Level-continuity of functions and applications ${ }^{1}$

Heriberto Román-Flores

Departamento de Matemática, Universidad de Tarapacá, Casilla 7D, Arica, Chile.
and
M.Rojas-Medar

IMECC-UNICAMP, CP6065,13081-970, Campinas SP, Brasil

Abstract

In this paper, we study the concepts of level-continuity and proper local maximum points of functions defined on a topological space X and, on the one hand, we stablish that, under adequate conditions, f is level-continuous iff f is without proper local maximum points and, on the other, we prove that level-convergence and variational convergence (Γ-convergence) of functions are equivalent when the limit function is level-continuous.

Keywords- Topological spaces, Kuratowski limits, variational convergence.

1. INTRODUCTION

The study of the variational convergence and his applications has been done by many authors, including De Giorgi\&Franzoni [1] and Attouch [2] in the setting of the calculus of variations, Greco [3] and Rojas\&Román-Flores [4] in convergence of fuzzy sets on locally compact metric spaces and finite dimensional spaces,respectively.

This convergence is based on the Kuratowski limits and one of the most important properties of the Γ-convergence is the preservation of maximum points in Γ-convergents sequences of functions. More precisely: let $\left\{f_{n}\right\}_{n}$ be a sequence of real functions on X and let x_{n} be a maximum point of f_{n}. If $f_{n} \xrightarrow{\Gamma} f$ and $x_{n} \rightarrow x$, then x is a maximum point of f and $f(x)=\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)$.

On the other hand, the level-continuity and level convergence has been used by the author in multivalued characterizations of certain class of maximum points of functions on \mathbb{R}^{n} ([5]) and compactness of spaces of fuzzy sets on a metric space X ([6]).

[^0]The aim of this paper is, on the one hand, to introduce the concept of levelcontinuity of functions and to analyze his connections with the existence of proper local maximum points and, on the other, to compare level-convergence (L-convergence) with Γ-convergence.This analysis is carried out in the setting of regular topological spaces, and generalizes the results obtained by the author in [5-6].

This paper is organized as follows. In Section 2 we give the previous results that will be used in the article. In Section 3 we introduce the concept of level-continuity of non-negative real functions defined on X and we study its connections with the existence of proper local maximum points.

Finally, in Section 4 we compare L-convergence with Γ-convergence. Furthermore, some examples are presented.

2. PRELIMINARIES

In the sequel, all topological spaces will be assumed to be regular (see [7]), unless specifically stated.

Definition 2.1. Let (X, \mathcal{T}) be a topological space and let $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ a sequence of subsets of X.
i) A point $x \in X$ is a limit point of $\left\{A_{n}\right\}_{n}$ if, for every neighborhood U of x, there is an $n \in \mathbb{N}$ such that for all $m \geq n, A_{m} \cap U \neq \emptyset$.
ii) A point $x \in X$ is a cluster point of $\left\{A_{n}\right\}_{n}$ if, for every neighborhood U of x, and every $n \in \mathbb{N}$, there is an $m \geq n$ such that $A_{m} \cap U \neq \emptyset$.
iii) liminf A_{n} is the set of all limit points of $\left\{A_{n}\right\}_{n}$.
iv) $\limsup A_{n}$ is the set of all cluster points of $\left\{A_{n}\right\}_{n}$.

If $\liminf A_{n}=\limsup A_{n}=A$, then we say A is the limit of the sequence $\left\{A_{n}\right\}_{n}$, the sequence $\left\{A_{n}\right\}_{n}$ converges to A (in the Kuratowski sense), and we write $A=\lim A_{n}\left(\right.$ or $\left.A_{n} \xrightarrow{K} A\right)$.

Proposition 2.2. If $\left\{A_{n}\right\}_{n}$ is a sequence of subsets of X, then
i) $\liminf A_{n} \subseteq \limsup A_{n}$.
ii) $\liminf A_{n}$ and $\limsup A_{n}$ are closed subsets of X.
iii) $\lim \sup A_{n}=\bigcap_{n=1}^{\infty} \overline{\bigcup_{k \geq n} A_{k}}$
iv) $\liminf A_{n}=\bigcap_{H} \overline{\bigcup_{k \in H} A_{k}}$, where H denotes an arbitrary cofinal subset of \mathbb{N} and the intersection is over all such H.

For more details see [7-8].
Remark 2.3. We recall that H is a cofinal subset of \mathbb{N} if $\forall n \in \mathbb{N}, \exists m \in H$ such that $m>n$.

Definition 2.4. If $f: X \rightarrow[0, \infty)$ is a function and $\alpha \in(0, \infty)$, then we define the α-level and the strict α-level of f by

$$
\begin{aligned}
& \{f \geq \alpha\}=L_{\alpha} f=\{x \in X / f(x) \geq \alpha\} \text { and } \\
& \{f>\alpha\}=\{x \in X / f(x)>\alpha\}
\end{aligned}
$$

respectively.
We observe that $\alpha \leq \beta$ implies $L_{\alpha} f \supseteq L_{\beta} f$.

Definition 2.5. Let $f: X \rightarrow[0, \infty)$ be. Then $x_{0} \in X$ is said to be a local maximum point of f if there is a neighborhood U of x_{0} such that $f(x) \leq f\left(x_{0}\right)$, for every $x \in U$ and $0<f\left(x_{0}\right)<\sup _{x \in X} f(x)$. Definition 2.6. Let $f: X \rightarrow$ $[0, \infty)$ be and $\sup _{x \in X} f(x)=M$ (which may be ∞). We say that f is level-continuous if $\alpha_{p} \rightarrow \alpha$ implies $L_{\alpha_{p}} f \xrightarrow{K} L_{\alpha} f, \forall \alpha \in(0, M)$.

The following examples shows that continuity and level-continiuty are independent conditions.

Example 2.7. Let $X=[0,1]$ be and \mathcal{T} the usual topology generated by the usual metric on X. Define $f: X \rightarrow[0, \infty)$ by

$$
f(x)=\left\{\begin{array}{lll}
1-x & \text { if } & 0 \leq x \leq \frac{1}{2} \\
\frac{1}{2} & \text { if } & \frac{1}{2}<x \leq 1
\end{array}\right.
$$

Then is clear that f is continuous.
On the other hand, taking $\alpha_{p}=\frac{1}{2}+\frac{1}{p}, p \geq 2$, we have that

$$
L_{\alpha_{p}} f=\left[0, \frac{1}{2}-\frac{1}{p}\right], \forall p
$$

Thus, $\limsup L_{\alpha_{p}} f=\bigcap_{p=1}^{\infty} \overline{\bigcup_{k \geq p} L_{\alpha_{k}} f}=\bigcap_{p=1}^{\infty} \overline{\bigcup\left[0, \frac{1}{2}-\frac{1}{k}\right]}=\left[0, \frac{1}{2}\right]$, whereas $L_{1 / 2} f=[0,1]$. Consequently, f is not level-continuous.

Example 2.8. Let (X, \mathcal{T}) be as in Example 2.7 and $f: X \rightarrow[0, \infty)$ defined by

$$
f(x)=\left\{\begin{array}{lll}
1 & \text { if } & x=1 \\
0 & \text { if } & x \neq 1
\end{array}\right.
$$

Then, clearly, f is not continuous.
But, for each $\alpha \in(0,1)$, we have that $L_{\alpha} f=\{1\}$. Therefore, f is levelcontinuous.

Remark 2.9. We observe that $f: X \rightarrow[0, \infty)$ it is always left level-continuous, that is, if $\alpha_{p} \nearrow \alpha$ then $L_{\alpha_{p}} f \xrightarrow{K} L_{\alpha} f$. In fact, suppose that $x \in \bigcap_{p=1}^{\infty} \bigcup_{k \geq p} L_{\alpha_{k}} f$. Then

$$
\begin{equation*}
x \in \overline{\bigcup_{k \geq p} L_{\alpha_{k}} f}, \forall p \tag{1}
\end{equation*}
$$

Now, if $f(x)<\alpha$, then there exists p_{0} such that $f(x)<\alpha_{k}, \forall k \geq p_{0}$.
Therefore, $x \notin L_{\alpha_{k}} f, \forall k \geq p_{0}$.
Because X is regular and $L_{\alpha_{p_{0}}} f$ is closed, then there exists $U(x)$ such that $U \cap L_{\alpha_{p_{0}}} f=\emptyset$. But $L_{\alpha_{p_{0}}} f \supseteq \bigcup_{k \geq p_{0}} L_{\alpha_{k}} f$ and, consequently, $U \cap\left[\bigcup_{k \geq p_{0}} L_{\alpha_{k}} f\right]=\emptyset$, that is, $x \notin \overline{\bigcup_{k \geq p_{0}} L_{\alpha_{k}} f}$, in contradiction with (1).

So, must be $f(x) \geq \alpha$ and, consequently, $\limsup L_{\alpha_{p}} f \subseteq L_{\alpha} f$.
For the reverse inclusion, let $x \in L_{\alpha} f$ and H a cofinal subset of \mathbb{N}.
Then, $x \in L_{\alpha} f$ implies that $f(x) \geq \alpha \geq \alpha_{k}, \forall k$ and, therefore, $x \in$ $L_{\alpha_{k}} f, \forall k$, which implies $x \in \bigcup_{k \in H} L_{\alpha_{k}} f$.

So, $x \in \bigcap_{H} \bigcup_{k \in H} L_{\alpha_{k}} f$ where the intersection is over all H cofinal in \mathbb{N}.
That is, $x \in \lim \inf L_{\alpha_{p}} f$. Thus, we can conclude that $\lim L_{\alpha_{p}} f=L_{\alpha} f$.

3. LEVEL-CONTINUITY AND PROPER LOCAL MAXIMUM POINTS

In this section we shall prove that, under adequate assumptions, level-continuity and non-existence of proper local maximum points are equivalent conditions.

Theorem 3.1. Let $f: X \rightarrow[0, \infty)$ be with $\sup _{x \in X} f(x)=M$. If $L_{\alpha} f$ is closed $\forall \alpha$, then are equivalent:
i) f is without proper local maximum points
ii) $\{f \geq \alpha\}=\overline{\{f>\alpha\}}, \forall \alpha \in(0, M)$.
iii) f is level-continuous.

Proof. $(i) \rightarrow(i i)$. Let $0<\alpha_{0}<M$. Then because $\left\{f \geq \alpha_{0}\right\}$ is closed, it is clear that $\overline{\left\{f>\alpha_{0}\right\}} \subseteq\left\{f \geq \alpha_{0}\right\}$. If we suppose that $\overline{\left\{f>\alpha_{0}\right\}} \neq \overline{\left\{f>\alpha_{0}\right\}}$, then there exists $x_{0} \in\left\{f \geq \alpha_{0}\right\} \backslash \overline{\left\{f>\alpha_{0}\right\}}$. Consequently, by regularity of X, there exists $U\left(x_{0}\right)$ such that $U \cap\left\{f>\alpha_{0}\right\}=\emptyset$.

But then, $f(x) \leq \alpha_{0}=f\left(x_{0}\right)<M, \forall x \in U$. Consequently, x_{0} is a proper local maximum point of f, in contradiction with our hypothesis.
$(i i) \rightarrow(i)$. Suppose that x_{0} is a proper local maximum point of f.
Then, $0<f\left(x_{0}\right)=\alpha_{0}<M$ and there exists a neighborhood $U\left(x_{0}\right)$ of x_{0} such that $f(x) \leq f\left(x_{0}\right)=\alpha_{0}, \forall x \in U$.

Therefore, $x_{0} \in\left\{f \geq \underline{\left.\alpha_{0}\right\}}\right.$ and $U \cap\left\{f>\alpha_{0}\right\}=\emptyset$.
Thus, $x_{0} \in\left\{f \geq \alpha_{0}\right\} \backslash \overline{\left\{f>\alpha_{0}\right\}}$ and, consequently, $\left\{f \geq \alpha_{0}\right\} \neq \overline{\left\{f>\alpha_{0}\right\}}$. (iii) \rightarrow (ii). Let $\alpha \in(0, M)$ be. We know that $\{f>\alpha\} \subseteq\{f \geq \alpha\}$. For the reverse inclusion, let $x_{0} \in\{f \geq \alpha\}$ and choose $\alpha_{p} \searrow \alpha$ (strictly).
Thus, by level-continuity of f, must be $L_{\alpha_{p}} f \xrightarrow{K} L_{\alpha} f$, that is, $L_{\alpha} f=\bigcap_{p=1}^{\infty} \overline{\bigcup_{k \geq p} L_{\alpha_{k}} f}$.
Now, let $U\left(x_{0}\right)$ be an arbitrary neighborhood of x_{0}.
If $U \cap\{f>\alpha\}=\emptyset$, then $U \cap\left\{f \geq \alpha_{k}\right\}=\emptyset, \forall k$, and this implies that $U \cap\left[\bigcup_{k \geq p} L_{\alpha_{k}} f\right]=\emptyset, \forall p$. But then, $x_{0} \notin \overline{\bigcup_{k \geq p} L_{\alpha_{k}} f}, \forall p$.

Consequently, $x_{0} \notin \bigcap_{p=1}^{\infty} \overline{\bigcup_{k \geq p} L_{\alpha_{k}} f}=L_{\alpha} f$ which is a contradiction.
Therefore $U \cap\{f>\alpha\} \neq \emptyset$ and $x_{0} \in \overline{\{f>\alpha\}}$.
(ii) \rightarrow (iii). Suppose that f is not level-continuous in $\alpha_{0} \in(0, M)$.

Then there exists a sequence $\left\{\alpha_{p}\right\}$ such that $\alpha_{p} \rightarrow \alpha_{0}$ and

$$
\begin{equation*}
L_{\alpha_{p}} f-\mid L_{\alpha_{0}} f . \tag{2}
\end{equation*}
$$

Without loss of generality, due to Remark 2.9, we can suppose $\alpha_{p} \searrow \alpha_{0}$ (strictly).
 all p, that is,

$$
\begin{equation*}
\bigcap_{p=1}^{\infty} \overline{\bigcup_{k \geq p} L_{\alpha_{k}} f}=\limsup L_{\alpha_{p}} f \subseteq L_{\alpha_{0}} f \tag{3}
\end{equation*}
$$

On the other hand, if $x \in\left\{f>\alpha_{0}\right\}$ then there is p_{0} such that $f(x)>\alpha_{k}$, for all $k \geq p_{0}$.

Therefore, $x \in L_{\alpha_{k}} f, \forall k \geq p_{0}$, and this implies that $x \in \bigcup_{k \in H} L_{\alpha_{k}} f$ for every cofinal subset H of \mathbb{N}.

Consequently, $x \in \bigcap_{H} \overline{\bigcup_{k \in H} L_{\alpha_{k}} f}=\liminf L_{\alpha_{p}} f$.
Because liminf $L_{\alpha_{p}} f$ is closed and $\left\{f>\alpha_{0}\right\} \subseteq \liminf L_{\alpha_{p}} f$, we can conclude that

$$
\begin{equation*}
\overline{\left\{f>\alpha_{0}\right\}}=L_{\alpha_{0}} f \subseteq \liminf L_{\alpha_{p}} f \tag{4}
\end{equation*}
$$

Thus, by (3) and (4), we have that $L_{\alpha_{0}} f=\lim L_{\alpha_{p}} f$ which contradicts (2), and the proof of our theorem is complete.

Remark 3.2. Due to Theorem 3.1, we can conclude that if f is level-continuous then any local maximum of f is a global maximum.

4. LEVEL-CONVERGENCE AND Г-CONVERGENCE

Let $\mathcal{F}(X)=\left\{f: X \rightarrow[0, \infty) / L_{\alpha} f\right.$ closed, $\left.\forall \alpha\right\}$.

Definition 4.1. (level-convergence). Let $f_{n}, f \in \mathcal{F}(X)$. We say that f_{n} levelconverges to f (for short: $\left.f_{n} \xrightarrow{L} f\right)$ iff $\lim L_{\alpha} f_{n}=L_{\alpha} f, \forall \alpha$.

Definition 4.2. (Γ-convergence). Let $f_{n}, f \in \mathcal{F}(X)$. We say that $f_{n} \Gamma$-converges to f (for short: $f_{n} \xrightarrow{\Gamma} f$) iff $\lim \operatorname{End}\left(f_{n}\right)=\operatorname{End}(f)$, where

$$
\operatorname{End}(f)=\{(x, \alpha) \in X \times[0, \infty) / f(x) \geq \alpha\}
$$

Theorem 4.3. Let $f_{n}, f \in \mathcal{F}(X)$, f level-continuous. Then, the following conditions are equivalents:
(i) $f_{n} \xrightarrow{L} f$
(ii) $f_{n} \xrightarrow{\Gamma} f$.

Proof. $(i) \rightarrow(i i)$. In order to prove that $f_{n} \xrightarrow{\Gamma} f$ it is sufficient to prove that

$$
\limsup E n d\left(f_{n}\right) \subseteq \operatorname{End}(f) \subseteq \liminf \operatorname{End}\left(f_{n}\right)
$$

Let $(x, \alpha) \in \lim \sup \operatorname{End}\left(f_{n}\right)$. Then

$$
\begin{equation*}
(x, \alpha) \in \bigcap_{p \geq 1} \overline{\bigcup_{k \geq p} \operatorname{End}\left(f_{k}\right)} . \tag{5}
\end{equation*}
$$

We want to prove that $(x, \alpha) \in \operatorname{End}(f)$, that is, $f(x) \geq \alpha$.
If we suppose that $f(x)<\alpha$, then there is $\epsilon>0$ such that $f(x)<\alpha-\epsilon<\alpha$.
So, due to $f_{n} \xrightarrow{L} f$, we obtain that $x \notin L_{\alpha-\epsilon} f=\bigcap_{p>1} \bigcup_{k>p} L_{\alpha-\epsilon} f_{k}$.
This implies that $\exists p_{0}$ such that $x \notin \overline{\bigcup_{k \geq p_{0}} L_{\alpha-\epsilon} f_{k}}$ and, therefore, there exists $U(x)$ such that

$$
\begin{equation*}
U \cap\left[\bigcup_{k \geq p_{0}} L_{\alpha-\epsilon} f_{k}\right]=\emptyset \tag{6}
\end{equation*}
$$

Now, we assure that $[U \times(\alpha-\epsilon)] \cap\left[\bigcup_{k \geq p_{0}} \operatorname{End}\left(f_{k}\right)\right]=\emptyset$.

In fact,
$(y, \beta) \in U \times(\alpha-\epsilon, \infty) \cap\left[\bigcup_{k \geq p_{0}} \operatorname{End}\left(f_{k}\right)\right] \Rightarrow\left\{\begin{array}{c}\beta>\alpha-\epsilon \text { and } \\ \exists k_{0} \geq p_{0} \text { such that }(y, \beta) \in \operatorname{End}\left(f_{k_{0}}\right) .\end{array}\right.$
Therefore, $f_{k_{o}}(y) \geq \beta>\alpha-\epsilon$.
But, due to (6), $y \in U(x)$ implies that $y \notin \bigcup_{k \geq p_{0}} L_{\alpha-\epsilon} f_{k}$.
That is, $f_{k}(y)<\alpha-\epsilon, \forall k \geq p_{0}$, which is absurd.
Thus, $U(x) \times(\alpha-\epsilon, \infty)$ is an open set in the product topology nonintersecting to $\bigcup_{k \geq p_{0}} \operatorname{End}\left(f_{k}\right)$.

Because $(x, \alpha) \in U(x) \times(\alpha-\epsilon, \infty)$, we obtain that $(x, \alpha) \notin \bigcup_{k \geq p_{0}} \operatorname{End}\left(f_{k}\right)$.
Therefore, $(x, \alpha) \notin \bigcap_{p \geq 1} \overline{\bigcup_{k \geq p} \operatorname{End}\left(f_{k}\right)}$, in contradiction with (5).
So, must be $f(x) \geq \alpha$ and, consequently, $(x, \alpha) \in \operatorname{End}(f)$.
On the other hand, let $(x, \alpha) \in \operatorname{End}(f)$. Then $f(x) \geq \alpha$ and, due to $f_{n} \xrightarrow{L} f$, we obtain that

$$
\begin{equation*}
x \in \liminf L_{\alpha} f_{n}=\bigcap_{H} \overline{\bigcup_{k \in H} L_{\alpha} f_{k}} . \tag{7}
\end{equation*}
$$

If we suppose that $(x, \alpha) \notin \liminf \operatorname{End}\left(f_{n}\right)$, then there exists H_{0} cofinal such that $(x, \alpha) \notin \bigcup_{k \in H_{0}} \operatorname{End}\left(f_{k}\right)$.

Therefore, there must exist to exist $V(x, \alpha)$ such that

$$
\begin{equation*}
V(x, \alpha) \cap\left[\bigcup_{k \in H_{0}} \operatorname{End}\left(f_{k}\right)\right]=\emptyset \tag{8}
\end{equation*}
$$

Without loss of generality, we can suppose that V is a basic open set of the product topology, that is, V is an open set of form $U \times(\theta, \eta)$ where U is an open in X and (θ, η) is an open interval in \mathbb{R}^{+}contains α. We note that if $y \in U$, then $V=U \times(\theta, \eta)$ contains the segment $\{y\} \times(\theta, \eta)$.

Now, we assure that the projection $p_{X}(V(x, \alpha))$ is an open set in X, nonintersecting $\bigcup_{k \in H_{0}} L_{\alpha} f_{k}$ (we recall that p_{X} is an open mapping).

In fact, if we suppose that $p_{X}(V(x, \alpha)) \cap\left[\bigcup_{k \in H_{0}} L_{\alpha} f_{k}\right] \neq \emptyset$, then there exists $y \in p_{X}(V(x, \alpha))$ such that $f_{k_{0}}(y) \geq \alpha$, for some $k_{0} \in H_{0}$.

Therefore, $y \in U$ and there is $\beta \leq \alpha$ such that $(y, \beta) \in V(x, \alpha)=U \times(\theta, \eta)$.

But then, $(y, \beta) \in V(x, \alpha) \cap \operatorname{End}\left(f_{k_{0}}\right) \subseteq V(x, \alpha) \cap\left[\bigcup_{k \in H_{0}} \operatorname{End}\left(f_{k}\right)\right]$, in contradiction with (8).

Because $p_{X}(V(x, \alpha)) \cap\left[\bigcup_{k \in H_{0}} L_{\alpha} f_{k}\right]=\emptyset$ and $x \in p_{X}(V(x, \alpha))$, we conclude that $x \notin \overline{\bigcup_{k \in H_{0}} L_{\alpha} f_{k}}$ which, due to (7), is absurd.

Summarizing, we must have $(x, \alpha) \in \liminf \operatorname{End}\left(f_{n}\right)$.
Therefore, $\lim \operatorname{End}\left(f_{n}\right)=\operatorname{End}(f)$, which implies that $f_{n} \xrightarrow{\Gamma} f$, completing the first part of our proof.
$(i i) \rightarrow(i)$. Let $\alpha \in[0, \infty)$ and suppose that $f_{n} \xrightarrow{\Gamma} f$.
We want to prove that $f_{n} \xrightarrow{L} f$ and, for this, it is sufficient to prove that

$$
\limsup L_{\alpha} f_{n} \subseteq L_{\alpha} f \subseteq \liminf L_{\alpha} f_{n}, \forall \alpha
$$

Let

$$
\begin{equation*}
x \in \limsup L_{\alpha} f_{n}=\bigcap_{n=1}^{\infty} \overline{\bigcup_{k \geq n} L_{\alpha_{k}} f} \tag{9}
\end{equation*}
$$

If $f(x)<\alpha$, then $(x, \alpha) \notin \bigcap_{n=1}^{\infty} \overline{\bigcup_{k \geq n} \operatorname{End}\left(f_{k}\right)}$.
Therefore, $\exists n_{0}$ such that $(x, \alpha) \notin \overline{\bigcup_{k \geq n_{0}} \operatorname{End}\left(f_{k}\right)}$.
Consequently, $\exists V(x, \alpha)$ such that

$$
\begin{equation*}
V \cap\left[\bigcup_{k \geq n_{0}} \operatorname{End}\left(f_{k}\right)\right]=\emptyset \tag{10}
\end{equation*}
$$

Also, without loss of generality, we can suppose that V is an openv set of form $V=U \times(\theta, \eta)$.

But then, the projection $U=p_{X}(V(x, \alpha))$ is a neighborhood of x which nonintersecting $\bigcup_{k \geq n_{0}} L_{\alpha} f_{k}$.

In fact, if $y \in U \cap \bigcup_{k>n_{0}} L_{\alpha} f_{k}$ then $\exists \beta \leq \alpha$ such that $(y, \beta) \in V$, and $\exists k_{0} \geq$ n_{0} such that $f_{k_{0}}(y) \geq \alpha \geq \beta$, that is, $(y, \beta) \in \operatorname{End}\left(f_{k_{0}}\right)$.

Thus, $(y, \beta) \in V \cap\left[\bigcup_{k>n_{0}} \operatorname{End}\left(f_{k}\right)\right]$ which contradicts (10).

So, $U \cap\left[\bigcup_{k \geq n_{0}} L_{\alpha} f_{k}\right]=\emptyset$ but, because $x \in U$, this implies that $x \notin \overline{\bigcup_{k \geq n_{0}} L_{\alpha} f_{k}}$, in contradiction with (9).

Hence $f(x) \geq \alpha$ and, consequently, $x \in L_{\alpha} f$.
Therefore, $\limsup L_{\alpha} f_{n} \subseteq L_{\alpha} f$.
On the other hand, let $x \in L_{\alpha} f$ and suppose that $f(x)>\alpha$.
Then there is $\epsilon>0$ such that $f(x)>\alpha+\epsilon$.
So, due to $f_{n} \xrightarrow{\Gamma} f$, we have that

$$
\begin{equation*}
(x, \alpha+\epsilon) \in \operatorname{End}(f)=\liminf \operatorname{End}\left(f_{n}\right)=\bigcap_{H} \overline{\bigcup_{k \in H} \operatorname{End}\left(f_{k}\right)} . \tag{11}
\end{equation*}
$$

Now, if we suppose that $x \notin \liminf L_{\alpha} f_{n}$, then $\exists H_{0}$ cofinal such that $x \notin$ $\overline{\bigcup_{k \in H_{0}} L_{\alpha} f_{k}}$ and, therefore, $\exists U(x)$ such that

$$
\begin{equation*}
U \cap\left[\bigcup_{k \in H_{0}} L_{\alpha} f_{k}\right]=\emptyset \tag{12}
\end{equation*}
$$

We assure that $[U \times(\alpha, \infty)] \cap \bigcup_{k \in H_{0}} \operatorname{End}\left(f_{k}\right)=\emptyset$.
In fact, if $(y, \beta) \in[U \times(\alpha, \infty)] \cap \bigcup_{k \in H_{0}} \operatorname{End}\left(f_{k}\right)$ then $f_{k_{0}}(y) \geq \beta>\alpha$ for some $k_{0} \in H_{0}$, and this implies that $y \in U \cap L_{\alpha} f_{k_{0}} \subseteq U \cap\left[\bigcup_{k \in H_{0}} L_{\alpha} f_{k}\right]$, in contradiction with (12). Thus, because $(x, \alpha+\epsilon) \in U \times(\alpha, \infty)$, we obtain that $(x, \alpha+\epsilon) \notin$ $\overline{\bigcup_{k \in H_{0}} \operatorname{End}\left(f_{k}\right)}$ and, therefore, $(x, \alpha+\epsilon) \notin \liminf \operatorname{End}\left(f_{n}\right)=\operatorname{End}(f)$ which, due to (11), is absurd. So, necessarily, we must have $x \in \lim \inf L_{\alpha} f_{n}$ and, consequently, $\{f>\alpha\}$ is contained in liminf $L_{\alpha} f_{n}$.

Finally, because $\lim \inf L_{\alpha} f_{n}$ is closed and f is level-continuous, by Theorem 3.1, we obtain

$$
\overline{\{f>\alpha\}}=\{f \geq \alpha\}=L_{\alpha} f \subseteq \liminf L_{\alpha} f_{n}
$$

Consequently, $f_{n} \xrightarrow{L} f$ and the proof is complete.

The following example shows that, in Th.4.3 above, the level-continuity condition on f can not be avoided.

Example 4.4. Let $X=[0,2]$ endowed with the usual topology and define (for all $n \geq 2$):

$$
\begin{gathered}
f_{n}(x)=\left\{\begin{array}{lll}
\frac{x}{n}+1-\frac{1}{n} & \text { if } & 0 \leq x \leq 1 \\
\frac{n}{n-1}(x-1)+1 & \text { if } & 1<x \leq 2-1 / n \\
2 & \text { if } & 2-1 / n<x \leq 2
\end{array}\right. \\
f(x)=\left\{\begin{array}{lll}
\frac{1}{2} & \text { if } & 0 \leq x \leq 1 \\
1 & \text { if } & 1<x \leq 2
\end{array}\right.
\end{gathered}
$$

Firstly, we observe that f is not level-continuous. In fact, taking $\alpha_{p}=1+\frac{1}{p}$ we have that $\alpha_{p} \rightarrow 1$ and $L_{\alpha_{p}} f=\left[1+\frac{1}{p}, 2\right], \forall p$. Therefore $\lim L_{\alpha_{p}} f=[1,2]$ whereas $L_{1} f=[0,2]$.

On the other hand, it is easy to see that $L_{\alpha} f_{n}, L_{\alpha} f$ are closed sets $\forall n, \alpha ; f_{n}$ is level-continuous for each n and $f_{n} \xrightarrow{\Gamma} f$, but $\left\{f_{n}\right\}$ does not converge levelwise to f. In fact, for $\alpha=1$ we have $L_{1} f=[0,2]$ whereas $L_{1} f_{n}=[1,2], \forall n$, consequently, $\lim L_{1} f_{n}=[1,2]$.

References

[1] E. De Giorgi, T. Franzoni, Su un tipo di convergenza variazionale, Atti Acc. Naz. Lincei Rend. Cl. Sc. Mat. Fis. Nat. (8) 58, 842-850 (1975).
[2] H. Attouch, Variational Convergence for Function and Operators, Pitman, London (1984).
[3] G. Greco, M. Moschen, E. Quelho, On the variational convergence of fuzzy sets, to appear.
[4] M. Rojas-Medar, H. Román-Flores, On the equivalence of convergences of fuzzy sets, Fuzzy Sets and Systems (80), 217-224 (1996).
[5] H. Román-Flores, A.Flores, A. Pachá, L. Hernández, Proper local maximum points: on multivalued characterizations, Proc. of 7° Cong. LatinoIberoamericano de Invest. Oper.(CLAIO'94), Santiago-Chile.
[6] H. Román-Flores, The compactness of $E(X)$, Applied Mathematics Letters 11 (2), 13-17 (1998).
[7] F. Hausdorff, Set Theory, Chelsea Press, New York (1957).
[8] E. Klein and A.C. Thompson, Theory of Correspondences, Wiley, New York (1984).

[^0]: ${ }^{1}$ This work was partially supported by Fondecyt (Chile) through Project 1970535 and DiexaUTA by Project 4732-97.

