
Inexat{Restoration Algorithm for Constrained Optimization

Jos�e Mario Mart��nez

�

Elvio A. Pilotta

y

September 29, 1998

Abstrat

We introdue a new model algorithm for solving nonlinear programming problems.

No slak variables are introdued for dealing with inequality onstraints. Eah itera-

tion of the method proeeds in two phases. In the �rst phase, feasibility of the urrent

iterate is improved and in seond phase the objetive funtion value is redued in an

approximate feasible set. The point that results from the seond phase is ompared

with the urrent point using a nonsmooth merit funtion that ombines feasibility

and optimality. This merit funtion inludes a penalty parameter that hanges be-

tween di�erent iterations. A suitable updating proedure for this penalty parameter

is inluded by means of whih it an be inreased or dereased along di�erent itera-

tions. The onditions for feasibility improvement at the �rst phase and for optimality

improvement at the seond phase are mild, and large-sale implementations of the

resulting method are possible. We prove that under suitable onditions, that do not

inlude regularity or existene of seond derivatives, all the limit points of an in�-

nite sequene generated by the algorithm are feasible, and that a suitable optimality

measure an be made as small as desired. The algorithm is implemented and tested

against LANCELOT using a set of hard-spheres problems.

Key words: Nonlinear programming, trust regions, feasible methods, global onver-

gene, numerial experiments.

�

Departamento de Matem�atia Apliada, IMECC-UNICAMP, CP 6065, 13081-970 Campinas SP,

Brazil (martinez�ime.uniamp.br). Work sponsored by FAPESP (Grant 90-3724-6), CNPq and FAEP-

UNICAMP.

y

Departamento de Matem�atia Apliada, IMECC-UNICAMP, CP 6065, 13081-970 Campinas SP, Brazil

(pilotta�ime.uniamp.br). Work sponsored by FAPESP (Grant 96-0681-0), CNPq and FAEP-UNICAMP.

1

1 Introdution

Feasible methods for solving minimization problems with inequality and equality onstraints [1,

2, 17, 19, 20, 21, 22, 27, 28, 29, 30, 31℄ have a strong reputation among pratitioners of nonlinear

programming and, for this reason, are inorporated to well known user-oriented libraries. The

reason is that, very frequently, feasible nonoptimal solutions are useful in engineering appliations,

whereas nonfeasible approximations are not, even when they are \quasi-optimal". In the 80's very

few papers in the mainstream of the optimization literature were dediated to feasible methods.

That deade was dominated by SQP (sequential quadrati programming) models and the usual

ritiism against feasible methods was that it is very diÆult and, frequently, not worthwhile,

to follow very urved feasible regions, espeially when the urrent approximation is far from the

solution. In the last few years (we write in 1998) many researhers realized that at least a subfamily

of feasible methods (those based on the barrier approah) was perhaps unfairly despised. See [33℄.

Obviously, the barrier approah is not appliable to equality onstraints and must be ombined

with SQP-like shemes in order to deal with equalities.

The preferene for feasibility annot be ignored in pratial appliations but, on the other

hand, the SQP ritiism based on high-urvature domains must also be taken into aount. These

two fats motivated us to develop (see [18℄) theoretially justi�ed algorithms for onstraints of

the form h(x) = 0; ` � x � u where feasibility is ontrolled at every iteration, with an internal

mehanism that automatially determines the degree of preision required in the onstraints. An

interesting related method that does not use merit funtions was introdued in [2℄. We notie that

some pratial SGRA algorithms [20, 21, 22℄ suessfully used \Inexat- Restoration" proedures

in appliations.

In [18℄ we need to introdue slak variables for dealing with inequality onstraints, so that the

feasible region takes the the anonial form above. This transformation an inrease the number

of variables in an undesirable way, leading to expensive subproblems. Therefore, it is interesting

to introdue Inexat{Restoration algorithms that deal with inequality onstraints without the

slak{variable transformation.

Let us state the nonlinear programming problem in the form

Minimize f(x)

subjet to C(x) � 0; x 2
; (1)

where f : IR

n

! IR and C : IR

n

! IR

m

are ontinuously di�erentiable and
 � IR

n

is losed

and onvex. In pratie, we are mostly interested in the ase in whih
 is a polytope. Eah

equality onstraint appearing in the original formulation of the nonlinear programming problem

an be transformed into two inequality onstraints. It will be seen that this does not inrease the

omplexity of the method introdued here.

The new model algorithm generates feasible iterates with respet to
 (x

k

2
 for all k =

0; 1; 2; : : :) Eah iteration inludes two di�erent proedures: Restoration and Minimization. In the

Restoration Step (whih is exeuted one per iteration) an intermediate point y

k

2
 is found suh

that the infeasibility at y

k

is a fration of the infeasibility at x

k

. Immediately after Restoration

we onstrut an approximation �

k

of the feasible region using available information at y

k

. In the

Minimization Step we ompute a trial point z

k;i

2 �

k

suh that f(z

k;i

) << f(y

k

) (<< means

\suÆiently smaller than" here) and kz

k;i

� y

k

k � Æ

k;i

, where Æ

k;i

is a trust-region radius. The

trial point z

k;i

is aepted as new iterate if the value of a nonsmooth (exat penalty) merit funtion

at z

k;i

is suÆiently smaller than its value at x

k

. If z

k;i

is not aeptable, the trust-region radius

is redued.

When
 is a polytope, the approximate feasible region �

k

is a polytope too. So, if k � k is

the sup-norm, the Minimization Step onsists of an inexat (approximate) minimization of f with

2

linear onstraints. In that ase, the Restoration Step also represents an inexat minimization

of infeasibility with linear onstraints. Therefore, available algorithms for (large-sale) linearly

onstrained minimization (see [13, 14, 23℄) an be fully exploited.

As mentioned above, the new algorithm is related to lassial feasible methods for nonlinear

programming, suh as the Generalized Redued Gradient (GRG) method and the family of Se-

quential Gradient Restoration algorithms (SGRA). See [1, 2, 17, 20, 21, 22, 27, 28, 29, 30, 31℄.

However, in our approah the suessive approximations to the solution of (1) are not neessarily

feasible (or nearly feasible) with respet to C(x) � 0. In spite of that, the neessity of onsidering

and probably improving feasibility is taken atively into aount at all the iterations. This strategy

is quite di�erent than the one adopted in Sequential Quadrati Programming (SQP) algorithms,

where the trial point at eah iteration is obtained after onsidering only a linear model of the

onstraints.

The onvergene theory developed in this paper has several points in ommon with global

onvergene theories for di�erent SQP-like algorithms with trust-regions (see [5, 10, 12, 25, 26℄),

in partiular the one developed in [15℄. The new model algorithm is also related to the method

introdued in [18℄ for problems where the onstraints are given in the form C(x) = 0; x 2
. In

[18℄ the merit funtion is an augmented Lagrangian, while here we onsider the exat penalty-like

merit funtion used, for example, in [3, 4, 16, 25℄ for foring onvergene of SQP and other nonlinear

programming algorithms. Another remarkable di�erene is that the algorithm introdued in this

paper use trust-regions entered on the intermediate point y

k

instead of the more usual trust-

regions entered on the urrent point x

k

. Consequently, only the Minimization Step is repeated

after a redution of the trust-region radius.

A rigorous desription of the new model algorithm is given in Setion 2, together with further

motivation. In Setion 3 we prove that the algorithm is well de�ned, that is, given a urrent point

x

k

2
 that does not satisfy the stopping riteria, a new iterate x

k+1

is found after a �nite num-

ber of redutions of the trust-region radius. In the same setion we prove that, when an in�nite

sequene is generated, we obtain points arbitrarily lose to feasibility. In Setion 4 we prove that

a quantity that measures �rst-order optimality an be made as small as desired. In Setion 5 we

give an appliation and we desribe the pratial implementation oriented to it. In Setion 6 we

ompare our implementation against the well-known augmented Lagrangian ode LANCELOT.

Conlusions are given in Setion 7.

Notation.

In this work we use two (perhaps di�erent) norms. We denote j � j a monotone norm on IR

m

(jvj � jwj whenever 0 � v � w) and k � k an arbitrary norm on IR

n

.

We denote C

0

(x) 2 IR

m�n

the Jaobian matrix of C(x) and C

0

j

(x) = rC

j

(x)

T

for all j =

1; : : : ;m.

We also denote C

+

j

(x) = maxfC

j

(x); 0g and C

+

(x) = (C

+

1

(x); : : : ; C

+

m

(x))

T

.

2 Desription of the Model Algorithm

Before giving a rigorous desription of the algorithm, we will omment some of its main features.

2.1 Restoration Step

As we mentioned in the Introdution, given the urrent iterate x

k

2
, the model algorithm

omputes and intermediate \more feasible" point y

k

2
. The onditions that must be satis�ed

3

by y

k

are

jC

+

(y

k

)j � rjC

+

(x

k

)j (2)

ky

k

� x

k

k � �jC

+

(x

k

)j: (3)

where r 2 [0; 1) and � > 0 are parameters given independently of k. Condition (2) states the

neessity of having an intermediate point at least as feasible as x

k

. Condition (3) imposes that y

k

must be equal to x

k

if the urrent point is feasible.

2.2 Approximate Linearized Feasible Region

After the omputation of y

k

with the onditions (2) and (3) we de�ne a linear approximation of

the feasible region of (1), ontaining the intermediate point y

k

. This auxiliary region is given by

�

k

= fx 2
 j C

j

(y

k

) + C

0

j

(y

k

)(x � y

k

) � C

+

j

(y

k

) whenever C

j

(y

k

) � �pg; (4)

where p > 0 is a parameter given independently of the iteration index k. So, �

k

is the intersetion

of
 with the linear approximations of the sets C

j

(x) � C

+

j

(y

k

), exluding the indies j that

orrespond to onstraints that, aording to the tolerane p, are strongly satis�ed at y

k

. If p is

large the approximate feasible region takes into aount all the onstraints C

j

(x) � 0, indepen-

dently of C

j

(y

k

). On the other hand, if p is small, only the onstraints violated at y

k

tend to

be onsidered in the de�nition of �

k

. In other words, if C

j

(y

k

) < �p, it is onsidered that the

approximation of the set C

j

(x) � 0 that uses information at y

k

is the whole spae IR

n

. In priniple,

it should be better to use a large p, for this gives a more faithful representation of the true fea-

sible region. However, the subproblem involved in the Minimization Step is simpler when p is small.

2.3 Minimization Step

The objetive of the Minimization Step is to obtain z

k;i

2 �

k

\ IB

k;i

suh that f(z

k;i

) << f(y

k

),

where

IB

k;i

= fx 2 IR

n

j kx� y

k

k � Æ

k;i

g; (5)

and Æ

k;i

> 0 is a trust-region radius. The �rst trial point at eah iteration is obtained using a

trust-region radius Æ

k;0

. Suessive trust-region radius are tried until a point z

k;i

is found suh

that the merit funtion at this point is suÆiently smaller than the merit funtion at x

k

.

The minimization step is preeded by the omputation of the Cauhy-like diretion (indepen-

dent of i)

d

k;tan

= P

k

(y

k

� �rf(y

k

))� y

k

; (6)

where P

k

(z) denotes the orthogonal projetion of z on �

k

and � > 0 is an arbitrary saling

parameter independent of k. It turns out that d

k;tan

is a feasible desent diretion for f on

�

k

. Its norm will be used to de�ne a onvergene riterion for the algorithm. The trial point

y

k

+ d

k;tan

belongs to �

k

but it does not neessarily belong to IB

k;i

. So, we de�ne the breakpoint

y

k

+ t

(k;i;break)

d

k;tan

by

t

(k;i;break)

= sup ft 2 [0; 1℄ j [y

k

; y

k

+ td

k;tan

℄ � IB

k;i

g: (7)

Moreover, the value of the objetive funtion f at y

k

+ t

(k;i;break)

d

k;tan

is not neessarily smaller

than f(y

k

), therefore a suÆiently smaller funtional value f(y

k

+ t

(k;i;de)

d

k;tan

) must be obtained

using a lassial baktraking proedure. Finally, z

k;i

2 �

k

\ IB

k;i

will be any point suh that

f(z

k;i

) � f(y

k

+ t

(k;i;de)

d

k;tan

). Alternatively, z

k;i

an be any point of �

k

\ IB

k;i

suh that

4

f(z

k;i

) � f(y

k

)� �

1

Æ

k;i

or f(z

k;i

) � f(y

k

)� �

2

, where �

1

and �

2

are nonnegative parameters of the

algorithm. This means that, for omputing the trial point z

k;i

in an eÆient way, we an apply

any reasonable algorithm (with a mild onvergene riterion) to the resolution of the minimization

problem

Minimize f(x) subjet to x 2 �

k

\ IB

k;i

: (8)

Clearly, (8) is a linearly onstrained optimization problem if k � k is the sup-norm.

2.4 Merit Funtion and Penalty Parameter

The omparison of z

k;i

and x

k

involves the evaluation of a merit funtion at both points. We

deided to use the exat penalty-like nonsmooth merit funtion, given by

 (x; �) = �f(x) + (1� �)jC

+

(x)j (9)

where � 2 (0; 1℄ is a penalty parameter used to give di�erent weights to the objetive funtion and

to the feasibility objetive. The hoie of the parameter � at eah iteration depends of pratial

and theoretial onsiderations. For example, if jC

+

(x

k

)j is large, the weight assigned to f(x) must

be small, for it does not make sense to worry about the funtional values if the urrent point is

far from the feasible region. Our hoie of the penalty parameter automatially takes into aount

this pratial neessity.

Roughly speaking, we wish that the merit funtion at the new point should be less than the

merit funtion at the urrent point x

k

. That is, we want Ared

k;i

> 0, where Ared

k;i

, the \atual

redution of the merit funtion", is de�ned by

Ared

k;i

= (x

k

; �

k;i

)� (z

k;i

; �

k;i

): (10)

So,

Ared

k;i

= �

k;i

[f(x

k

)� f(z

k;i

)℄ + (1� �

k;i

)[jC

+

(x

k

)j � jC

+

(z

k;i

)j℄:

However, as in unonstrained optimization, merely a redution of the merit funtion is not suÆient

to guarantee onvergene. In fat, we need a \suÆient redution" of the merit funtion, that will

be de�ned by the satisfation of the following test:

Ared

k;i

� 0:1Pred

k;i

; (11)

where Pred

k;i

is a positive \predited redution" of the merit funtion between x

k

and z

k;i

. In

our ase, we de�ne

Pred

k;i

= �

k;i

[f(x

k

)� f(z

k;i

)℄ + (1� �

k;i

)[jC

+

(x

k

)j � jC

+

(y

k

)j℄: (12)

The quantity Pred

k;i

de�ned above an be nonpositive depending on the value of the penalty

parameter. Fortunately, if �

k;i

is small enough, Pred

k;i

is arbitrarily lose to jC(x

k

)j � jC(y

k

)j

whih is neessarily nonnegative. Therefore, we will always be able to hoose �

k;i

2 (0; 1℄ suh that

Pred

k;i

�

1

2

[jC

+

(x

k

)j � jC

+

(y

k

)j℄: (13)

When the riterion (11) is satis�ed, we aept x

k+1

= z

k;i

. Otherwise, we redue the trust-region

radius.

5

2.5 Desription of the Model Algorithm

Assume that p > 0, � > 0, � > 0, r 2 [0; 1), Æ

min

> 0, �

1

> 0; �

2

> 0 are algorithmi parameters

given independently of k and

P

1

k=0

!

k

is a onvergent series of nonnegative terms. Suppose that

x

0

2
 is an initial approximation to the solution and that �

�1

2 (0; 1) is an initialization of the

penalty parameter. Given x

k

2
, �

k�1

2 (0; 1℄, Æ

k;0

� Æ

min

, the steps for omputing x

k+1

or for

stopping the proess are given by the following algorithm.

Algorithm 2.1

Step 1. Compute y

k

, d

k;tan

and deide termination

Compute y

k

2
 suh that (2) and (3) hold. If this is not possible, stop the exeution of the

algorithm delaring \failure in improving feasibility". Otherwise, set i 0, de�ne

�

k;�1

= min f1; min f�

�1

; : : : ; �

k�1

g+ !

k

g

and ompute d

k;tan

using (6). If C

+

(x

k

) = 0 and d

k;tan

= 0 terminate the exeution of the

algorithm delaring \�nite onvergene".

Step 2. Minimization Step

Compute t

(k;i;break)

using (7). De�ne t

(k;i;de)

as the �rst term t of the sequene ft

k;1

; t

k;2

; : : :g

suh that

f(y

k

+ td

k;tan

) � f(x

k

) + 0:1thrf(y

k

); d

k;tan

i; (14)

where ft

k;j

g is de�ned by t

k;1

= t

(k;i;break)

and t

k;j+1

2 [0:1t

k;j

; 0:9t

k;j

℄ for all j = 1; 2; : : :

Compute z

k;i

2 �

k

\ IB

k;i

suh that

f(z

k;i

) � max ff(y

k

+ t

(k;i;de)

d

k;tan

); f(y

k

)� �

1

Æ

k;i

; f(y

k

)� �

2

g: (15)

Step 3. Choie of the penalty parameter

De�ne, for all � 2 [0; 1℄,

Pred

k;i

(�) = �[f(x

k

)� f(z

k;i

)℄ + (1� �)[jC

+

(x

k

)j � jC

+

(y

k

)j℄:

Choose �

k;i

the supremum of the values of � in the interval [0; �

k;i�1

℄ suh that

Pred

k;i

(�) �

1

2

[jC

+

(x

k

)j � jC

+

(y

k

)j℄: (16)

Step 4. Aeptane or rejetion of the trial point

De�ne Ared

k;i

and Pred

k;i

as in (10) and (12) respetively. If the test (11) is satis�ed, de�ne

x

k+1

= z

k;i

, �

k

= �

k;i

, ia(k) = i (\ia" means \aepted i") and �nish the iteration. If (11)

does not hold, hoose Æ

k;i+1

2 [0:1Æ

k;i

; 0:9Æ

k;i

℄, set i i+ 1 and go to Step 2.

2.6 Some Remarks and Elementary Properties

By means of the introdution of the nonnegative parameters !

k

a \moderate" inrease of the

penalty parameter between di�erent iterations is permitted. This prevents the possibility of in-

heriting arti�ially small penalty parameters from the very beginning of the iterative proess. It

is easy to see that the sequene of penalty parameters �nally used at eah iteration f�

k

g is on-

vergent. In fat, de�ning �

k;small

= min f�

�1

; : : : ; �

k

g and �

k;large

= �

k;small

+ !

k

, we see that

�

k+1

� �

k;large

and �

k

� �

k;small

for all k. Clearly, f�

k;large

g and f�

k;small

g are onvergent to the

same limit, so f�

k

g is also onvergent. We an also prove, by indution, that �

k;i

> 0 for all k; i.

6

It is easy to verify that d

k;tan

is a desent diretion. In fat, sine y

k

2 �

k

, we have that

k(y

k

� �rf(y

k

))� P

k

(y

k

� �rf(y

k

))k

2

� k(y

k

� �rf(y

k

))� y

k

k

2

:

Therefore,

ky

k

� P

k

(y

k

� �rf(y

k

))k

2

2

+ k�rf(y

k

)k

2

2

+ 2�hP

k

(y

k

� �rf(y

k

))� y

k

;rf(y

k

)i

� k�rf(y

k

)k

2

2

;

so,

hd

k;tan

;rf(y

k

)i � �

1

2�

kd

k;tan

k

2

2

� �

2�

kd

k;tan

k

2

; (17)

where > 0 is a norm-dependent onstant. We an use lassial arguments for justifying bak-

traking with Armijo-like onditions (see [11℄, Chapter 6), to show that t

(k;i;de)

is well de�ned at

Step 2 of Algorithm 2.1. In other words, given the urrent point x

k

and the trust-region radius Æ

k;i

it is possible to ompute, in �nite time, the trial point z

k;i

.

3 General Assumptions and Consequenes

>From now on, we will suppose that the nonlinear programming problem (1) satis�es the assump-

tions A1, A2 and A3 stated below. These will be the only assumptions on the problem that are

needed for proving onvergene. In partiular, no regularity assumptions are used in the proofs

and seond derivatives of f and C are not assumed to exist.

A1.
 is onvex and ompat.

A2. The Jaobian matrix of C(x) exists and satis�es the Lipshitz ondition

kC

0

(y)� C

0

(x)k � L

1

ky � xk for all x; y 2
: (18)

A3. The gradient of f exists and satis�es the Lipshitz ondition

krf(y)�rf(x)k � L

2

ky � xk for all x; y 2
: (19)

Due to the equivalene of norms on IR

n

, similar onditions to (18) and (19) hold if we onsider

di�erent norms than k � k. So, in order to simplify the notation, we an assume that (18) and (19)

hold with the same onstants L

1

and L

2

for all the norms onsidered in this work. From these

Lipshitz onditions it follows that

kC(y)� C(x) � C

0

(x)(y � x)k �

L

1

2

ky � xk

2

(20)

and

jf(y)� f(x)� hrf(x); y � xij �

L

2

2

ky � xk

2

(21)

for all x; y 2
. Again, we an assume, without loss of generality, that (20) and (21) hold for

di�erent norms with the same onstants and that

jC

j

(y)� C

j

(x)� C

0

j

(x)(y � x)j �

L

1

2

ky � xk

2

(22)

for all j = 1; : : : ;m.

7

The assumption on the boundedness of
 an be replaed by hypotheses that state bounded-

ness of a set of quantities depending on the iterates. This is frequently done in global onvergene

theories for SQP algorithms. We prefer to state diretly Assumption A1 sine it seems to be the

only reasonable assumption on the problem that guarantees boundedness of the required quantities.

The following theorem is diretly dedued from the general assumptions. It states a bounded

deterioration result for the feasibility of z

k;i

in relation to the feasibility of y

k

. Briey speaking,

we prove that only a seond order deterioration of feasibility an be expeted for a trial point x 2 �

k

.

Theorem 3.1. There exists

1

> 0 (independent of k) suh that, whenever y

k

2
 is de�ned

and x 2 �

k

, we have

jC

+

(x)j � jC

+

(y

k

)j+

1

kx� y

k

k

2

(23)

Proof. Let j 2 f1; : : : ;mg. By the ompatness of
 and the ontinuity of C

j

there exists � > 0

suh that whenever C

j

(y) < �p and C

j

(x) � 0 it holds that kx� yk � �.

If C

+

j

(x) = 0, the inequality

C

+

j

(x) � C

+

j

(y

k

) (24)

holds trivially. If C

+

j

(x) > 0 we analyze three di�erent ases.

Case 1: If C

j

(y

k

) � 0 (so C

+

j

(y

k

) = C

j

(y

k

)) we have, by (22) that

C

j

(x) � C

j

(y

k

) + C

0

j

(y

k

)(x � y

k

) +

L

1

2

kx� y

k

k

2

:

So, if x 2 �

k

,

C

j

(x) � C

+

j

(y

k

) +

L

1

2

kx� y

k

k

2

:

Therefore,

C

+

j

(x) � C

+

j

(y

k

) +

L

1

2

kx� y

k

k

2

: (25)

Case 2: If 0 > C

j

(y

k

) � �p (so C

+

j

(y

k

) = 0) and x 2 �

k

we have that C

j

(y

k

)+C

0

j

(y

k

)(x�y

k

) � 0.

But, by (22) we have that

C

j

(x) � C

j

(y

k

) + C

0

j

(y

k

)(x � y

k

) +

L

1

2

kx� y

k

k

2

:

So,

C

j

(x) �

L

1

2

kx� y

k

k

2

= C

+

j

(y

k

) +

L

1

2

kx� y

k

k

2

:

This implies that (25) also holds in this ase.

Case 3: Now onsider the ase C

j

(y

k

) < �p (so C

+

j

(y

k

) = 0). Let us de�ne �

1

= max fC

+

j

(x); x 2

g. Clearly, we have that

C

+

j

(x) � C

+

j

(y

k

) +

�

1

�

2

kx� y

k

k

2

(26)

for all x 2
.

The desired results follows from the monotoniity of the norm j � j using (24), (25) and (26). 2

In the next theorem we ompute the derease of the objetive funtion that an be expeted

when we move from y

k

to z

k;i

.

8

Theorem 3.2. There exist

2

> 0,

3

> 0 (independent of k) suh that, whenever y

k

2
 is

de�ned and z

k;i

is omputed at Step 2 of Algorithm 2.1, we have that

f(z

k;i

) � f(y

k

)� min f�

2

;

2

kd

k;tan

k

2

; �

1

Æ

k;i

;

3

kd

k;tan

kÆ

k;i

g:

Proof. By (21) we have that

f(y) � f(x) + hrf(x); y � xi+

L

2

2

ky � xk

2

for all x; y 2
. So, sine y

k

+ d

k;tan

2
 we have, for all t 2 [0; 1℄, that

f(y

k

+ td

k;tan

) � f(y

k

) + thrf(y

k

); d

k;tan

i+

t

2

L

2

2

kd

k;tan

k

2

= f(y

k

) + 0:1thrf(y

k

); d

k;tan

i+ 0:9thrf(y

k

); d

k;tan

i+

t

2

L

2

2

kd

k;tan

k

2

:

So, (17) implies that

f(y

k

+ td

k;tan

) � f(y

k

) + 0:1thrf(y

k

); d

k;tan

i �

0:9tkd

k;tan

k

2

2�

+

t

2

L

2

2

kd

k;tan

k

2

= f(y

k

) + 0:1thrf(y

k

); d

k;tan

i+

tkd

k;tan

k

2

2

(tL

2

�

0:9

�

):

Therefore, if t �

0:9

�L

2

, we have that

f(y

k

+ td

k;tan

) � f(y

k

) + 0:1thrf(y

k

); d

k;tan

i:

This implies that t

(k;i;de)

� min ft

(k;i;break)

;

0:09

�L

2

g.

Now, t

(k;i;break)

= min f1;

Æ

k;i

kd

k;tan

k

g. So,

t

(k;i;de)

� min f1;

0:09

�L

2

;

Æ

k;i

kd

k;tan

k

g:

Thus, by the de�nition of t

(k;i;de)

, it follows that

f(y

k

+ t

(k;i;de)

d

k;tan

) � f(y

k

) + min f0:1;

0:009

�L

2

;

0:1Æ

k;i

kd

k;tan

k

ghrf(y

k

); d

k;tan

i:

So, by (17), we obtain

f(y

k

+ t

(k;i;de)

d

k;tan

) � f(y

k

)� min f

0:1kd

k;tan

k

2

2�

;

0:009

2

kd

k;tan

k

2

2�

2

L

2

;

0:1Æ

k;i

kd

k;tan

k

2�

g:

Therefore,

f(y

k

+ t

(k;i;de)

d

k;tan

) � f(y

k

)� min f

2

kd

k;tan

k

2

;

3

Æ

k;i

kd

k;tan

kg;

where

2

= min f

0:1

2�

;

0:009

2

2�

2

L

2

g and

3

=

0:1

2�

.

The desired result follows from the last inequality and (15). 2

9

In the last theorem of this setion we prove that Algorithm 2.1 is well de�ned. This amounts

to show that, for small enough Æ

k;i

, the inequality (11) is satis�ed and, so, the trial point z

k;i

is

aepted as new iterate.

Theorem 3.3. Algorithm 2.1 is well de�ned.

Proof. Observe that

Ared

k;i

� 0:1Pred

k;i

= 0:9�

k;i

[f(x

k

)� f(z

k;i

)℄ + (1� �

k;i

)[jC

+

(x

k

)j � jC

+

(z

k;i

)j℄� 0:1(1� �

k;i

)[jC

+

(x

k

)j � jC

+

(y

k

)j℄

= 0:9�

k;i

[f(x

k

)� f(z

k;i

)℄ + 0:9(1� �

k;i

)[jC

+

(x

k

)j � jC

+

(y

k

)j℄

+(1� �

k;i

)[jC

+

(x

k

)j � jC

+

(z

k;i

)j℄� (1� �

k;i

)[jC

+

(x

k

)j � jC

+

(y

k

)j℄

= 0:9Pred

k;i

+ (1� �

k;i

)[jC

+

(y

k

)j � jC

+

(z

k;i

)j℄:

So, by (13) and (2),

Ared

k;i

� 0:1Pred

k;i

� 0:45[jC

+

(x

k

)j � jC

+

(y

k

)j℄� j(jC

+

(y

k

)j � jC

+

(z

k;i

)j)j

� 0:45(1� r)jC

+

(x

k

)j � j(jC

+

(y

k

)j � jC

+

(z

k;i

)j)j:

Therefore, if jC

+

(x

k

)j > 0, sine ky

k

� z

k;i

k � Æ

k;i

and jC

+

(x)j is ontinuous, it follows that

Ared

k;i

� 0:1Pred

k;i

� 0 if Æ

k;i

is small enough. So, we proved that the algorithm is well de�ned

if the urrent point x

k

is infeasible.

If x

k

is feasible, (3) implies that y

k

= x

k

and jC

+

(y

k

)j = 0. If d

k;tan

6= 0 we have that

f(z

k;i

) < f(y

k

) for all i = 0; 1; 2; : : :. So, the ondition (13) is always satis�ed and, onsequently,

�

k;i

= �

k;�1

for all i = 0; 1; 2; : : : Therefore, in this ase, we have

Ared

k;i

� 0:1Pred

k;i

= 0:9�

k;�1

[f(y

k

)� f(z

k;i

)℄� (1� �

k;�1

)jC

+

(z

k;i

)j:

So, by Theorems 3.1 and 3.2, we obtain that

Ared

k;i

� 0:1Pred

k;i

� 0:9�

k;�1

min f�

2

;

2

kd

k;tan

k

2

; �

1

Æ

k;i

;

3

kd

k;tan

kÆ

k;i

g �

1

kz

k;i

� y

k

k

2

:

Therefore, (11) holds if

Æ

k;i

� min f(

0:9�

k;�1

�

2

1

)

1=2

; (

0:9�

k;�1

2

1

)

1=2

kd

k;tan

k;

0:9�

k;�1

�

1

1

; (

0:9�

k;�1

3

1

)

1=2

kd

k;tan

kg:

So, we proved that x

k+1

is well de�ned when x

k

is feasible and d

k;tan

6= 0. 2

The next theorem is an important tool for proving onvergene of the model algorithm. We

are going to prove that the atual redution Ared

k;ia(k)

e�etively ahieved at eah iteration

neessarily tends to 0. An immediate onsequene will be the feasibility of the limit points gener-

ated by the algorithm.

Theorem 3.4. Suppose that Algorithm 2.1 generates an in�nite sequene. Then

lim

k!1

 (x

k

; �

k

)� (x

k+1

; �

k

) = 0

10

Proof. Suppose, by ontradition, that there exists an in�nite set of indies K

1

� f0; 1; 2; : : :g and

a positive number > 0 suh that

 (x

k+1

; �

k

) � (x

k

; �

k

)�

for all k 2 K

1

. Let us write

k

= (x

k

; �

k

) for all k 2 f0; 1; 2; : : :g.

Then, for all k 2 f0; 1; 2; : : :g we have that

k+1

= �

k+1

f(x

k+1

) + (1� �

k+1

)jC

+

(x

k+1

)j

= �

k+1

f(x

k+1

)+(1��

k+1

)jC

+

(x

k+1

)j�[�

k

f(x

k+1

)+(1��

k

)jC

+

(x

k+1

)j℄+[�

k

f(x

k+1

)+(1��

k

)jC

+

(x

k+1

)j℄

= (�

k+1

� �

k

)f(x

k+1

) + (�

k

� �

k+1

)jC

+

(x

k+1

)j+ [�

k

f(x

k+1

) + (1� �

k

)jC

+

(x

k+1

)j℄

= (�

k

� �

k+1

)(jC

+

(x

k+1

)j � f(x

k+1

)) + [�

k

f(x

k

) + (1� �

k

)jC

+

(x

k

)j℄�

k

= (�

k

� �

k+1

)(jC

+

(x

k+1

)j � f(x

k+1

)) +

k

�

k

; (27)

where

k

� 0 for all k 2 f0; 1; 2; : : :g and

k

� > 0 for all k 2 K

1

. Now, by the de�nition of

�

k;�1

at Algorithm 2.1, we have that

�

k

� �

k+1

+ !

k

� 0: (28)

for all k 2 f0; 1; 2; : : :g. By the ompatness of
, there exists an upper bound > 0 suh that

jC

+

(x

k

)j � f(x

k

)j �

for all k 2 f0; 1; 2; : : :g. Therefore, by (27) and (28), we have that

j+1

= (�

j

� �

j+1

+ !

j

)(jC

+

(x

j+1

)j � f(x

j+1

)) +

j

�

j

� !

j

(jC

+

(x

j+1

)j � f(x

j+1

))

� (�

j

� �

j+1

+ !

j

)+

j

�

j

+ !

j

 = (�

j

� �

j+1

)+

j

�

j

+ 2!

j

for j = 0; 1; : : : ; k � 1. Adding these k inequalities, we obtain

k

�

0

+ (�

0

� �

k

)+

k�1

X

j=0

2!

j

�

k�1

X

j=0

j

�

0

+ 2+

k�1

X

j=0

2!

j

�

k�1

X

j=0

j

(29)

for all k � 1. Sine the series

P

1

j=0

!

j

is onvergent, and

k

is bounded away from 0 for k 2 K

1

,

(29) implies that

k

is unbounded below. This ontradits the ompatness of
. 2

An easy onsequene of Theorem 3.4 is that, when Algorithm 2.1 generates an in�nite sequene

(that is, it is not stopped at Step 1), we have that lim

k!1

jC

+

(x

k

)j = 0. This means that points

arbitrarily lose to feasibility are eventually generated.

Theorem 3.5. If Algorithm 2.1 does not stop at Step 1 for all k = 0; 1; 2; : : :, then

lim

k!1

jC

+

(x

k

)j = 0:

(In partiular, every limit point of fx

k

g is feasible.)

Proof. By (2), (11) and (13) we have that

jC

+

(x

k

)j �

jC

+

(x

k

)j � jC

+

(y

k

)j

1� r

�

2

1� r

Pred

k;ia(k)

�

20

1� r

Ared

k;ia(k)

=

20

1� r

[(x

k

; �

k

)� (x

k+1

; �

k

)℄:

So, the desired result follows from Theorem 3.4. 2

11

4 Convergene to Optimality

In the former setion we proved that, if the algorithm does not break down at Step 1, it ahieves

approximate feasibility up to any desired preision. In this setion we are going to prove that, in

that ase, the optimality indiator kd

k;tan

k annot be bounded away from zero. In pratie, this

implies that given arbitrarily small onvergene toleranes "

feas

; "

opt

> 0, Algorithm 2.1 eventually

�nds an iterate x

k

suh that kC

+

(x

k

)k � "

feas

and kd

k;tan

k � "

opt

. For proving this result, we will

proeed by ontradition, assuming that kd

k;tan

k is bounded away from zero for k large enough.

From this hypothesis (stated as Hypothesis C below) we will dedue intermediate results that,

�nally, will lead us to a ontradition.

Hypothesis C. Algorithm 2.1 generates an in�nite sequene fx

k

g and there exists " > 0, k

0

2

f0; 1; 2; : : :g suh that

kd

k;tan

k � " for all k � k

0

:

Lemma 4.1. Suppose that Hypothesis C holds. Then, there exist

4

;

5

> 0 (independent of k)

suh that

f(y

k

)� f(z

k;i

) � min f

4

;

5

Æ

k;i

g

for all k � k

0

; i = 0; 1; : : : ; ia(k)

Proof. The result follows trivially from Theorem 3.2 and Hypothesis C. 2

Lemma 4.2. Suppose that Hypothesis C holds. Then, there exist �; "

1

> 0, independent of k and

i, suh that jC

+

(x

k

)j � min f"

1

; �Æ

k;i

g implies that �

k;i

= �

k;i�1

.

Proof. Observe that

Pred

k;i

(1) = f(x

k

)� f(z

k;i

)

� f(y

k

)� f(z

k;i

)� jf(x

k

)� f(y

k

)j � f(y

k

)� f(z

k;i

)� ky

k

� x

k

k

where is a onstant that only depends on the norms and on a bound of krf(x)k on
. Therefore,

by (3), and Lemma 4.1,

Pred

k;i

(1)�

1

2

jC

+

(x

k

)j � min f

4

;

5

Æ

k;i

g � (� + 0:5)jC

+

(x

k

)j:

De�ne

"

1

=

4

� + 0:5

; � =

5

� + 0:5

:

If jC

+

(x

k

)j � min f"

1

; �Æg we have that

Pred

k;i

(1)�

1

2

jC

+

(x

k

)j � 0:

This implies that any value of �

k;i

in the interval [0; 1℄ satis�es (13). In partiular �

k;i�1

satis�es

(13), as we wanted to prove. 2

In the next Lemma, we prove that, under Hypothesis C, the penalty parameters f�

k

g are

bounded away from zero. It must be warned that this is a property of sequenes that satisfy

Hypothesis C (whih, in turn, will be proved to be non-existent!) and not of all the sequenes

12

e�etively generated by the model algorithm.

Lemma 4.3. Suppose that Hypothesis C holds. Then, there exists

�

� > 0 suh that �

k

�

�

� for all

k 2 f0; 1; 2; : : :g.

Proof. We are going to show �rst that, if jC

+

(x

k

)j is suÆiently small, a step Æ

k;i

that satis�es

jC

+

(x

k

)j �

�

10

Æ

k;i

(30)

is neessarily aepted, where � is de�ned in Lemma 4.2.

In fat, assume that (30) holds. Then, by (13) and (2),

Pred

k;i

�

1

2

[jC

+

(x

k

)j � jC

+

(y

k

)j℄ �

1� r

2

jC

+

(x

k

)j �

(1� r)�

20

Æ

k;i

:

So, (30) implies that

Æ

k;i

�

20

(1� r)�

Pred

k;i

: (31)

Now, by Theorem 3.1,

Ared

k;i

= Pred

k;i

+ (1� �

k;i

)[jC

+

(y

k

)j � jC

+

(z

k;i

)j℄ � Pred

k;i

�

1

Æ

2

k;i

:

Therefore, by (31), (30) implies that

Ared

k;i

� Pred

k;i

�

20

1

(1� r)�

Æ

k;i

Pred

k;i

� (1�

200

1

(1� r)�

2

jC

+

(x

k

)j)Pred

k;i

:

So, if (30) holds and jC

+

(x

k

)j �

0:9(1�r)�

2

200

1

, the trial point z

k;i

is neessarily aepted.

Let us de�ne

"

2

= min f"

1

;

0:9(1� r)�

2

200

1

; �Æ

min

g;

where "

1

is de�ned in Lemma 4.2. Let k

1

� k

0

be suh that jC

+

(x

k

)j � "

2

for all k � k

1

. Sine

Æ

min

�

jC

+

(x

k

)j

�

, this implies that Æ

k;0

�

jC

+

(x

k

)j

�

for all k � k

1

. Therefore, a possible trust region

radius suh that Æ

k;i

<

jC

+

(x

k

)j

�

annot orrespond to i = 0, so it is preeded by Æ

k;i�1

whih

neessarily veri�es

Æ

k;i�1

� 10

jC

+

(x

k

)j

�

:

By the reasoning displayed above, the trial point z

k;i�1

is aepted for all k � k

1

. Therefore,

Æ

k;i

�

jC

+

(x

k

)j

�

for all k � k

1

, i = 0; 1; : : : ; ia(k). So, by Lemma 4.2, the penalty parameter �

k;i

is never dereased for all k � k

1

. This implies the desired result. 2

Finally, we prove, in Theorem 4.4, that Hypothesis C annot be true.

Theorem 4.4. Let fx

k

g be an in�nite sequene generated by Algorithm 2.1. Then, there exists

K

2

, an in�nite subset of f0; 1; 2; : : :g, suh that

lim

k2K

2

kd

k;tan

k = 0: (32)

13

Proof. Suppose that the thesis of the theorem is not true. Then, there exists k

0

2 f0; 1; 2; : : :g,

" > 0 suh that Hypothesis C holds.

As in the beginning of the proof of Theorem 3.3, observe that, by Theorem 3.1,

Ared

k;i

� 0:1Pred

k;i

= 0:9f�

k;i

[f(x

k

)� f(z

k;i

)℄ + (1� �

k;i

)[jC

+

(x

k

)j � jC

+

(y

k

)j℄g+ (1� �

k;i

)[jC

+

(y

k

)j � jC

+

(z

k;i

)j℄

� 0:9�

k;i

[f(y

k

)� f(z

k;i

)℄ + 0:9�

k;i

[f(x

k

)� f(y

k

)℄� (1� r)jC

+

(x

k

)j �

1

Æ

2

k;i

:

So, by Lemma 4.1, Lemma 4.3, and (3),

Ared

k;i

� 0:1Pred

k;i

� 0:9

�

� min f

4

;

5

Æ

k;i

g � jC

+

(x

k

)j �

1

Æ

2

k;i

for all k � k

0

, i = 0; 1; ia(k), where is a norm-dependent onstant that also depends on a bound

of krf(x)k on
.

Let us de�ne

�

Æ = min f(0:45

�

�

4

=

1

)

1=2

; 0:45

�

�

5

=

1

g:

If Æ

k;i

�

�

Æ we have that

1

Æ

2

k;i

� 0:45

�

� min f

4

;

5

Æ

k;i

g;

so, when Æ

k;i

�

�

Æ, we have that

Ared

k;i

� 0:1Pred

k;i

� 0:45

�

� min f

4

;

5

Æ

k;i

g � jC

+

(x

k

)j (33)

for all k � k

0

, i = 0; 1; ia(k). Let k

2

� k

0

be suh that

jC

+

(x

k

)j � 0:45

�

� min f

4

;

5

�

Æ

10

g (34)

for all k � k

2

. By (33) and (34) we have that, for all k � k

2

, if i 2 f0; 1; 2; : : :g orresponds to the

�rst trust-region radius Æ

k;i

less than or equal to

�

Æ (so,

�

Æ � Æ

k;i

�

�

Æ

10

),

Ared

k;i

� 0:1Pred

k;i

� 0:

This means that Æ

k;i

�

�

Æ

10

must be aepted. Therefore,

Æ

k;ia(k)

�

�

Æ

10

for all k � k

2

. So, if k � k

2

we have, by Lemma 4.1, Lemma 4.3 and (3), that

Pred

k;ia(k)

= �

k;ia(k)

[f(x

k

)� f(z

k;i

)℄ + (1� �

k;ia(k)

)[jC

+

(x

k

)j � jC

+

(y

k

)j℄

= �

k;ia(k)

[f(y

k

)� f(z

k;i

)℄ + �

k;ia(k)

[f(x

k

)� f(y

k

)℄ + (1� �

k;ia(k)

)[jC

+

(x

k

)j � jC

+

(y

k

)j℄

�

�

�[f(y

k

)� f(z

k;i

)℄� jf(x

k

)� f(y

k

)j � jC

+

(x

k

)j �

�

� min f

4

;

5

�

Æ

10

g �

0

jC

+

(x

k

)j (35)

for all k � k

2

, where

0

is a onstant that depends on the norm and the bound of krf(x)k on
.

Now, let k

3

� k

2

be suh that

0

jC

+

(x

k

)j �

�

�

2

min f

4

;

5

�

Æ

10

g

for all k � k

3

. By (35), Pred

k;ia(k)

is bounded away from zero for all k � k

3

. This implies, by

(11), that Ared

k;ia(k)

is bounded away from zero for all k � k

3

. Clearly, this ontradits Theo-

rem 3.4. This means that Hypothesis C annot be true. Therefore, the desired result is proved. 2

14

5 Appliation: Hard-Spheres Problems

The Hard-Spheres problem belongs to the family of sphere paking problems, a lass of halleng-

ing problems dating from the beginning of the seventeenth entury whih is related to pratial

problems in Chemistry, Biology and Physis (see [7, 32℄). It onsists on maximizing the minimum

pairwise distane between q points on a sphere in IR

dim

. This problem may be redued to a

nononvex nonlinear optimization problem with a potentially large number of (nonoptimal) points

satisfying optimality onditions. We have, thus, a lass of problems indexed by the parameters dim

and q, that provides a suitable set of test problems for evaluating nonlinear programming odes.

The straightforward formulation of the Hard-Spheres problem is:

Maximize min

i 6=j

kw

i

� w

j

k

subjet to kw

k

k = 1; k = 1; : : : ; q;

(36)

where the vetors w

k

belong to IR

dim

and k � k is the Eulidean norm. This is equivalent to

Minimize max

i 6=j

hw

i

; w

j

i

subjet to kw

k

k

2

� 1 = 0; k = 1; : : : ; q:

(37)

Applying the lassial trik for transforming minimax problems into onstrained minimization

problems, we redue (37) to the nonlinear program

Minimize z

subjet to hw

i

; w

j

i � z � 0; for all i 6= j;

kw

k

k

2

� 1 = 0; k = 1; : : : ; q:

(38)

The struture of the Hard-Spheres problems suggests a natural Restoration Step, whih does

not rely on sophistiated algorithms for solving (2){(3). Assume that x

k

= (w

1

; : : : ; w

q

; z) is the

urrent point at the k�th iteration. Replaing

w

j

w

j

kw

j

k

; j = 1; : : : ; q

and

z maxfhw

i

; w

j

i; i 6= jg

we obtain a point x = (w

1

; : : : ; w

q

; z) that satis�es exatly the onstraints. If (3) is violated

by x (so kx�x

k

k > �kC

+

(x

k

)k), we replae x by x

k

+

�kC

+

(x

k

)k

kx�x

k

k

(x�x

k

). If this point violates (2)

we delare \failure in improving feasibility" at the Restoration Phase. In our experiments we

used � = 4; r = 0:99. Obviously, this restoration proedure relies on the spei� struture of

the onstraints (38) and we take advantage of the freedom allowed by the Inexat-Restoration

algorithm on the hoie of the restored point.

For the Minimization Step we use the well-known linearly onstrained minimization solver

implemented in the MINOS system, Version 5.4 (see [24℄). The problem to be solved by MINOS

is to minimize the variable z on the intersetion of polytope de�ned by the linearization of the

inequality onstraints of (38) and the trust region box around of y

k

. We used the defaults of

MINOS for optimality and feasibility and the \Warm Start" option at eah Minimization Step.

Sine the subproblem solved by MINOS is a a Linear Programming problem, we an assume that

MINOS �nds a global solution, so that the inequality f(z

k;i

) � f(y

k

+ t

(k;i;de)

d

k;tan

) (see (15))

neessarily holds. Therefore, in this ase it is not neessary to speify the parameters �

1

, �

2

and �.

In pratie, eah exeution of MINOS was stopped with the default onvergene riterion relatively

to the norm of the redued gradient and signs of the multipliers.

15

The nonnegative sequene for the penalty parameter of the merit funtion at Step 1 of Algo-

rithm 2.1, was !

k

=

n

(1+k)

2

, where n = q�dim+1 and the initial penalty parameter was �

�1

= 0:5.

After some preliminary tests we used p = 10.

We used the following riterion to update the trust region radius Æ

k;i

. If the suÆient redution

ondition (11) does not hold at Step 4 in Algorithm 2.1, we set Æ

k;i+1

= Æ

k;i

=8. On the other hand,

to restart at the beginning of an iteration, we set Æ

k;0

= maxfÆ

min

; 4Æ

k�1;a

g, with Æ

min

= Æ

0;0

=

0:5.

The theoretial properties of the Inexat{Restoration algorithm guarantee that, if break-down

does not our at the Restoration Step, then given any " > 0 there exists k suh that kC

+

(x

k

)k � "

and kd

k;tan

k � ". In our pratial implementation we delared \onvergene" when kC

+

(x

k

)k

1

�

10

�8

. Sine x

k

omes from the Minimization Step performed by MINOS, when this ours we

neessarily have that d

k�1;tan

� 0.

Let us omment now the hoie of the parameters of LANCELOT. The manual [6℄ (p.111)

\strongly reommends the use of exat seond derivatives whenever they are available". In fat we

ran a few tests with the default approximation SR1 but the results were worse than those obtained

using exat seond derivatives, and thus this was the option adopted for all further tests. We also

experimented several di�erent options for the linear equation solver: without preonditioner, with

diagonal preonditioner and with a band matrix preonditioner. The best results were obtained

with the �rst option (no preonditioner). Moreover, after some preliminary tests, we deided to

use the \inexat Cauhy point" option. The maximum number of iterations allowed was 1000.

Finally, the gradient and onstraints toleranes were the same hosen for the Inexat{Restoration

algorithm, namely 10

�8

. Both odes are in FORTRAN and the ompiler option adopted for both

was \-O".

6 Numerial experiments

Tests were run on a Sun SparStation 20, with the following main harateristis: 128Mbytes of

RAM, 70MHz, 204.7 mips, 44.4 Mops. We ran both odes using 50 initial random points for eah

problem. The results are summarized in Table 1. This table lists the eigtheen problems with the

number of variables and onstraints and the statisti information related to the minimum distane

between two points (minimum, maximum, average) and CPU time (minimum,maximum, average)

using the Inexat{Restoration algorithm (�rst row of eah set) and the ones using LANCELOT

(seond row).

The information ontained in Table 1 is depited graphially below. The intervals (min, max)

of distanes/log(CPU times) are represented by vertial segments, the averages are indiated with

a diamond symbol for the Inexat{Restoration algorithm and a bullet for LANCELOT. Graphs

on the left refer to distanes whereas graphs on the right refer to log(CPU times).

16

Problem size minimum distane between 2 points CPU time (seonds)

�

n

p

�

var. onstr. min. max. average min. max. average

h

3

10

i

31 55

1.0514622 1.0914262 1.0822176 0.46 0.79 0.61

1.0514656 1.0914302 1.0874007 0.83 2.51 1.50

h

3

11

i

34 66

1.0514622 1.0514622 1.0514622 0.64 0.91 0.76

1.0514656 1.0514656 1.0514656 1.10 3.92 1.81

h

3

12

i

37 78

0.9447876 1.0514622 1.0493287 0.81 1.37 0.99

0.9447856 1.0514656 1.0430604 1.53 3.29 2.24

h

3

13

i

40 91

0.9427907 0.9564136 0.9499126 0.88 1.25 1.00

0.9443516 0.9564099 0.9512710 2.26 8.06 4.12

h

3

14

i

43 105

0.9161167 0.9338626 0.9293394 1.04 1.47 1.24

0.9025741 0.9338629 0.9305515 2.49 9.05 5.12

h

3

15

i

46 120

0.8745439 0.9026562 0.9008776 1.16 1.92 1.47

0.8734529 0.9026516 0.9009286 3.25 12.73 7.37

h

4

22

i

89 253

0.9824163 1.0019895 0.9951659 5.29 17.43 8.12

0.9840223 1.0019880 0.9967615 30.49 209.27 69.85

h

4

23

i

93 276

0.9693916 1.0000000 0.9827767 6.73 16.74 10.31

0.9740944 0.9918568 0.9847650 29.26 178.84 89.80

h

4

24

i

97 300

0.9573460 1.0000000 0.9734775 7.13 19.26 12.34

0.9580083 0.9828733 0.9751985 43.16 239.77 112.78

h

4

25

i

101 325

0.9477678 0.9616207 0.9569177 8.25 17.97 12.58

0.9465833 0.9619563 0.9574963 49.00 268.49 131.18

h

4

26

i

105 351

0.9327032 0.9583427 0.9474299 9.99 29.60 15.57

0.9367603 0.9583423 0.9491615 39.90 565.90 164.47

h

4

27

i

109 378

0.9276386 0.9394150 0.9344075 11.08 33.88 17.06

0.9273834 0.9389142 0.9345753 79.26 332.12 173.13

h

5

37

i

186 703

0.9905835 1.0045763 0.9993300 68.66 369.42 149.48

0.9911508 1.0025367 0.9979124 444.81 2501.76 1154.08

h

5

38

i

191 741

0.9842019 1.0019176 0.9917008 93.85 527.66 168.08

0.9864684 1.0019880 0.9930711 546.55 3105.86 1538.54

h

5

39

i

196 780

0.9772092 0.9929902 0.9871450 108.71 461.15 204.96

0.9808159 0.9920786 0.9881178 502.38 3161.88 1782.30

h

5

40

i

201 820

0.9734556 0.9886857 0.9818932 100.08 600.04 220.59

0.9701958 0.9920282 0.9810864 863.85 3820.43 1907.57

h

5

41

i

206 861

0.9686624 0.9818115 0.9746239 117.34 435.91 195.79

0.9644272 0.9819470 0.9757435 1148.77 4669.87 2521.84

h

5

42

i

211 903

0.9612090 0.9793985 0.9693361 105.37 641.68 213.74

0.9599791 0.9798367 0.9702516 807.57 4664.63 2473.78

Table 1: Minimum distanes and CPU times

17

6

-

�

3

10

��

3

11

��

3

12

��

3

13

��

3

14

��

3

15

�

0.7

0.8

0.9

1.0

1.1

min.

dist.

�

n

p

�

�

�

�

�

�

�

�

�

�

�

�

�

6

-

�

3

10

��

3

11

��

3

12

��

3

13

��

3

14

��

3

15

�

0.0

0.6

1.2

1.8

2.4

3.0

log(CPU

time)

�

n

p

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 1: Inexat-Restoration (�) and LANCELOT (�) results for n = 3.

18

6

-

�

4

22

��

4

23

��

4

24

��

4

25

��

4

26

��

4

27

�

0.91

0.93

0.95

0.97

0.99

1.01

min.

dist.

�

n

p

�

�

�

�

�

�

�

�

�

�

�

�

�

6

-

�

4

22

��

4

23

��

4

24

��

4

25

��

4

26

��

4

27

�

0.0

1.28

2.56

3.84

5.12

6.40

log(CPU

time)

�

n

p

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 2: Inexat-Restoration (�) and LANCELOT (�) results for n = 4.

The graphs in Figures 1{3 evidene the qualitative relative behavior of both odes. Notie

that the diamonds and bullets are always lose together in the graphs on the left, indiating that

the quality of the optimal solutions obtained by both odes is similar. On the other hand, the

bullets rise faster than the diamonds on the graphs on the right, whih means that the CPU times

for LANCELOT tend to be higher than those of the Inexat{Restoration ode. The linear �t

of Inexat{Restoration CPU times versus LANCELOT CPU times is y = 0:095x + 4:466 (see

Figure 4). Observe that, in fat, the linear oeÆient is less than 0.1 .

19

6

-

�

5

37

��

5

38

��

5

39

��

5

40

��

5

41

��

5

42

�

0.96

0.97

0.98

0.99

1.00

1.01

min.

dist.

�

n

p

�

�

�

�

�

�

�

�

�

�

�

�

�

6

-

�

5

37

��

5

38

��

5

39

��

5

40

��

5

41

��

5

42

�

4.0

4.9

5.8

6.7

7.6

8.5

log(CPU

time)

�

n

p

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 3: Inexat-Restoration (�) and LANCELOT (�) results for n = 5.

-

6

CPU times

LANCELOT

CPU times

Inexat-Rest.

y = 0:095x+ 4:466

500 1000 1500 2000 2500

50

100

150

200

250

300

��
��
�
�

�

�

�
�

�

�

�

�

�

�

�

�

�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�

Figure 4: CPU times of LANCELOT versus those of Inexat-Restoration Alg.

20

In Figure 5 we ompare the CPU times of both algorithms for the eigtheen problems onsidered.

This �gure shows learly the good performane of our Algorithm, speially when the size of the

problem inreases.

-

6

Problems

CPU times

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

500

1000

1500

2000

2500

3000

�
�

�� ��
�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 5: CPU times: Inexat-Restoration (�) and LANCELOT (�).

7 Final remarks

Sine the method presented in this paper is a model algorithm, many possible implementations

an be given. The eÆieny of di�erent implementations should be linked to the quality of the

algorithms hosen for performing di�erent steps. For the Restoration Step we need an algorithm

that solves (2){(3). Sine, in most ases, k � k will be the sup-norm and
 will be a box, we an

hoose any of the many available methods for large-sale box-onstrained minimization for solving

this problem.

In the Minimization Step we need an approximate solution of (8). Generally, this is a linearly

onstrained minimization problem. For its resolution ative set methods are generally reom-

mended (see, for example, [23℄). However, last deade large-sale optimization researh suggests

that eÆient implementations an also result from the appliation of interior point methods to (8).

See [33℄.

In this paper we did not use regularity assumptions to prove global onvergene of in�nite

sequenes generated by the algorithm. This does not mean that regularity is not playing any role

in pratial irumstanes. Roughly speaking, lak of regularity an ause a failure in Restoration

Phase, resulting in break-down at Step 1. In fat, our theoretial results show that, if the original

problem is infeasible, break-down will neessary take plae for some (�nite) value of the iteration k,

that is, an in�nite sequene will not be generated. On the other hand, we proved that when in-

�nitely many points are generated, all the limit points are feasible. Finally, the results on Setion 4

show that at least one of these limit points is stationary in the sense that lim

k2K

2

kd

k;tan

k = 0

when fx

k

g

k2K

2

is the orresponding onvergent subsequene. The relations between this type of

stationarity and neessary or suÆient onditions for loal minimization remain to be investigated.

21

Referenes

[1℄ J. Abadie and J. Carpentier, Generalization of the Wolfe redued-gradient method to the ase

of nonlinear onstraints, Optimization, Edited by R. Flether, Aademi Press, New York,

pp. 37-47, 1968.

[2℄ R. H. Bielshowsky, Nonlinear programming algorithms with dynami de�nition of near-

feasibility: theory and implementations, Tese de Doutorado, IMECC-UNICAMP, Campinas,

1996.

[3℄ R. H. Byrd, Robust trust region methods for onstrained optimization, Contributed presen-

tation, SIAM Conferene on Optimization, Houston, Texas, 1987.

[4℄ R. H. Byrd, J. Ch. Gilbert and J. Noedal, A trust region method based on interior point teh-

niques for nonlinear programming, Tehnial Report OTC 96/02, Optimization Tehnology

Center, Argonne National Laboratory and Northwestern University, Illinois, 1996.

[5℄ M. R. Celis, J. E. Dennis and R. A. Tapia, A trust-region strategy for nonlinear equality

onstrained optimization, Numerial Optimization, Edited by P. Boggs, R. Byrd and R.

Shnabel, SIAM Publiations, Philadelphia, Pennsylvania, pp. 71-82, 1985.

[6℄ A. R. Conn, N. I. M. Gould and Ph. L. Toint, LANCELOT: a Fortran pakage for large-

sale nonlinear optimization (Release A), Springer Series in Computational Mathematis 17,

Springer Verlag, Heidelberg, Berlin, New York, 1992.

[7℄ J H. Conway and N. J. C. Sloane, Sphere Pakings, Latties and Groups., Springer-Verlag,

New York, 1988.

[8℄ R. S. Dembo, S. C. Eisenstat and T. Steihaug, Inexat Newton methods, SIAM Journal on

Numerial Analysis, Vol. 19, pp. 400-408, 1982.

[9℄ J. E. Dennis and M. El-Alem, A trust-region algorithm for solving feasibility problems, Teh-

nial Report, Department of Applied and Computational Mathematis, Rie University,

Houston, Texas, 1996.

[10℄ J. E. Dennis, M. El-Alem and M. C. Maiel, A global onvergene theory for general trust-

region-based algorithms for equality onstrained optimization, SIAM Journal on Optimiza-

tion 7 (1997), 177-207.

[11℄ J. E. Dennis and R. B. Shnabel, Numerial methods for unonstrained optimization and

nonlinear equations, Prentie Hall, Englewood Cli�s, NJ, 1983.

[12℄ M. El-Alem, A robust trust region algorithm with a nonmonotoni penalty parameter sheme

for onstrained optimization, SIAM Journal on Optimization, Vol. 5, pp. 348-378, 1995.

[13℄ D. M. Gay, A trust-region approah to linearly onstrained optimization, Poeedings of the

Dundee Biennial Conferene on Numerial Analysis, 1983.

[14℄ P. E. Gill, W. Murray and M. H. Wright, Pratial optimization, Aademi Press, London,

England, 1981.

[15℄ F. M. Gomes, M. C. Maiel and J. M. Mart��nez, Nonlinear programming algorithms using

trust regions and augmented Lagrangians with nonmonotone penalty parameters, Relat�orio

T�enio, IMECC-UNICAMP, Campinas, 1995. To appear in Mathematial Programming.

22

[16℄ M. Lalee, J. Noedal and T. Plantenga, On the implementation of an algorithm for large-sale

equality onstrained optimization, Tehnial Report N.A.M. 08, E.E.C.S. Dept., Northwestern

University, 1993.

[17℄ L. S. Lasdon, Redued gradient methods, in Nonlinear Optimization 1981, edited by M. J. D.

Powell, Aademi Press, New York, pp. 235-242, 1982.

[18℄ J. M. Mart��nez, A two-phase trust-region model algorithm with global onvergene for non-

linear programming, Journal of Optimization Theory and Appliations, Vol. 96, pp. 397-

436, 1998.

[19℄ J. M. Mart��nez and S. A. Santos, A trust region strategy for minimization on arbitrary

domains, Mathematial Programming, Vol. 68, pp. 267-302, 1995.

[20℄ A. Miele, H. Y. Huang and J. C. Heideman, Sequential gradient-restoration algorithm for the

minimization of onstrained funtions, ordinary and onjugate gradient version, Journal of

Optimization Theory and Appliations, Vol. 4, pp. 213-246, 1969.

[21℄ A. Miele, A. V. Levy and E. E. Cragg,Modi�ations and extensions of the onjugate-gradient

restoration algorithm for mathematial programming problems, Journal of Optimization The-

ory and Appliations, Vol. 7, pp. 450-472, 1971.

[22℄ A. Miele, E. M. Sims and V. K. Basapur, Sequential Gradient-Restoration algorithm for math-

ematial programming problem with inequality onstraints, Part 1, Theory, Rie University,

Aero-Astronautis Report No. 168, 1983.

[23℄ R. B. Murtagh and M. A. Saunders, Large-sale linearly onstrained optimization, Mathe-

matial Programming, Vol. 14 , pp. 41-72, 1978.

[24℄ B. A. Murtagh and M. A. Saunders, MINOS 5.4 User's guide, Tehnial Report SOL 83-20

R, 1995, Stanford University.

[25℄ E. Omojokun, Trust-region strategies for optimization with nonlinear equality and inequality

onstraints, PhD Thesis, Department of Computer Siene, University of Colorado, Boulder,

Colorado, 1989.

[26℄ M. J. D. Powell and Y. Yuan, A trust-region algorithm for equality onstrained optimization,

Mathematial Programming, Vol. 49, pp. 190-211, 1991.

[27℄ M. Rom and M. Avriel, Properties of the sequential gradient-restoration algorithm (SGRA),

Part 1: Introdution and omparison with related methods, Journal of Optimization Theory

and Appliations, Vol. 62, pp. 77-98, 1989.

[28℄ M. Rom and M. Avriel, Properties of the sequential gradient-restoration algorithm (SGRA),

Part 2: Convergene Analysis, Journal of Optimization Theory and Appliations, Vol. 62,

pp. 99-126, 1989.

[29℄ J. B. Rosen, The gradient projetion method for nonlinear programming, Part 1, Linear

onstraints, SIAM Journal on Applied Mathematis, Vol. 8, pp. 181-217, 1960.

[30℄ J. B. Rosen, The gradient projetion method for nonlinear programming, Part 2, Nonlinear

onstraints, SIAM Journal on Applied Mathematis, Vol. 9, pp. 514-532, 1961.

[31℄ J. B. Rosen, Two-phase algorithm for nonlinear onstraint problems, Nonlinear Program-

ming 3, Edited by O. L. Mangasarian, R. R. Meyer and S. M. Robinson, Aademi Press,

London and New York, pp. 97-124, 1978.

23

[32℄ E. B. Sa� and A. B. J. Kuijlaars, Distributing many points on a sphere, Mathematial

Intelligener, Vol. 19, pp. 5{11, 1997.

[33℄ M. H. Wright, Interior point methods for onstrained optimization, Ata Numeria 1992,

pp. 341-407, 1992.

24

