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1. Introdution

In this paper, we fous on mathematial aspets of a model of the motion of a visous,

nonhomogeneous inompressible uids by assuming that the kinemati visosity is

density dependent.

This model inlued as partiular ase the lassial Navier-Stokes equations. This

ase has been muh studied (see for instane, Ladyzhenskaya [17℄, Lions [20℄, Temam

[33℄ and the referenees there in).

When the kinemati visosity is a positive onstante was studied by Kazhikov

[15℄, (see also [3℄,[21℄), there he proved the existene of weak solution of \Hopf-

Type". These results were generalized by Simon [30℄, [31℄,[32℄ and Kim [16℄ to ase

that the density is a non-negative onstant. The menionated authors used the

semi-Galerkin method.

Stronger loal and global solutions were obtained by Ladyzhenskaya and Solon-

nikov [18℄ by linearization, �xed point theorem and potential theory and, by Okamoto

[23℄ using evolution operators tehniques and also �xed point theorem.

The more onstrutive spetral semi-Galerkin method was used by Salvi [29℄ to

obtain loal in time strong solutions and to study onditions for regularity at t = 0

and, by Boldrini and Rojas-Medar [4℄, [5℄ to obtain global strong solutions. Others

works were done by [10℄, [24℄, [25℄ and [12℄.

The ase when the kinemati visosity depend up density was studied by An-

tonzev, Kazhikov and Monakhov [3℄ p.119 under the H�older ondition.

Analogous results has been obtained by An Ton [2℄, he proved the existene

of a weak solution of Hopf-Type, by using linearization and the method of sues-

sive approximations; but he assumed restrit hypotheses on the dependene of the

kinemati visosity on the density (see [2℄, p.101). An Ton, also write \That the

Galerkin method or of its variants seems to give rise to diÆulties". This apparent

diÆult was avoided by Fern�andez-Caras and Guill�en [11℄ (see also Lions [22℄).

The strong solutions were showed by Lemoine [19℄ by using analogous arguments

those given by Ladyzhenskaya and Solonnikov [18℄. In fat, these results an be

proved by spetral semi-Galerkin approximations as in [29℄ and [5℄.

In this work, we study the onvergenes rates in several norms for the spetral

semi-Galerkin approximations. Although this is not a too interesting ase from the

pratial point view, we hope that the tehniques that we developed here ould be

adapted in the important ase where the full disretizations are used. This question

is presently under investigation.

Before we desribe our results, let us briey omment related results.
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Rautmann[26℄ gave a systemati development of error estimates for spetral

Galerkin approximations of the lassial Navier-Stokes equations(see also[13℄,[27℄).

Boldrini and Rojas-Medar gave analogous error estimates for the model of non-

homogeneous visous inompressible uids when the visosity is an one positive

onstant[6℄,[7℄(see also [28℄)

The paper is organized as follows: in Setion 2 we state some preliminaries

results that will be useful in the rest of the paper; we desribe the approximation

method and state the results of existene and uniqueness of Lemoine[19℄ as also

some estimates apriori that form the theoretial basis for the problem. In Setion 3

we derive a L

2

-error estimate for the veloity and a L

p

-error estimate for the density.

Finally, in Setion 4 we derive H

1

-error estimates for veloity .

Finally, we would like to say that, as it usual in this ontext, to simplify the

notation in the expressions we will denote by C;M generis �nites positives onstants

depending only on 
 and the other �xed parameters of the problem (like the initial

data) that may have di�erent values in di�erent expressions. In a few points, to

emphasize the fat that the onstants are di�erent we use C

1

; C

2

; : : : ;M

1

;M

2

; : : :

and so on.

2. Preliminaries

The equations for the motion of a nonhomogeneous inompressible uid are as fol-

lows. Being 
 � IR

n

; n = 2 or 3, a C

1;1

-regular bounded domain, T > 0, these

equations are

�

�u

�t

+ �(u:r)u�r(�(�)(ru+

t

ru)) +rp = �f in 
;

divu = 0 in 
;

��

�t

+ u:r� = 0 in 
; (2.1)

u = 0 on �
�℄0; T [;

�(x; 0) = �

0

(x) in 
;

u(x; 0) = u

0

(x) in 
;

where [0; T [ is the interval of time being onsidered; 
 is the ontainer where the

uid is in; u(x; t) 2 IR

n

denotes the veloity of the uid at point x 2 
 and time
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t 2 [0; T [; �(x; t) 2 IR and p(x; t) 2 IR denote respetively, the density and the

hydrostati pressure of the uid; u

0

(x) and �

0

(x) are the initial veloity and density

respetively; f(x; t) is the density by unit of mass of the external fore ating on

the uid and �(:) is the visosity of uid ; the uid adheres to the wall �
 of

the ontainer whih is at rest. The expressions r;� and div denote the gradient,

Laplaian and divergene operators, respetively (we also denote

�u

�t

by u

t

); the i

th

omponent of u:ru is given by [(u:r)u℄

i

=

X

j

u

j

�u

i

�x

j

and u:r� =

P

j

u

j

��

�x

j

. The �rst

equation in (1.1) orresponds to the balane of linear momentum; the third equation

to the balane of mass and the seond one states that uid is inompressible. The

unknowns in the problem are u; � and p.

Let 
 � IR

n

; n = 2 or 3, be a bounded domain with smooth boundary � (lass

C

1;1

is enough).

We will onsider the usual Sobolev spaes

W

m;q

(D) = ff 2 L

q

(D); jj�

�

f jj

L

q

(D)

< +1; j�j � mg

m = 0; 1; 2; : : : ; 1 � q � +1; D = 
 or 
�℄0; T [; 0 < T < +1, with the usual

norm. When q = 2, we denote by H

m

(D) = W

m;2

(D) and H

m

0

(D) = losure of

C

1

0

(D) in H

m

(D). If B is a Banah spae, we denote by L

q

(0; T ;B) the Banah

spae of the B-valued funtions de�ned in the interval [0; T ℄ that are L

q

-integrables

in the sense of Bohner. We shall onsider the following spaes of divergene free

funtions

C

1

0;�

(
) = fv 2 (C

1

0

(
))

n

= div v = 0 in 
g;

H = losure of C

1

0;�

(
) in (L

2

(
))

n

V = losure of C

1

0;�

(
) in (H

1

(
))

n

:

Throughout the paper, P denotes the orthogonal projetion from (L

2

(
))

n

into

H and A = �P� with D(A) = V \H

2

(
) is the usual Stokes operator.

We will denote by '

n

(x) and �

n

the eigenfuntion and eigenvalue of A. It is

well know that f'

n

g

1

n=1

form an orthogonal omplete system in the spaes H; V

and H

2

(
) \ V , with their usual inner produts (u; v); (ru;rv) and (Au;Av) re-

spetively.

For eah n 2 IN , we denote by P

n

the orthogonal projetions from L

2

(
) onto

V

n

= spanf'

1

(x); :::; '

n

(x)g . To more details on the Stokes operator see Temam

[33℄.
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We observe that for the regularity of the Stokes operator, it is usually assumed

that 
 is of lass C

3

; this being in order to use Cattabriga's results[9℄.We use instead

the stronger results of Amrouhe and Girault[1℄ whih implies, in partiular, that

when Au 2 L

2

(
), then u 2 H

2

(
) and jjujj

H

2

and jjAujj are equivalent norms when


 is of Class C

1;1

. Here jj � jj denotes the L

2

-norm; also in this paper we will denote

the inner produt in L

2

(
) by (�; �).

The following assumptions on the initial data was employed by Lemoine[19℄ :

(A1) The initial value �

0

belongs to C

1

(
) and satis�es

min

x2


�

0

(x) > 0:

Hereafter he put M

1

= min

x2


�

0

(x) and M

2

= max

x2


�

0

(x).

(A2) The initial value u

0

belongs to W

2�2=q;q

(
), where r:u

0

= 0; u

0

j

�


= 0 with

q > 3:

(A3) � 2 C

1

(℄0;1[); �(a) � �

1

> 0 for all a > 0;

(A4) f 2 L

q

(Q

T

):

Remark 1. Sine � 2 C

1

(℄0;1[);we have that for all T > 0 �nite, there exist

positives onstants �

2;

�

0

1

; �

0

2

suh that

0 < �

1

� �(a) � �

2

;

0 < �

0

1

� �

0

(a) � �

0

2

Under these hypotheses, he proved the following result:

Theorem 2.1. ([19℄, p.698). There exists T

0

� T suh that the equations (2.1) have

a solution (u;rp; �) wih satis�es

u 2 W

2;1

q

(Q

T

0

);rp 2 L

q

(Q

T

0

); � 2 C

1

(Q

T

0

):

Moreover, there exists R > 0 depending on 
; �; T; �

0

suh that if

kfk

L

q

(Q

T

)

+ ku

0

k

W

2�2=q;q

(
)

� R;
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then (u;rp; �) is a solution of (2.1) for T

0

= T:

HereW

2;1

q

(Q

t

) denote the spae of distributions u 2 L

q

(0; T ;W

2;q

(
)) suh that

�

t

u 2 L

q

(Q

t

) with their natural norm.

We an rewrite the problem (2.1), by using the orthogonal projetion P, as

follows

��

�t

+ u:r� = 0 ( a:e: (x; t) 2 
�℄0; T [ );

P (�(t)

�u

�t

�r:((�(�(t))(ru+

t

ru))) = P (��(t)u:ru+ �(t)f) (2.2)

(0 < t < T );

u(0) = u

0

(x); �(x; 0) = �

0

(x):

or, equivalently

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�

t

+ u � r� = 0 for (x; t) 2 
� (0; T );

(�u

t

; v) + (�u � ru; v) + (�(�)(ru+

t

ru);rv)

= (�f; v) for 0 < t < T; 8 v 2 V;

u(x; 0) = u

0

(x); �(x; 0) = �

0

(x; 0) = �

0

(x):

(2.3)

The spetral semi-Galerkin approximations for (u; �) are de�ned for eah n 2 N

as the solution (u

n

; �

n

) 2 C

2

([0; T ℄;V

n

)� C

1

(Q

T

0

) of

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�

n

t

+ u

n

� r�

n

= 0 for (x; t) 2 
� (0; T );

(�

n

u

n

t

; v) + (�

n

u

n

� ru

n

; v) + (�(�

n

)(ru

n

+

t

ru

n

);rv)

= (�

n

f; v) for 0 < t < T; 8 v 2 V

n

;

u

n

(x; 0) = P

n

u

0

(x); �

n

(x; 0) = �

0

(x); x 2 
:

(2.4)

Applying the analogous arguments of Lemoine, we obtain

Corollary 2.2. The approximations of spetral semi-Galerkin satisfy the following

estimates uniform in n

kru

n

(t)k

2

+

Z

t

0

ku

n

�

(�)k

2

d� � C; (2.5)
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Z

t

0

kAu

n

(t)k

2

� C; (2.6)

k�

n

k

L

1

� C; (2.7)

kr�

n

k

L

1

� C; (2.8)

k�

n

t

k

L

1

� C: (2.9)

We note that whene �; u sati�es (2.1)i, we have �

t

= �div(�u), then for v; ! 2

H

1

(
), using integration by parts, result

(�

t

v; !) = �(div(�u)v; !) = (�u:rv; !) + (�u:r!; v): (2.10)

Also,

(�!

t

; !) =

1

2

d

dt

k�

1=2

!k

2

�

1

2

(�

t

!; !): (2.11)

To prove our results we use the following results.

Lemma 2.3. Let u 2 V then the following estimate holds (see[25℄)

kuk

L

3

� Ckuk

1=2

kruk

1=2

:

Moreover, if u 2 V \H

2

(
) (see [8℄)

kuk

L

1

� Ckruk

1=2

kAuk

1=2

:

Lemma 2.4. Let v 2 V \H

2

(
) and onsider the helmoltz deomposition of �4v,

that is,

�4v = Av +rq,

where q 2 H

1

(
) is taken suh that

R




qdx = 0 (reall that A is the Stokes

operator). Then, for every " > 0 there exists a positive onstant C

"

independent of

v suh that the following estimate holds

kqk � C"krvk+ "kAvk:
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To prove our results we will preise more regularity on the initial data.

We assume the following

(A1

0

) �

0

2 C

1

(
)

(A2

0

) u

0

2 D(A)

(A3

0

) f 2 L

2

(0; T ;H

1

(
))

(A4

0

) f

t

2 L

2

(Q

T

):

With these regularity, we will prove the following more strong result.

Proposition 2.5. We assume (A1

0

) , (A2

0

); (A3

0

) and (A4

0

). The dimension of 


may be two or three. The unique solution given by the Theorem 2.1 satis�es

� 2 C

1

(
� [0; T

0

℄);

u 2 L

1

([0; T

0

℄; D(A));

u

t

2 L

1

([0; T

0

℄;H) \ L

2

(0; T

0

;V ):

Moreover, there hold the following estimates uniformly in n for the approxima-

tions

ku

n

t

(t)k

2

+

Z

t

0

kru

n

�

(�)k

2

d� � C; (2.12)

sup

t

kAu

n

(t)k

2

� C: (2.13)

Proof.

Proof the estimate (2.12):

Di�erentiating the veloity equation (2.4) with respet to t, we have

(�

n

t

u

n

t

+ �u

n

tt

; v)� (r((�

0

(�

n

)�

n

t

(ru

n

+

t

ru

n

); v)� (r((�(�

n

)(ru

n

t

+

t

ru

n

t

)); v)

= (�

n

t

f; v) + (�

n

f

t

; v)� ((�

n

u

n

:ru

n

)

t

; v)

and setting v = u

n

t

(t) 2 V and using (2.11) with ! = u

n

t

,we have

1

2

d

dt

k(�

n

)

1=2

u

n

t

k

2

+ k(�(�

n

)

1=2

ru

n

t

k

2

= (�

n

t

f; u

n

t

) + (�

n

f

t

; u

n

t

)

+

1

2

(�

n

t

u

n

t

; u

n

t

)� ((�

n

u

n

:ru

n

)

t

; u

n

t

) + ((�

0

(�

n

)�

n

t

ru

n

;ru

n

t

):
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On the other hand,

((�

n

u

n

:ru

n

)

t

; u

n

t

) = (�

n

t

u

n

:ru

n

; u

n

t

) + (�

n

u

n

t

:ru

n

; u

n

t

) + (�

n

u

n

:ru

n

t

; u

n

t

):

Consequently,

1

2

d

dt

k(�

n

)

1=2

u

n

t

k

2

+ k(�(�

n

)

1=2

ru

n

t

k

2

=

1

2

(�

n

t

u

n

t

; u

n

t

)� (�

n

t

u

n

:ru

n

; u

n

t

)

�(�

n

u

n

t

:ru

n

; u

n

t

) + (�

n

u

n

:ru

n

t

; u

n

t

)

+(�

n

t

f

t

; u

n

t

) + (�

n

f

t;

u

n

t

) (2.14)

+((�

0

(�

n

)�

n

t

ru

n

;ru

n

t

):

On the other hand, realling the estimates (2.7) and (2.9), we have

j(�

n

t

u

n

t

; u

n

t

)j � k�

n

t

k

L

1

ku

n

t

k

2

� Cku

n

t

k

2

;

j(�

n

f

t

; u

n

t

)j � k�

n

k

L

1

ku

n

t

kkf

t

k � Cku

n

t

k

2

+ Ckf

t

k

2

:

Also, using the Lemma 2.3

j(�

n

u

n

:ru

n

t

; u

n

t

)j � k�

n

k

L

1

ku

n

k

L

6

kru

n

t

kku

n

t

k

L

3

� Ckru

n

kku

n

t

k

1=2

kru

n

t

k

3=2

� C

"

kru

n

k

4

ku

n

t

k

2

+ "kru

n

t

k

2

;

j(�

n

u

n

t

:ru

n

; u

n

t

)j � k�

n

k

L

1

ku

n

t

k

L

3

kru

n

kku

n

t

k

L

6

� Cku

n

t

k

1=2

kru

n

kkru

n

t

k

3=2

� C

"

kru

n

k

4

ku

n

t

k

2

+ "kru

n

t

k

2

;

and

j(�

n

t

u

n

:ru

n

; u

n

t

)j � k�

n

t

k

L

1

ku

n

k

L

3

kru

n

kku

n

t

k

L

6

� C

"

kru

n

k

4

+ "kru

n

t

k

2

:

Choosing " =

�

1

6

and in (2.13) integrating of 0 to t, we obtain

k(�

n

(t))

1=2

u

n

t

(t)k

2

+ �

1

Z

t

0

kru

n

�

(� )k

2

d�
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� k(�

n

0

)

1=2

u

n

t

(0)k

2

+ C

Z

t

0

(ku

n

�

(�)k

2

)d�

+C + C

Z

t

0

kru

n

(�)k

4

ku

n

�

(�)k

2

d�

� Cku

n

t

(0)k

2

+ C + C

Z

t

0

kru

n

(� )k

4

ku

n

�

(�)k

2

d�

by using (2.5) and the hypotheses on f . From (2.2), easily we dedue

ku

n

t

(0)k � CkAu

n

(0)k+ CkAu

n

(0)kkru

n

(0)k+ Ck�

n

0

f(0)k

� C:

Consequently, sine k(�

n

)

1=2

u

n

t

(t)k

2

� M

1

ku

n

t

(t)k

2

, we have

M

1

ku

n

t

(t)k

2

+ �

1

Z

t

0

kru

n

t

(�)k

2

d� � C + C

Z

t

0

kru

n

(� )k

4

ku

n

�

(� )k

2

d�

and using the Gronwall's inequality

M

1

ku

n

t

(t)k

2

+ �

1

Z

t

0

kru

n

�

(� )k

2

d�

� C � exp(

Z

t

0

kru

n

(�)k

4

d�)

� C (2.15)

by virtue (2.5).

Proof the estimate (2.13):

Taking v = Au

n

in (2.4), we �nd

�(r:((�(�

n

(t))(ru

n

+

t

ru

n

)); Au

n

) = (�

n

f; Au

n

)� (�

n

u

n

t

; Au

n

)� (�

n

u

n

:ru

n

; Au

n

)

Using the identity

r:((�(�

n

(t))(ru

n

+

t

ru

n

)) = �

0

(�

n

)r�

n

(ru

n

+

t

ru

n

) + �(�

n

)4u

n

: (2.16)
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where r�

n

(ru

n

+

t

ru

n

) denotes the vetor �eld whose i

th

omponent is given

by [r�

n

(ru

n

+

t

ru

n

)℄

i

= (r�

n

;ru

n

i

+

t

ru

n

i

)

IR

N , we �nd

�(�(�

n

)4u

n

; Au

n

) = (�

n

f; Au

n

)� (�

n

u

n

t

; Au

n

)� (�

n

u

n

:ru

n

; Au

n

)

+(�

0

(�

n

)r�

n

(ru

n

+

t

ru

n

); Au

n

)

Sine Au

n

6= ��u

n

, we need the Helmholtz deomposition ��u

n

= Au

n

+rq

n

,

for some q

n

with

R




q

n

= 0, and the following estimates given by Lemma 2.4: there

exist C > 0 and, for any " > 0, C

"

> 0, onstants independent of n and suh that

kq

n

k � C

"

kru

n

k+ "kAu

n

k and jjq

n

jj

1

� CkAu

n

k: (2.17)

Consequently,

(�(�

n

)Au

n

; Au

n

) = (�

n

f; Au

n

)� (�

n

u

n

t

; Au

n

)� (�

n

u

n

:ru

n

; Au

n

)

+(�

0

(�

n

)r�

n

(ru

n

+

t

ru

n

); Au

n

)� (�(�

n

)rq

n

; Au

n

)

We observe that, beause divAu

n

= 0,

(�(�

n

)rq

n

; Au

n

) = �(q

n

; div�(�

n

)Au

n

) = �(q

n

; �

0

(�

n

)r�

n

Au

n

):

Consequently, by using (2.16)

j(�(�

n

)rq

n

; Au

n

)j � �

0

1

kq

n

kkr�

n

k

L

1

kAu

n

k

� Ckq

n

kr�

n

k

L

1

kAu

n

k

� C(C

"

kru

n

k+ "kAu

n

k)kr�

n

k

L

1

kAu

n

k

� C

"

kr�

n

k

2

L

1

kru

n

k

2

+ "Ckr�

n

k

2

L

1

kAu

n

k

2

Thus, we have

kAu

n

k �

1

�

1

(k�

n

k

L

1

kfk+ Ck�

n

k

L

1

ku

n

t

k+ �

0

1

kr�

n

k

L

1

kru

n

k

2

)

+

C

�

1

k�

n

k

L

1

ku

n

k

L

6

kru

n

k

L

3

+

C

�

1

kr�

n

k

2

L

1

kru

n

k

2

:
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Now, by using the Lemma 2.3,we have

C

�

1

k�

n

k

L

1

ku

n

k

L

6

kru

n

k

L

3

�

C

�

1

k�

n

k

L

1

kru

n

k

3=2

kAu

n

k

1=2

�

C

2�

1

k�

n

k

2

L

1

kru

n

k

3

+

1

2

kAu

n

k:

Using the above estimate together with Corollary 2.2 , we obtain the estimate

(2.13).

From the above estimates follows the regularity of the solution (u; �) give by the

Proposition 2.5.

The following results an be found in Rautmann [26℄.

Lemma 2.6. If u 2 V and w 2 H

1

0

(
), then there holds

ku� P

n

uk

2

�

1

�

n+1

kruk

2

:

Also, if u 2 V \H

2

(
) , we have

ku� P

k

uk

2

�

1

�

2

k+1

kAuk

2

;

kru�rP

k

uk

2

�

1

�

k+1

kAuk

2

:

3. L

2

-error estimates for veloity and L

r

-error estimates for

density

From now on, for simpliity of notation, we will write T

0

� T .

In this setion we give the H

1

-error estimate for the veloity and L

r

-error esti-

mate for density. The analysis is more diÆult that in the ase of onstant visosity

.

12



Let (u; �) be the strong solution of problem (2.2) (or (2.3)) given by Proposi-

tion 2.5 and (u

n

; �

n

) the approximate solution of problem (2.4).

We de�ne

w

n

= P

n

u� u

n

; �

n

= �� �

n

; �

n

= u� P

n

u:

With these notations, we observe that w

n

and �

n

satisfy the following equations

(�w

n

t

; v) + (�(�)rw

n

;rv) = (�

n

f; v) + (�

n

u

n

t

; v)� (�

n

u:ru; v)

�(�

n

w

n

:ru; v)� (�

n

u

n

:rw

n

; v)� ((�(�)� �(�

n

))ru

n

;rv)

�(��

n

t

; v)� (�

n

�

n

ru; v)� (�

n

u

n

r�

n

; v)� (�(�)r�

n

;rv) (3.1)

�

n

t

+ u

n

:r�

n

= �w

n

:r�� �

n

r�: (3.2)

To obtain the H

1

-estimate, we will need the following Lemma.

Lemma 3.1. Under the onditions of Proposition 2.5, for 2 � r � 6, we have

k�

n

(t)k

2

L

r

� C

Z

t

0

(kw

n

(�)k

2

L

r

+ k�

n

(� )k

2

L

r

)d� :

Proof. Sine 
 is bounded, we have L

6

,! L

r

for 2 � r � 6 , moreover it is

suÆient to prove the Lemma for r = 6:

Multiplying (3.2) by j�

n

j

5

and integrating over 
, we obtain

1

6

d

dt

Z




j�

n

j

6

dx = �

Z




w

n

:r�j�

n

j

5

dx�

1

6

Z




u

n

:rj�

n

j

6

dx�

Z




�

n

:r�j�

n

j

5

dx

�

Z




jw

n

jjr�jj�

n

j

5

dx+

1

6

Z




div u

n

j�

n

j

6

dx+

Z




j�

n

jjr�jj�

n

j

5

dx

� kr�k

L

1

Z




jw

n

jj�

n

j

5

dx+ kr�k

L

1

Z




j�

n

jj�

n

j

5

dx

� Cf

 

Z




jw

n

j

6

dx

!

1=6

+

 

Z




j�

n

j

6

dx

!

1=6

g

 

Z




j�

n

j

6

dx

!

5=6

where we used the estimate (2.8). This implies

1

6

d

dt

k�

n

k

6

L

6

� C(kw

n

k

L

6

+ k�

n

k

L

6

)k�

n

k

5

L6

13



but,

1

6

d

dt

k�

n

k

6

L

6

= k�

n

k

5

L

6

d

dt

k�

n

k

L

6

;

then, sine H

1

(
) ,! L

6

(
), we obtain

d

dt

k�

n

k

L

6

� C(kw

n

k

L

6

+ k�

n

k

L

6

):

Integrating from 0 to t the last inequality and applying the Cauhy-Shwartz in-

equality, we have

k�

n

(t)k

L

6

� C

Z

t

0

kw

n

(s)k

L

6

ds+ C

Z

t

0

k�

n

(s)k

L

6

ds:

Proposition 3.2. Under the hypotheses of Proposition 2.5, we have

kw

n

(t)k

2

+

Z

t

0

krw

n

(s)k

2

ds �

G

1

(t)

�

2

n+1

+

G

1

(t)

�

n+1

(3.3)

Proof. Setting v = w

n

(t) in (3.1), we get

1

2

d

dt

k(�)

1=2

w

n

k

2

+ k(�(�))

1=2

rw

n

k

2

=

1

2

(�

t

w

n

; w

n

) + (�

n

f; w

n

)� (�

n

u:ru; w

n

)

�(�

n

w

n

:ru; w

n

) + (�

n

u

n

t

; w

n

)

�(�

n

u

n

:rw

n

; w

n

)� (�

n

�

n

ru; w

n

)

�(�

n

u

n

r�

n

; w

n

)� (�(�)r�

n

;rw

n

)

�(((�(�)� �(�

n

))ru

n

;rw

n

)

�(��

n

t

; w

n

): (3.4)

By using the H�older's inequality and Sobolev imbedding H

2

,! L

1

, H

1

,! L

6

,

we obtain the following estimates

j

1

2

(�

t

w

m

; w

n

)j � Ck�

n

t

k

L

1

kw

n

k

2

;

j(�

n

f; w

n

)j � C

"

k�

n

k

2

L

2

kfk

2

L

6

+ "krw

n

k

2

;
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j(�

n

u:ru; w

n

)j � C

"

k�

n

k

2

kAuk

4

+ "krw

n

k

2

;

j(�

n

w

n

:ru; w

n

)j � k�

n

k

L

1

kw

n

kkruk

L

3

kw

n

k

L

6

� C

"

k�

n

k

2

L

1

kAuk

2

kw

n

k

2

+ "krw

n

k

2

;

j(�

n

u

n

:rw

n

; w

n

)j � C

"

k�

n

k

2

L

1

kAu

n

k

2

kw

n

k

2

+ "krw

n

k

2

;

j(((�(�)� �(�

n

))ru

n

;rw

n

)j � C

"

k�

n

k

2

L

3

kAu

n

k

2

+ "krw

n

k

2

;

j(��

n

t

; w

n

)j � C

"

k�k

2

L

1

k�

n

t

k

2

+ "krw

n

k

2

;

j(�

n

u

n

t

; w

n

)j � C

"

k�

n

k

2

ku

n

t

k

2

+ "krw

n

k

2

;

j(�

n

�

n

ru; w

n

)j � C

"

k�

n

k

2

L

1

kAuk

2

k�

n

k

2

+ "krw

n

k

2

;

j(�

n

u

n

r�

n

; w

n

)j = j(u

n

r�

n

�

n

; w

n

) + (�

n

u

n

rw

n

; �

n

)j

� C

"

(k�

n

k

2

+ kr�

n

k

2

)kAuk

2

k�

n

k

2

+ "krw

n

k

2

;

j(�(�)r�

n

;rw

n

) � C

"

kr�

n

k

2

+ "krw

n

k

2

:

By using the above estimates, Corollary 2.2 and the Proposition 2.5, we obtain

1

2

d

dt

k(�)

1=2

w

n

k

2

+

�

0

2

krw

n

k

2

� Ckw

n

k

2

+ C(1 + ku

n

t

k

2

)k�

n

k

2

+ Ck�

n

k

2

L

3

+Ck�

n

k

2

+ Ckr�

n

k

2

+ Ck�

n

t

k

2

:

Integrating in t the last inequality, we get

k(�(t))

1=2

w

n

(t)k

2

+ �

0

Z

t

0

krw

n

(s)k

2

ds � k(�(0))

1=2

w

n

(0)k

2

+ C

Z

t

0

kw

n

(s)k

2

ds

+C

Z

t

0

k�

n

(s)k

2

L

3

ds+ C

Z

t

0

k�

n

k

2

ds

+C

Z

t

0

kr�

n

k

2

ds+ C

Z

t

0

k�

n

t

(s)k

2

ds

+C

Z

t

0

k�

n

(s)k

2

(1 + ku

n

t

k

2

L

6

)ds (3.5)

By other hand, using the Lemma 3.1, Young inequality and Lemma 2.6, we have

C

Z

t

0

k�

n

(s)k

2

L

3

ds � C

Z

t

0

f

Z

s

0

(kw

n

(�)k

2

L

3

+ k�

n

(� )k

2

L

3

)d�gds:

� CT

Z

t

0

(kw

n

(�)k

2

L

3

+ k�

n

(� )k

2

L

3

)d�

15



� CT

Z

t

0

kw

n

(� )kkrw

n

(�)kd� + CT

Z

t

0

k�

n

(� )kkr�

n

(�)kd�

� C

"

T

Z

t

0

kw

n

(�)k

2

d� + "CT

Z

t

0

krw

n

(� )k

2

d�

+CT

Z

t

0

k�

n

(� )k

2

+ CT

Z

t

0

kr�

n

(� )k

2

d�

� C

"

T

Z

t

0

kw

n

(�)k

2

d� + "CT

Z

t

0

krw

n

(� )k

2

d�

+

CT

�

2

n+1

Z

t

0

kAu(�)k

2

d� +

CT

�

n+1

Z

t

0

kAu(�)k

2

d�

Also, the estimates given in Corollary 2.2 imply

C

Z

t

0

k�

n

(s)k

2

L

3

ds � C

"

T

Z

t

0

kw

n

(s)k

2

ds+

CT

�

2

n+1

+

CT

2

�

n+1

+"T

Z

t

0

krw

n

(s)k

2

ds: (3.6)

This last estimate when is used in (3.5 ) furnishes

M

1

kw

n

(t)k

2

+ �

0

Z

t

0

krw

n

(s)k

2

ds � C

Z

t

0

kw

n

(s)k

2

ds+

C

�

2

n+1

+

C

�

n+1

(3.7)

+"T

Z

t

0

krw

n

(s)k

2

ds+

C

�

n+1

Z

t

0

kru

n

t

(s)k

2

ds:

Taking " = �

0

=2T , after of use Gronwall's inequality we obtain the estimate

(3.3).

Theorem 3.3. Suppose the assumptions of Proposition 2.5 hold. Then, the ap-

proximations u

n

satis�es

jju(t)� u

n

(t)jj

2

+

Z

t

0

jjru(s)�ru

n

(s)jj

2

ds �

G

1

(t)

�

n+1

+

1

�

2

n+1

kAuk

2

(3.8)

for any t 2 [0; T ℄. The ontinuous funtion G

1

(t) depend on t .

Proof. We have from the Lemma 2.6 and Proposition 3.2
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jju(t)� u

n

(t)jj

2

+

Z

t

0

jjru(s)�ru

n

(s)jj

2

ds � jjw

n

(t)jj

2

+

Z

t

0

(krw

n

(s)k

2

ds

+jj�

n

(t)jj

2

+

Z

t

0

jjr�

n

(s)jj

2

)ds

� (G

1

(t) + kAuk

2

)(

1

�

2

n+1

+

1

�

n+1

):

Corollary 3.4. Under the hypotheses of the Proposition 2.5, we have for any 2 �

r � 6

k�

n

(t)k

2

L

r

�

G

1

(t)

�

n+1

+

1

�

2

n+1

kAuk

2

:

4. H

1

-error estimates for veloity.

Proposition 4.1. Under the hypotheses of Proposition 2.5, we have

krw

n

(t)k

2

+M

1

Z

t

0

kw

n

�

(�)k

2

d� �

G

2

(t)

�

n+1

+

G

3

(t)

p

�

n+1

; (4.1)

Proof. Setting v = w

n

t

(t) in (3.1 ), we obtain

k(�)

1=2

w

n

t

k

2

+ (�(�)rw

n

;rw

n

t

) =

1

2

(�

t

w

n

; w

n

t

) + (�

n

f; w

n

t

)� (�

n

u:ru; w

n

t

)

�(�

n

w

n

:ru; w

n

t

) + (�

n

u

n

t

; w

n

t

) (4.2)

�(�

n

u

n

:rw

n

; w

n

t

)� (((�(�)� �(�

n

))ru

n

;rw

n

t

):

We observe that (�(�)rw

n

;rw

n

t

) =

1

2

d

dt

k(�(�))

1=2

rw

n

k

2

�

1

2

(�

0

(�)�

t

rw

n

;rw

n

);

onsequently in the last inequality we have
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k(�)

1=2

w

n

t

k

2

+

1

2

d

dt

k(�(�))

1=2

rw

n

k

2

=

1

2

(�

t

w

n

; w

n

t

) + (�

n

f; w

n

t

)� (�

n

u:ru; w

n

t

)

�(((�(�)� �(�

n

))ru

n

;rw

n

t

) + (�

n

u

n

t

; w

n

t

)

�(�

n

u

n

:rw

n

; w

n

t

)� (�

n

w

n

:ru; w

n

t

) (4.3)

�

1

2

(�

0

(�)�

t

rw

n

;rw

n

):

Now, we estimate the hand-rihgt side of the above inequality of the following

manner

j

1

2

(�

t

w

n

; w

n

t

)j � C

"

k�

t

k

L

1

kw

n

k

2

+ "kw

n

t

k

2

;

j(�

n

u:ru; w

n

t

)j � k�

n

k

L

3

kuk

L

1

kruk

L

6

kw

n

t

k � C

"

k�

n

k

L

3

kAuk

4

+ "kw

n

t

k

2

;

j(�

n

f; w

n

t

)j � k�

n

k

L

3

kf

t

k

2

L

6

kw

n

t

k � C

"

k�

n

k

2

L

3

kfk

L

6

+ "kw

n

t

k

2

:

Analogously,

j(�

n

w

n

:ru; w

n

t

)j � C

"

k�

n

k

2

L

1

kAuk

2

krw

n

k

2

+ "kw

n

t

k

2

;

j(�

n

u

n

t

; w

n

t

)j � C

"

k�

n

k

L

3

kru

n

t

k

2

+ "kw

n

t

k

2

;

j(�

n

u

n

:rw

n

; w

n

t

)j � C

"

k�

n

k

2

L

1

kAu

n

k

2

krw

n

k

2

+ "kw

n

t

k

2

:

The other terms are estimate as follows

j

1

2

((�

0

(�)rw

n

;rw

n

)j �

1

2

�

0

1

krw

n

k

2

;

j((�(�)� �(�

n

))ru

n

;rw

n

t

)j � j �(�)� �(�

n

) j

L

3

kru

n

k

L

6

krw

n

t

k

� Ck�

n

k

L

3

kAu

n

kkrw

n

t

k

� Ck�

n

k

L

3

kAu

n

k(kru

t

k+ kru

n

t

k)

j(�(�)r�

n

;rw

t

)j � �

1

kr�

n

kkrw

t

k

� �

1

kr�

n

k(kru

t

k+ kru

n

t

k):

By using the estimates from Proposition 2.5 , the above estimates together with

(4.3) imply the following integral inequality

18



�

0

krw

n

(t)k

2

+M

1

Z

t

0

kw

n

t

(�)k

2

d�

� C

Z

t

0

(kw

n

(� )k

2

+ krw

n

(� )k

2

+ k�

n

(�)k

2

L

3

)d�

+C

Z

t

0

(k�

n

(�)k

L

3

+ kr�

n

(� )k)�(�)d�

+C

Z

t

0

kr�

n

(�)k

2

d� + C

Z

t

0

k�

n

(� )k

2

d�

where �(t) = kru

t

k+kru

n

t

k , we observe that the estimate given in Proposition

2.5 implies �(:) 2 L

2

(0; T ):

Applying the Proposition 3.2 and Corollary 3.4 we obtain the desired result

with G

2

(t) = TG

1

(t) + CG

1

(t) + CT and G

3

(t) = (CG

1

(t) + C)

1=2

�(t) , where

�(t) = (

R

t

0

(�(�))

2

d�)

1=2

:

Theorem 4.2. Under the hypotheses of Proposition 2.5, we have

jjr(u� u

n

)(t)jj

2

+

Z

t

0

jju

t

(s)� u

n

t

(s)jj

2

ds (4.4)

�

G

3

(t)

�

n+1

+

G

3

(t)

p

�

n+1

:

for any t 2 [0; T ℄. The ontinuous funtion G

3

(t) depends on t:

Proof. We have from the Lemma 2.6 and Proposition 4.1

jjru(t)�ru

n

(t)jj

2

+

Z

t

0

jju

t

(s)� u

n

t

(s)jj

2

ds � jjrw

n

(t)jj

2

+

Z

t

0

kw

n

�

(� )k

2

d�

+jjr�

n

(t)jj

2

+

Z

t

0

k�

n

�

(�)k

2

d�

� (G

2

(t) + kAuk

2

+

Z

t

0

ku

�

(� )k

2

d�)

1

�

n+1

+

G

3

(t)

p

�

n+1

:
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Corollary 4.3. Under the hypotheses of the Proposition 2.5, we have

Z

t

0

kAu(�)� Au

n

(� )k

2

d� �

G

4

(t)

�

n+1

+

G

5

(t)

p

�

n+1

; (4.5)

for any t 2 [0; T ℄. The ontinuous funtion G

4

(t) and G

5

(t) depends on t:
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