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ABSTRACT We present a theoretical view of image analysis, in particular edge detection.

The problem is to �nd a discontinuity on a Gaussian random �eld driven by a Laplacian

operator. The idea is �rst to represent the ideal �eld, i.e. the continuum �eld, as the limit

of adequate lattice �elds. Depending on the discontinuity characteristics, the problem can

be solved immediately using some of the theory developed by Glimm, Ja�e, Nelson and

Simon, among others. For some cases, however, the discontinuity does not allow us to

apply directly the latter techniques. We present a two-step procedure that shows those

limit results. The second part of the work is to provide with a theoretical reasoning for

several contrast-based detection procedures found on the literature. It is shown, for the

case of a closed discontinuity, that a naive contrast procedure is consistent.

1 Introduction

The research described is motivated by two related problems, one applied and one

theoretical. The applied problem is to access the feasibility of using wavelets in

multi-resolution representation of images containing edges. Those edges could cor-

respond to boundaries between di�erent objects, or between objects and background.

Noticeable works along this line include [11] and [12] which search wavelet max-

ima to detect edges while de-noising deterministic images. Some computationally

e�cient algorithms were given in the papers.

Non-parametric techniques have also been employed in the detection of bound-

aries on images assumed to be composed by a deterministic signal and additive noise.
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Nice procedures are obtained and works in this area include the ones done by Ko-

rostelev, M�uller, and Tsybakov. A good survey is provided in [9].

Since on both cases, images are not considered as random samples from a

statistical distribution, these approaches did not account for the variability and

structure of similar images taken on the same objects. Therefore, taking images

as random samples leads naturally to the theoretical problem of representation of

Gaussian random �elds with discontinuities. The Gaussian assumption is mainly for

simplicity. However, even in the Gaussian case, little has been known for discontin-

uous �elds, in contrast to the extensive studies for regular (stationary, continuous,

etc.) �elds.

Consider a Gaussian random �eld X = fX

t

; t 2 T � IR

d

g with mean zero and

covariance function C. If one assumes that C is continuous, then an interesting 0-1

law about the continuity of sample paths of X states (see [2], P66 for the discussion

and further references):

Let X be a Gaussian process with continuous covariance function C. Then

(i) PfX

t

is continuous 8t 2 Tg = 1 i� PfX

t

is continuousg = 1 at

each t 2 T ; and

(ii) PfX

t

is continuous 8t 2 Tg = 0 or 1.

What happens when X has a discontinuous covariance function C? A short

answer is that no general results are available, because discontinuities of C can be

introduced in many di�erent ways. The situation is similar to di�erential equations

with singularities. The method in solving this singular problem will depend on the

form of discontinuities and the covariance structure.

A solution of this kind was given in [4]. Using wavelet analysis, the authors

studied a one-dimensional (1D) Gaussian process induced by a special elliptical

di�erential operator L =

d

dt

a(t)

d

dt

on I = (�1; 1) n f0g, where a(t) is assumed to
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be continuous and positive on I, and a(t)=jtj

�

! c for some positive number c,

as t ! 0. This de�nes a Gaussian process X on I and, if � � 1, the point 0

becomes a singularity for X. The novelty of [4] is to use wavelets as a basis for

the related reproducing kernel Hilbert space (RKHS), generated by localizing the

operator L (see [14] for discussion on RKHS related to Gaussian processes). A

Karhunen-Loeve-type decomposition for the process X was also obtained.

The method in [4] works only when one can isolate the singularity in such a way

that the wavelets will miss it altogether; otherwise, the form of the wavelets could

not be maintained. That is the case only when the singularities are regularly spaced

on the nodes of a dyadic decomposition of the region where the process or �eld is

de�ned. In other words, this is strictly limited to the 1D nature of the problem:

singularities are �nite and isolated. Such a limitation hinders the extension of this

approach to 2D or 3D, in which singularities usually form uncountable sets: curves,

surfaces, etc.

In this work, we study Gaussian random �elds induced by Laplacian opera-

tors. This framework was adopted as a starting point in quantum �eld theory by

Glimm, Ja�e, Nelson and Simon, among others, in the 1960s and 70s. However, no

singularities were involved in their studies. An important problem they considered

is lattice approximation. Consider a sequence of compatible lattice �elds, where the

dimension of each lattice is referred to as resolution of the lattice. Lattice approx-

imation involves convergence in various modes of this sequence to an appropriate

continuum �eld as the resolution tends to in�nity. The compatibility is imposed on

successive lattices by using dyadic partitions in the same spirit as other methods

of multi-resolution analysis. There are two excellent books in quantum �eld the-

ory where one can obtain the information necessary to the understanding of this

problem, [8] and [18]

Our �rst main result is Theorem 5.1 | lattice approximation for certain �elds

3



with discontinuous covariance functions. We follow and modify Simons approach

as can be seen in [18]. For simplicity and clarity, we only state our result in 2D,

although the analysis applies in any higher dimension. In what follows, most of the

notation agrees with [18].

An application of the lattice approximation theory is to justify a class of bound-

ary detection algorithms in image analysis. There is an extensive literature in image

analysis concerning segmentation and boundary detection. We refer the reader to

[24] for a summary of recent development in the area. There are two aspects pen-

etrating the works on boundary detection: a boundary is highlighted by the large

contrast on the two opposite sides; a boundary is subject to certain regularity con-

ditions. A common sense is that any reasonable procedure for boundary detection

based on digital images is expected to locate the correct boundary as the resolu-

tion gets higher and higher. But to the best of our knowledge, no works have been

done to justify this mathematically, especially when images are regarded as realiza-

tions of a random �eld. The main di�culty is that to deal with images of �nite

size with increasing resolution, the usual asymptotics in probability in which we

assume lattices expanding to in�nity but with �xed spacing does not work. When

the resolution goes to in�nity (or equivalently, the spacing goes to zero), we have

a sequence of discrete random �elds tending to a limiting random �eld on the con-

tinuum. Such a qualitative transition poses a tremendous technical di�culty. The

lattice approximation turns out to be precisely the right asymptotics analysis to

adopt in this project. In what follows, we will also prove the consistency of a class

of contrast-based procedures in boundary detection, stated in Theorem 6.1. In order

to gain good understanding, we simplify the situation and only consider boundaries

consisting of piecewise smooth Jordan curves, i.e. we do not add the regularity as

a factor into the boundary selection procedure, but only focus our attention on the

average contrast part. Furthermore, we only consider a single closed curve as the

boundary. The same argument works for the case of multiple curves with slightly
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more technicality involved. Our work is theoretical in spirit, and we do not discuss

many important issues in computation and practical implementation.

Notation

� IR - space of real numbers

� ZZ - integers

� IN - natural numbers

� L

2

(
) - space of square integrable functions supported on 
 � IR

2

� l

2

- squared summable sequences

� C

1

0

(
) - test functions on an open region 
 � IR

2

� D

0

(
) - distributions (dual of C

1

0

(
))

� S (
) - Schwartz test functions on 


� S

0

(
) - tempered distributions (dual of S (
))

� � - free Laplacian

� h - spacing of a lattice �eld

� �

�

- Laplacian restricted to � � IR

2

� �

h

- discrete Laplacian

� <;>

H

or (; )

H

- inner product on a Hilbert space H

� k � k

H

- norm on H

�

^

f - Fourier transform of f
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�

~

f - inverse Fourier transform of f

� �

x

- Delta-Dirac function at x

�

�

A - closure of A

� A

o

- interior of A

The lattice approximation is carried out in three steps: Step 1 is for the free

�eld; Step 2 deals with the �elds de�ned on a bounded region of arbitrary shape

with the Dirichlet boundary condition; and Step 3 allows the bounded region in Step

2 to contain smooth curves at which the covariance functions of the random �elds

are discontinuous.

In Step 1, let S

0

(IR

2

) be the Schwartz space of tempered distributions on IR

2

.

The free �eld is a S

0

(IR

2

)-valued Gaussian process � satisfying

�

��+ a

2

�

� = �; (1)

where � is the Laplacian, a > 0 is a constant and � is the white noise. The lattice

approximation for the free �eld is accomplished by standard Fourier analysis.

In Step 2, let � be an open bounded region in IR

2

with boundary @�. We

consider the Gaussian �eld � on � de�ned by the Dirichlet problem

�

��

�

+ a

2

�

� = � in �; and � = 0 on @�; (2)

where �

�

is the Laplacian restricted to �. Then the lattice approximation is ob-

tained by carefully projecting both the continuum �eld and the lattice �elds in Step

1 to � and its lattice counterpart �

h

respectively.

In Step 3, let � be the open unit square containing several smooth curves in it.

Without loss of generality, we consider the case with just one such curve, denoted

by c. For � > 0 su�ciently small, let �

�

be the open region obtained by subtracting
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a closed �-neighborhood (\sausage") of c from �. The lattice approximation in Step

2 applies to the Gaussian �eld on �

�

with the Dirichlet boundary condition on @�

�

.

Then a limit can be identi�ed when letting � # 0, due to the monotonicity of the

related covariance operators.

At �rst glance, use of some wavelet basis seems appropriate in lattice approxi-

mation due to the localization property of wavelets, especially for the representation

of random �elds with discontinuities. So far our attempt at this approach has not

turned out to be successful. Our study is still inconclusive. The problem with

wavelets is that they are not eigenfunctions of any well-known di�erential opera-

tor, including the Laplacian. The redundancy of wavelet bases creates di�culty in

showing the convergence of the operators. We will continue our study in wavelet

representation of Gaussian �elds with discontinuities.

The three-step lattice approximation does not specify a random �eld on the

entire domain �, since it always forces a deterministic zero con�guration on the

curve c. As a theoretical problem, we plan to study an alternative model which

o�ers a possibility of de�ning a Gaussian �eld on the entire �, including c, and still

highlighting the discontinuities along c. More details on this will be given in Section

7.

The basic framework and results for lattice approximations as stated here are

drawn mainly from the works developed by Simon, Glimm and Ja�e and, therefore,

we refer the readers to [18] and [8]. However, we will be working with a slight

modi�cation of the originally indexing spaced proposed in [18].

Section 2 is based on its entirety on Simon's work. On Section 3, we introduce

the problem on a di�erent way, as stated in De�nition 3.3, in order to precise relate

it to De�nition 3.2. The results of Sections 3 and 4 are therefore slight modi�cations

of the ones found in [18].

The rest of this text goes as follows. On Section 2, the basic framework is
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given for the establishment of a consistent theory of distribution-valued Gaussian

random �elds on the continuum. The Free Field is presented in Section 3, where its

lattice approximation is proven to exist. Section 4 shows that this approximation

is still valid when the support of the �eld is a region that attends some regularity

conditions.

Discontinuities are introduced on the problem and, in Section 5, one shows

that a direct use of the existing results is not possible but a careful two-step lattice

approximation procedure is proven to be enough.

Section 6 provides a formal justi�cation for a general contrast-based procedure

for boundary detection for certain distribution-valued Gaussian random �elds with

discontinuities. Further research is proposed in Section 7 and proofs are given in

Appendix A. A brief introduction to the theory of distributions, its properties and

Fourier analysis is given in Appendix B.

2 The Basic Framework

Definition 2.1 Let (
;F ; P ) be a probability space and V a real vector space. A

random process indexed by V is a map � : (V;
)! IR such that, for every f; g 2 V ,

a 2 IR:

�(f + g) = �(f) + �(g) a:e:

�(af) = a�(f) a:e:

Definition 2.2 Let fX

�

; � 2 Ag be a set of random variables de�ned on (
;F ; P ).

This set is called full if the equivalence classes of fX

�1

�

(B) j � 2 A;B a Borel set in IRg

in F n Z

P

are not all contained on a proper �-subring of F n Z

P

, where Z

P

is the

zero-probability class of 
.
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Definition 2.3 Let H be a Hilbert space. The Gaussian process � indexed by H is

a stochastic process satisfying:

(i) f�(f)jf 2 Hg is full;

(ii) Each �(f) is a Gaussian random variable;

(iii) < �(f); �(g) >

L

2

(
; P )

= 1=2 < f; g >

H

.

Note: The factor 1/2 in the isometry (iii) is simply a notational convention

to relate this de�nition to Fock spaces (see [18]).

De�ne Q

H

as the measurable space generated by such a process, i.e. the small-

est measurable space with respect to which � is a random process. The following

questions are posed:

1. Does a Gaussian random process indexed by H exist?

2. If such a process exists, is it unique?

3. How to construct Q

H

?

Beginning from the third question, one can answer all three at once. There are

several choices for H and Q

H

. One classical choice, whose reasoning will become

clear as the text develops, is to choose H to be the space S of test functions, and

Q

H

to be its dual, i.e. the space S

0

of tempered distributions. First, one has

Definition 2.4 A cylinder set in S

0

(IR

2

) is the set of distributions T such that:

(T (f

1

); T (f

2

); : : : ; T (f

m

)) 2 B;

where B is a Borel set in IR

2

and f

1

; f

2

; : : : ; f

m

are elements in S(IR

2

).

A cylinder measure � is de�ned on the �-algebra generated by the cylinder sets

such that �(S

0

(IR

2

)) = 1.
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But we know that each f in S de�nes a measurable function �(f) on S

0

by:

�(f)(T ) = T (f)

and that f�(f)jf 2 Sg is full. Also, �(f

m

) ! �(f) pointwise, whenever f

m

! f

weakly, which implies that:

Z

exp (i�(f

m

)) d�!

Z

exp (i�(f)) d�:

Given all the above construction, properties of the cylinder sets and measure,

and their relation to the test functions, one can invoke

Theorem 2.1 (Minlos' Theorem) Let b be de�ned on S(IR

2

). Then there is a

unique cylinder measure � on S

0

(IR

2

) such that

b(f) =

Z

exp (i�(f)) d�

if and only if

(i) b(0) = 1;

(ii) f 7! b(f) is continuous in the strong topology;

(iii) For any f

1

; f

2

; : : : ; f

m

2 S(IR

2

) and complex numbers z

1

; z

2

; : : : ; z

m

,

m

X

j; k=1

z

j

�z

k

b (f

j

� f

k

) � 0:

b(�) is called the generating function or characteristic function. In particular,

the Gaussian measure � on S

0

(IR

2

) with mean zero and covariance C is de�ned via

the generating function

b(f) = exp

�

�

1

4

C(f; f)

�

for a positive de�nite quadratic form C on S.
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Note: The factor 1=4 is the result of the factor 1/2 introduced previously in

De�nition 2.3 (iii).

Minlos' theorem guarantees the existence and uniqueness of the Gaussian pro-

cess in S

0

with a prescribed covariance operator C. Moreover, if one can construct a

Hilbert space H whose inner-product reduces to a positive de�nite form on S, and

H =

�

S, then S

0

(or an appropriate subspace) itself can be used as a model for Q

H

.

In the next section, the denseness of test functions in a distribution space will prove

very useful.

3 Lattice Approximation for the Free Field

First, note that Minlos' theorem also applies in construction of a Gaussian process

indexed by a closure of S (with respect to an appropriate norm).

Second, to de�ne a Gaussian process induced by a linear operator, it su�ces to

identify an appropriate Hilbert space and check that the quadratic form associated

to this operator is positive de�nite.

There are essentially two di�erent but equivalent ways to de�ne the free �eld as

a distribution-valued Gaussian process: one is via weak solutions of a SPDE driven

by the white noise; the other speci�es the covariance function (assuming mean zero)

and uses Minlos' theorem.

Definition 3.1 Let � be a regular region in IR

2

(see De�nition 4.3). The white

noise � 2 S

0

(�) is de�ned by

�( ) =

X

k

h ; e

k

i �

k

;  2 S(�) � L

2

(�);

where fe

k

g is an orthonormal basis of L

2

(�) with respect to the inner product

h ; i, and f�

k

g is a collection of iid N(0,1) random variables. Note that �( ) is
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a N(0; k k

2

2

) random variable with the L

2

(�)-norm k � k

2

.

Note: The white noise � in � is unique with respect to the equivalence relation

\'": �

1

; �

2

2 S

0

(�) are said to satisfy �

1

' �

2

, if �

1

( ) and �

2

( ) have the same

probability distribution for every  2 S(�).

Definition 3.2 The free �eld � is de�ned as a solution of the equation:

�

��+ a

2

�

� = �; (3)

where � 2 S

0

(IR

2

) is the white noise.

Note: Let N

2

be given by De�nition 3.3. Then, N

2

= C

1

0

(IR

2

) and the

embedding theorem can be used (as in [7] Theorem 11.1) so the equation (3) can be

understood as

Z

IR

2

�(x)(��+ a

2

) (x) dx = �( ) 8 2 C

1

0

(IR

2

); (4)

and there is a continuous version � satisfying (4), which we adopt as the free �eld.

The free �eld is the Gaussian random process with mean zero and the covariance

function C(x; y) which satis�es the equation

(��+ a

2

)

2

C(x; y) = �

x�y

; x; y 2 IR

2

:

Consider the following index space:

Definition 3.3 Let N

2

be the Hilbert space of all (real) distributions f 2 S

0

(IR

2

)

whose Fourier transforms are functions that satisfy

kfk

2

N

2

=

Z

IR

2

j

^

f(k)j

2

(k

2

+ a

2

)

2

dk <1;

where k = (k

1

; k

2

) 2 IR

2

and k

2

= k

2

1

+ k

2

2

. Hence we equip N

2

with the norm

k:k

N

2

. In general, for D � IR

2

, we let

N

2

D

= N

2

\ S

0

(D):
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This norm is related to the operator ��+ a

2

via the isometry

< f; g >

N

2

= 2 < f;

�

��+ a

2

�

�2

g >

L

2

;

following the fact that �� has eigenvalues k

2

and associated eigenfunctions e

i<k;x>

,

k 2 ZZ

2

, x 2 IR

2

.

Using the notation introduced in Section 2, set H = N

2

and Q

H

= Q

N

2

.

Then the free �eld can also be characterized as a Gaussian process indexed by N

2

,

i.e. the Gaussian process whose realizations are elements in Q

N

2

. We denote the

corresponding Gaussian measure by �

0

. Although this characterization of the free

�eld is not as direct as De�nition 3.2, it turns out to be convenient when dealing

with lattice approximations. This will become clear in the proof of Theorem 3.1.

Note: A slightly di�erent Hilbert space N is used in [18] with the squared

norm

kfk

2

N

=

Z

j

^

f(k)j

2

k

2

+ a

2

dk:

We use N

2

instead of N to keep the consistency with De�nition 3.2.

Now we de�ne the lattice Gaussian �eld with a given resolution. Let h > 0

and L

h

= fnh jn 2 ZZ

2

g.

De�ne the discrete (negative) Laplacian ��

h

by

Definition 3.4

(��

h

f)(nh) = h

�2

2

4

4f(nh)�

X

jm�nj=1

f(mh)

3

5

:

The lattice �eld can be thought as a digital image with resolution h

�1

. For coherence

among di�erent resolutions, the dyadic lattice will be used, i.e. h = 2

�j

; j 2 IN .

Definition 3.5 For h > 0, let �

h

be the Gaussian random �eld with mean zero and

covariance function

E [�

h

(n)�

h

(m)] = h

�2

�

��

h

+ a

2

�

�2

(n;m); n;m 2 ZZ

2

;
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where (��

h

+ a

2

)

�2

is the inverse (countable) matrix of (��

h

+ a

2

)

2

.

This classical de�nition is not appropriate to tie the lattice free �elds with

the continuum free �eld in the same space for the study of lattice approximations.

Our next step is to realize the lattice free �elds also as distribution-valued Gaussian

random variables, and then identify the right indices in N

2

for them, as de�ned in

De�nition 3.3.

Definition 3.6 De�ne �

h

(g) by

�

h

(g) =

X

n2ZZ

2

h

2

g(nh)�

h

(n); g 2 C

1

0

�

IR

2

�

:

For notational simpli�cation, we use �

h

both as a function on L

h

and as a

functional evaluated clearly at some element of N

2

.

To realize �

h

(n) on the continuum, let f

n;h

be the unique function in N

2

with

the Fourier transform

^

f

n;h

=

exp (�iknh) �

2

(k)

2��

2

h

(k)

1(hjk

1

j � �; hjk

2

j � �);

where 1(A) is the indicator of event A,

�

2

(k) = k

2

+ a

2

;

and observe that

�

2

h

(k) = h

�2

(4� 2 cos(k

1

h)� 2 cos(k

2

h)) + a

2

are the eigenvalues of ��

h

+ a

2

with respect to the Fourier exponentials.

Note that

E [� (f

n;h

)� (f

m;h

)] =

0

@

^

f

n;h

k

2

+ a

2

;

^

f

m;h

k

2

+ a

2

1

A

L

2
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=

Z

hjk

1

j��; hjk

2

j��

exp (ik(n�m)h) (k

2

+ a

2

)

2

(2�)

2

�

4

h

(k)(k

2

+ a

2

)

2

dk

= (2�)

�2

Z

hjk

1

j��;hjk

2

j��

exp (ik(n�m)h)�

�4

h

(k) dk

= E [�

h

(n)�

h

(m)]

is exactly the covariance function of �

h

. With that, one can realize �

h

(n) as an

element in Q

N

2

by

�

h

(n) = �(f

n;h

):

The next lemma indicates that an important step in lattice approximation for

the free �eld is the convergence of lattice Laplacians to the continuum Laplacian.

Lemma 3.1 (Simon) For �

2

(k) and �

2

h

(k), we have

(i) For each k 2 IR

2

, �

2

h

(k)! �

2

(k) as h! 0.

(ii) If max(jk

1

j; jk

2

j) � �=h, then �

�1

h

(k) �

�

2

�

�1

(k).

(iii) �

�2

h

(k) 1(max(jk

1

j; jk

2

j) � �=h)! �

�2

(k) as h! 0

in each L

p

(IR

2

); p > 1.

For every g 2 C

1

0

(IR

2

), de�ne

ĝ

h

(k) =

2

4

X

n2ZZ

2

h

2

2�

g(nh) exp(�iknh)

3

5

1(max(jk

1

j; jk

2

j) � �=h):

Then we have

Lemma 3.2 (Simon) ĝ

h

! ĝ in each L

p

(IR

2

), as h! 0, for every p � 2.

Theorem 3.1 With the realization �

h

(n) = �(f

n;h

), for every g 2 C

1

0

(IR

2

) we have

�

h

(g)! �(g);

in L

2

(Q

N

2

; �

0

), as h! 0.
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4 Lattice Approximation for Gaussian Fields with

Dirichlet Boundary Conditions

Definition 4.1 The Dirichlet �eld �

�

is de�ned as a solution of the following

Dirichlet problem:

�

��

�

+ a

2

�

� = � in �; with � = 0 on @�; (5)

where �

�

is the Laplacian restricted to �.

In the same spirit as in De�nition 3.2, �

�

is taken as a continuous version of

� that satis�es

Z

�

�(x) (��

�

+ a

2

) (x) dx = �( ) 8 2 C

1

0

(�): (6)

Hence �

�

is a S

0

(�)-valued Gaussian �eld with mean zero and the covariance function

C

�

(x; y) which satis�es the equation

(��

�

+ a

2

)

2

C

�

(x; y) = �

x�y

; x; y 2 �: (7)

Definition 4.2 Given � � IR

2

, one de�nes:

�

h

= � \ L

h

�

ext

h

= L

h

n �

h

�

int

h

= fnh 2 �

h

jmh 2 �

h

if jn�mj � 2g

@�

h

= �

h

n �

int

h

@�

ext

h

= fnh 2 �

ext

h

jmh 2 �

h

if jn�mj � 2g

Let N

2

h

be the space of real-valued sequences on L

h

such that:

kfk

2

h

=

X

�

��

h

+ a

2

�

�2

(n;m) f(n) f(m) <1:
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Given � � IR

2

, let e

�

h

be the projection in N

2

h

onto those sequences with support in

�

h

and p

�

h

= 1� e

�

ext

h

. Finally, de�ne the �eld �

�;h

by

�

�;h

(n) = �

h

(p

�

h

e

n

) ; n 2 ZZ

2

;

where e

n

is de�ned by e

n

(m) = �

n�m

, m 2 ZZ

2

.

Lemma 4.1 (Simon)

p

�

h

e

n

=

8

>

<

>

:

e

n

�

P

m2@�

ext

h

a

n

(m) e

m

; if n 2 �

h

;

0; if n 2 �

ext

h

;

(8)

with some coe�cients a

n

(�).

Definition 4.3 An open region � � IR

2

is said to be regular if C

1

0

(IR

2

n�) is dense

in N

2

IR

2

n�

with respect to the N

2

-topology.

The following counterexample due to Simon illustrates the necessity of impos-

ing the regularity condition on region �:

Let �

1

be the unit disc and �

2

= �

1

n f(x; �x)g. When using the lattice

approximation, one gets (�

1

)

h

= (�

2

)

h

but, since one can easily �nd distributions

in N

2

supported by �

1

n �

2

, the Dirichlet lattice theory cannot converge for both

domains.

Lemma 4.2 For a regular region �, let e = e

IR

2

n�

be an orthogonal projection onto

N

2

IR

2

n�

in N

2

-norm and de�ne e

h

to be the projection onto the span of ff

n;h

jn 2

�

ext

h

g. Then e

h

converges strongly to e.

Corollary 4.1 Using notation in the previous lemma and de�ning p = 1 � e and

p

h

= 1� e

h

, one immediately has the strong convergence of p

h

to p.
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Finally, we state

Theorem 4.1 Let � be a regular region. For g 2 C

1

0

(IR

2

), de�ne

�

�;h

(g) =

X

n2ZZ

2

g(nh)�

�;h

(n):

Then, as h # 0,

�

�;h

(g)! �

�

(g);

in L

2

(Q

N

2

�

; �

0

).

5 Lattice Approximation for Certain Random Fields

with Discontinuities

Let � = (0; 1)

2

and c 2 � be a smooth open curve, as in �gure 1. The question of

interest is: does Theorem 4.1 hold on the region �

0

= � n c? The answer is no due

to the irregularity of �

0

.

In fact, observe that IR

2

n �

0

= (IR

2

n �)

S

c. If f 2 N

2

IR

2

n�

, then both f and

f + �

x

are elements of N

2

IR

2

n�

0

, with x 2 c. Consequently,

N

2

IR

2

n�

� N

2

IR

2

n�

0

; (9)

and the inclusion � is proper. On the other hand,

C

1

0

�

IR

2

n �

0

�

= C

1

0

�

IR

2

n �

�

;

because c is a lower-dimensional sub-manifold in IR

2

, and the IR

2

-continuity of a

function at any point on c must involve some part of a neighborhood of c. This,

together with (9), shows that �

0

is not regular.

Therefore, Barry Simon's approach in [18] cannot be applied directly. Never-

theless, the following two-step procedure is a remedy.
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Figure 1: Space � on which �

�

c

is de�ned

Let � > 0 be su�ciently small such that c

�

� �, where

c

�

= fx 2 IR

2

: jx� yj � � for some y 2 cg;

and let

�

�

= � n c

�

:

Using the following lemmas, and projecting the elements of N

2

IR

2

n�

�

onto N

2

c

�

and N

2

IR

2

n�

, we can show that �

�

is a regular region.

Lemma 5.1 Any open convex region �

?

in IR

2

is regular.

Lemma 5.2 Let �

?

be an open region in IR

2

. Then C

1

0

(�

?

) is dense in N

2

�

?

with

the N

2

-topology.

Now, following the notation in previous section, let �

h;�

be the lattice associ-

ated to �

�

. Then we have
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Theorem 5.1 Let �

0

and �

�

be given as above. De�ne �

c

to be the Gaussian

�eld indexed by N

2

�

0

, and �

h;�

to be the Gaussian �eld indexed by N

2

�

h;�

. Then for

g 2 C

1

0

(IR

2

), as h # 0 and subsequently � # 0,

�

h;�

(g)! �

c

(g);

in L

2

(Q

N

2

�

0

; �

0

).

Note: The order here between convergences of h and � is necessary since lattice

approximation for the Dirichlet �eld should be used for �elds indexed by regular

regions, which is not true if one takes � # 0 before h # 0.

6 Boundary Detection in Gaussian Random Fields

with Discontinuities

As mentioned in the introduction, we assume that c is a closed Jordan curve. De�ne

�

1

to be the open region enclosed in c and �

2

to be the interior of its complement

with respect to �, as shown in �gure 2. Given the nature of the Laplacian operator,

the �elds in �

1

and �

2

must be de�ned independently.

One way of doing this is as follows:

Definition 6.1 Let �

1

and �

2

be two independent free �elds indexed by N

2

(IR

2

).

Take � to be the unit cube (0; 1)

2

and c a continuous closed curve such that c � �.

De�ne �

1

as the open region enclosed in c and �

2

= (� n �

1

)

o

. Then, the Gaussian

random �eld driven by the Laplacian restricted to �

c

= � n c is de�ned as:

�

�

c

(f) = �

�

1

(p

�

1

(f)) + �

�

2

(p

�

2

(f)) ;

for every f 2 N

2

(IR

2

).
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Figure 2: Space � on which �

�

c

is de�ned

A fact clearly established in the de�nition of �

�

c

is that �

�

c

(f) and �

�

c

(g)

are independent, whenever f 2 N

2

(�

1

) and g 2 N

2

(�

2

).

The interest of this work is to estimate the curve c given a realization of �

�

c

.

In practice, a continuum �eld is not observable. Let �

�

c

;h

be the corresponding

lattice �eld, where h = 2

�n

, for some n 2 IN . This dyadic nature of h provides a

sequence of nested lattices as resolution increases, i.e. each lattice is a re�nement of

the previous one by a factor of two. It was already established in subsection 4 that

the lattice �eld is a good approximation for the continuum one in L

2

(Q

N

2

�

c

; �

0

)

sense.

A procedure for detection of c will be de�ned on the lattice taking into account

its embedding in the continuum. The complex structure of the lattice makes the

characterization a very hard task. Moreover, since c is a curve that can not be consis-

tently de�ned on any �nite lattice, a complete answer can only exist asymptotically.

Therefore, we will be studying the estimator when h is small.
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The detection is done by maximizing the average contrast around any curve

de�ned on the interior of �. For the reason of the numerical complexity of this

operation, some stronger results on the convergence of the lattice to the continuum

�eld are necessary. Simple L

2

convergence is not enough: a rate of order O (h

��

)

for some positive � is essential to ensure smoothness within each of the regions �

1

and �

2

. Also, we will be dealing with double arrays, which signi�cantly increases

the level of di�culty of the problem. As a last remark, the Gaussian assumption is

crucial for the argument.

In order to properly de�ne the procedure, we will need the following de�nition

of a sequence of test functions:

Definition 6.2 Let f be a test function; then, f

r;x;h

is a sequence of test functions

de�ned as follows:

f

r;x;h

(y) = r

2

f(r(y � x)):

Note: On the previous de�nition, both r and x can be taken as depending

on h. In the case where r increases as h decreases and x is �xed, the sequence will

converge to the �-Dirac distribution centered at x as h ! 0. For that reason, we

will be calling it a delta sequence.

For computing the contrast around a curve c

?

, one will need a clear de�nition

of the set that is around c

?

. Its elements will be called bounds and their lengths

must clearly go to zero as h gets small. It is preferable that each of their lengths is

of the same order of h. In general, each of these bounds is taken to have length h. In

our case, however, because of the discontinuity on c, the bounds will be de�ned to

be 2h apart. Note that this doesn't change the order of their lengths while preserves
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independence between the sides of the bounds under the true curve c. A formal

de�nition of the set of bounds is given as follows.

Definition 6.3 Let c

?

be a continuous curve de�ned in �. The set of all bounds in

the lattice �

h

around c

?

of distance 2h is de�ned as:

B

h;?

= fx

i

; x

i

+ heg;

where e = (0; 2) or e = (2; 0)

Note: The set of bounds around the true curve c is de�ned on the same way

and will be denoted by B

h

. With that setup, one de�ne the average contrast around

a curve c

?

as:

Definition 6.4 De�ne the average contrast around c

?

, under lattice of spacing h

as:

AC

c

?

;h

(f) =

1

n

h;?

n

h;?

X

i=1

(�

�

c

;h

(f

r;x

i

;h

)� �

�

c

;h

(f

r

h

;x

i

+he;h

))

2

;

where n

h;?

is the cardinality of B

h;?

, x

i

; x

i

+ he are, for i = 1; 2; : : : ; n

h;?

, the ele-

ments of B

h

?

and e = (0; 2) or e = (2; 0).

Note: The de�nition of AC

c;h

(f) is completely analogous. In practice, this

procedure is taken for a �xed f and, for reasons of notational simpli�cation, we will

be writing AC

c;h

and AC

c

?

;h

. Notice, however, that such a result will still be valid

for a whole class of test functions.

A technical issue is that of the possible values for e. The strict positiveness of

at least one of its elements is an obvious necessity in order to meaningfully de�ne
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a contrast. The fact that one jumps over the nearest neighbor is only to avoid

delicate situations where a lattice point is too close to the boundary c. As will be

seen in theorem 6.1, r

h

will be very large when h gets small. That means that the

actual smearing that is being performed on the lattice �eld is restricted to a very

small neighborhood. Such a restriction is necessary for the independence of any

evaluations of the �elds close to the true boundary c.

The following result establishes that the procedure of choosing the maximum

contrast eventually leads to c.

Theorem 6.1 Take f to be a test function that has H�older continuity of some

positive order, � � 3 + . Let r

h

= h

�1�

, for some 0 <  < 1=2. Then, as h! 0,

P

 

AC

c;h

� max

fc

?

:c\c

?

=;g

AC

c

?

;h

!

! 0:

A series of results will be established in order to prove theorem 6.1. A very

general result, that is a simple consequence of bounds for normal tail probabilities

is the following:

Lemma 6.1 Let fX

n;i

; n = 1; 2; : : : ; i = 1; 2; : : : ; ng be a double sequence of row-

wise identically distributed normal random variables with mean zero and variance

�

2

n

. Then,

max

1�i�n

X

2

n;i

p

! 0; (10)

whenever there exists a positive constant � such that �

2

n

< n

��

.
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Although very simple, one can immediately see how powerful lemma 6.1 is,

most importantly when dealing with double arrays instead of simple sequence of

random variables. A �rst application of this lemma is for the curves within bound-

aries. The lemma will be stated for �

1

, with no loss of generality.

Lemma 6.2 Let x and x+he be a pair of neighboring points within �

h;1

= �

1

T

L

h

.

Let �

2

h

be de�ned as:

�

2

h

= E (�

�

1

(f

r

h

;x;h

)� �

�

1

(f

r

h

;x+he;h

))

2

;

where r

h

= h

�1�

, for some 0 <  < 1=2.

Then, �

2

h

= O (h

2

).

All the results established so far concern average contrast around wrong curves

on the continuum �eld. Since AC is de�ned on the lattice, rates of the L

2

conver-

gence from the lattice to the continuum are needed.

Theorem 6.2 Let �

�

c

and �

�

c

;h

be the restrictions to �

c

of, respectively, the free

�eld and the lattice approximation to the free �eld, h being the spacing parameter

for the lattice. Then, the L

2

convergence from theorem 4.1 is of order h

2

for any

H�older continuous test function f of some positive order � � 2.

Two results follow immediately theorem 6.2.
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Corollary 6.1 Let �

�

c

and �

�

c

;h

be the restrictions to �

c

of, respectively, the free

�eld and the lattice approximation to the free �eld, h being the spacing parameter

for the lattice. Let f

r

h

;x;h

be a sequence of translations of f that preserves L

1

norm

and such that r

h

= h

�1�

, for some positive , as in de�nition 6.2. Take f

h;r

h

;x;h

to

be its lattice counterpart. Then,

kf

h;r

h

;x;h

� f

r

h

;x;h

k

2

N

2

= O

�

h

2

�

;

for each H�older continuous test function f of some positive order � � 3 + .

Note: Because the delta sequence preserves only L

1

norm, H�older continuity

of higher order is required to obtain the same order of L

2

convergence as the ones

for �xed test functions.

Corollary 6.2 Take f to be a test function that has H�older continuity of some

positive order � � 3 + . De�ne �

�

c

and �

�

c

;h

as in theorem 6.2. Then, as h! 0,

max

fc

?

:c

?

\c=;g

max

x

i

2B

h;?

(�

�

c

(f

h;r

h

;x

i

;h

)� �

�

c

;h

(f

h;r

h

;x

i

;h

))

2

p

! 0:

The last result needed for the wrong curve is the following:

Lemma 6.3 Let B

h;?

� �

c;h;1

. Take r

h

= h

�1�

, for some 0 <  < 1=2. Then,

max

fc

?

\c=;g

max

x

i

2B

h;?

(�

�

c

;h

(f

r;x

i

;h

)� �

�

c

;h

(f

r;x

i

+he;h

))

2

p

! 0;

as h! 0.
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With lemma 6.3, it is proved that the average contrast around any curve

disjoint from the true boundary c will be uniformly small. This result is possible

only because each individual bound is negligible in L

2

sense when h is small. As

will be seen in the next statements, the story for the contrast around c is completely

di�erent.

Lemma 6.4 Let x and x + he be a pair of neighboring points such that x 2 �

h;1

=

�

1

T

L

h

and x+ he 2 �

h;2

= �

2

T

L

h

. Let �

2

h

be de�ned as:

�

2

h

= E (�

�

c

(f

r

h

;x;h

)� �

�

c

(f

r

h

;x+he;h

))

2

;

where r

h

= h

�1�

, for some 0 <  < 1=2.

Then, as h! 0,

�

2

h

! 2�

2

c

> 0;

where �

2

c

= k�

�

(�

y

)k

2

N

2

(�

c

)

, for y 2 �

c

.

Note: Although Theorem 6.1 is stated for curves c

?

that are disjoint from

c, a contrast-based procedure can still be justi�ed. Clearly, if the intersection set

between c

?

and c is �nite, the theorem can be applied directly. In the case when

c

?

and c intersection is another curve, a multi-step procedure would be enough.

On the �rst step, all the bad candidates (curves with at most a �nite number of

points in common with c) would be eliminated. One would either come up with

c or curves c

?

such that c

?

\ c = c

0

, where c

0

is an open curve in �. Instead of a

single curve of highest contrast, suppose one takes the k curves of highest contrasts,

where k is supposed to be �xed. The next step would be to clean the k curves

and that would be done simply by �nding which pieces of these curves are in c.
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That procedure would be asymptotically consistent by virtue of Theorem 6.1 if one

compares di�erent pieces of the curve. Finally, one would have several pieces of c

and the task now is to compare the contrast around the possible curves that can

put them together, again using theorem 6.1. Some further iterations may be needed

but theorem 6.1 ensures this procedure would eventually yield the right curve c.

7 Future Research: Wavelets and Random Fields

Driven by Other Operators

The area of random �elds in the presence of singularities is quite unexplored. One

natural way of continuing the research done in this work would be extending these

results for operators more general than the Laplacian. One example of such a class

of operators would be

P

�<�

D

�

, as studied in detail by Benassi and Ja�ard in [4]

for the case without discontinuities.

One question that still deserves an answer is whether wavelets can be success-

fully applied in this context. Although it is clear that one-dimensional methods

cannot be directly extended to higher dimensions, all the results obtained in the de-

terministic problems create a positive expectation. Moreover, we have just become

aware of some theoretical development in the wavelets construction that doesn't

make use of dyadic cubes, done by, among others, Sweldens and Daubechies. A

good review of this new approach is given in [22]. Since the regularity of the dyadic

cubes is the main obstacle in applying wavelet bases in irregular multidimensional

setups, it looks like some progress can be made through the application of second

generation wavelets to problems of Gaussian random �elds with discontinuities.
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Appendix A: Proofs

Proofs for Lemmas 3.1 and 3.2 can also be found in [18]. The proofs for Theorems

3.1 and 4.1 and Lemmas 4.1, 4.2 and 5.1 are slight modi�cations of the ones found

in [18], in order to accommodate the change from N to N

2

spaces.

Lemma 3.1

For �

2

(k) and �

2

h

(k), we have

(i) For each k 2 IR

2

, �

2

h

(k)! �

2

(k) as h! 0.

(ii) If max(jk

1

j; jk

2

j) � �=h, then �

�1

h

(k) �

�

2

�

�1

(k).

(iii) �

�2

h

(k) 1(max(jk

1

j; jk

2

j) � �=h)! �

�2

(k) as h! 0

in each L

p

(IR

2

); p > 1.

Proof

(i) Note that

�

2

h

(k) = h

�2

(4� 2 cos(k

1

h)� 2 cos(k

2

h)) + a

2

= 2k

2

1

(k

1

h)

�2

(1� cos(k

1

h)) + 2k

2

2

(k

2

h)

�2

(1� cos(k

2

h)) + a

2

! k

2

+ a

2

= �

2

(k);

as h # 0, using lim

x!0

x

�2

(1� cos(x)) = 1=2.

(ii) Use �

2

(1� cos(x)) � 2x

2

, for x 2 [��; �].

(iii) This follows directly from (i)-(ii), using the dominated convergence theorem.

2
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Lemma 3.2

ĝ

h

! ĝ in each L

p

(IR

2

), as h! 0, for every p � 2.

Proof

In order to prove convergence for any L

p

, it is su�cient to prove that sup

h�1

kĝ

h

k

1

<

1 and convergence in L

2

. Suppose, with no loss of generality, that g is supported

on the unit square circle. Then,

kĝ

h

k

1

� kĝk

1

(2�)

�1

h

2

�

h

�1

+ 2

�

2

;

i.e. sup

h�1

kĝ

h

k

1

<1:

Also,

kĝ

h

k

2

L

2

= h

2

X

jg

h

j

2

! kgk

2

L

2

= kĝk

2

L

2

;

i.e. kĝ

h

k

2

L

2

! kĝk

2

L

2

as h! 0.

Take any f 2 S(IR

2

) and let

~

f denote the inverse Fourier transform:

Z

�

f(k)ĝ

h

(k)dk !

Z

g(x)

~

f(x)dx

=

Z

ĝ(k)

�

f(k)dk:

That means that ĝ

h

converges weakly in L

2

to ĝ which, plus the convergence

of its norm, implies the convergence in L

2

. 2

Theorem 3.1
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With the realization �

h

(n) = �(f

n;h

), for every g 2 C

1

0

(IR

2

) we have

�

h

(g)! �(g);

in L

2

(Q

N

2

; �

0

), as h! 0.

Proof

k�

h

(g)� �(g)k

2

L

2

(Q

N

2

;�

0

)

=

Z

�

�

�

�

�

ĝ

h

(k)

�

2

h

(k)

�

ĝ(k)

�

2

(k)

�

�

�

�

�

2

dk! 0;

because ĝ

h

! ĝ and �

�2

h

(k)1(hjk

i

j � �)! �

�2

(k) in any L

p

, in particular L

4

. 2

Lemma 4.1

p

�

h

e

n

=

8

>

<

>

:

e

n

�

P

m2@�

ext

h

a

n

(m) e

m

; if n 2 �

h

;

0; if n 2 �

ext

h

;

(G.1)

with some coe�cients a

n

(�).

Proof If n 2 �

ext

h

, it comes directly from the de�nition of projection. For n 2 �

h

,

let k 2 �

ext

h

n @�

ext

h

:

(e

k

; p

�

h

e

n

)

l

2

(L

h

)

= h

2

�

�

��

h

+ a

2

�

2

e

k

; p

�

h

e

n

�

N

2

h

= h

2

�

p

�

h

�

��

h

+ a

2

�

2

e

k

; e

n

�

N

2

h

= (e

n

; e

k

)

l

2

(L

h

)

= 0;

since (��

h

+ a

2

)

2

e

k

has support in �

ext

h

by de�nition of @�

ext

h

. Thus, e

n

� p

�

h

e

n

is

supported on �

ext

h

and vanishes on �

ext

h

n @�

ext

h

, i.e. it has support in @�

ext

h

.
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2

Lemma 4.2

For a regular region �, let e = e

IR

2

n�

be an orthogonal projection onto N

2

IR

2

n�

in N

2

-norm and de�ne e

h

to be the projection onto the span of ff

n;h

jn 2 �

ext

h

g.

Then e

h

converges strongly to e.

Proof

Given g 2 C

1

0

(IR

2

), let:

g

h

(x) = h

2

X

n

g(nh)f

nh

(x); x 2 IR

2

and

(��

h

g)(x) = h

2

X

n

0

@

h

�2

0

@

4g(nh)�

X

jn�mj=1

g(mh)

1

A

1

A

:

Then, in N

2

-topology, as h! 0,

g

h

! g

��

h

g

h

! ��g

Now, suppose that g 2 C

1

0

(IR

2

n �). Note that:

kg

h

� gk

2

� jhe

h

(g

h

� g); g

h

� gij

= jhe

h

(g

h

� g); e

h

(g

h

� g)ij

= ke

h

(g

h

� g)k

2

and kg

h

� gk ! 0. So e

h

! e strongly, for all g 2 C

1

0

(IR

2

n �), and consequently

for all g in the range of p, because � is regular.
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Let g 2 N

2

. Suppose that e

h

g ! f weakly. Let h 2 C

1

0

(�):

Z

h(x)f(x)dx =

�

�

��+ a

2

�

2

h; f

�

N

2

= lim

h

�

�

��

h

+ a

2

�

2

h

h

; f

�

N

2

= lim

h

�

�

��

h

+ a

2

�

2

h

h

; p

h

g

�

N

2

= 0;

because f has support on IR

2

n � and, for h small enough, (��

h

+ a

2

) has support

in �

h

. So, f is in the range of p and, then for h 2 N

2

,

(h; f) = (eh; f)

= lim

h

(eh; e

h

g)

= lim

h

(e

h

eh; g)

= (eh; g):

So e

h

g ! eg weakly. But

ke

h

g � egk

2

= he

h

g � eg; e

h

g � egi

= hg; e

h

gi+ hg; egi

�heg; e

h

gi � he

h

g; egi

! 0;

by the weak convergence above. 2

Theorem 4.1

Let � be a regular region. For g 2 C

1

0

(IR

2

), de�ne

�

�;h

(g) =

X

n2ZZ

2

g(nh)�

�;h

(n):
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Then, as h # 0,

�

�;h

(g)! �

�

(g);

in L

2

(Q

N

2

�

; �

0

).

Proof

We need a de�nition of an isometric projection in L

2

(Q

N

2

; d�

0

) to the pro-

jections de�ned in N

2

. This is given by �(:). For the projections e

h

and e in N

2

,

there exist respective unique induced projections �(e

h

) and �(e) in L

2

(Q

N

2

; d�

0

)

such that the isometries

(�(e)�; f) = (�; ef)

and

(�(e

h

)�; f) = (�; e

h

f)

hold for every � 2 L

2

(Q

N

2

; d�

0

) and f 2 C

1

0

(IR

2

). Then, let �(p) = �(1� e) and

�(p

h

) = �(1� e

h

).

Since �

h

(g)! �(g) in L

2

(Q

N

; d�

0

) and p

h

! p strongly,

k�(p

h

)�

h

(g)� �(p)�(g)k � k�(p

h

)kk�

h

(g)� �(g)k

+ k�(p� p

h

)�(g)k

! 0:

2

Lemma 5.1

Any open convex region �

?

in IR

2

is regular.

Proof
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Suppose, with no loss of generality, that 0 2 �

?

. Then, for any � > 1, f�yjy 2

IR

2

n �

?

g � S

o

� IR

2

n �

?

, for some S. Let f 2 N

2

and de�ne:

f

�

(y) = f

�

�

�1

y

�

:

f

�

converges to f inN

2

-norm. Moreover, de�ning appropriate unitary and multiplier

functions in C

1

0

(IR

2

n �

?

), one can successfully approximate f

�

. 2

Lemma 5.2

Let �

?

be an open region in IR

2

. Then C

1

0

(�

?

) is dense in N

2

�

?

with the

N

2

-topology.

Proof

One knows that, for any f 2 N

2

�

?

, there are two sequences of elements on

C

1

0

(IR

2

), called unitary and multiplier functions, that approximate f . The task,

therefore, is to prove that such sequences are actually elements of C

1

0

(�

?

), which

can be easily done given that �

?

is open and the convolution and multiplication

supports can be taken as narrow as one wants. 2

Theorem 5.1

Let �

0

and �

�

be given as above. De�ne �

c

to be the Gaussian �eld indexed by

N

2

�

0

, and �

h;�

to be the Gaussian �eld indexed by N

2

�

h;�

. Then for g 2 C

1

0

(IR

2

), as

h # 0 and subsequently � # 0,

�

h;�

(g)! �

c

(g);

in L

2

(Q

N

2

�

0

; �

0

).
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Proof

De�ne for each � > 0, �

�

to be the Gaussian random �eld indexed by N

2

�

�

and,

since �

�

is a regular region, it follows from Theorem 4.1 that, for g 2 C

1

0

(IR

2

) and

�xed � > 0, �

h;�

(g) ! �

�

(g) as h # 0. Then, letting � # 0, the operators �

�

�

are

monotonically increasing with respect to the N

2

�

0

-norm, so the sequence of �elds

f�

�

; � > 0g converges to �

0

. 2

Lemma 6.1

Let fX

n;i

; n = 1; 2; : : : ; i = 1; 2; : : : ; ng be a double sequence of row-wise

identically distributed normal random variables with mean zero and variance �

2

n

.

Then,

max

1�i�n

X

2

n;i

p

! 0; (G.2)

whenever there exists a positive constant � such that �

2

n

< n

��

.

Proof

As n!1,

P (X

2

n;i

> �) �

2�

n

p

�

exp(�

�

2�

2

n

)

implies

P

�

max

1�i�n

X

2

n;i

> �

�

= P

0

@

[

1�i�n

h

X

2

n;i

> �

i

1

A

� nP

�

X

2

n;1

> �

�

�

n2�

n

p

�

exp(�

�

2�

2

n

)

! 0;
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if �

n

< n

��

, for some positive �. 2

Theorem 6.2

Let �

�

c

and �

�

c

;h

be the restrictions to �

c

of, respectively, the free �eld and the

lattice approximation to the free �eld, h being the spacing parameter for the lattice.

Then, the L

2

convergence from theorem 4.1 is of order h

2

for any H�older continuous

test function f of some positive order � � 2.

Proof

Notice that 1� cos(x) = O (x

2

) as x! 0. Moreover, since

^

f

h

(k) =

2

4

X

n2ZZ

2

h

2

2�

f(nh) exp(�iknh)

3

5

1(max(jk

1

j; jk

2

j) � �=h);

the Fourier transformation of f

h

is equivalent to the Fourier transform of a step

approximation of f , where h represents the length of each step. Therefore, given the

H�older continuity of f , one can approximate

^

f by

^

f

h

in L

2

with appropriate order.

So,

kf

h

� fk

2

N

2

=

Z

�

�

�

�

�

^

f

h

(k)

�

2

h

(k)

�

^

f(k)

�

2

(k)

�

�

�

�

�

2

� 2

2

4

Z

�

�

�

�

�

1

�

2

h

(k)

�

1

�

2

(k)

�

�

�

�

�

2

�

�

�

^

f

2

�

�

�

2

+

Z

1

�

4

h

(k)

�

�

�

^

f

h

(k)�

^

f(k)

�

�

�

2

d

2

k

#

� Mh

2

;

the �rst integral due to the bound for 1�cos(x) and the fact that g is a test function
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(and, consequentially, its Fourier transform lives in Schwartz space) and the second

integral by the lower bound for 1=� and the H�older bound for f . 2

Corollary 6.1

Let �

�

c

and �

�

c

;h

be the restrictions to �

c

of, respectively, the free �eld and the

lattice approximation to the free �eld, h being the spacing parameter for the lattice.

Let f

r

h

;x;h

be a sequence of translations of f that preserves L

1

norm and such that

r

h

= h

�1�

, for some positive , as in de�nition 6.2. Take f

h;r

h

;x;h

to be its lattice

counterpart. Then,

kf

h;r

h

;x;h

� f

r

h

;x;h

k

2

N

2

= O

�

h

2

�

;

for each H�older continuous test function f of some positive order � � 3 + .

Proof

The proof is the same as for theorem 6.2. 2

Corollary 6.2

Take f to be a test function that has H�older continuity of some positive order

� � 3 + . De�ne �

�

c

and �

�

c

;h

as in theorem 6.2. Then, as h! 0,

max

fc

?

:c

?

\c=;g

max

x

i

2B

h;?

(�

�

c

(f

h;r

h

;x

i

;h

)� �

�

c

;h

(f

h;r

h

;x

i

;h

))

2

p

! 0:

Proof
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Notice that, de�ning �

2

h

as the variance of the process above and using theorem

6.2 one can immediately apply lemma 6.1. 2

Lemma 6.2

Let x and x+ he be a pair of neighboring points within �

h;1

= �

1

T

L

h

. Let �

2

h

be de�ned as:

�

2

h

= E (�

�

1

(f

r

h

;x;h

)� �

�

1

(f

r

h

;x+he;h

))

2

;

where r

h

= h

�1�

, for some 0 <  < 1=2.

Then, �

2

h

= O (h

2

).

Proof

With no loss of generality, suppose e=(2,0). Let � > 1.

�

2

h

= k�

�

1

(f

2

)� �

�

1

(f

1

)k

2

N

2

=

Z

j1� exp(2ik

1

:h)j

2

j

^

f

1

(

k

r

)j

2

(k

2

+m

2

)

2

d

2

k

=

Z

sin

2

(2k

1

:h)

(k

2

+m

2

)

2

j

^

f

1

(

k

r

)j

2

d

2

k

�

Z

sin

2

(2k

1

:h)

(k

2

1

+m

2

)

2

(k

2

2

+m

2

)

2

(

k

2

1

r

2

+m

2

)

�p

1

(

k

2

2

r

2

+m

2

)

�p

2

d

2

k

� M

2

4

Z

jk

1

j�h

�1+

k

2

1

h

2

(

k

2

1

r

2

+m

2

)

�p

1

(k

2

1

+m

2

)

2

dk

1

+

Z

h

�1+

<jk

1

j�h

�(�1�)

(

k

2

1

r

2

+m

2

)

�p

1

(k

2

1

+m

2

)

2

dk

1
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+

Z

jk

1

j>h

�(�1�)

(

k

2

1

r

2

+m

2

)

�p

1

(k

2

1

+m

2

)

2

dk

1

3

5

� M

h

M

1

h

2

+M

2

h

4(1�)

+M

3

h

4�(1+)

i

= M

?

h

2

2

Lemma 6.3

Let B

h;?

� �

c;h;1

. Take r

h

= h

�1�

, for some 0 <  < 1=2. Then,

max

fc

?

\c=;g

max

x

i

2B

h;?

(�

�

c

;h

(f

r;x

i

;h

)� �

�

c

;h

(f

r;x

i

+he;h

))

2

p

! 0;

as h! 0.

Proof

For notational purposes let's write max

c

?

:fc

?

\c=;g

max

x

i

2B

h;?

as max

c

?

. Also,

one writes, with no loss of generality, f

2

and f

1

for the test functions de�ned by the

di�erent bounds. Note that:

max

c

?

(�

�

c

;h

(f

2

)� �

�

c

;h

(f

1

))

2

� max

c

?

(�

�

c

;h

(f

2

)� �

�

c

(f

2

))

2

+ max

c

?

(�

�

c

;h

(f

1

)� �

�

c

(f

1

))

2

+ max

c

?

(�

�

c

(f

2

)� �

�

c

(f

1

))

2

:

One, then, uses the convergence of the �rst and second summands by Corollary

6.2 and the third by Lemma 6.2 and theorem 6.1 to get the desired result. 2

Theorem 6.1

40



Take f to be a test function that has H�older continuity of some positive order,

� � 3 + . Let r

h

= h

�1�

, for some 0 <  < 1=2. Then, as h! 0,

P

 

AC

c;h

� max

fc

?

:c\c

?

=;g

AC

c

?

;h

!

! 0:

Proof

Since max

fc

?

:c\c

?

=;g

AC

c

?

;h

! 0 in probability as h ! 0, one concludes that,

8�; , 9h

0

such that:

P

 

max

c

?

:fc\c

?

=;g

AC

c

?

;h

> �

!

< =2;

8h � h

0

.

Following lemma 6.4, one knows that the contrast of each bound in B

h

behaves

in such a way that, 8 > 0, 9� and h

2

such that

P

�

j�

�

c

(f

r

h

;x;h

)� �

�

c

(f

r

h

;x;h

)j

2

> �

�

< =2

8h � h

2

.

Since the variance for the average contrast is no larger than the average of

each of its components (that are asymptotically equally distributed), 8, 9� and h

1

such that:

P (AC

c;h

< �) < =2;

8h � h

1

.

Therefore, for every , one gets:

P

 

AC

c

� max

fc

?

:c\c

?

=;g

AC

c

?

;h

!

< 1� ;

8h � min(h

0

; h

1

). 2
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Lemma 6.4

Let x and x+ he be a pair of neighboring points such that x 2 �

h;1

= �

1

T

L

h

and x + he 2 �

h;2

= �

2

T

L

h

. Let �

2

h

be de�ned as:

�

2

h

= E (�

�

c

(f

r

h

;x;h

)� �

�

c

(f

r

h

;x+he;h

))

2

;

where r

h

= h

�1�

, for some 0 <  < 1=2.

Then, as h! 0,

�

2

h

! 2�

2

c

> 0;

where �

2

c

= k�

�

(�

y

)k

2

N

2

(�

c

)

, for y 2 �

c

.

Proof

Because r

h

= h

�1�

, 0 <  < 1=2 and the distance between points equals

2h, f

r

h

;x;h

= p

�

1

(f

r

h

;x;h

) and f

r

h

;x+he;h

= p

�

2

(f

r

h

;x+he;h

). Therefore, �

�

c

(f

r

h

;x;h

) =

�

�

1

(f

r

h

;x;h

) and �

�

c

(f

r

h

;x+he;h

) = �

�

2

(f

r

h

;x+he;h

) and each of these �elds can be

treated separately. Let y

1

and y

2

be two �xed points in the sequence of lattices

for every h � h

0

contained respectively in �

1

and �

2

. Consider �

�

c

(f

r

h

;y

1

;h

) and

�

�

c

(f

r

h

;y

2

;h

). By Corollary 6.1, each of these �elds can be approximated in L

2

sense

by the equivalent continuum �elds. Notice that each of this random variables has a

limiting variance �

2

c

. However:

k�

�

c

(f

r

h

;x;h

)� �

�

c

(f

r

h

;x;h

)k

2

N

2

(�

c

)

= k�

�

c

(f

r

h

;y

1

;h

)� �

�

c

(f

r

h

;y

1

)k

2

N

2

(�

c

)

! 0

when h! 0.

Therefore,

(�

�

c

(f

r

h

;x;h

)� �

�

c

(f

r

h

;x+he;h

))

2

L

1

! Y

2

;
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as h! 0, where Y � N(0; 2�

2

c

).

2

Appendix B: Distributions and Fourier Theory

For a more comprehensive view on distributions, we refer to [3] and [19]. For a better

understanding of why and how these techniques apply to Laplacian and random

�elds, the collection by Reed and Simon is a good reference, specially [17], [16] and

[15].

Let 
 be an open subset of IR

2

and C

1

(
) be the space of all functions de�ned

on 
 with continuous derivatives of all orders. Take K as a compact subset of 
:

C

1

K

(
) will be the subspace of functions in C

1

(
) supported on K.

Then, the space of test functions (supported in 
) can be de�ned as

C

1

0

(
) =

[

K2


C

1

K

(
):

Note that a test function is simply a compactly supported function, for which

derivatives of all degrees exist continuously. Another notation for the space of test

functions is D (
), which relates to the de�nition of the space of distributions as its

dual, i.e. D

0

(
).

In Fourier analysis, however, D

0

does not have all the desirable properties. For

that reason, Schwartz developed a smaller class, called tempered distributions, the

dual of the so-called Schwartz class of functions. This class of test functions, larger

than D, is denoted by S and de�ned as the class of functions for which derivatives

of all orders exists continuously and vanish at in�nity more rapidly than any power

of jxj. Following the usual dual notation, the tempered distributions class is called

S

0

.
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In general, pointwise properties do not make sense for distributions, so it is

usual to de�ne and prove everything in an inner product format. Unless otherwise

speci�ed, f and g will be used for representing test functions, Greek alphabet for

distributions, a for scalars and upper-case Roman letters for operators. Some of the

most useful properties of the distributions are:

� the k-th distributional derivative of a distribution � will be called �

(k)

(�) and

de�ned by:

�

�

(k)

; f

�

=

�

�; (�1)

k

f

(k)

�

;

� the partial derivative of degree k is given by:

�

@

k

�; f

�

=

�

�; (�1)

jkj

@

k

f

�

;

� a sequence of distributions f�

n

; n 2 INg converges weakly to � if

(�

n

; f)! (�; f) ;

for each test function f;

� If f�

n

; n 2 INg converges weakly to �, then the same convergence applies to

partial derivatives of all degrees.

� � � f 2 S;

� ((� � f); g) =

�

�; (f

0

� g)

�

,

where f

0

(x) = f(�x); and

� Suppose that

R

f = 1 and de�ne f

�

(x) = �

�2

f(�

�1

x). Then, � � f

�

! �

as � ! 0, i.e, distributions can be approximated by sequences of Schwartz

functions;

Some of the most important properties of the Schwartz class are:
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� S is closed under derivation, multiplication by polynomials of any degree,

product, convolution and Fourier transform; and

� Because Fourier transform is an operation from S to S, it is well de�ned for

tempered distributions, on the following form:

�

^

�; f

�

=

�

�;

^

f

�

and its basics properties are still valid.
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