Partitions with Attached Parts

by
Paulo Mondek
and
José Plínio O. Santos

Abstract

In this paper we present a combinatorial interpretation, by partitions with attached parts, for a special family of summations, wich includes very interesting particular cases.

1. Introduction

Our main purpose in this paper is to prove the following theorem:

Theorem 1. Let $A_{k, i}(n)$ denote the number of partitions of n with parts in $M_{k, i}$ which satisfy: (a) if " $r k-(i+1)$ " and " $s k-(i+1)$ " are parts then $|r-s| \geq 2$, and (b) $t k+1$ is a part (repetitions allowed) only if " $(t+1) k-(i+1)$ " or " $(t+2) k-(i+1)$ " occurs as a part. Then for $1 \leq i \leq k$ we have

$$
\sum_{n=0}^{\infty} A_{k, i}(n) q^{n}=\sum_{n=0}^{\infty} \frac{q^{k n^{2}+(k-i-1) n}}{\left(q^{k}, q^{k}\right)_{n}\left(q ; q^{k}\right)_{n}}
$$

For the cases $k=i=1$ or $k=i=2$ or $k>2$ and $i=k-2$ we have to consider the parts as elements of multisets indexed as $[(2+s) k-(i+1)]_{1}$ and $[r k+1]_{2}$.

Here we use the standard notation

$$
\begin{aligned}
&(a ; q)_{n}=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right) \\
& \text { and } \\
&(a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n}
\end{aligned}
$$

The sets $M_{k, i}$ which appear in the Theorem 1 above are defined as

$$
M_{k, i}=\{r k+1 \text { or }(2+s) k-(i+1) \mid r, s \geq 0\} .
$$

2. Particular Cases

The set of partitions enumerated by $A_{2,1}(n)$ is the same enumerated by $\mathcal{C}_{2,2}(n)$, i.e.,
"the number of partitions of n wherein:(a) 2 appears as a part at most 1 time, (b) the total number of appearences of $2 j$ and $2 j+2$ together is at most 1 , and (c) $2 j+1$ is allowed to appear (and may be repeated if it appears) only if the total number of appearences of $2 j$ and $2 j+2$ together is precisely 1 "
which is given in Theorem 1, pg. 92 of Andrews and Santos [1]. From this we get the following result:

Theorem 2: Let $\mathcal{A}_{2,2}(n)$ denote the number of partitions of n into parts that are either even but $\not \equiv 0, \pm 6(\bmod 16)$ or odd and $\equiv \pm 3(\bmod 8) ; \mathcal{B}_{2,2}(n)$ the number of partitions of n into parts that are even but $\not \equiv 0(\bmod 8)$ or distinct, odd and $\equiv \pm 3$ $(\bmod 8)$; and $A_{2,1}(n)$ the number of partitions of n with parts into $M_{2,1}$ satisfying:
(a) if $2 r-2$ and $2 s-1$ are parts then $|r-s| \geq 2$, and
(b) $2 t+1$ is a part (repetitions allowed) only if $2 t$ or $2 t+2$ occurs as a part. Then, for each n,

$$
\mathcal{A}_{2,2}(n)=\mathcal{B}_{2,2}(n)=A_{2,1}(n)
$$

We observe, furthermore, that $A_{2,1}(n)$ is also equal to $A_{2}(n)$:
"The number of partitions of n with parts in

$$
M_{2}=\left\{2_{2}, 3_{3}, 4_{2}, 4_{4}, 5_{3}, 5_{5}, 6_{2}, 6_{4}, 6_{6}, \ldots\right\}
$$

such that the difference between any consecutives parts a_{i} and $b_{j}(a>b)$ satisfy $a-b \geq i+j "$
described in Theorem 2.1 of Santos and Mondek [3].
The table below give us an illustration for Theorem 2 and the observation above for $n=10$.

$\mathcal{A}_{2,2}(10)=7$	$\mathcal{B}_{2,2}(10)=7$	$A_{2,1}(10)=7$	$A_{2}(10)=7$
$8+2$	10	10	10_{10}
$5+5$	$6+4$	$8+2$	100_{8}
$5+3+2$	$6+2+2$	$6+2+1+1$	10_{6}
$4+4+2$	$5+3+2$	$4+3+3$	10_{4}
$4+3+3$	$4+4+2$	$3+3+2+1+1$	10_{2}
$4+2+2+2$	$4+2+2+2$	$3+2+1+\ldots+1$	$8_{4}+2_{2}$
$2+\ldots+2$	$2+\ldots+2$	$2+1+\ldots+1$	$8_{2}+2_{2}$

The second particular case is for $k=i=1$.
From equation 6 of [2] which is

$$
\sum_{n=0}^{\infty} \frac{q^{n^{2}-n}}{(q ; q)_{n}^{2}}=\frac{2}{(q ; q)_{\infty}}
$$

we obtain:

Theorem 3. The number of partitions of n enumerated by $A_{1,1}(n)$ is equal to two times the number of partitions of n.

For exemple we have $A_{1,1}(4)=10$ which enumerates the following partitions:

$$
\begin{aligned}
& 4_{1} \\
& 4_{1}+0_{1} \\
& 3_{1}+1_{1} \\
& 3_{1}+1_{2}+0_{1} \\
& 3_{2}+1_{1} \\
& 2_{1}+2_{2}+0_{1} \\
& 2_{1}+1_{2}+1_{2}+0_{1} \\
& 2_{2}+2_{2}+0_{1} \\
& 2_{2}+1_{2}+1_{2}+0_{1} \\
& 1_{2}+1_{2}+1_{2}+1_{2}+0_{1}
\end{aligned}
$$

Our third particular case is for $k=i=2$:
Using the identity 85 of Slater [4]

$$
(q ; q)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n(2 n-1)}}{(q ; q)_{2 n}}=\left(q^{6} ; q^{8}\right)_{\infty}\left(q^{2} ; q^{8}\right)_{\infty}\left(q^{4} ; q^{16}\right)_{\infty}\left(q^{8} ; q^{8}\right)_{\infty}
$$

we rewrite it as

$$
\sum_{n=0}^{\infty} \frac{q^{n(2 n-1)}}{\left(q^{2} ; q^{2}\right)_{n}\left(; q^{2}\right)_{n}}=\frac{1}{\left(q ; q^{2}\right)_{\infty}}
$$

From this we can see that is valid the following theorem:

Theorem 4. The number of partitions of n enumerated by $A_{2,2}(n)$ is equal to number of partitions of n in odd parts.

To illustrate this theorem we present below the partitions for $n=8$:

partitions enumerated by $A_{2,2}(8)$	partitions of 8 in odd parts
$7_{1}+1_{1}$	$7+1$
$5_{2}+3_{1}$	$5+3$
$5_{1}+1_{1}+1_{2}+1_{2}$	$5+1+1+1$
$3_{2}+3_{2}+1_{1}+1_{2}$	$3+3+1+1$
$3_{2}+1_{1}+1_{2}+\ldots+1_{2}$	$3+1+\ldots+1$
$1_{1}+1_{2}+\ldots 1_{2}$	$1+\ldots+1$

3. The Proof of Theorem 1

Proof. First we define $A_{k, i}(m, n)$ to be the number of partitions of the type enumerated by $A_{k, i}(n)$ with the added condition that the number of parts in each partitions is exactly m.

Now our goal is to prove that

$$
\begin{equation*}
\cup_{k, i}(z):=\sum_{m, n \geq 0} A_{k, i}(m, n) z^{m} q^{n}=\sum_{n \geq 0} \frac{z^{n} q^{k n^{2}+(k-i-1) n}}{\left(q^{k} ; q^{k}\right)_{n}\left(z q ; q^{k}\right)_{n}}:=\bigvee_{k, i}(z) \tag{1}
\end{equation*}
$$

We have the following functional equation:

$$
\begin{aligned}
& \vee_{k, i}(z)-\vee_{k, i}\left(z q^{k}\right)=\sum_{n=0}^{\infty} \frac{z^{n} q^{k n^{2}+(k-i-1) n}}{\left(q^{k} ; q^{k}\right)_{n}\left(z q^{k+1} ; q^{k}\right)_{n-1}}\left(\frac{1}{1-z q}-\frac{q^{k n}}{1-z q^{k n+1}}\right) \\
& =\frac{1}{(1-z q)\left(1-z q^{k+1}\right)} \sum_{n=1}^{\infty} \frac{z^{n} q^{k n^{2}+(k-i-1) n}}{\left(q^{k} ; q^{k}\right)_{n-1}\left(z q^{2 k+1} ; q^{k}\right)_{n-1}} \\
& =\frac{z q^{2 k-i-1}}{(1-z q)\left(1-z q^{k+1}\right)} \vee_{k, i}\left(z q^{2 k}\right)
\end{aligned}
$$

that is,

$$
\begin{equation*}
\bigvee_{k, i}(z)=\bigvee_{k, i}\left(z q^{k}\right)+\frac{z q^{2 k-i-1}}{(1-z q)\left(1-z q^{k+1}\right)} \bigvee_{k, i}\left(z q^{2 k}\right) \tag{2}
\end{equation*}
$$

After this we observe that (2), together with $\bigvee_{k, i}(0)=1$, uniquely determine $\bigvee_{k, i}(z)$ as double power series in z and q.

On the other side, due to the definition of $M_{k, i}$ and the condition (b) of the enunciate, $\bigcup_{k, i}(z)-\bigcup_{k, i}\left(z q^{k}\right)$ enumerates all those partitions of the type enumerated by $\bigcup_{k, i}(z)$ that contain any number of 1's attached to an appearence of " $2 k-(i+1)$ " or any $(k+1)$'s attached to an appearence of " $2 k-(i+1)$ " and not to an appearence of $3 k-(i+1)$. This, together with condition (a), tell us that the partitions in $\bigcup_{k, i}(z)-\bigcup_{k, i}\left(z q^{k}\right)$ are generated by

$$
\frac{z q^{2 k-i-1}}{(1-z q)\left(1-z q^{k+1}\right)} \bigcup_{k, i}\left(z q^{2 k}\right)
$$

Considering that $\bigcup_{k, i}(0)=1,(1)$ is proved.
To finish the proof of the theorem is sufficient to note that the same argument used above can be used for the cases: $k=i=1, k=i=2, k>2$ and $i=k-2$.

Remark. The natural question that arise from this work: there exist others k or i, different from the ones that we give in section 2 , for which we have sums?

References

[1] Andrews, G.E. and Santos, J.P.O. (1997). Rogers-Ramanujan Type Identities for Partitions with Attached Odd Parts. The Ramanujan Journal 1, 91-99.
[2] Santos, J.P.O and Mondek, P. (1996). Sobre a Obtenção e Demonstração Combinatória de Novas Identidades do Tipo Rogers-Ramanujan (to appear).
[3] . (1998). Partitions with " $\left\lfloor\frac{N+1}{2}\right\rfloor$ copies of N ", Relatório de Pesquisa 09/98, Unicamp.
[4] Slater, L.J. (1952). Further identities of the Rogers-Ramanujan type. Proc. London Math. Soc. (2) 54, 147-167.

CCET - UFMS Cx.P. 549
79070-900 - Campo Grande - MS - Brasil
e-mail:mondek@hilbert.dmt.ufms.br
IMECC-UNICAMP Cx.P. 6065
13081-970 - Campinas - SP - Brasil
email:josepli@ime.unicamp.br

