Inexact—Restoration Algorithm for Constrained Optimization

José Mario Martinez * Elvio A. Pilotta f

September 29, 1998

Abstract

We introduce a new model algorithm for solving nonlinear programming problems.
No slack variables are introduced for dealing with inequality constraints. Each itera-
tion of the method proceeds in two phases. In the first phase, feasibility of the current
iterate is improved and in second phase the objective function value is reduced in an
approximate feasible set. The point that results from the second phase is compared
with the current point using a nonsmooth merit function that combines feasibility
and optimality. This merit function includes a penalty parameter that changes be-
tween different iterations. A suitable updating procedure for this penalty parameter
is included by means of which it can be increased or decreased along different itera-
tions. The conditions for feasibility improvement at the first phase and for optimality
improvement at the second phase are mild, and large-scale implementations of the
resulting method are possible. We prove that under suitable conditions, that do not
include regularity or existence of second derivatives, all the limit points of an infi-
nite sequence generated by the algorithm are feasible, and that a suitable optimality
measure can be made as small as desired. The algorithm is implemented and tested
against LANCELOT using a set of hard-spheres problems.

Key words: Nonlinear programming, trust regions, feasible methods, global conver-
gence, numerical experiments.

*Departamento de Matemadtica Aplicada, IMECC-UNICAMP, CP 6065, 13081-970 Campinas SP,
Brazil (martinez@ime.unicamp.br). Work sponsored by FAPESP (Grant 90-3724-6), CNPq and FAEP-
UNICAMP.

fDepartamento de Matemética Aplicada, IMECC-UNICAMP, CP 6065, 13081-970 Campinas SP, Brazil
(pilotta@ime.unicamp.br). Work sponsored by FAPESP (Grant 96-0681-0), CNPq and FAEP-UNICAMP.

1 Introduction

Feasible methods for solving minimization problems with inequality and equality constraints [1,
2, 17, 19, 20, 21, 22, 27, 28, 29, 30, 31] have a strong reputation among practitioners of nonlinear
programming and, for this reason, are incorporated to well known user-oriented libraries. The
reason is that, very frequently, feasible nonoptimal solutions are useful in engineering applications,
whereas nonfeasible approximations are not, even when they are “quasi-optimal”. In the 80’s very
few papers in the mainstream of the optimization literature were dedicated to feasible methods.
That decade was dominated by SQP (sequential quadratic programming) models and the usual
criticism against feasible methods was that it is very difficult and, frequently, not worthwhile,
to follow very curved feasible regions, especially when the current approximation is far from the
solution. In the last few years (we write in 1998) many researchers realized that at least a subfamily
of feasible methods (those based on the barrier approach) was perhaps unfairly despised. See [33].
Obviously, the barrier approach is not applicable to equality constraints and must be combined
with SQP-like schemes in order to deal with equalities.

The preference for feasibility cannot be ignored in practical applications but, on the other
hand, the SQP criticism based on high-curvature domains must also be taken into account. These
two facts motivated us to develop (see [18]) theoretically justified algorithms for constraints of
the form h(z) = 0, ¢ < z < u where feasibility is controlled at every iteration, with an internal
mechanism that automatically determines the degree of precision required in the constraints. An
interesting related method that does not use merit functions was introduced in [2]. We notice that
some practical SGRA algorithms [20, 21, 22] successfully used “Inexact- Restoration” procedures
in applications.

In [18] we need to introduce slack variables for dealing with inequality constraints, so that the
feasible region takes the the canonical form above. This transformation can increase the number
of variables in an undesirable way, leading to expensive subproblems. Therefore, it is interesting
to introduce Inexact—Restoration algorithms that deal with inequality constraints without the
slack—variable transformation.

Let us state the nonlinear programming problem in the form

Minimize f(x)
subject to C(z) <0, z €9, (1)

where f : R® — IR and C' : IR™ — IR™ are continuously differentiable and 2 C IR™ is closed
and convex. In practice, we are mostly interested in the case in which 2 is a polytope. Each
equality constraint appearing in the original formulation of the nonlinear programming problem
can be transformed into two inequality constraints. It will be seen that this does not increase the
complexity of the method introduced here.

The new model algorithm generates feasible iterates with respect to Q (zF € Q for all k =
0,1,2,...) Each iteration includes two different procedures: Restoration and Minimization. In the
Restoration Step (which is executed once per iteration) an intermediate point y* € Q is found such
that the infeasibility at y* is a fraction of the infeasibility at z*. Immediately after Restoration
we construct an approximation 7y of the feasible region using available information at y*. In the
Minimization Step we compute a trial point z¥? € 7 such that f(z%?) << f(y*) (<< means
“sufficiently smaller than” here) and ||z%% — y¥|| < d;;, where d;; is a trust-region radius. The
trial point 2% is accepted as new iterate if the value of a nonsmooth (exact penalty) merit function
at z%? is sufficiently smaller than its value at z*. If 2% is not acceptable, the trust-region radius
is reduced.

When () is a polytope, the approximate feasible region 7 is a polytope too. So, if || - || is
the sup-norm, the Minimization Step consists of an inexact (approximate) minimization of f with

linear constraints. In that case, the Restoration Step also represents an inexact minimization
of infeasibility with linear constraints. Therefore, available algorithms for (large-scale) linearly
constrained minimization (see [13, 14, 23]) can be fully exploited.

As mentioned above, the new algorithm is related to classical feasible methods for nonlinear
programming, such as the Generalized Reduced Gradient (GRG) method and the family of Se-
quential Gradient Restoration algorithms (SGRA). See [1, 2, 17, 20, 21, 22, 27, 28, 29, 30, 31].
However, in our approach the successive approximations to the solution of (1) are not necessarily
feasible (or nearly feasible) with respect to C(z) < 0. In spite of that, the necessity of considering
and probably improving feasibility is taken actively into account at all the iterations. This strategy
is quite different than the one adopted in Sequential Quadratic Programming (SQP) algorithms,
where the trial point at each iteration is obtained after considering only a linear model of the
constraints.

The convergence theory developed in this paper has several points in common with global
convergence theories for different SQP-like algorithms with trust-regions (see [5, 10, 12, 25, 26]),
in particular the one developed in [15]. The new model algorithm is also related to the method
introduced in [18] for problems where the constraints are given in the form C(z) =0, z € Q. In
[18] the merit function is an augmented Lagrangian, while here we consider the exact penalty-like
merit function used, for example, in [3, 4, 16, 25] for forcing convergence of SQP and other nonlinear
programming algorithms. Another remarkable difference is that the algorithm introduced in this
paper use trust-regions centered on the intermediate point y* instead of the more usual trust-
regions centered on the current point z*. Consequently, only the Minimization Step is repeated
after a reduction of the trust-region radius.

A rigorous description of the new model algorithm is given in Section 2, together with further
motivation. In Section 3 we prove that the algorithm is well defined, that is, given a current point
z* € Q that does not satisfy the stopping criteria, a new iterate z**1 is found after a finite num-
ber of reductions of the trust-region radius. In the same section we prove that, when an infinite
sequence is generated, we obtain points arbitrarily close to feasibility. In Section 4 we prove that
a quantity that measures first-order optimality can be made as small as desired. In Section 5 we
give an application and we describe the practical implementation oriented to it. In Section 6 we
compare our implementation against the well-known augmented Lagrangian code LANCELOT.
Conclusions are given in Section 7.

Notation.
In this work we use two (perhaps different) norms. We denote | - | a monotone norm on IR™
(Jv] € |w| whenever 0 < v < w) and || - || an arbitrary norm on IR™.

We denote C'(z) € IR™ " the Jacobian matrix of C(z) and Cj(z) = VCj(z)" for all j =
1,...,m.
We also denote C;‘(m) = max{Cj(z),0} and C*(z) = (C{ (z),...,C}t (2))".

2 Description of the Model Algorithm

Before giving a rigorous description of the algorithm, we will comment some of its main features.

2.1 Restoration Step

As we mentioned in the Introduction, given the current iterate z* € €, the model algorithm
computes and intermediate “more feasible” point y* € Q. The conditions that must be satisfied

by y* are
[CH (M) < rlCF ()] (2)

ly* —2*[| < BIC (2")]. (3)

where 7 € [0,1) and 8 > 0 are parameters given independently of k. Condition (2) states the
necessity of having an intermediate point at least as feasible as 2*. Condition (3) imposes that y*
must be equal to z* if the current point is feasible.

2.2 Approximate Linearized Feasible Region

After the computation of y* with the conditions (2) and (3) we define a linear approximation of
the feasible region of (1), containing the intermediate point y*. This auxiliary region is given by

me={z € Q | C;(y") + Cj(y") (= —y*) < CF (¥*) whenever C;(y*) > —p}, (4)

where p > 0 is a parameter given independently of the iteration index k. So, 7 is the intersection
of @ with the linear approximations of the sets C;(z) < Cf(yk), excluding the indices j that
correspond to constraints that, according to the tolerance p, are strongly satisfied at y*. If p is
large the approximate feasible region takes into account all the constraints Cj(z) < 0, indepen-
dently of C;j(y*). On the other hand, if p is small, only the constraints violated at y* tend to
be considered in the definition of 7. In other words, if C;j(y*) < —p, it is considered that the
approximation of the set C;(z) < 0 that uses information at y* is the whole space IR". In principle,
it should be better to use a large p, for this gives a more faithful representation of the true fea-
sible region. However, the subproblem involved in the Minimization Step is simpler when p is small.

2.3 Minimization Step

The objective of the Minimization Step is to obtain 2%¢ € 7 N By ; such that f(2?%) << f(yb),
where
By ={z e R" | ||z —y"|| <}, (5)

and d;; > 0 is a trust-region radius. The first trial point at each iteration is obtained using a
trust-region radius dy . Successive trust-region radius are tried until a point zF7 is found such
that the merit function at this point is sufficiently smaller than the merit function at z*.

The minimization step is preceded by the computation of the Cauchy-like direction (indepen-
dent of 7)

d*tm = Py(y* =V ") —y", (6)

where Pj(z) denotes the orthogonal projection of z on 7 and n > 0 is an arbitrary scaling

parameter independent of k. It turns out that d*!®" is a feasible descent direction for f on

7. Its norm will be used to define a convergence criterion for the algorithm. The trial point

y* + d®e" belongs to m, but it does not necessarily belong to By ;. So, we define the breakpoint
k +to s dk,tan b

Y (k,i,break) y

tihipreaky = sup {t € [0,1] | [¥*,y"* + td*'*"] C By} (7)

Moreover, the value of the objective function f at y* + t(k ; prear) ¥ is not necessarily smaller
than f(y"), therefore a sufficiently smaller functional value f(y* +¢(s; gec)d*'*™) must be obtained
using a classical backtracking procedure. Finally, 2% € m, N BBy ; will be any point such that
FGEMY) < FyR + trideyd™™™). Alternatively, z*? can be any point of m; N By; such that

F(z8%) < f(y*) — mdk,i or f(z%1) < f(y*) — 72, where 71 and 7> are nonnegative parameters of the
algorithm. This means that, for computing the trial point z* in an efficient way, we can apply
any reasonable algorithm (with a mild convergence criterion) to the resolution of the minimization
problem

Minimize f(z) subject to z € m N By;. (8)

Clearly, (8) is a linearly constrained optimization problem if || - || is the sup-norm.

2.4 Merit Function and Penalty Parameter

The comparison of z¥? and z* involves the evaluation of a merit function at both points. We

decided to use the exact penalty-like nonsmooth merit function, given by

Y(@,0) = 0f(x) + (1 - 0)|CT ()] 9)

where € € (0,1] is a penalty parameter used to give different weights to the objective function and
to the feasibility objective. The choice of the parameter 6 at each iteration depends of practical
and theoretical considerations. For example, if |C*(z*)| is large, the weight assigned to f(x) must
be small, for it does not make sense to worry about the functional values if the current point is
far from the feasible region. Our choice of the penalty parameter automatically takes into account
this practical necessity.

Roughly speaking, we wish that the merit function at the new point should be less than the
merit function at the current point z®. That is, we want Aredy; > 0, where Aredy,;, the “actual
reduction of the merit function”, is defined by

Ared,m» = ’I/J(ilﬁk,ek7i) — ’(/)(Zk’i,0k7i). (10)

So,
Aredy; = Oplf(a") = F(ZPD] + (1= 0)[|CF (&) = |CT ("))

However, as in unconstrained optimization, merely a reduction of the merit function is not sufficient
to guarantee convergence. In fact, we need a “sufficient reduction” of the merit function, that will
be defined by the satisfaction of the following test:

Ared,m» Z 0.1Predk7i, (].].)

where Predy,; is a positive “predicted reduction” of the merit function between z* and 2% In
our case, we define

Predy,; = 0[f(«") — f(z")] + (1= 06,0 [1CF (M) = [CF ()] (12)

The quantity Predy ; defined above can be nonpositive depending on the value of the penalty
parameter. Fortunately, if 6 ; is small enough, Predy; is arbitrarily close to |C(z*)| — |C(y*)]
which is necessarily nonnegative. Therefore, we will always be able to choose 8y ; € (0, 1] such that

Prede, > 5|0 ()] ~ 107 (")l (13

When the criterion (11) is satisfied, we accept zFT! = 2%, Otherwise, we reduce the trust-region
radius.

2.5 Description of the Model Algorithm

Assume that p > 0,7 >0, 8 >0, r € [0,1), dmin > 0, 1 > 0,72 > 0 are algorithmic parameters
given independently of k and Y, wy is a convergent series of nonnegative terms. Suppose that
x° € Q is an initial approximation to the solution and that §_; € (0,1) is an initialization of the
penalty parameter. Given z* € Q, 0,1 € (0,1], 8k,0 > dpmin, the steps for computing z*+1 or for
stopping the process are given by the following algorithm.

Algorithm 2.1
Step 1. Compute y*, d*t*" and decide termination

Compute y* € Q such that (2) and (3) hold. If this is not possible, stop the execution of the
algorithm declaring “failure in improving feasibility”. Otherwise, set i < 0, define

O —1 = min {1, min {#_1,...,0k_1} +wi}

and compute d®" using (6). If CT(z¥) = 0 and d*?" = (terminate the execution of the
algorithm declaring “finite convergence”.
Step 2. Minimization Step
Compute t(x ; prear) using (7). Define #; ; gec) as the first term ¢ of the sequence {tg,1,t5,2,...}
such that
Fly* +tdbt) < f(a®) + 016V f(y*), dbtem), (14)

where {tj ;} is defined by 51 = (1 break) and tg j11 € [0.1¢5,5,0.9% ;] for all j =1,2,...
Compute 2% € m, N By, ; such that

FGM) < max (" + b gen @), FOF) = midki Flu") -l (13)

Step 3. Choice of the penalty parameter
Define, for all 6 € [0, 1],

Predg;(6) = 0[f (") = f(z")] + (1 = O)[ICT (=")] = [CT (5")]].

Choose 0}, ; the supremum of the values of § in the interval [0, 6 ;_1] such that
1
Predy,;(6) > §[|C+(wk)| —[CF(y")I)- (16)

Step 4. Acceptance or rejection of the trial point

Define Aredy, ; and Predy; as in (10) and (12) respectively. If the test (11) is satisfied, define
it = ki 9, = 04, iacc(k) = i (“iacc” means “accepted i) and finish the iteration. If (11)
does not hold, choose 8 ;41 € [0.1d5,4,0.9054], set ¢ < i+ 1 and go to Step 2.

2.6 Some Remarks and Elementary Properties

By means of the introduction of the nonnegative parameters wy a “moderate” increase of the
penalty parameter between different iterations is permitted. This prevents the possibility of in-
heriting artificially small penalty parameters from the very beginning of the iterative process. It
is easy to see that the sequence of penalty parameters finally used at each iteration {6} is con-
vergent. In fact, defining 0y smey = min {6_1,...,60} and Ok jarge = Ok, smau + Wi, we see that
Or+1 < Ok targe and 8y > Op smau for all k. Clearly, {0 jarge} and {0k smau} are convergent to the
same limit, so {f} is also convergent. We can also prove, by induction, that) ; > 0 for all k, .

It is easy to verify that d**" is a descent direction. In fact, since y* € 7, we have that
1" =V F") = Pely® =0V G2 <IF =9V FE")) = ybl.
Therefore,
ly* = Pe(y* =V FGDIE + 10V FGOIE + 20(Pe(y® =0V F(y*)) — 4", V")
< IV £EOIz,

S0,

1 c
k,tan k < - k,tan 2 < k,tan||2 1
(@19, (5 € =g IS < = e, (17)

where ¢ > 0 is a norm-dependent constant. We can use classical arguments for justifying back-
tracking with Armijo-like conditions (see [11], Chapter 6), to show that #(; gec) is well defined at
Step 2 of Algorithm 2.1. In other words, given the current point z* and the trust-region radius dy ;
it is possible to compute, in finite time, the trial point z%:*.

3 General Assumptions and Consequences

(From now on, we will suppose that the nonlinear programming problem (1) satisfies the assump-
tions A1, A2 and A3 stated below. These will be the only assumptions on the problem that are
needed for proving convergence. In particular, no regularity assumptions are used in the proofs
and second derivatives of f and C' are not assumed to exist.

Al. Q is convex and compact.
A2. The Jacobian matrix of C(z) exists and satisfies the Lipschitz condition

1C"(y) = C"(@)|l < Lully — «| for all @,y € Q. (18)
A3. The gradient of f exists and satisfies the Lipschitz condition

IVf(y) = V@) < Leally — x| for all z,y € Q. (19)

Due to the equivalence of norms on IR™, similar conditions to (18) and (19) hold if we consider
different norms than || - ||. So, in order to simplify the notation, we can assume that (18) and (19)
hold with the same constants L; and Lo for all the norms considered in this work. From these
Lipschitz conditions it follows that

1C(y) = Clx) = C'(@)(y —)| < %Ily—xll2 (20)

and L
|f(y) = flx) = (Vf(z),y —z)| < 72||y—93||2 (21)

for all z,y € Q. Again, we can assume, without loss of generality, that (20) and (21) hold for
different norms with the same constants and that

Cj(y) = Cj(x) = Cj(@)(y —)| < %Ily—xll2 (22)

forall j=1,...,m.

The assumption on the boundedness of 2 can be replaced by hypotheses that state bounded-
ness of a set of quantities depending on the iterates. This is frequently done in global convergence
theories for SQP algorithms. We prefer to state directly Assumption Al since it seems to be the
only reasonable assumption on the problem that guarantees boundedness of the required quantities.

The following theorem is directly deduced from the general assumptions. It states a bounded
deterioration result for the feasibility of z%? in relation to the feasibility of y*. Briefly speaking,
we prove that only a second order deterioration of feasibility can be expected for a trial point « € 7.

Theorem 3.1. There exists c; > 0 (independent of k) such that, whenever y* € Q is defined

and x € Ty, we have
C* ()] <ICH (") + erlle — y*|1? (23)

Proof. Let j € {1,...,m}. By the compactness of Q and the continuity of C; there exists p > 0
such that whenever C;(y) < —p and Cj(z) > 0 it holds that ||z —y|| > p.
If Cf(a;) = 0, the inequality
+ + (o k
Ci (x) < C (y") (24)

holds trivially. If C’f () > 0 we analyze three different cases.
Case 1: 1f Cj(y*) > 0 (so Cf (y*) = Cj(y*)) we have, by (22) that
Ci(e) < O50") + CluM) @ —4*) + L lle — 1P
So, if z € my,
Ci(e) < OF (1) + 2ol — 1P
Therefore,
CF () < OF (4) + e — P (25)
Case 2: If 0 > C;(y*) > —p (so Cf(y’“) =0) and z € m; we have that C;(y*) +C}(y*)(z —y*) < 0.
But, by (22) we have that
Cj(e) < O50") + CluM) @ —4*) + S lle — 1P,
So,
Ci(e) < Zlle — P = OF () + Ll — o

This implies that (25) also holds in this case.
Case 3: Now consider the case C;(y*) < —p (so C} (y*) = 0). Let us define p; = max {C] (z), = €

1}. Clearly, we have that
+ +,ky . PL k|2
¢ (@) < 70 + Slle =yl (26)

for all € Q.
The desired results follows from the monotonicity of the norm |-| using (24), (25) and (26). O

In the next theorem we compute the decrease of the objective function that can be expected
when we move from y* to 2%

Theorem 3.2. There exist co > 0, c3 > 0 (independent of k) such that, whenever y* € Q is
defined and 2z is computed at Step 2 of Algorithm 2.1, we have that

F(51) < f(y*) — min {n, cof|d™ "%, 710k, cslld™" " |0k}

Proof. By (21) we have that

L
f) < f@) + (VF(@)y = 2) + S lly -«
for all 2,y € Q. So, since y* + d*t" € Q we have, for all ¢ € [0, 1], that

t2L,
2

Fly +1d54m) < F(g) + (T (), oy + =2 o

tL2

= F) + 0KV F(g), 4" + 0.9 1 (51), dom) + =2 don 2

So, (17) implies that

an any 0.9ct||dmtan)|2 2L, an
Pt 040m) <)+ 010 p(g), abvony - Sy b g

t||dbtan |2 0.9¢

= f") + 01V F ("), d™"*") + ————(tLs — T)_

Therefore, if t < %, we have that

F* 4+ td®) < F(yF) + 0.1V £ (y"), dPn).

This 1mphes that t(k i,dec) > min {t k,i,break)> nLQQC}'

Now, Uk ibreak) = min {1, Tax ta.nH} So,

0. 090 O,
t(kzdec) > min {]- ||dk taz,n“}
Thus, by the definition of ¢(; ; 4ec), it follows that
0. 0090 0.19
f(yk + t(kJ,dec)dk’mn) < f() + min {O 1, ——— ||dlc t:nZ” }(Vf(yk)’ dk,tan>'

So, by (17), we obtain

0.].C”dk tan”Z 000902||dk tan”Z 0.].C(Sszdk tan”

k k,tan k i
fly +t(k,i,dec)d) < f(y") — min { 21 ’ 212 Lo ’ 2n

Therefore,
FO + b e) < F(54) — min {ealld 12, es)},

0.1c 0.009¢2 _
5y 0 spLs) and c3 =

The desired result follows from the last inequality and (15). O

where ¢ = min Q.lc

In the last theorem of this section we prove that Algorithm 2.1 is well defined. This amounts
to show that, for small enough & ;, the inequality (11) is satisfied and, so, the trial point 2% is
accepted as new iterate.

Theorem 3.3. Algorithm 2.1 is well defined.
Proof. Observe that
Ared,m» - 0.1Predk7i
= 0.90ki[f (") = F(ZPO] + (1 = 81, [|CF (&) = |CT (P9 = 0.1(1 =) [|CT (2")] = [CT (y")]]
= 0.90k,:[f(2") = F(Z")] +0.9(1 = 81,)[|C* («F)| = |CT (y")]]
+(1 = O)[ICF ()] = [CF ()] = (1 = B)[ICT (aF)] = [CF ()]
= 0.9Pred;; + (1 — 0,.5)[|CT (¥*)| — |CF (z")]].
So, by (13) and (2),
Aredy,; — 0.1Predy,; > 0.45[C" («*)| — [CT (y*)[] = |(ICF (y*)| — |C* (z"T)])]

> 0.45(1 =)|CT (") = [(ICT ()] = [CT (D).

Therefore, if |CT(2*)| > 0, since ||y* — 28| < 0k and |CH(x)| is continuous, it follows that
Ared;; — 0.1Pred;; > 0 if d;; is small enough. So, we proved that the algorithm is well defined
if the current point z* is infeasible.

If z* is feasible, (3) implies that y* = z* and |CT(y*)| = 0. If d¥'*" # 0 we have that
F(z5) < f(y*) for alli = 0,1,2,.... So, the condition (13) is always satisfied and, consequently,
Ok, = 0,1 for all i = 0,1,2,... Therefore, in this case, we have

Aredy,; — 0.1Pred;; = 0.96; _1[f(y*) — f(zF)] — (1 = O,—1)|CT (z*7)].
So, by Theorems 3.1 and 3.2, we obtain that
Aredy,; — 0.1Predy,; > 0.96) _y min {72, ca||d***"||?, 710k i, c3||d¥ |0k i} — 1]z — v¥|1?.
Therefore, (11) holds if

0.99?—17'2)1/2||dk’m”||,)1/2||dk,tan||}'
1

Ok,s < min {()2 (

0.90197_102 (
C1

0.99k7_1T1 0.90197_103
C1 ’ C1

So, we proved that z**1 is well defined when z* is feasible and d***" £ 0. O

The next theorem is an important tool for proving convergence of the model algorithm. We
are going to prove that the actual reduction Aredy jqc.(x) effectively achieved at each iteration
necessarily tends to 0. An immediate consequence will be the feasibility of the limit points gener-
ated by the algorithm.

Theorem 3.4. Suppose that Algorithm 2.1 generates an infinite sequence. Then

lim 4 (z*,60;) — (2", 0,) =0

k—o00

10

Proof. Suppose, by contradiction, that there exists an infinite set of indices K; C {0,1,2,...} and
a positive number v > 0 such that

¢(mk+170k) S ¢(xk;9k) -

for all k € K. Let us write ¢ = ¢(z¥,0;) for all k € {0,1,2,...}.
Then, for all k¥ € {0,1,2,...} we have that

Gr1 = O f (@) + (1= Opp0)|CT (&)
= O F(@*)+ (1=040) |CF (&)= [0r f (2" +(1=05) |CF (&) 14+ [0n £ (") +-(1-5) |CF (2" F1)]]
= (k41 — k) F (&) + (O — Or1)|CF (@) + [Br f(2"1) + (1 = 65)|CF ("))
= (0 — k1) (|CF (") = @) + (06 (1) + (1= 00)|CF (")] —
= (O — Ok 1) (|CT (D) = F(@*N) + ¢ — i, (27)

where v, > 0 for all k € {0,1,2,...} and v, > v > 0 for all ¥ € K;. Now, by the definition of
0r,—1 at Algorithm 2.1, we have that

Or — Op1 +wi > 0. (28)
for all k € {0,1,2,...}. By the compactness of (2, there exists an upper bound ¢ > 0 such that
O+ (ah)] = F(ah)] < ¢
for all k € {0,1,2,...}. Therefore, by (27) and (28), we have that
Bis1 = (05 — B0 +w)(ICF (@) = F@I+1)) + 15 — 75 — w; (CF @) = f(@I 1))
< (05 =011 +wj)e+ vy — v+ wjc= (0 —j41)c+ 95 — 75 + 2wjc
for j =0,1,...,k — 1. Adding these k inequalities, we obtain

k—1 k—1 k—1 k—1
Yk <o+ (B0 —Ok)c+ > 2005 — > 5 <to+2e+ Y 20w — Y 7 (29)
7=0 7=0 7j=0 7=0

for all £ > 1. Since the series Z;’;O wj is convergent, and -y is bounded away from 0 for k € K,
(29) implies that ¢ is unbounded below. This contradicts the compactness of . O

An easy consequence of Theorem 3.4 is that, when Algorithm 2.1 generates an infinite sequence
(that is, it is not stopped at Step 1), we have that limy_,, |CT(2*)| = 0. This means that points
arbitrarily close to feasibility are eventually generated.

Theorem 3.5. If Algorithm 2.1 does not stop at Step 1 for oll k =0,1,2,..., then
lim |C*(z%)] = 0.
k—o0

(In particular, every limit point of {z*} is feasible.)

Proof. By (2), (11) and (13) we have that

Ct(z*)| - |0t (y* 2 20
| ()J _,|’_ ()| < 1— TPredk,iacc(k) < I—_T‘Aredk,iacc(k)

= [t 0 - 0 6]

So, the desired result follows from Theorem 3.4. O

|C*(2%)] <

11

4 Convergence to Optimality

In the former section we proved that, if the algorithm does not break down at Step 1, it achieves
approximate feasibility up to any desired precision. In this section we are going to prove that, in
that case, the optimality indicator ||d*?%"|| cannot be bounded away from zero. In practice, this
implies that given arbitrarily small convergence tolerances € feqs, €opt > 0, Algorithm 2.1 eventually
finds an iterate z* such that ||CF(2%)|| < €feqs and ||d¥ 7| < g4pe. For proving this result, we will
proceed by contradiction, assuming that ||d***"|| is bounded away from zero for k large enough.
From this hypothesis (stated as Hypothesis C below) we will deduce intermediate results that,
finally, will lead us to a contradiction.

Hypothesis C. Algorithm 2.1 generates an infinite sequence {x*} and there exists ¢ > 0, ko €
{0,1,2,...} such that
|5t > & for all k> ky.

Lemma 4.1. Suppose that Hypothesis C holds. Then, there ewist c4,c5 > 0 (independent of k)
such that

f@W*) — f(z"") > min {cq, 50k}
for all k > ko,i =0,1,...,iacc(k)

Proof. The result follows trivially from Theorem 3.2 and Hypothesis C. O

Lemma 4.2. Suppose that Hypothesis C holds. Then, there exist a,e1 > 0, independent of k and
i, such that |C*(z*)| < min {e1,ady;} implies that 0y; = Oy 1.

Proof. Observe that
Predy(1) = f(«*) — f(z"")
> f(y") = FEM) = [F@®) = FM) = Fy*) = F(5) = elly® = 2]

where c is a constant that only depends on the norms and on a bound of ||V f(z)|| on Q. Therefore,
by (3), and Lemma 4.1,

Predy, ;(1) — %|C+(azk)| > min {cy, 505, — (B + 0.5)|C+(azk)|.
Define

T eB+05 T ¢f+05

If |C*(2%)| < min {e1,ad} we have that

€1

Predy, ;(1) — %|C+(azk)| > 0.

This implies that any value of 6y ; in the interval [0, 1] satisfies (13). In particular 0 ;_; satisfies
(13), as we wanted to prove. O

In the next Lemma, we prove that, under Hypothesis C, the penalty parameters {6} are

bounded away from zero. It must be warned that this is a property of sequences that satisfy
Hypothesis C (which, in turn, will be proved to be non-existent!) and not of all the sequences

12

effectively generated by the model algorithm.

Lemma 4.3. Suppose that Hypothesis C holds. Then, there exists > 0 such that 8, > 6 for all
ke {0,1,2,...}.

Proof. We are going to show first that, if |C+(z*)] is sufficiently small, a step dx; that satisfies

|CF (2*)] > <6 (30)
10 ™
is necessarily accepted, where « is defined in Lemma 4.2.

In fact, assume that (30) holds. Then, by (13) and (2),

1 1-r
Predi; > (10 (@) - [C*)] 2 5T I0t) 2 S5,
So, (30) implies that

20
O < ————Predy, ;. 1
ki S (1 — ’I‘)Oé redg,; (3)

Now, by Theorem 3.1,
Aredy,; = Pred;; + (1 — 9k7i)[|C+(yk)| — |C+(zk’i)|] > Pred;; — 016,%71».
Therefore, by (31), (30) implies that

20001

Aredy; > Pred;; — m

20c
m(Sk,iPredkﬂ' Z (]. —

So, if (30) holds and |C*(z*)| < %, the trial point 2% is necessarily accepted.
Let us define

|Ct (xk)|)Predk7i.

2
€2 = min {ey, %,a&mm},
where £ is defined in Lemma 4.2. Let k; > ko be such that |C(z*)| < e for all k > k;. Since
Omin > Lﬁf’c)‘, this implies that d; 0 > % for all £ > k;. Therefore, a possible trust region
radius such that d;; < % cannot correspond to ¢ = 0, so it is preceded by 6y ;1 which
necessarily verifies
Op,io1 < 10@-

By the reasoning displayed above, the trial point =1 is accepted for all k& > k;. Therefore,

Ok > % for all k > k1, i=0,1,...,iacc(k). So, by Lemma 4.2, the penalty parameter 6y, ;
is never decreased for all k£ > k;. This implies the desired result. O

Finally, we prove, in Theorem 4.4, that Hypothesis C cannot be true.

Theorem 4.4. Let {z*} be an infinite sequence generated by Algorithm 2.1. Then, there exists
K», an infinite subset of {0,1,2,...}, such that

: k,tan —
Jim (|- =0, (32)

13

Proof. Suppose that the thesis of the theorem is not true. Then, there exists ky € {0,1,2,...},
€ > 0 such that Hypothesis C holds.
As in the beginning of the proof of Theorem 3.3, observe that, by Theorem 3.1,

Ared;; — 0.1Predy ;
= 0.9{01i[f (") = F")] + (1=) [ICF (@) = [CT (y")]} + (1 =) [ICF (y")] — |CF (%))
> 0.905,i[f (") = F(25)] + 0.9k, [F («*) = f(y")] = (1 = r)|CT (a")] — c16F ;-
So, by Lemma 4.1, Lemma 4.3, and (3),
Aredy,; — 0.1Predy,; > 0.99 min {c4, c505,;} — c|CT ()| - cﬁ}ii

for all k > ko, i = 0, 1,iacc(k), where ¢ is a norm-dependent constant that also depends on a bound
of ||V f(z)|| on .
Let us define
6 = min {(0.450cy/c1)*/?,0.450c5 /¢y }.

If 6, < 5 we have that B
016,%71» < 0.456 min {c4, 50k, },

so, when d; ; < 0, we have that
Aredy,; — 0.1Predy,; > 0.450 min {cy, c505:} — c|CF (z¥)] (33)

for all k > ko, i = 0,1,iacc(k). Let ko > ko be such that
- 5
c|CT(z%)| < 0.450 min {04,051—0}
for all k > k2. By (33) and (34) we have that, for all k > ks, if i € {0,1,2,...} corresponds to the
first trust-region radius d ; less than or equal to 5 (so, 5> Ok,i > %),

(34)

Ared; ; — 0.1Pred; ; > 0.

This means that dy ; > % must be accepted. Therefore,

Ok iace(k) = 1%
for all k > ks. So, if k > ks we have, by Lemma 4.1, Lemma 4.3 and (3), that
Predy joce(k) = Or iacetn) [f (@) = FE)] + (1 = Opiace)) [|CT (@) = 1CT (y")]]
= O iace LF(U°) = FEPO] 4 Ok iacen [F(2) = FUE)] + (1= Ok iacer)[ICT (&) = 1CT (y")]]

> 0l (y*) = F(Z5O] = |f(2*) = F(y")| = 1CF (&*)] > § min {es, %S} =d|Ct (@) (35)

for all k > k., where ¢ is a constant that depends on the norm and the bound of ||V f(z)|| on Q.
Now, let k3 > ko be such that
6 cs0

"ot (2R < Z mi ik
d|CT(z")] < 5 min {ca, 10}
for all k > k3. By (35), Predy jocc(r) is bounded away from zero for all k > k3. This implies, by
(11), that Aredy jocc(k) is bounded away from zero for all k& > k3. Clearly, this contradicts Theo-
rem 3.4. This means that Hypothesis C cannot be true. Therefore, the desired result is proved. O

14

5 Application: Hard-Spheres Problems

The Hard-Spheres problem belongs to the family of sphere packing problems, a class of challeng-
ing problems dating from the beginning of the seventeenth century which is related to practical
problems in Chemistry, Biology and Physics (see [7, 32]). It consists on maximizing the minimum
pairwise distance between ¢ points on a sphere in IR¥"™. This problem may be reduced to a
nonconvex nonlinear optimization problem with a potentially large number of (nonoptimal) points
satisfying optimality conditions. We have, thus, a class of problems indexed by the parameters dim
and ¢, that provides a suitable set of test problems for evaluating nonlinear programming codes.
The straightforward formulation of the Hard-Spheres problem is:

Maximize min;z; ||w’ — wi|| (36)
subject to ||w¥||=1,k=1,...,q,
where the vectors w* belong to IR¥™ and || - || is the Euclidean norm. This is equivalent to
Minimize — max;z; (w’, w/) (37)

subject to |[wk||? =1=0,k=1,...,q.

Applying the classical trick for transforming minimax problems into constrained minimization
problems, we reduce (37) to the nonlinear program

Minimize z
subject to (w',w’) —z <
Jwk[* =1 =

0, for all i # j, (38)
0,k=1,...,q.

The structure of the Hard-Spheres problems suggests a natural Restoration Step, which does
not rely on sophisticated algorithms for solving (2)—(3). Assume that z* = (w!,...,w?,z) is the
current point at the k—th iteration. Replacing

) wl
w — ——,7=1,...
||w] ||) J)) q
and
z + max{(w,w’), i # j}

L. ..,wi,z) that satisfies exactly the constraints. If (3) is violated

by z (so ||z — z*|| > B||CT (z*)]]), we replace z by z* + %(w—xk). If this point violates (2)
we declare “failure in improving feasibility” at the Restoration Phase. In our experiments we
used B = 4,7 = 0.99. Obviously, this restoration procedure relies on the specific structure of
the constraints (38) and we take advantage of the freedom allowed by the Inexact-Restoration
algorithm on the choice of the restored point.

For the Minimization Step we use the well-known linearly constrained minimization solver
implemented in the MINOS system, Version 5.4 (see [24]). The problem to be solved by MINOS
is to minimize the variable z on the intersection of polytope defined by the linearization of the
inequality constraints of (38) and the trust region box around of y*. We used the defaults of
MINOS for optimality and feasibility and the “Warm Start” option at each Minimization Step.
Since the subproblem solved by MINOS is a a Linear Programming problem, we can assume that
MINOS finds a global solution, so that the inequality f(z%%) < f(y* + t(k7i7dec)dk7t“”) (see (15))
necessarily holds. Therefore, in this case it is not necessary to specify the parameters 7, 72 and 1.
In practice, each execution of MINOS was stopped with the default convergence criterion relatively
to the norm of the reduced gradient and signs of the multipliers.

we obtain a point z = (w

15

The nonnegative sequence for the penalty parameter of the merit function at Step 1 of Algo-

rithm 2.1, was wy, = ﬁ, where n = ¢ x din+ 1 and the initial penalty parameter was 6_; = 0.5.

After some preliminary tests we used p = 10.

We used the following criterion to update the trust region radius dy, ;. If the sufficient reduction
condition (11) does not hold at Step 4 in Algorithm 2.1, we set dy, ;41 = Ji,;/8. On the other hand,
to restart at the beginning of an iteration, we set 0y 0 = max{0min,40k_1,acc }, With dpmin = do0 =
0.5.

The theoretical properties of the Inexact—Restoration algorithm guarantee that, if break-down
does not occur at the Restoration Step, then given any e > 0 there exists k such that ||CT(zF)|| < e
and ||d***"|| < e. In our practical implementation we declared “convergence” when ||C* (z¥)||o <
10~8. Since z* comes from the Minimization Step performed by MINOS, when this occurs we
necessarily have that d*=1te" ~ (.

Let us comment now the choice of the parameters of LANCELOT. The manual [6] (p.111)
“strongly recommends the use of exact second derivatives whenever they are available”. In fact we
ran a few tests with the default approximation SR1 but the results were worse than those obtained
using exact second derivatives, and thus this was the option adopted for all further tests. We also
experimented several different options for the linear equation solver: without preconditioner, with
diagonal preconditioner and with a band matrix preconditioner. The best results were obtained
with the first option (no preconditioner). Moreover, after some preliminary tests, we decided to
use the “inexact Cauchy point” option. The maximum number of iterations allowed was 1000.
Finally, the gradient and constraints tolerances were the same chosen for the Inexact—Restoration
algorithm, namely 108, Both codes are in FORTRAN and the compiler option adopted for both
was “-O”.

6 Numerical experiments

Tests were run on a Sun SparcStation 20, with the following main characteristics: 128Mbytes of
RAM, 70MHz, 204.7 mips, 44.4 Mflops. We ran both codes using 50 initial random points for each
problem. The results are summarized in Table 1. This table lists the eigtheen problems with the
number of variables and constraints and the statistic information related to the minimum distance
between two points (minimum, maximum, average) and CPU time (minimum,maximum, average)
using the Inexact—Restoration algorithm (first row of each set) and the ones using LANCELOT
(second row).

The information contained in Table 1 is depicted graphically below. The intervals (min, max)
of distances/log(CPU times) are represented by vertical segments, the averages are indicated with
a diamond symbol for the Inexact—Restoration algorithm and a bullet for LANCELOT. Graphs
on the left refer to distances whereas graphs on the right refer to log(CPU times).

16

Problem size

minimum distance between 2 points

CPU time (seconds)

[g] var. | constr. min. max. average min. max. |average
3 1.0514622] 1.0914262] 1.0822176] 0.46] 0.79] 0.61
[10} 31 55 1.0514656] 1.0914302] 1.0874007| 0.83] 2.51] 1.50
3 1.0514622| 1.0514622| 1.0514622| 0.64] 0.91] 0.76
[11} 34 66 1.0514656] 1.0514656| 1.0514656] 1.10] 3.92] 1.81
3 0.9447876| 1.0514622| 1.0493287| 0.81] 1.37| 0.99
[12] 37 8 0.9447856] 1.0514656| 1.0430604] 1.53] 3.29] 2.24
3 0.9427907| 0.9564136| 0.9499126] 0.88] 1.25| 1.00
[13} 40 o 0.9443516] 0.9564099| 0.9512710] 2.26] 8.06| 4.12
3 0.9161167| 0.9338626] 0.9293394| 1.04] 147 1.24
[14} 431 105 0.9025741] 0.9338629] 0.9305515] 2.49] 9.05] 5.12
3 0.8745439] 0.9026562| 0.9008776] 1.16] 1.92] 1.47
[15} 46| 120 0.8734529] 0.9026516] 0.9009286] 3.25] 12.73] 7.37
A 0.9824163| 1.0019895| 0.9951659] 5.29| 17.43] 8.12
[22} 891 253 0.9840223| 1.0019880[0.9967615] 30.49] 209.27| 69.85
A 0.9693916/ 1.0000000{ 0.9827767| 6.73| 16.74| 10.31
[23} 93| 276 0.9740944] 0.9918568| 0.9847650] 29.26] 178.84] 89.80
4 0.9573460] 1.0000000] 0.9734775| 7.13] 19.26] 12.34
[24} 97| 300 0.9580083| 0.9828733[0.9751985| 43.16] 239.77| 112.78
4 0.9477678| 0.9616207| 0.9569177| 8.25| 17.97| 12.58
[25} 101} 325 0.9465833| 0.9619563| 0.9574963| 49.00| 268.49| 131.18
A 0.9327032] 0.9583427| 0.9474299] 9.99 29.60| 15.57
[26} 1051 351 0.9367603] 0.9583423[0.9491615] 39.90] 565.90] 164.47
A 0.9276386| 0.9394150| 0.9344075| 11.08| 33.88| 17.06
[27} 109 378 0.9273834] 0.9389142| 0.9345753] 79.26] 332.12| 173.13
5 0.9905835| 1.0045763| 0.9993300| 68.66| 369.42| 149.48
[37} 186] 703 0.9911508| 1.0025367| 0.9979124| 444.81[2501.76/1154.08
5 0.9842019| 1.0019176| 0.9917008| 93.85| 527.66| 168.08
[38} 191} 74l 0.9864684| 1.0019880[0.9930711| 546.55(3105.86|1538.54
5 0.9772092| 0.9929902| 0.9871450| 108.71| 461.15| 204.96
[39} 1961 780 0.9808159] 0.9920786] 0.9881178| 502.38]3161.88[1782.30
5 0.9734556| 0.9886857| 0.9818932| 100.08| 600.04| 220.59
[40} 201\ 820 0.9701958| 0.9920282| 0.9810864| 863.85[3820.43[1907.57
5 0.9686624| 0.9818115| 0.9746239| 117.34| 435.91| 195.79
[41} 206|861 0.9644272] 0.9819470] 0.9757435|1148.77[4669.87(2521.84
5 0.9612090| 0.9793985| 0.9693361| 105.37| 641.68| 213.74
[42} 211\ 903 0.9599791] 0.9798367| 0.9702516| 807.57|4664.63|2473.78

Table 1: Minimum distances and CPU times

17

min. log(CPU
114 3.01

fl
i N | |
. H””w i\}JJ++

t
0.7 —— 0.0 + :

RIS B IR B

Figure 1: Inexact-Restoration (¢) and LANCELOT (e) results for n = 3.

18

min.
dist.

1.01¢

0.991

097t

0.951

0.931

0.91

log(CPU
time)
6.40 +

f

| "y 4}

ﬁ 1.28 1

|

0.0

EREEEEE

Figure 2: Inexact-Restoration (¢) and LANCELOT (e) results for n = 4.

NRERE

4
26

|

4
27

0

The graphs in Figures 1-3 evidence the qualitative relative behavior of both codes. Notice
that the diamonds and bullets are always close together in the graphs on the left, indicating that
the quality of the optimal solutions obtained by both codes is similar. On the other hand, the
bullets rise faster than the diamonds on the graphs on the right, which means that the CPU times
for LANCELOT tend to be higher than those of the Inexact-Restoration code. The linear fit
of Inexact—Restoration CPU times versus LANCELOT CPU times is y = 0.095z + 4.466 (see
Figure 4). Observe that, in fact, the linear coefficient is less than 0.1 .

19

n
p

|

min.
dist.

1.01¢

1.00 1

0.991

0.98 1

097t

0.96

300

250

200+

150

100

30

log(CPU
time)
85T
?* 7.6+
I r 6.71
% 5.8+
4.9t
} } } } } } 4.0 } } } } } }
51 51[5][51[5]]5 [”} 515]1[5]1[5]1[5][5 {”}
3711381394041 |42 p 37(1138((139](40(|41]|42 p
Figure 3: Inexact-Restoration (¢) and LANCELOT (e) results for n = 5.
CPU times
Inexact-Rest. y = 0.095 z + 4.466

CPU times
LANCELOT

500 1000 1500 2000 2500

Figure 4: CPU times of LANCELOT versus those of Inexact-Restoration Alg.

20

In Figure 5 we compare the CPU times of both algorithms for the eigtheen problems considered.
This figure shows clearly the good performance of our Algorithm, specially when the size of the
problem increases.

CPU times
3000
2500+ ¢ e
2000 .

[
1500 *
[]
1000
500
g 8 o o * & o O ¢ © o ¢ Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 5: CPU times: Inexact-Restoration (¢) and LANCELOT (e).

7 Final remarks

Since the method presented in this paper is a model algorithm, many possible implementations
can be given. The efficiency of different implementations should be linked to the quality of the
algorithms chosen for performing different steps. For the Restoration Step we need an algorithm
that solves (2)—(3). Since, in most cases, || - || will be the sup-norm and © will be a box, we can
choose any of the many available methods for large-scale box-constrained minimization for solving
this problem.

In the Minimization Step we need an approximate solution of (8). Generally, this is a linearly
constrained minimization problem. For its resolution active set methods are generally recom-
mended (see, for example, [23]). However, last decade large-scale optimization research suggests
that efficient implementations can also result from the application of interior point methods to (8).
See [33].

In this paper we did not use regularity assumptions to prove global convergence of infinite
sequences generated by the algorithm. This does not mean that regularity is not playing any role
in practical circumstances. Roughly speaking, lack of regularity can cause a failure in Restoration
Phase, resulting in break-down at Step 1. In fact, our theoretical results show that, if the original
problem is infeasible, break-down will necessary take place for some (finite) value of the iteration k,
that is, an infinite sequence will not be generated. On the other hand, we proved that when in-
finitely many points are generated, all the limit points are feasible. Finally, the results on Section 4
show that at least one of these limit points is stationary in the sense that limge, ||d¥"| = 0
when {zy}rek, is the corresponding convergent subsequence. The relations between this type of
stationarity and necessary or sufficient conditions for local minimization remain to be investigated.

21

References

[1]

2]

8]

[4]

[7]
8]
[9]

[10]

[11]
[12]
[13]
[14]

[15]

J. Abadie and J. Carpentier, Generalization of the Wolfe reduced-gradient method to the case
of nonlinear constraints, Optimization, Edited by R. Fletcher, Academic Press, New York,
pp. 37-47, 1968.

R. H. Bielschowsky, Nonlinear programming algorithms with dynamic definition of near-
feasibility: theory and implementations, Tese de Doutorado, IMECC-UNICAMP, Campinas,
1996.

R. H. Byrd, Robust trust region methods for constrained optimization, Contributed presen-
tation, STAM Conference on Optimization, Houston, Texas, 1987.

R. H. Byrd, J. Ch. Gilbert and J. Nocedal, A trust region method based on interior point tech-
niques for nonlinear programming, Technical Report OTC 96/02, Optimization Technology
Center, Argonne National Laboratory and Northwestern University, Illinois, 1996.

M. R. Celis, J. E. Dennis and R. A. Tapia, A trust-region strategy for nonlinear equality
constrained optimization, Numerical Optimization, Edited by P. Boggs, R. Byrd and R.
Schnabel, STAM Publications, Philadelphia, Pennsylvania, pp. 71-82, 1985.

A. R. Conn, N. I. M. Gould and Ph. L. Toint, LANCELOT: a Fortran package for large-
scale nonlinear optimization (Release A), Springer Series in Computational Mathematics 17,
Springer Verlag, Heidelberg, Berlin, New York, 1992.

J H. Conway and N. J. C. Sloane, Sphere Packings, Lattices and Groups., Springer-Verlag,
New York, 1988.

R. S. Dembo, S. C. Eisenstat and T. Steihaug, Inexact Newton methods, STAM Journal on
Numerical Analysis, Vol. 19, pp. 400-408, 1982.

J. E. Dennis and M. El-Alem, A trust-region algorithm for solving feasibility problems, Tech-
nical Report, Department of Applied and Computational Mathematics, Rice University,
Houston, Texas, 1996.

J. E. Dennis, M. El-Alem and M. C. Maciel, A global convergence theory for general trust-
region-based algorithms for equality constrained optimization, SIAM Journal on Optimiza-
tion 7 (1997), 177-207.

J. E. Dennis and R. B. Schnabel, Numerical methods for unconstrained optimization and
nonlinear equations, Prentice Hall, Englewood Cliffs, NJ, 1983.

M. El-Alem, A robust trust region algorithm with a nonmonotonic penalty parameter scheme
for constrained optimization, SIAM Journal on Optimization, Vol. 5, pp. 348-378, 1995.

D. M. Gay, A trust-region approach to linearly constrained optimization, Poceedings of the
Dundee Biennial Conference on Numerical Analysis, 1983.

P. E. Gill, W. Murray and M. H. Wright, Practical optimization, Academic Press, London,
England, 1981.

F. M. Gomes, M. C. Maciel and J. M. Martinez, Nonlinear programming algorithms using
trust regions and augmented Lagrangians with nonmonotone penalty parameters, Relatério
Técnico, IMECC-UNICAMP, Campinas, 1995. To appear in Mathematical Programming.

22

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

M. Lalee, J. Nocedal and T. Plantenga, On the implementation of an algorithm for large-scale
equality constrained optimization, Technical Report N.A.M. 08, E.E.C.S. Dept., Northwestern
University, 1993.

L. S. Lasdon, Reduced gradient methods, in Nonlinear Optimization 1981, edited by M. J. D.
Powell, Academic Press, New York, pp. 235-242, 1982.

J. M. Martinez, A two-phase trust-region model algorithm with global convergence for non-
linear programming, Journal of Optimization Theory and Applications, Vol. 96, pp. 397-
436, 1998.

J. M. Martinez and S. A. Santos, A trust region strategy for minimization on arbitrary
domains, Mathematical Programming, Vol. 68, pp. 267-302, 1995.

A. Miele, H. Y. Huang and J. C. Heideman, Sequential gradient-restoration algorithm for the
minimization of constrained functions, ordinary and conjugate gradient version, Journal of
Optimization Theory and Applications, Vol. 4, pp. 213-246, 1969.

A. Miele, A. V. Levy and E. E. Cragg, Modifications and extensions of the conjugate-gradient
restoration algorithm for mathematical programming problems, Journal of Optimization The-
ory and Applications, Vol. 7, pp. 450-472, 1971.

A. Miele, E. M. Sims and V. K. Basapur, Sequential Gradient-Restoration algorithm for math-
ematical programming problem with inequality constraints, Part 1, Theory, Rice University,
Aero-Astronautics Report No. 168, 1983.

R. B. Murtagh and M. A. Saunders, Large-scale linearly constrained optimization, Mathe-
matical Programming, Vol. 14 | pp. 41-72, 1978.

B. A. Murtagh and M. A. Saunders, MINOS 5.4 User’s guide, Technical Report SOL 83-20
R, 1995, Stanford University.

E. Omojokun, Trust-region strategies for optimization with nonlinear equality and inequality
constraints, PhD Thesis, Department of Computer Science, University of Colorado, Boulder,
Colorado, 1989.

M. J. D. Powell and Y. Yuan, A trust-region algorithm for equality constrained optimization,
Mathematical Programming, Vol. 49, pp. 190-211, 1991.

M. Rom and M. Avriel, Properties of the sequential gradient-restoration algorithm (SGRA),
Part 1: Introduction and comparison with related methods, Journal of Optimization Theory
and Applications, Vol. 62, pp. 77-98, 1989.

M. Rom and M. Avriel, Properties of the sequential gradient-restoration algorithm (SGRA),
Part 2: Convergence Analysis, Journal of Optimization Theory and Applications, Vol. 62,
pp- 99-126, 1989.

J. B. Rosen, The gradient projection method for nonlinear programming, Part 1, Linear
constraints, STAM Journal on Applied Mathematics, Vol. 8, pp. 181-217, 1960.

J. B. Rosen, The gradient projection method for nonlinear programming, Part 2, Nonlinear
constraints, STAM Journal on Applied Mathematics, Vol. 9, pp. 514-532, 1961.

J. B. Rosen, Two-phase algorithm for nonlinear constraint problems, Nonlinear Program-
ming 3, Edited by O. L. Mangasarian, R. R. Meyer and S. M. Robinson, Academic Press,
London and New York, pp. 97-124, 1978.

23

[32] E. B. Saff and A. B. J. Kuijlaars, Distributing many points on a sphere, Mathematical
Intelligencer, Vol. 19, pp. 5-11, 1997.

[33] M. H. Wright, Interior point methods for constrained optimization, Acta Numerica 1992,
pp. 341-407, 1992.

24

