i

� 0:1Pred

k;i

= 0:9�

k;�1

[f(y

k

)� f(z

k;i

)℄� (1� �

k;�1

)jC

+

(z

k;i

)j:

So, by Theorems 3.1 and 3.2, we obtain that

Ared

k;i

� 0:1Pred

k;i

� 0:9�

k;�1

min f�

2

; 


2

kd

k;tan

k

2

; �

1

Æ

k;i

; 


3

kd

k;tan

kÆ

k;i

g � 


1

kz

k;i

� y

k

k

2

:

Therefore, (11) holds if

Æ

k;i

� min f(

0:9�

k;�1

�

2




1

)

1=2

; (

0:9�

k;�1




2




1

)

1=2

kd

k;tan

k;

0:9�

k;�1

�

1




1

; (

0:9�

k;�1




3




1

)

1=2

kd

k;tan

kg:

So, we proved that x

k+1

is well de�ned when x

k

is feasible and d

k;tan

6= 0. 2

The next theorem is an important tool for proving 
onvergen
e of the model algorithm. We

are going to prove that the a
tual redu
tion Ared

k;ia

(k)

e�e
tively a
hieved at ea
h iteration

ne
essarily tends to 0. An immediate 
onsequen
e will be the feasibility of the limit points gener-

ated by the algorithm.

Theorem 3.4. Suppose that Algorithm 2.1 generates an in�nite sequen
e. Then

lim

k!1

 (x

k

; �

k

)�  (x

k+1

; �

k

) = 0
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Proof. Suppose, by 
ontradi
tion, that there exists an in�nite set of indi
es K

1

� f0; 1; 2; : : :g and

a positive number 
 > 0 su
h that

 (x

k+1

; �

k

) �  (x

k

; �

k

)� 


for all k 2 K

1

. Let us write  

k

=  (x

k

; �

k

) for all k 2 f0; 1; 2; : : :g.

Then, for all k 2 f0; 1; 2; : : :g we have that

 

k+1

= �

k+1

f(x

k+1

) + (1� �

k+1

)jC

+

(x

k+1

)j

= �

k+1

f(x

k+1

)+(1��

k+1

)jC

+

(x

k+1

)j�[�

k

f(x

k+1

)+(1��

k

)jC

+

(x

k+1

)j℄+[�

k

f(x

k+1

)+(1��

k

)jC

+

(x

k+1

)j℄

= (�

k+1

� �

k

)f(x

k+1

) + (�

k

� �

k+1

)jC

+

(x

k+1

)j+ [�

k

f(x

k+1

) + (1� �

k

)jC

+

(x

k+1

)j℄

= (�

k

� �

k+1

)(jC

+

(x

k+1

)j � f(x

k+1

)) + [�

k

f(x

k

) + (1� �

k

)jC

+

(x

k

)j℄� 


k

= (�

k

� �

k+1

)(jC

+

(x

k+1

)j � f(x

k+1

)) +  

k

� 


k

; (27)

where 


k

� 0 for all k 2 f0; 1; 2; : : :g and 


k

� 
 > 0 for all k 2 K

1

. Now, by the de�nition of

�

k;�1

at Algorithm 2.1, we have that

�

k

� �

k+1

+ !

k

� 0: (28)

for all k 2 f0; 1; 2; : : :g. By the 
ompa
tness of 
, there exists an upper bound 
 > 0 su
h that

jC

+

(x

k

)j � f(x

k

)j � 


for all k 2 f0; 1; 2; : : :g. Therefore, by (27) and (28), we have that

 

j+1

= (�

j

� �

j+1

+ !

j

)(jC

+

(x

j+1

)j � f(x

j+1

)) +  

j

� 


j

� !

j

(jC

+

(x

j+1

)j � f(x

j+1

))

� (�

j

� �

j+1

+ !

j

)
+  

j

� 


j

+ !

j


 = (�

j

� �

j+1

)
+  

j

� 


j

+ 2!

j




for j = 0; 1; : : : ; k � 1. Adding these k inequalities, we obtain

 

k

�  

0

+ (�

0

� �

k

)
+

k�1

X

j=0

2
!

j

�

k�1

X

j=0




j

�  

0

+ 2
+

k�1

X

j=0

2
!

j

�

k�1

X

j=0




j

(29)

for all k � 1. Sin
e the series

P

1

j=0

!

j

is 
onvergent, and 


k

is bounded away from 0 for k 2 K

1

,

(29) implies that  

k

is unbounded below. This 
ontradi
ts the 
ompa
tness of 
. 2

An easy 
onsequen
e of Theorem 3.4 is that, when Algorithm 2.1 generates an in�nite sequen
e

(that is, it is not stopped at Step 1), we have that lim

k!1

jC

+

(x

k

)j = 0. This means that points

arbitrarily 
lose to feasibility are eventually generated.

Theorem 3.5. If Algorithm 2.1 does not stop at Step 1 for all k = 0; 1; 2; : : :, then

lim

k!1

jC

+

(x

k

)j = 0:

(In parti
ular, every limit point of fx

k

g is feasible.)

Proof. By (2), (11) and (13) we have that

jC

+

(x

k

)j �

jC

+

(x

k

)j � jC

+

(y

k

)j

1� r

�

2

1� r

Pred

k;ia

(k)

�

20

1� r

Ared

k;ia

(k)

=

20

1� r

[ (x

k

; �

k

)�  (x

k+1

; �

k

)℄:

So, the desired result follows from Theorem 3.4. 2
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4 Convergen
e to Optimality

In the former se
tion we proved that, if the algorithm does not break down at Step 1, it a
hieves

approximate feasibility up to any desired pre
ision. In this se
tion we are going to prove that, in

that 
ase, the optimality indi
ator kd

k;tan

k 
annot be bounded away from zero. In pra
ti
e, this

implies that given arbitrarily small 
onvergen
e toleran
es "

feas

; "

opt

> 0, Algorithm 2.1 eventually

�nds an iterate x

k

su
h that kC

+

(x

k

)k � "

feas

and kd

k;tan

k � "

opt

. For proving this result, we will

pro
eed by 
ontradi
tion, assuming that kd

k;tan

k is bounded away from zero for k large enough.

From this hypothesis (stated as Hypothesis C below) we will dedu
e intermediate results that,

�nally, will lead us to a 
ontradi
tion.

Hypothesis C. Algorithm 2.1 generates an in�nite sequen
e fx

k

g and there exists " > 0, k

0

2

f0; 1; 2; : : :g su
h that

kd

k;tan

k � " for all k � k

0

:

Lemma 4.1. Suppose that Hypothesis C holds. Then, there exist 


4

; 


5

> 0 (independent of k)

su
h that

f(y

k

)� f(z

k;i

) � min f


4

; 


5

Æ

k;i

g

for all k � k

0

; i = 0; 1; : : : ; ia

(k)

Proof. The result follows trivially from Theorem 3.2 and Hypothesis C. 2

Lemma 4.2. Suppose that Hypothesis C holds. Then, there exist �; "

1

> 0, independent of k and

i, su
h that jC

+

(x

k

)j � min f"

1

; �Æ

k;i

g implies that �

k;i

= �

k;i�1

.

Proof. Observe that

Pred

k;i

(1) = f(x

k

)� f(z

k;i

)

� f(y

k

)� f(z

k;i

)� jf(x

k

)� f(y

k

)j � f(y

k

)� f(z

k;i

)� 
ky

k

� x

k

k

where 
 is a 
onstant that only depends on the norms and on a bound of krf(x)k on 
. Therefore,

by (3), and Lemma 4.1,

Pred

k;i

(1)�

1

2

jC

+

(x

k

)j � min f


4

; 


5

Æ

k;i

g � (
� + 0:5)jC

+

(x

k

)j:

De�ne

"

1

=




4


� + 0:5

; � =




5


� + 0:5

:

If jC

+

(x

k

)j � min f"

1

; �Æg we have that

Pred

k;i

(1)�

1

2

jC

+

(x

k

)j � 0:

This implies that any value of �

k;i

in the interval [0; 1℄ satis�es (13). In parti
ular �

k;i�1

satis�es

(13), as we wanted to prove. 2

In the next Lemma, we prove that, under Hypothesis C, the penalty parameters f�

k

g are

bounded away from zero. It must be warned that this is a property of sequen
es that satisfy

Hypothesis C (whi
h, in turn, will be proved to be non-existent!) and not of all the sequen
es
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e�e
tively generated by the model algorithm.

Lemma 4.3. Suppose that Hypothesis C holds. Then, there exists

�

� > 0 su
h that �

k

�

�

� for all

k 2 f0; 1; 2; : : :g.

Proof. We are going to show �rst that, if jC

+

(x

k

)j is suÆ
iently small, a step Æ

k;i

that satis�es

jC

+

(x

k

)j �

�

10

Æ

k;i

(30)

is ne
essarily a

epted, where � is de�ned in Lemma 4.2.

In fa
t, assume that (30) holds. Then, by (13) and (2),

Pred

k;i

�

1

2

[jC

+

(x

k

)j � jC

+

(y

k

)j℄ �

1� r

2

jC

+

(x

k

)j �

(1� r)�

20

Æ

k;i

:

So, (30) implies that

Æ

k;i

�

20

(1� r)�

Pred

k;i

: (31)

Now, by Theorem 3.1,

Ared

k;i

= Pred

k;i

+ (1� �

k;i

)[jC

+

(y

k

)j � jC

+

(z

k;i

)j℄ � Pred

k;i

� 


1

Æ

2

k;i

:

Therefore, by (31), (30) implies that

Ared

k;i

� Pred

k;i

�

20


1

(1� r)�

Æ

k;i

Pred

k;i

� (1�

200


1

(1� r)�

2

jC

+

(x

k

)j)Pred

k;i

:

So, if (30) holds and jC

+

(x

k

)j �

0:9(1�r)�

2

200


1

, the trial point z

k;i

is ne
essarily a

epted.

Let us de�ne

"

2

= min f"

1

;

0:9(1� r)�

2

200


1

; �Æ

min

g;

where "

1

is de�ned in Lemma 4.2. Let k

1

� k

0

be su
h that jC

+

(x

k

)j � "

2

for all k � k

1

. Sin
e

Æ

min

�

jC

+

(x

k

)j

�

, this implies that Æ

k;0

�

jC

+

(x

k

)j

�

for all k � k

1

. Therefore, a possible trust region

radius su
h that Æ

k;i

<

jC

+

(x

k

)j

�


annot 
orrespond to i = 0, so it is pre
eded by Æ

k;i�1

whi
h

ne
essarily veri�es

Æ

k;i�1

� 10

jC

+

(x

k

)j

�

:

By the reasoning displayed above, the trial point z

k;i�1

is a

epted for all k � k

1

. Therefore,

Æ

k;i

�

jC

+

(x

k

)j

�

for all k � k

1

, i = 0; 1; : : : ; ia

(k). So, by Lemma 4.2, the penalty parameter �

k;i

is never de
reased for all k � k

1

. This implies the desired result. 2

Finally, we prove, in Theorem 4.4, that Hypothesis C 
annot be true.

Theorem 4.4. Let fx

k

g be an in�nite sequen
e generated by Algorithm 2.1. Then, there exists

K

2

, an in�nite subset of f0; 1; 2; : : :g, su
h that

lim

k2K

2

kd

k;tan

k = 0: (32)

13



Proof. Suppose that the thesis of the theorem is not true. Then, there exists k

0

2 f0; 1; 2; : : :g,

" > 0 su
h that Hypothesis C holds.

As in the beginning of the proof of Theorem 3.3, observe that, by Theorem 3.1,

Ared

k;i

� 0:1Pred

k;i

= 0:9f�

k;i

[f(x

k

)� f(z

k;i

)℄ + (1� �

k;i

)[jC

+

(x

k

)j � jC

+

(y

k

)j℄g+ (1� �

k;i

)[jC

+

(y

k

)j � jC

+

(z

k;i

)j℄

� 0:9�

k;i

[f(y

k

)� f(z

k;i

)℄ + 0:9�

k;i

[f(x

k

)� f(y

k

)℄� (1� r)jC

+

(x

k

)j � 


1

Æ

2

k;i

:

So, by Lemma 4.1, Lemma 4.3, and (3),

Ared

k;i

� 0:1Pred

k;i

� 0:9

�

� min f


4

; 


5

Æ

k;i

g � 
jC

+

(x

k

)j � 


1

Æ

2

k;i

for all k � k

0

, i = 0; 1; ia

(k), where 
 is a norm-dependent 
onstant that also depends on a bound

of krf(x)k on 
.

Let us de�ne

�

Æ = min f(0:45

�

�


4

=


1

)

1=2

; 0:45

�

�


5

=


1

g:

If Æ

k;i

�

�

Æ we have that




1

Æ

2

k;i

� 0:45

�

� min f


4

; 


5

Æ

k;i

g;

so, when Æ

k;i

�

�

Æ, we have that

Ared

k;i

� 0:1Pred

k;i

� 0:45

�

� min f


4

; 


5

Æ

k;i

g � 
jC

+

(x

k

)j (33)

for all k � k

0

, i = 0; 1; ia

(k). Let k

2

� k

0

be su
h that


jC

+

(x

k

)j � 0:45

�

� min f


4

; 


5

�

Æ

10

g (34)

for all k � k

2

. By (33) and (34) we have that, for all k � k

2

, if i 2 f0; 1; 2; : : :g 
orresponds to the

�rst trust-region radius Æ

k;i

less than or equal to

�

Æ (so,

�

Æ � Æ

k;i

�

�

Æ

10

),

Ared

k;i

� 0:1Pred

k;i

� 0:

This means that Æ

k;i

�

�

Æ

10

must be a

epted. Therefore,

Æ

k;ia

(k)

�

�

Æ

10

for all k � k

2

. So, if k � k

2

we have, by Lemma 4.1, Lemma 4.3 and (3), that

Pred

k;ia

(k)

= �

k;ia

(k)

[f(x

k

)� f(z

k;i

)℄ + (1� �

k;ia

(k)

)[jC

+

(x

k

)j � jC

+

(y

k

)j℄

= �

k;ia

(k)

[f(y

k

)� f(z

k;i

)℄ + �

k;ia

(k)

[f(x

k

)� f(y

k

)℄ + (1� �

k;ia

(k)

)[jC

+

(x

k

)j � jC

+

(y

k

)j℄

�

�

�[f(y

k

)� f(z

k;i

)℄� jf(x

k

)� f(y

k

)j � jC

+

(x

k

)j �

�

� min f


4

;




5

�

Æ

10

g � 


0

jC

+

(x

k

)j (35)

for all k � k

2

, where 


0

is a 
onstant that depends on the norm and the bound of krf(x)k on 
.

Now, let k

3

� k

2

be su
h that




0

jC

+

(x

k

)j �

�

�

2

min f


4

;




5

�

Æ

10

g

for all k � k

3

. By (35), Pred

k;ia

(k)

is bounded away from zero for all k � k

3

. This implies, by

(11), that Ared

k;ia

(k)

is bounded away from zero for all k � k

3

. Clearly, this 
ontradi
ts Theo-

rem 3.4. This means that Hypothesis C 
annot be true. Therefore, the desired result is proved. 2
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5 Appli
ation: Hard-Spheres Problems

The Hard-Spheres problem belongs to the family of sphere pa
king problems, a 
lass of 
halleng-

ing problems dating from the beginning of the seventeenth 
entury whi
h is related to pra
ti
al

problems in Chemistry, Biology and Physi
s (see [7, 32℄). It 
onsists on maximizing the minimum

pairwise distan
e between q points on a sphere in IR

dim

. This problem may be redu
ed to a

non
onvex nonlinear optimization problem with a potentially large number of (nonoptimal) points

satisfying optimality 
onditions. We have, thus, a 
lass of problems indexed by the parameters dim

and q, that provides a suitable set of test problems for evaluating nonlinear programming 
odes.

The straightforward formulation of the Hard-Spheres problem is:

Maximize min

i 6=j

kw

i

� w

j

k

subje
t to kw

k

k = 1; k = 1; : : : ; q;

(36)

where the ve
tors w

k

belong to IR

dim

and k � k is the Eu
lidean norm. This is equivalent to

Minimize max

i 6=j

hw

i

; w

j

i

subje
t to kw

k

k

2

� 1 = 0; k = 1; : : : ; q:

(37)

Applying the 
lassi
al tri
k for transforming minimax problems into 
onstrained minimization

problems, we redu
e (37) to the nonlinear program

Minimize z

subje
t to hw

i

; w

j

i � z � 0; for all i 6= j;

kw

k

k

2

� 1 = 0; k = 1; : : : ; q:

(38)

The stru
ture of the Hard-Spheres problems suggests a natural Restoration Step, whi
h does

not rely on sophisti
ated algorithms for solving (2){(3). Assume that x

k

= (w

1

; : : : ; w

q

; z) is the


urrent point at the k�th iteration. Repla
ing

w

j

 

w

j

kw

j

k

; j = 1; : : : ; q

and

z  maxfhw

i

; w

j

i; i 6= jg

we obtain a point x = (w

1

; : : : ; w

q

; z) that satis�es exa
tly the 
onstraints. If (3) is violated

by x (so kx�x

k

k > �kC

+

(x

k

)k), we repla
e x by x

k

+

�kC

+

(x

k

)k

kx�x

k

k

(x�x

k

). If this point violates (2)

we de
lare \failure in improving feasibility" at the Restoration Phase. In our experiments we

used � = 4; r = 0:99. Obviously, this restoration pro
edure relies on the spe
i�
 stru
ture of

the 
onstraints (38) and we take advantage of the freedom allowed by the Inexa
t-Restoration

algorithm on the 
hoi
e of the restored point.

For the Minimization Step we use the well-known linearly 
onstrained minimization solver

implemented in the MINOS system, Version 5.4 (see [24℄). The problem to be solved by MINOS

is to minimize the variable z on the interse
tion of polytope de�ned by the linearization of the

inequality 
onstraints of (38) and the trust region box around of y

k

. We used the defaults of

MINOS for optimality and feasibility and the \Warm Start" option at ea
h Minimization Step.

Sin
e the subproblem solved by MINOS is a a Linear Programming problem, we 
an assume that

MINOS �nds a global solution, so that the inequality f(z

k;i

) � f(y

k

+ t

(k;i;de
)

d

k;tan

) (see (15))

ne
essarily holds. Therefore, in this 
ase it is not ne
essary to spe
ify the parameters �

1

, �

2

and �.

In pra
ti
e, ea
h exe
ution of MINOS was stopped with the default 
onvergen
e 
riterion relatively

to the norm of the redu
ed gradient and signs of the multipliers.
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The nonnegative sequen
e for the penalty parameter of the merit fun
tion at Step 1 of Algo-

rithm 2.1, was !

k

=

n

(1+k)

2

, where n = q�dim+1 and the initial penalty parameter was �

�1

= 0:5.

After some preliminary tests we used p = 10.

We used the following 
riterion to update the trust region radius Æ

k;i

. If the suÆ
ient redu
tion


ondition (11) does not hold at Step 4 in Algorithm 2.1, we set Æ

k;i+1

= Æ

k;i

=8. On the other hand,

to restart at the beginning of an iteration, we set Æ

k;0

= maxfÆ

min

; 4Æ

k�1;a



g, with Æ

min

= Æ

0;0

=

0:5.

The theoreti
al properties of the Inexa
t{Restoration algorithm guarantee that, if break-down

does not o

ur at the Restoration Step, then given any " > 0 there exists k su
h that kC

+

(x

k

)k � "

and kd

k;tan

k � ". In our pra
ti
al implementation we de
lared \
onvergen
e" when kC

+

(x

k

)k

1

�

10

�8

. Sin
e x

k


omes from the Minimization Step performed by MINOS, when this o

urs we

ne
essarily have that d

k�1;tan

� 0.

Let us 
omment now the 
hoi
e of the parameters of LANCELOT. The manual [6℄ (p.111)

\strongly re
ommends the use of exa
t se
ond derivatives whenever they are available". In fa
t we

ran a few tests with the default approximation SR1 but the results were worse than those obtained

using exa
t se
ond derivatives, and thus this was the option adopted for all further tests. We also

experimented several di�erent options for the linear equation solver: without pre
onditioner, with

diagonal pre
onditioner and with a band matrix pre
onditioner. The best results were obtained

with the �rst option (no pre
onditioner). Moreover, after some preliminary tests, we de
ided to

use the \inexa
t Cau
hy point" option. The maximum number of iterations allowed was 1000.

Finally, the gradient and 
onstraints toleran
es were the same 
hosen for the Inexa
t{Restoration

algorithm, namely 10

�8

. Both 
odes are in FORTRAN and the 
ompiler option adopted for both

was \-O".

6 Numeri
al experiments

Tests were run on a Sun Spar
Station 20, with the following main 
hara
teristi
s: 128Mbytes of

RAM, 70MHz, 204.7 mips, 44.4 M
ops. We ran both 
odes using 50 initial random points for ea
h

problem. The results are summarized in Table 1. This table lists the eigtheen problems with the

number of variables and 
onstraints and the statisti
 information related to the minimum distan
e

between two points (minimum, maximum, average) and CPU time (minimum,maximum, average)

using the Inexa
t{Restoration algorithm (�rst row of ea
h set) and the ones using LANCELOT

(se
ond row).

The information 
ontained in Table 1 is depi
ted graphi
ally below. The intervals (min, max)

of distan
es/log(CPU times) are represented by verti
al segments, the averages are indi
ated with

a diamond symbol for the Inexa
t{Restoration algorithm and a bullet for LANCELOT. Graphs

on the left refer to distan
es whereas graphs on the right refer to log(CPU times).
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Problem size minimum distan
e between 2 points CPU time (se
onds)

�

n

p

�

var. 
onstr. min. max. average min. max. average

h

3

10

i

31 55

1.0514622 1.0914262 1.0822176 0.46 0.79 0.61

1.0514656 1.0914302 1.0874007 0.83 2.51 1.50

h

3

11

i

34 66

1.0514622 1.0514622 1.0514622 0.64 0.91 0.76

1.0514656 1.0514656 1.0514656 1.10 3.92 1.81

h

3

12

i

37 78

0.9447876 1.0514622 1.0493287 0.81 1.37 0.99

0.9447856 1.0514656 1.0430604 1.53 3.29 2.24

h

3

13

i

40 91

0.9427907 0.9564136 0.9499126 0.88 1.25 1.00

0.9443516 0.9564099 0.9512710 2.26 8.06 4.12

h

3

14

i

43 105

0.9161167 0.9338626 0.9293394 1.04 1.47 1.24

0.9025741 0.9338629 0.9305515 2.49 9.05 5.12

h

3

15

i

46 120

0.8745439 0.9026562 0.9008776 1.16 1.92 1.47

0.8734529 0.9026516 0.9009286 3.25 12.73 7.37

h

4

22

i

89 253

0.9824163 1.0019895 0.9951659 5.29 17.43 8.12

0.9840223 1.0019880 0.9967615 30.49 209.27 69.85

h

4

23

i

93 276

0.9693916 1.0000000 0.9827767 6.73 16.74 10.31

0.9740944 0.9918568 0.9847650 29.26 178.84 89.80

h

4

24

i

97 300

0.9573460 1.0000000 0.9734775 7.13 19.26 12.34

0.9580083 0.9828733 0.9751985 43.16 239.77 112.78

h

4

25

i

101 325

0.9477678 0.9616207 0.9569177 8.25 17.97 12.58

0.9465833 0.9619563 0.9574963 49.00 268.49 131.18

h

4

26

i

105 351

0.9327032 0.9583427 0.9474299 9.99 29.60 15.57

0.9367603 0.9583423 0.9491615 39.90 565.90 164.47

h

4

27

i

109 378

0.9276386 0.9394150 0.9344075 11.08 33.88 17.06

0.9273834 0.9389142 0.9345753 79.26 332.12 173.13

h

5

37

i

186 703

0.9905835 1.0045763 0.9993300 68.66 369.42 149.48

0.9911508 1.0025367 0.9979124 444.81 2501.76 1154.08

h

5

38

i

191 741

0.9842019 1.0019176 0.9917008 93.85 527.66 168.08

0.9864684 1.0019880 0.9930711 546.55 3105.86 1538.54

h

5

39

i

196 780

0.9772092 0.9929902 0.9871450 108.71 461.15 204.96

0.9808159 0.9920786 0.9881178 502.38 3161.88 1782.30

h

5

40

i

201 820

0.9734556 0.9886857 0.9818932 100.08 600.04 220.59

0.9701958 0.9920282 0.9810864 863.85 3820.43 1907.57

h

5

41

i

206 861

0.9686624 0.9818115 0.9746239 117.34 435.91 195.79

0.9644272 0.9819470 0.9757435 1148.77 4669.87 2521.84

h

5

42

i

211 903

0.9612090 0.9793985 0.9693361 105.37 641.68 213.74

0.9599791 0.9798367 0.9702516 807.57 4664.63 2473.78

Table 1: Minimum distan
es and CPU times
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Figure 1: Inexa
t-Restoration (�) and LANCELOT (�) results for n = 3.
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Figure 2: Inexa
t-Restoration (�) and LANCELOT (�) results for n = 4.

The graphs in Figures 1{3 eviden
e the qualitative relative behavior of both 
odes. Noti
e

that the diamonds and bullets are always 
lose together in the graphs on the left, indi
ating that

the quality of the optimal solutions obtained by both 
odes is similar. On the other hand, the

bullets rise faster than the diamonds on the graphs on the right, whi
h means that the CPU times

for LANCELOT tend to be higher than those of the Inexa
t{Restoration 
ode. The linear �t

of Inexa
t{Restoration CPU times versus LANCELOT CPU times is y = 0:095x + 4:466 (see

Figure 4). Observe that, in fa
t, the linear 
oeÆ
ient is less than 0.1 .
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Figure 3: Inexa
t-Restoration (�) and LANCELOT (�) results for n = 5.
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Figure 4: CPU times of LANCELOT versus those of Inexa
t-Restoration Alg.
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In Figure 5 we 
ompare the CPU times of both algorithms for the eigtheen problems 
onsidered.

This �gure shows 
learly the good performan
e of our Algorithm, spe
ially when the size of the

problem in
reases.

-
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Figure 5: CPU times: Inexa
t-Restoration (�) and LANCELOT (�).

7 Final remarks

Sin
e the method presented in this paper is a model algorithm, many possible implementations


an be given. The eÆ
ien
y of di�erent implementations should be linked to the quality of the

algorithms 
hosen for performing di�erent steps. For the Restoration Step we need an algorithm

that solves (2){(3). Sin
e, in most 
ases, k � k will be the sup-norm and 
 will be a box, we 
an


hoose any of the many available methods for large-s
ale box-
onstrained minimization for solving

this problem.

In the Minimization Step we need an approximate solution of (8). Generally, this is a linearly


onstrained minimization problem. For its resolution a
tive set methods are generally re
om-

mended (see, for example, [23℄). However, last de
ade large-s
ale optimization resear
h suggests

that eÆ
ient implementations 
an also result from the appli
ation of interior point methods to (8).

See [33℄.

In this paper we did not use regularity assumptions to prove global 
onvergen
e of in�nite

sequen
es generated by the algorithm. This does not mean that regularity is not playing any role

in pra
ti
al 
ir
umstan
es. Roughly speaking, la
k of regularity 
an 
ause a failure in Restoration

Phase, resulting in break-down at Step 1. In fa
t, our theoreti
al results show that, if the original

problem is infeasible, break-down will ne
essary take pla
e for some (�nite) value of the iteration k,

that is, an in�nite sequen
e will not be generated. On the other hand, we proved that when in-

�nitely many points are generated, all the limit points are feasible. Finally, the results on Se
tion 4

show that at least one of these limit points is stationary in the sense that lim

k2K

2

kd

k;tan

k = 0

when fx

k

g

k2K

2

is the 
orresponding 
onvergent subsequen
e. The relations between this type of

stationarity and ne
essary or suÆ
ient 
onditions for lo
al minimization remain to be investigated.
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