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Abstract- In this paper, we study the concepts of level-continuity and proper
local maximum points of functions defined on a topological space X and, on
the one hand, we stablish that, under adequate conditions, f is level-continuous
iff f is without proper local maximum points and, on the other, we prove that
level-convergence and variational convergence (I-convergence) of functions are
equivalent when the limit function is level-continuous.
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1. INTRODUCTION

The study of the variational convergence and his applications has been done
by many authors, including De Giorgi&Franzoni [1] and Attouch [2] in the set-
ting of the calculus of variations, Greco [3] and Rojas&Roman-Flores [4] in con-
vergence of fuzzy sets on locally compact metric spaces and finite dimensional
spaces,respectively.

This convergence is based on the Kuratowski limits and one of the most im-
portant properties of the I'-convergence is the preservation of maximum points
in I'-convergents sequences of functions. More precisely: let {f,}, be a sequence

of real functions on X and let x,, be a maximum point of f,. If f, EN f and
x, — x, then x is a maximum point of f and f(z) =lim f,(z,).
n— o0
On the other hand, the level-continuity and level convergence has been used
by the author in multivalued characterizations of certain class of maximum points

of functions on R ([5]) and compactness of spaces of fuzzy sets on a metric space
X ([6])-
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The aim of this paper is, on the one hand, to introduce the concept of level-
continuity of functions and to analyze his connections with the existence of proper
local maximum points and, on the other, to compare level-convergence (L-convergence)
with ['-convergence.This analysis is carried out in the setting of regular topological
spaces, and generalizes the results obtained by the author in [5-6].

This paper is organized as follows. In Section 2 we give the previous re-
sults that will be used in the article. In Section 3 we introduce the concept
of level-continuity of non-negative real functions defined on X and we study its
connections with the existence of proper local maximum points.

Finally, in Section 4 we compare L-convergence with ['-convergence. Further-
more, some examples are presented.

2. PRELIMINARIES

In the sequel, all topological spaces will be assumed to be regular (see [7]),
unless specifically stated.

DEFINITION 2.1. Let (X,T) be a topological space and let {A,}, . a sequence
of subsets of X.

i) A point x € X is a limit point of {A,}, if, for every neighborhood U of
x, there is an n € N such that for all m > n, A, NU # 0.

ii) A point x € X is a cluster point of {Ay}, if, for every neighborhood U of
x, and every n € N, there is an m > n such that A, "U # ().

iii) liminf A, is the set of all limit points of {A,}, .
iv) limsup A, is the set of all cluster points of {Ay}, .

If liminf A, = limsup A, = A, then we say A is the limit of the sequence
{An},,, the sequence {A,}, converges to A (in the Kuratowski sense), and we
write A =lim A, (or A, 5 A).

PROPOSITION 2.2. If {A,}, is a sequence of subsets of X, then

i) liminf A, C limsup A,.



ii) liminf A, and limsup A, are closed subsets of X.

iii) limsup A4, = ] U A4

n=1k>n
iv) iminf A, = (| U Ak, where H denotes an arbitrary cofinal subset of

H keH
N and the intersection is over all such H.

For more details see [7-8].

REMARK 2.3. We recall that H is a cofinal subset of N if Vn € N, 9m € H such
that m > n.

DEFINITION 2.4. If f: X — [0,00) is a function and « € (0,00), then we define
the a-level and the strict a-level of f by

{/ = a}=Laf = {o € X/f(z) = a} and
[/ > a}={eeX/f(2)>al,

respectively.
We observe that o < implies L, f D Lgf.

DEFINITION 2.5. Let f : X — [0,00) be. Then xy € X is said to be a local

mazimum point of f if there is a neighborhood U of xy such that f(x) < f(xg),

for every x € U and 0 < f(xy) <sup f(x). DEFINITION 2.6. Let f: X —
X

TE
[0,00) be and sup f(x) = M (which may be co). We say that f is level-continuous
zeX
if op — o implies Lq, f LY Lof, Ya € (0, M).

The following examples shows that continuity and level-continiuty are inde-
pendent conditions.

EXAMPLE 2.7. Let X = [0, 1] be and T the usual topology generated by the usual
metric on X. Define f : X — [0,00) by

J1—=a f OSJ;S%
f(””)—{; if L<s<t
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Then is clear that f is continuous.

On the other hand, taking «,, = % + 1—17, p > 2, we have that

Lo,f = 0,5 = 1], w.

Thus, limsup L., f = ﬁ U Lef = ﬁ U [0,%—%] = [0, %], whereas

p=1k>p p=1k>p
Lyjof = [0,1]. Consequently, f is not level-continuous.

EXAMPLE 2.8. Let (X, 7) be as in Example 2.7 and f: X — [0, 00) defined by
1 af =1
f(x)_{ 0 if x=#1.
Then, clearly, f is not continuous.

But, for each o € (0,1), we have that L,f = {1}. Therefore, f is level-
continuous.

REMARK 2.9. We observe that f: X — [0,00) it is always left level-continuous,

that is, if , o then Ly, f & Lo f. In fact, suppose that = € N U La,f. Then
p=1k>p

v €| Lo, Vp. (1)
k>p
Now, if f(z) < «, then there exists py such that f(z) < ag, Vk > po.
Therefore, v ¢ L,, f, Yk > py.
Because X is regular and L, f is closed, then there exists U(x) such that
UNLq, f=0.But Lo, f 2 U L, f and, consequently, UN[ |J La, f] =0, that
k>po k>po
is, v ¢ |J La,f,in contradiction with (1).
k>po
So, must be f(x) > o and, consequently, limsup L, f C Lo f.
For the reverse inclusion, let x € L, f and H a cofinal subset of N .
Then, x € L,f implies that f(z) > a > a4, Vk and, therefore, z €
Ly, f, Yk, which implies = € |J Ly, f.
kEH

So, z € () U La,f where the intersection is over all H cofinal in N .
H keH
That is, z € liminf L, f. Thus, we can conclude that lim L., f = L f.
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3. LEVEL-CONTINUITY AND PROPER LOCAL MAXIMUM
POINTS

In this section we shall prove that, under adequate assumptions, level-continuity
and non-existence of proper local maximum points are equivalent conditions.

THEOREM 3.1. Let f: X — [0,00) be with sup f(x) = M.
zeX
If L.f is closed Yo, then are equivalent:

i) f is without proper local mazimum points
i) {f>a}={f>a}, YVae (0,M).
iii) f is level-continuous.

PROOF. (i) — (i1). Let 0 < ap < M. Then because {f > aq} is closed, it is clear
that {f > ap} C {f > ap}. If we suppose that {f > ap} # {f > ap}, then there
exists g € {f > ap}\ {f > ap}. Consequently, by regularity of X, there exists
U(wo) such that UN {f > ap} = 0.

But then, f(z) < ay = f(zy) < M, Yx € U. Consequently, x, is a proper local
maximum point of f, in contradiction with our hypothesis.
(17) — (i). Suppose that zg is a proper local maximum point of f.

Then, 0 < f(z¢) = @y < M and there exists a neighborhood U(zy) of xy such
that f(z) < f(xy) = ap, Yo € U.

Therefore, 7y € {f > ap} and UN{f > ay} = 0.

Thus, zg € {f > ao}\{f > @} and, consequently, {f > ag} # {f > ap}.
(i1i) — (i7). Let o € (0, M) be. We know that {f > a} C {f > a}. For the
reverse inclusion, let 7y € {f > a} and choose «a, \, « (strictly).

Thus, by level-continuity of f, must be Lq, f < Lof, that is, Laf = () U Lay /-
p=lk2p

Now, let U(xy) be an arbitrary neighborhood of .
If UNn {f > a} =0, then Un {f > ay} = 0, Vk, and this implies that
UN[U La, f] =0, Vp. But then, xo ¢ J La, f, Vp.
k>p k>p
Consequently, zg ¢ (| U La,f = Lof which is a contradiction.
p=1k>p

Therefore UN {f > a} # 0 and zy € {f > a}.



(17) — (i4i). Suppose that f is not level-continuous in «q € (0, M).
Then there exists a sequence {«,} such that o, — o and

Lapf ﬁél/aof' (2)
Without loss of generality, due to Remark 2.9, we can suppose o, \, o (strictly).
Thus, Lo, f C Lo, f, Yk, and because L, f is closed, we have |J L, f C Lq, f for

k>p
all p, that is,

(U Lo f =limsup La,f € Lo, f - (3)
p=lk>p
On the other hand, if x € {f > ap} then there is py such that f(x) > a, for
all k Z Po-
Therefore, x € L,, f, Vk > po, and this implies that € J L,, f for every

kEH
cofinal subset H of N.

Consequently, v € () |J Lq, f = liminf L, f.
H keH
Because liminf L, f is closed and {f > oo} C liminf L, f, we can conclude

that
{f > an} = Lo f Climinf L, f. (4)

Thus, by (3) and (4), we have that L,,f = lim L, f which contradicts (2),
and the proof of our theorem is complete.ll

REMARK 3.2. Due to Theorem 3.1, we can conclude that if f is level-continuous
then any local maximum of f is a global maximum.



4. LEVEL-CONVERGENCE AND I'-CONVERGENCE

Let F(X)={f:X —[0,00)/Luf closed, Ya}.

DEFINITION 4.1. (level-convergence). Let f,, f € F(X). We say that f, level-
converges to f (for short : f, =N f)iff limLyf, = Lof, Yo

DEFINITION 4.2. (T'-convergence). Let f,, f € F(X). We say that f, I'-converges
to f (for short: f, L ) iff lim End(f,) = End(f), where

End(f) = {(z,a) € X x[0,00)/f(z) = a}.

THEOREM 4.3. Let f,, f € F(X), f level-continuous. Then, the following condi-
tions are equivalents:

: L
@) fo=f
(i4) fu = f.
PROOF. (i) — (i7). In order to prove that f, L5 f it is sufficient to prove that
limsup End(f,) € End(f) C liminf End(f,).

Let (z,a) € limsup End(f,). Then

(x,a) € (| End(fs) - (5)

p>1k>p
We want to prove that (z, ) € End(f), that is, f(z) > a.
If we suppose that f(z) < «, then there is € > 0 such that f(z) < a —€ < a.
So, due to f, L f, we obtain that * ¢ L, f = [ U La_e/fs-

p>lk>p
This implies that 3py such that = ¢ |J L._fr and, therefore, there exists
k>po
U(x) such that
UNT Lacfi] = 0. (6)
k>po
Now, we assure that [U x (a —€)]N[J End(fi)] = 0.
k>po
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In fact,

(y, ) € Ux(a—e,00)N[ | End(fr)] =

k>po
Therefore, fi, (y) > 0> a—e.
But, due to (6), y € U(x) implies that y ¢ |J Lao—cfk-
k>po
That is, fr(y) < o — €, Yk > py, which is absurd.

Thus, U(z) X (o — €,00) is an open set in the product topology nonintersecting

B>a—€¢ and
ko > po such that (y, 3) € End(fk,)-

k>po

Because (z,a) € U(z) X (o — €,00), we obtain that (z,«) ¢ |J End(fy).
k>po

Therefore, (z,a) ¢ (| U End(fx), in contradiction with (5).

p>1k>p
So, must be f(x) > a and, consequently, (z, @) € End(f).
On the other hand, let (z,«) € End(f). Then f(x) > « and, due to f, L f we
obtain that

v € liminf Lofo = Lafs- (7)

H keH

If we suppose that (z,«) ¢ liminf End(f,), then there exists Hy cofinal such
that (z, ) ¢ U End(fx).

keHy
Therefore, there must exist to exist V' (z, «) such that

V(z,a) N[ End(fi)] = 0. (8)

keHy

Without loss of generality, we can suppose that V is a basic open set of the
product topology, that is, V" is an open set of form U x (6,n) where U is an open
in X and (6, 7) is an open interval in R* contains a. We note that if y € U, then
V =U x (6,n) contains the segment {y} x (6, 7).

Now, we assure that the projection px(V (z,a)) is an open set in X , nonin-

tersecting | J L fr (we recall that py is an open mapping).
ke Hg

In fact, if we suppose that px(V(z,a)) N[ U Lafr] # 0, then there exists
keHy

y € px(V(z,a)) such that fy,(y) > «, for some ky € H,.
Therefore, y € U and there is f < a such that (y,5) € V(z,a) =U x (6,n).



But then, (y,5) € V(z,a) N End(fy,) € V(z,a) N[ J End(fy)], in contra-
keHy
diction with (8).
Because px (V(z,@)) N[ U Lafi] =0 and z € px(V(z, «)), we conclude that
keHg

x ¢ |J Luofx which, due to (7), is absurd.

ke Hg

Summarizing, we must have (z,a) € liminf End(f,).

Therefore, lim End(f,) = End(f), which implies that f, EN f, completing the
first part of our proof.

(i1) — (i). Let o € [0, 00) and suppose that f, — f.
We want to prove that f, N f and, for this, it is sufficient to prove that

limsup Lof, € Lo,f C liminf L,f,, Va.

Let

x € limsup Lo f, = ﬁ ULakf- 9)

n=1k>n

If f(x) < , then (z,0) ¢ ( U End(fy).

n=1k>n
Therefore, Ingy such that (z,a) ¢ |J End(fk).
k>no
Consequently, 3V (z, o) such that

V[l End(fi)] = 0. (10)

k>no

Also, without loss of generality, we can suppose that V' is an openv set of form
V=Ux(6,n).

But then, the projection U = px(V (z,a)) is a neighborhood of & which non-
intersecting |J Lo fk-

k>no
In fact, if y € UN |J Lafr then 38 < « such that (y,3) € V, and Jky >
k>no

ng such that f,(y) > o > 3, that is, (y, 8) € End(fx,).

Thus, (y,3) €e VN[ J End(fy)] which contradicts (10).

k>no



So, UN[ U Lafi] = 0 but, because x € U, this implies that x ¢ |J L f, in
k>no k>no
contradiction with (9).

Hence f(z) > « and, consequently, = € L, f.

Therefore, limsup Lo f, C Lo f.
On the other hand, let © € L, f and suppose that f(z) > a.
Then there is € > 0 such that f(z) > a+e.

So, due to f, 5 f, we have that
(x,a +€) € End(f) = liminf End(f,) = (") End(fy). (11)
H keH

Now, if we suppose that x ¢ liminf L,f,, then IH, cofinal such that x ¢
U Lafr and, therefore, 3U(x) such that

keHo
U1 Lafil =0, (12)
keHo
We assure that [U x («,00)]N U End(fx) = 0.
In fact, if (y,3) € [U x («, oo)]]ﬁHOU End(fy) then fy,(y) > 6 > « for some
ko € Hy, and this implies that y € ka?z)afko cun [kL%I Lo fi], in contradiction
€ty

with (12). Thus, because (z,a +¢€) € U x (o, 00), we obtain that (z,a +¢€) ¢
U End(fx) and, therefore, (z, a+€) ¢ liminf End(f,) = End(f) which, due to

keHy
(11), is absurd. So, necessarily, we must have = € liminf L, f, and, consequently,

{f > a} is contained in liminf L, f,.
Finally, because liminf L, f, is closed and f is level-continuous, by Theorem
3.1, we obtain
{f>a}={f>a}=L,f Climinf L,f,.

Consequently, f, EN f and the proof is complete.ll

The following example shows that, in Th.4.3 above, the level-continuity con-
dition on f can not be avoided.
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ExampLE 4.4. Let X = [0,2] endowed with the usual topology and define
(for all n > 2):

241+ if 0<z<1
fal@)=¢ -1 +1 if I1<z<2-1/n
2 if 2—1/n<x<2.

s if 0<z<1

flz) =
1 of 1<ax<2

Firstly, we observe that f is not level-continuous. In fact, taking o, =1 —1-1—1) we
have that a;, = 1 and L, f = [1 + %, 2|, Vp. Therefore lim L, f = [1,2] whereas
Lif =10,2].

On the other hand, it is easy to see that L, f,, L[ are closed sets Vn, «; f, is
level-continuous for each n and f, 5 f, but {f,} does not converge levelwise to
f- In fact, for a = 1 we have L, f = [0, 2] whereas L, f,, = [, 2], Vn, consequently,
lim L f, =[1,2].
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