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Abstract

In this work an iterative method is proposed for finding the approximate
solution of an initial and boundary problem for a nonstationary Generalized
Boussinesq model for thermally driven convection. The model allows tempera-
ture dependent viscosity and thermal conductivity. We give also the convergence-

rate bounds for the propost method.
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1. Introduction

The purpose of this paper is to show the existence and uniqueness of a strong
solution of the first initial boundary-value problem for generalized Boussinesq
model of the viscous, incompressible heat conducting fluids. Let u, p, ¢ be the
velocity, the pressure and the temperature of the fluid, respectively. The motion

of the fluid is described by the initial boundary-value problem (see [2]):

Ou +u.Vu—V - (v(¢)Vu) + grad p = o pg + h,

ot
divu=0 1in (0,7T) x €, (1.1)
u(z,t) =0on (0,7) x 02 and wu(z,0) =up(x) on €,

where ) is a bounded open subset of IRY, N = 2 or 3. The conservation of
internal energy is described by the initial boundary value problem

88_? +uVp—=V - (k(p)Vy)=f in (0,T7) x Q, (1.2)

o(x,t) =n on (0,7) x 02 and ¢(x,0) = po(z) on Q.

The viscosity of the fluid is v(¢) and the coefficient of heat conduction is
k(p),g,h and f are external forces, & > 0 is a positive constant associ-
ated to the coefficient of volume expansion. The system (1.1)-(1.2) does not
belong to any of the three traditional types of classification of partial differential
equations. To show the existence of strong solution we will use an iterational
approach and we give convergence-rates for this method in several norms. We
feel that it is appropriate to cite some earlier works on the initial value problem
(1.1)-(1.2) and to locate our contributions therein. For simplicity, we will con-
sider homogeneous conditions on 0f2; the general case can be reduced to this
one by assuming suitable smoothness on the boundary data.

When v(p) and k(p) are a positive constants, the problem (1.1)-(1.2) is the
classical Boussinesq model, this model has well studied, see for instance Mori-
moto [8], Hishida [3], Rojas-Medar and Lorca [11], [12], [13].

The model considered in this work was studied by Lorca and Boldrini [5], [6],
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[7], they used the spectral Galerkin method as method of approximation.
Following ideas from [14], an iterational method was proposed by Zarubin [16]
for finding the approximate solution of the classical Boussinesq equations. Un-
fortunately, although the statement of Theorem 1, p.1081 in [16] furnishes a
convergence rate, the proof of this result is incorrect. In another class of flu-
ids Ortega-Torres and Rojas-Medar [9], Ortega-Torres, Rojas-Medar and Conca
[10] obtained the convergence rates for the method proposed by Zarubin.

In this paper we will combine the arguments used by Lorca and Boldrini [5] and
Ortega-Torres and Rojas-Medar [9] to show the existence and uniqueness of
strong solutions for problem (1.1)-(1.2) as well as the convergence-rates bound.
Although this not too interesting case from the practical pointview, we hope
that the techniques that we developed here could be adapted in the important
case where the full discretization are used.

The paper is organized as follows: In the Section 2, we state some preliminaries
results that will be useful in the rest of the paper, we described the approxima-
tion method. In the Section 3, we stablished our principal result on the existence
and uniqueness of strong solution as well the convergence-rate bounds. In the
Section 4, we give the results on the pressure.

Finally, we would like to say that, as it usual in this context, to simplicity the
notation in the expressions we will denote by C,C},... ,generic positive con-

stants depending only on the fixed data of the problem.

2. Preliminaries and Results

We begin by recalling certain definitions and facts to be used later in this paper.
The L?(Q)-product and norm are denoted by (,) and | |, respectively; the
LP(Q2)-norm by | |r,1 < p < oo; the H™(£2)- norm are denoted by || ||gm
and the W"?(Q)-norm by | |yyx.s.

Here H™(2) = W™?2(Q2) and W¥*P(Q) are the usual Sobolev space H}((2) is the

closure of C§°(Q) in the H' — norm.
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If B is a Banach space, we denote L?(0,T; B) the Banach space of the B-valued
functions defined in the interval (0, T) that are L9-integrable in the sense of
Bochner.

Let C5%.(Q) = {v € C5°(Q)Y; div v = 0}, V = closure of C§% () in (Hg ()Y
and H = closure of C% () in (L*(2))".

Let P be the orthogonal projection from (L?(©2))Y onto H obtained by the
usual Helmholtz decomposition. Then, the operator A : H — H given by
A = —PA with domain D(A) = (H?(Q))N N V is called the Stokes operator.
In order to obtain regularity properties of the Stokes operator we will assume
that  is of class C'! [1]. This assumption implies, in particular, that when
Au € L*(Q), then v € H*(Q) and ||ul|> and |Au| are equivalent norms.
Throughout the paper, we will suppose that v, v’ k, k" are continuous functions

and

0<wy<v(l) <wv <+oo, 0<ky<k(d) <k <+o0

V' (0)| < V] < 400, [K(0)] < k] <400, forall fe R. 2.1
1

We consider the following iterative process of the approximate solution of prob-
lem (1.1)-(1.2).

If u™ is given, we defined the following equations,

utt = P(div(u(e™)Vu ) + P V™) + Plag™'g) = Ph,  (22)

ot = (div(k(" T V")) + (u". V") = f, (2.3)

u" T (2,0) =0, ©""(z,0)=0, in Q. (2.4)

Where for simplicity of exposition, we have taken homogeneous boundary con-
ditions, and ug = ¢y = 0.
Combining the arguments of [5] and [9] it is possible to show the following uni-

form estimates in n for the approximations (u", ¢").
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Lemma 2.1. Let © be a bounded domain in RN (N = 2 ou 3) with C™!
boundary; we suposse v, k satisfying (2.1), g € L*®(0,T;(L*(Q)N); f, f; €
L*(0,T; L*(Q)); h, gi, hy € L*(0, T (L?(2))N). Let u! = o = 0.

Then for each n, the problem (2.2)-(2.4), has an unique strong solution (u", ¢")
such that u™ € L>®(0,T; D(A)),¢"™ € L*(0,T; H*()),and u? € L*(0,T; H)N
L*(0,T; V), o € L*(0,T; L*(Q)) N L*(0,T; Hy(Q2)), for each n and the follow-

ing estimates uniformly in n, are verified:

sup{Jul (B2 + | (D2} < M,
t t
| 1vurmRar + [ 19 Par < u,
0 0
sup{|Au" () + |Ap" (B2} < M,

for all t € [0, T], where M is a positive constant independent of n.

Theorem 2.1 Under the conditions of Lemma 2.1, then the approximate so-
lutions (u™, ¢™) converge in the space L>(0,T; D(A)) x L*®(0,T; H*()).
The limiting element (u, ¢) is a solution of problem (1.1)-(1.2) and the solution

is unique. The rate of convergence satisfies the inequalities:

sup{[Vu" (1) = Vu(®)* + V" () = Vo(t)*} < M%

/ot | Au(r) — Au(r)[*dr + /0 [Ap™ (r) = Ap(7)[Pdr < M%
[ 1v0(r) - Fu(r)ar + / V() - Ve lar < AT
[ 120) = )P+ [ = )P < 01T

sup{[ug (t) — (8" + 19} (t) — @u (1) "}

Qu? l(MJ)“)l] ”2] |

SMs |\ = T o)
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[ 19u0) = Vur () Pdr + [ (V@) = Vi, (r) s

oo )

(n—2)! (n—1)!

sup{|Au"(t) — Au(t)]? + |Ap"(t) — Ap(t)|*}
n—2 n—-171/2
(4T l(MlT) ] ] |

e T R T

for all t € [0, T], where the positives constants are independents of n.

3. Proof of Theorem 2.1

In this section, we prove several convergence-rates bounds for the approximate
solutions.

The following lemma will be fundamental in our future arguments.

Lemma 3.1. Let 0 < f1(t) < M forall ¢t € [0,7] and assume that the

following inequality is true for all r» > 2

t
0SB0 <C [ froals)ds

Then,

r—1 r—1
et )
(r—1)!— " (r—=1)!
for all t € [0,T] and r > 2. Therefore, ,(t) — 0 as r — o0, Vt € [0, T].

B (t) <M (3.1)

Moreover,
MC 1 M (cTyr

<= <
/ﬁr )ds o C r!

(See [9]).
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Let u™*(t) = u™™(t) —u™(t) and ¢™*(t) = "*5(t) — ¢"(t), Vn,s > 1.

Then the following equation are satisfied by u™* and ¢™*

uy”® — P((div(v (") Vu™®) + (u* 5. Vu") — age™*
—div((v(¢"*) = v(p™)Vu") + (1. Vu™)) = 0, (3.2)

i = div(k(9" ) V™) + (L) (3.3)
—div((k(e"**) — k(¢")) V") + (u* 1. V") = 0.

Lemma 3.2. Let v € VN(H?(2))" and consider the Helmholtz decomposition
of —Aw, that is,

—Av=Av+ Vg,

where ¢ € H'(Q) is taken such that [, ¢ dz = 0.
Then, for every € > 0 there exists a positive constant C. independent of v; and

there exists ¢ such that, the following estimates holds
lql < Ce| Vol +elAv],  lgllaye) < ¢ Av]. (3.4)

(See [5]).
Lemma 3.3. There exists a positive constant C' > 0, independent of n and s,

such that:

V() + [V () + i | A (r)Pdr + i 180" (7)]dr
< C RV )P + [V () + [Var (n)P + [V () P)dr

Proof. Multiplying (3.2.) by Au™* we obtain

1
§%|VU”’S|2 — (div(v (™) Vu™®), Au™*) = —(u"~15.Vu", Au™*)

+(div((v(p""®) — v("))Vu", Au™*) — (v L. VU™, Au™*)
—a(ge™®, Au™?).
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Using the identity: div(v(0)Vv) = v(8)Av + v'(#)V(#)Vv, and Lemma 3.2,
then,

VU2 4 () Aune, Au) = (") = vlg")) Au, Aun)
(@)Y = V(") V") V", Au™)

V(G NTEHTU, AU + () T, Aun) (5.5)

(V") — v(™) V", Au™*) + (a7 Vu™ ) Au™®)

+(uH V", Au™®) + alge™®, Au™®).

N | =

a
dt
(v

+

+

+(
(
(
(

Now, we estimate the right hand side terms by using Hoélder’s inequality, Sobolev

embedding and Young’s inequality, we obtain:

(™) — (@ DA, Aum)| < Clu(e™) — (") e Au| Au|
< COle™? || Au™||Au™”|
< CIVe™ V2| Ap™ 2] Au™|
< GV |Ap™®] + e| Aum[?
< Cepy :

(V") Ve = o (") V™) V", Au)|

< O (™F)Ve™ + (V' (") — V' (") V" | 1| V™| 1| Au™?|
< O V™ )| Au™
< Ce, [V 2 + 21| Ag™ [ + CL V™ 2 4 2| Aur [,

| (VI(gpn-l—s)vgpn-i-svun,s7 Aun,s) |

IN

Cvi V™| 4| Vu™
C|Ason+s||vun,s|1/4|Aun,s|7/4
C.|Vu™* + | Au™* 2,

IN

IN
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() Vg™, A = (g™, div(p(e" ) Au™))]
(™, /(") V" Au™?))|
Crilq™*|a| Vo™ ] Au™?
Cla™ g™ 186" | Au™
ColVu™? + e Au P,

IN

IN

IN

Clo™* || V" || Au™|
C|V(pn,s 1/2|A(pn,s 1/2|Aun||Aun,s|
C. e, [V 5 + 1| AQ™* |? + g| Au™*

(v (™) = v(e") V", Au™)

IN

IN

2
)

VAN

|(un-l—s—1'vun,s7 Aun,s)|

IN

=" | s | V™| ] Au™®

C|Vun+s—1||vun,s|1/2|Aun,s

2
)

3/2

N

< OV + e| Aum®

|(u™ b5V, Au™®)| < Clu™ Y| Vu"| s | Au™*|
< C|VuU|| Aum|| Au™|
S CE|VU,n_1’s 2 4 6|14un,s|27

age™, Aum)| < Clglpolg™ ool Au|
< CVE™ ) + e|Au™* |2

By taking ¢,; > 0 sufficiently smalls in the above estimates, we obtain in (3.5)

the following integral inequality:
[V OF + o [ 4w () s
<0 [[(Var )P+ (Va0 Pyir +C [ [V (Pdr (36)
+3e [ Y A (1) 2dr

Analogously, multiplying(3.3) by Ap™*, we obtain

3 t ¢ —1.s n,s
Vet 0 + o [ 1AG () Pdr < [L(Vur ) + Ve ()P (3.7)
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Adding (3.6) and (3.7), choosing ¢ = %0 and min{1, v, ko}, after applying the

Gronwall’s inequality , we obtain
t
[Vu™* (&) + [V (1) + /0 (|Au™ (1) [? + [Ap™*(7)[*)dr (3.8)
t
<O [(vu DR + Ve ().
0

This complete the proof of the Lemma 3.3.
Corollary 3.1. There exists a positive constant ¢ > 0, independent of n and
s, such that:
[P+ [l () Pdr < ¢ [(Ta=@F +196" () P)dr
ve [ (A ()P + e ()P 4 [ 960 ()P

Proof of the Theorem 2.1.
Setting ¢, s(t) = [Vu™*(t)|> + |V™*(¢)|?, the Lemma 3.3, implies

b s (1) + /0 AU (1) + | Ap™ (1) P)dr < M /0 s (39)

Thus,
t
Ons(t) < My [ 6o (r)dr.

From Lemma 3.1, since ¢, 5(t) < My, by the estimates given in the Lemma 2.1

we get
(M]_t)n_l
nslt) < My————.
Ors () ? (n—1)!
Moreover,
s s Mt n—1 M, T n—1
VU™ ()] + V™ (¢)* < J\@ﬁ < Mgﬁ. (3.10)
Also, (3.9) and (3.10), imply
t (M t)nfl (MIT)nfl
Aum* (1) 2+ [AQ™ (1) P)dr < M- < My~ (3.11
f) QA )P 4 1A () P)ar < M= P < Myt (31)
Also, we observe that (3.10), implies
t M. t)"
/0 (|Vu™* (7))? + [V™* (1) |*)dT < M4( nl') : (3.12)
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The Corollary 3.1, together with estimate (3.10) and the estimates given in the
Lemma 2.1, imply

[ Gaee+ e < a6 <an TS )

Differentiating (3.2) with respect to t and taking u;”* as a test function in the

resulting equation, we obtain

S P )V, V) = | () T, V)

H(P™) — vle™) Vuf, Tup) + (0 Y, ) (3.14)
H AT = v ()T, V) + (LT, )
V) + oo™, ) + ologh, up)|.

We estimate the right-hand side of (3.14) as usual to obtain

P+ | VP < OV A 4 V6|V
_|_|<pn,s 2 n,s|2|v<p?|2 + |Aun,s|2 + |gt|2|Vg0”_1’s|2 (315)
S e A T A RN P

Analogously, we get

d n-—+s n,s n,s n
— o) + ko|V90 |2<C[|Vs0+||A90’|2+|Vso’||Vs0t|2

dt
+up ) 4 |Vu n|2 (3.16)
2]'

MRV + [Ag™
Adding (3.15) and (3.16), after integrate with respect to t, we have

+*

)R + e OF + o0 [ () Pdr + ko [ 1V (0)

< O [ (1A @) + A (D) + [ () + 1ot () )ar
+ [ @ + 160 ) Pdr + [ (760 @A ()P + 0™ () )
+ [19em ) PITemPr + [ Vi )PV ()] + [Var () )dr

t t
+ [V @Ol (D)Edr + [ 1Vur ()9 () P
0 0
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Now, choosing min{1, vy, ko}, from (3.10), (3.11), (3.13) and using the Gron-

wall’s inequality, we get

t
O + 1 O + [ (9 () + 97 )P

(M) (MLT)™
< C[M; (=1 + M; (n—2)

([ IV @) Pan) 2 [ 14w () + 18" (7)) )2

o sup Ve () / V™ (r) [2dr

+(supe| V™ (1)] + sup,|Vu" (1 / \Vul(7)|*dr
t
4ﬂmuv¢w%%ﬂﬁé|%uﬂm7+smmvwhm7-ﬁé|v¢ﬂﬂﬁm1

The estimate given in the Lemma 2.1, implies

t
ut” () + 1 () + /0 (Va2 ()" + V() [*)dr

MlT n—1 MlT n—2 MlT n—171/2

< C’[Mg((n _)1)! + M5((n _)2)! + l 3ﬁ] (3.17)

(MlT)nfl (MlT)nfl 1/2 (MlT)an
AR l2(n—DJ 20— 9)1

MIT n—2 MIT n—2
+A6&n—2ﬂ +”6&n—2y]

(MT)*2  [(MT)" 1]

= Ms M—2ﬂ+¢(n—n!]]'

From (3.2) and (3.3), is easily to show

AW + |2 < OV 4 [Van o+ [+ o+ [T

Then,
) - , MlT n—2
[Au™* () +[Ap™ ()] < (Wﬂ@(( _L) (( ))
OuTy 2 Tnry )
B ] [n—lw |
) o1 1/2]
Sﬂ%(%{g [K?lw (3.18)
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by virtue of (3.10) and (3.17).

Since the spaces L?(0,T; V), L*(0,T; Hy (), L>(0, T; D(A)), L>(0, T; H*(Q)), L>(0,T; H), L>=(0, T’
are Banach spaces, it is easily see that

u™ —u strongly in L*®(0,7;D(A)),

u? — u; strongly in L>(0,T; H) N L*(0,T;V),

©" — ¢ strongly in L>(0,T; H*(Q)),

i — @y strongly in L*°(0,7T; L*(Q)) N L*(0,T; Hy (),

as n — oo.

Now, the next step is to take limit. But, once the above convergences has been

stablished this is a standar procedure, and we obtain

/Ot(ut — div(v(p)Vu) +u.Vu — agp — h,v)p(t)dt = 0,

/Ot@?t — div(k(©)V) + u.V — f,)5(t)dt = 0,

for all v € (L*(Q))N, ¢ € L*(Q) and ¢, g€ L>(0,T).
These equation together with the Du Bois-Reymond’s Theorem imply

(up — div(v(p)Vu) + u.Vu — agp — h,v) =0,

a. e. in Q, for every v € (L*(Q))V,¢ € L*(Q).

These two last inequalities, imply

uy — P(div(v(¢)Vu)) + P(u.Vu) = aP(gp) + P(h),

or — div(k(p)Ve) +u.Ve = f.

The convergences-rates bound of Theorem, can be obtained by taking the
limit as s — oo in the inequalities (3.10), (3.11), (3.12), (3.13), (3.17) and
(3.18).This completes the proof of the Theorem.
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4. Results on the Pressure

By using the Amrouche and Girault [1] results on the Stokes problem and the
estimates given in the above sections, we obtain easily the following proposi-
tions:

Proposition 4.1 Under the hypotheses of Lemma 2.1 for each n, there
exists p" € L>(0,T; H'(Q2)/IR) such that

supi{||p" () 30y} < Co,

for all t € [0, T], where Cj is a positive constant independent of n.
Proposition 4.2 Under the hypotheses of Theorem 2.1, we have that

the approximate pressure p" converge in the space L>(0,T; H'(Q)/IR).

The limiting element p is such that (u,p,p) is a solution of problem (1.1)-

(1.2) and the solution is unique. Moreover, the rate of convergence satisfies the

inequalities:
t (M T)nfl
n 2 1
) 1) = P oy el < M =

supi{|p"™ (t) — p(t)ﬁ{l(ﬂ)/lR} < My (n—2)! (n—1)!

for all t € [0, T], where the constants M;, Mg, My are independent of n.

(M) l(MlTW]”T
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