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Abstract: In this paper we present a combinatorial interpretation, by par-
titions with attached parts, for a special family of summations, wich includes
very interesting particular cases.

1. Introduction

Our main purpose in this paper is to prove the following theorem:

Theorem 1. Let Ag;(n) denote the number of partitions of n with parts in My,
which satisfy: (a) if “rk—(i+1)” and “sk—(i+1)” are parts then |r—s| > 2, and (b)
tk+1 is a part (repetitions allowed) only if “(t+1)k— (i+1)” or “(t+2)k—(i+1)”
occurs as a part. Then for 1 <1 < k we have

00 kn2+(k—i—1)n

ioAk,i(n)qn = Z g

Forthecasesk=i=1ork=i=2o0r k > 2 and 1 = k£ — 2 we have to consider
the parts as elements of multisets indexed as [(2+ s)k — (i + 1)]; and [rk + 1]s.

Here we use the standard notation
(a;9)n = (1—a)(1—ag)..(1—ag"™")
and

(@;¢)c0 = lim (a;q)n.
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The sets M}, ; which appear in the Theorem 1 above are defined as

My, ={rk+1or (24 s)k—(i+1)|r,s > 0}.

2. Particular Cases

The set of partitions enumerated by As;(n) is the same enumerated by Cy2(n),

ie.,

“the number of partitions of n wherein:(a) 2 appears as a part at most 1 time,
(b) the total number of appearences of 2j and 2j + 2 together is at most 1, and
(c) 25 + 1 is allowed to appear (and may be repeated if it appears) only if the total
number of appearences of 25 and 2j + 2 together is precisely 17

which is given in Theorem 1, pg. 92 of Andrews and Santos [1]. From this we

get the following result:

Theorem 2: Let A, (n) denote the number of partitions of n into parts that are
either even but # 0,46 (mod16) or odd and = £3 (mod8); By 2(n) the number of
partitions of n into parts that are even but # 0 (mod8) or distinct, odd and = +3
(mod 8); and Ay (n) the number of partitions of n with parts into My, satisfying:
(a) if 2r — 2 and 2s — 1 are parts then |r — s| > 2, and
(b) 2t + 1 is a part (repetitions allowed) only if 2¢ or 2¢ 4+ 2 occurs as a part.

Then, for each n,

AQ,Q(n) = BQ,Q(n) = Agyl(’ﬂ).

We observe, furthermore, that A, ;(n) is also equal to As(n):

“The number of partitions of n with parts in
M2 = {227 337 427 447 537 557 627 647 66; }
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such that the difference between any consecutives parts a; and bj(a > b) satisfy
a—b>i+j”
described in Theorem 2.1 of Santos and Mondek [3].

The table below give us an illustration for Theorem 2 and the observation

above for n = 10.

Aso(10) =7 | Byn(10) =7 | Ay1(10) =7 Ay(10) =7
8+2 10 10 1040
5+5 6+4 8+2 105
5+3+2  |64+2+2 6+2+1+1 106
44442 5+3+2  |4+3+3 10,

4+3+3 A+4+2 343+2+1+1 |10,
A4+242+2[44242+2(3+24+1+..+1|8;+2,
24 .. 4+2 |24 .42 |241+..+1 8 + 2,

The second particular case is for k =i = 1.

From equation 6 of [2] which is

oo an—n 2
Z =

=0 (G907 (6D

we obtain:

Theorem 3. The number of partitions of n enumerated by A;;(n) is equal to two
times the number of partitions of n.

For exemple we have A;;(4) = 10 which enumerates the following partitions:



4y

4; + 04

31+ 1

31+ 1+ 0

3, +1;

21+ 2+ 0;

29+ 15+ 15+ 0y
Lo+ 1o+ 1o+ 15 + 0y

Our third particular case is for k =1 = 2:
Using the identity 85 of Slater [4]

oo n(2n—1) ) .1
(¢ 9)oo G = (6% ¢*) o0 (0% 6% o0 (0 ") 00 (6% ¢%) oo
n=0 ) n
we rewrite it as
00 n(2n—1) 1

> e -

=0 (@) (G0

From this we can see that is valid the following theorem:

Theorem 4. The number of partitions of n enumerated by Ass(n) is equal to

number of partitions of n in odd parts.

To illustrate this theorem we present below the partitions for n = 8:

partitions enumerated by A 5(8) | partitions of 8 in odd parts
7+ 1 7+1

d2 + 31 o+ 3

o+l +1.4+ 1, o+1+1+41

32+ 32+ 11+ 1y 3+3+1+4+1

394+ 11 +1s4+ ...+ 1y 3+1+...+1
L+14+..1 1+...4+1




3. The Proof of Theorem 1

Proof. First we define A ;(m, n) to be the number of partitions of the type enumer-
ated by Ay ;(n) with the added condition that the number of parts in each partitions
is exactly m.

Now our goal is to prove that

o kn2+(k—i—1)n

Zq
Ui A i(m,n)z™q" = Vii(2) (1)
l m%O Z % (q ;4 )n(zq’qk)n ot
We have the following functional equation:
00 P kn2+(k—i—1)n 1 kn
q q
, v _
Vii(2) = Vii(24") ; e ) 1 —2q  1— qunJrl)
1 00 ankn +(k—i—1)n
= U= ) & s P )
2k—i—1
_ <q (2K
T )@ Ve )
that is,
) 2g2hi1 e
. = . , 2
Vk,z (Z) Vk;,z(zq ) + (1 _ Zq)(l _ qu+1) Vk,z(zq ) ( )

After this we observe that (2), together with V, ;(0) = 1, uniquely determine
Vi.i(2) as double power series in z and q.

On the other side, due to the definition of M} ; and the condition (b) of the
enunciate, Uy, /(2) — Uxi(2¢%) enumerates all those partitions of the type enumerated
by Uy.i(2) that contain any number of 1’s attached to an appearence of “2k —(i+1)”
or any (k+1)’s attached to an appearence of “2k — (i+1)” and not to an appearence
of 3k — (¢ + 1). This, together with condition (a), tell us that the partitions in
Ur.i(2) — Uri(2¢*) are generated by

2%k—i—1
e ) Yl
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Considering that [y ;(0) = 1, (1) is proved.
To finish the proof of the theorem is sufficient to note that the same argument

used above can be used for the cases: k=1=1,k=1=2,k>2andi=Fk — 2.

Remark. The natural question that arise from this work: there exist others k or

1, different from the ones that we give in section 2, for which we have sums?
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