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Abstrat

The problem of solving blok triangular nonlinear systems of equa-

tions appears in several appliations in industrial, soial and environ-

mental ontexts. Those systems are given by

(F

1

(x

1

); F

2

(x

1

; x

2

); : : : ; F

m

(x

1

; x

2

; : : : ; x

m

)) = 0:

The most usual way of solving suh systems onsists on solving sequen-

tially the di�erent n

i

� n

i

partial systems, F

i

(x

1

; � � � ; x

i

) = 0. Some

Newtonian approahes, where the system is onsidered as a whole and

solved by Newton, quasi-Newton or inexat Newton methods have also

been onsidered in the literature. In this paper it is proposed a \team

model" sheme in whih the system is also onsidered as a whole. Eah

iteration is onstruted in m steps and for solving the partial problem

F

i

(x

1

; � � � ; x

i

) = 0 one is free to use any appropriate iterative method.

A onvergene theorem is proved and the algorithm is used to solve a

dynami model based on omplementarity.
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1 Introdution

Many mathematial models used in industrial, soial and environmental

appliations involve the solution of optimization, omplementarity or varia-

tional inequality problems. When these models are onsidered at di�erent

periods of time it is usual that the solution of eah of them provides boundary

onditions for the following. Frequently, the original model an be expressed

as a nonlinear system of equations, so that the omplete dynamial model

is
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The most usual way of solving (1) is the \straight deomposition sheme"

(SDS) that onsists on \solving" sequentially the di�erent n

i

� n

i

systems.

Alternative Newtonian proedures were suggested in [2, 3, 4℄. In fat, \solv-

ing" is an ambiguous word in the ase of a nonlinear system where to �nd

exat solutions is not possible.

In order to understand the neessity of the analysis presented in this

paper, let us onsider the most simple situation, where we have two bloks

of equations (m = 2). Suppose that one is going to \use SDS" and that,

in pratie, to obtain kF

1

(x

1

)k � ", kF

2

(x

1

; x

2

)k � " is aeptable. (The

tolerane " is not neessarily very small: when the system is originated on

the onstraints of a nonlinear programming problem the goal of an iteration

an be to solve the system in quite a loose way. See, for example, [6℄.) The

naive way to proeed onsists on using some Newtonian algorithm applied

to F

1

(x) = 0 (starting with an arbitrary x

0

1

2 IR

n

1

), repeating the iteration

until kF

1

(~x

1

)k � " is ahieved. The seond (and �nal) step would be to �x

x

1

= ~x

1

and, again, to use some Newton-like method for the n

2

�n

2

system

G(x

2

) � F

2

(~x
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; x

2

) = 0, stopping when kF

2

(~x

1

; ~x

2

)k � ". However, it is

possible that suh ~x

2

does not exist at all. More frequently, in the ourse of

the seond alulation, we may realise that the omputational e�ort that is

neessary to �nd ~x

2

is not a�ordable. Certainly, in this ase we should ome

bak to the �rst equation and we should solve it with a tighter preision

"

0

< ", expeting that to have a more aurate approximation ~x

1

will help

us to �nd a reasonable ~x

2

in the seond step.

The simple proedure desribed above suggests an iterative proess,
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whih is essentially the one onsidered in this paper. The possibility of

taking advantage of parallel omputer arhitetures, led to the development

of related methods in [2, 4℄. The idea of these algorithms is to take the sys-

tem (1) as a whole, though taking into aount its blok-angular struture,

in suh a way that eah iteration an be onsidered an approximation to a

Newton, quasi-Newton [2℄ or inexat-Newton iteration [4℄. See also [1, 7, 9℄.

In this paper we preserve the philosophy of [2, 4℄ in the sense that at

eah iteration the system is onsidered as a single unity, but we do not

use the Newtonian approah, being free to use any method to improve the

approximation at eah partial iteration. The method works as if the i-

th problem were a real-life problem for whih there exists a spei� team

dediated to its solution, probably with di�erent tools. In this way, eah

team takes advantage of the progress of the teams that are its predeesors,

minimizing the inative time. Of ourse, there exists a omputer model of

this situation, based on parallel proessors, but we think that the \team-

model" reets reasonably many industrial situations.

2 Main results

The iterates of the Blok-Inexat method introdued in this paper will be

denoted x

k

; k = 0; 1; 2; : : : Aording to the struture of the system, eah

iteration will onsist of m steps. Given the urrent point at the i�th step,

only its i�th omponent will be modi�ed so that the new i�th omponent

of the system will be a fration of the i�th omponent of F omputed at the

urrent point. Eah iterate x

k

2 IR

n

an be partitioned into m omponents

x

k

i
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i

; i = 1; : : : ;m. So, we will write

x

k

= (x

k

1
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k

m

) 2 IR
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1
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:

We will use appropriate norms on the spaes IR

n

1

� : : :� IR

n

i

: Given an

arbitrary norm j � j on IR

n

i

we de�ne

k(x

1

; : : : ; x

i

)k =

i

X

j=1

jx

j

j:

for all (x

1

; : : : ; x

i

) 2 IR

n

1

� : : : � IR

n

i

.

The desription of the main iteration of the algorithm is given below.

Algorithm 2.1

Given x

k

2 IR

n

and 0 � t

k

� t < 1; x

k+1

= (x

k+1

1

; : : : ; x

k+1

m

) is obtained

in the following way:
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For i = 1; : : : ;m, by means of an appropriate method, �nd x
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The main assumption that implies onvergene of the algorithm says

that iterates an be always hosen in a set where the solution is \strongly

unique" (see (3) below). In addition, a Lipshitz ondition (see (4)) will be

needed to bound the inrease of jF

i

j between points where this omponent

is not onsidered. No di�erentiability assumptions will be made. If the

system has a strongly unique solution in the whole IR

n

and the Lipshitz

ondition takes plae, Theorem 2.1 represents a global onvergene result

for Algorithm 2.1.
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, i = 1; : : : ;m.

3. There exists L > 0 suh that
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)j � Lk(x
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for all x

i

; y
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i

, i = 1; : : : ;m.

The following tehnial lemma will help us to prove the main onver-

gene result of this setion.

Lemma 2.1 Let e

k

i

; i = 1; 2; : : : ;m; k = 0; 1; 2; : : : ; � 2 [0; 1) and C > 0 be

real numbers suh that e

k

i

� 0 for all i = 1; 2; : : : ;m; k = 0; 1; 2; : : : and

e

k+1

i

� �e

k

i

+ C

i�1

X

j=1

(e

k+1

j

+ e

k

j

) (5)

for all i = 1; : : : ;m; k = 0; 1; 2; : : : Then, the sequene

n

e

k

o

; with e

k

=

�

e

k

1

; : : : ; e

k

m

�

; onverges to 0.
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Proof. Let B = (b

ij

) and D = (d

ij

) be lower-triangular matries suh that

for all j = 1; : : : ; n, i = 1; : : : ; n, i > j,
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for all k = 0; 1; 2; : : : : But the matrix B
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D is lower triangular and all its

diagonal elements are equal to �. Hene, its spetral radius is less than one,

whih implies that lim
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Therefore, by Lemma 1,
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Then, the seond part of Assumption A1 implies the desired result.

3 A pratial appliation

We have applied Algorithm 2.1 to the problem desribed in this setion.

Two di�erent agenies alloate resoures in �ve di�erent departments of a

university. Ageny 1 has as objetive the promotion of sienti� researh and

Ageny 2 aims the development of human resoures. Let us all x

1

; : : : ; x

5

and y

1

; : : : ; y

5

the resoures alloated by agenies 1 and 2, respetively, in the

departments 1; 2; : : : ; 5. For a given value of the investment x

i

, the researh

prodution p

i

of department i is an inreasing onave funtion of x

i

(as an

appliation of the law of dereasing returns). However, this funtion also

depends on y

i

. In fat, when the investment y

i

inreases, the prodution p

i

dereases. So,

p

i

(x

i

; y

i

) = �
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(y

i

)�
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(x

i

); (7)

where �

i

is inreasing, onave and �

i

(0) > 0, while �

i

is dereasing, �

i

(0) =

1 and lim

y

i

!1

�

i

(y

i

) = �

i

2 (0; 1). In other words, the funtion �

i

is the

prodution funtion without investment of Ageny 2, and �

i

�

i

(x

i

) is the

minimum possible prodution when an in�nite investment of Ageny 2 is

alloated. In our ase, the formulae for p

1

,. . . ,p

5

are given below:

p

1

(x; y) =

y + 1:8

1:9y + 1:8

3:2(1:1x+ 0:97)

0:61

; p

2

(x; y) =

y + 2:1

1:3y + 2:1

4:1(1:3x + 0:81)

0:88

;

p

3

(x; y) =

y + 1:5

3:1y + 1:5

2:2(0:86x+ 0:53)

0:42

; p

4

(x; y) =

y + 1:9

3:3y + 1:9

4:2(1:5x+ 0:74)

0:78

;

p

5

(x; y) =

y + 2:3

1:1y + 2:3

1:5(0:44x + 0:51)

0:29

Analogously, alling q

i

(x

i

; y

i

) the funtion that gives the human resoures

prodution of department i, we have:

q

1

(y; x) =

x+ 1:2

1:5x+ 1:2

2:3(0:74y + 1:25)

0:47

; q

2

(y; x) =

x+ 2:5

2:4x+ 2:5

1:9(1:6y + 0:44)

0:93

;

q

3

(y; x) =

x+ 1:8

2:9x+ 1:8

3:6(1:4y + 0:79)

0:73

; q

4

(y; x) =

x+ 3:1

1:8x+ 3:1

4:2(2:2y + 0:69)

0:45

;
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q

5

(y; x) =

x+ 2:1

2:7x+ 2:1

2:1(0:97y + 2:4)

0:25

:

Ageny 1 has a limited amount of resoures r

1

that are going to be dis-

tributed among the departments in order to maximize the researh produ-

tion. Therefore, for given investments y

1

; : : : ; y

5

of Ageny 2, the alloation

of resoures x

i

of Ageny 1 will be given in order to

Maximize

x

f(x; y) �

5

X

i=1

p

i

(x

i

; y

i

) (8)

subjet to

5

X

i=1

x

i

= r

1

; x

i

� 0; i = 1; : : : ; 5: (9)

The optimality onditions of problem (8)-(9) are:

�r

x

f(x; y) + �1 � 0; x � 0; (10)

h�r

x

f(x; y) + �1; xi = 0; (11)

5

X

i=1

x

i

= r

1

; (12)

where 1 = (1; : : : ; 1) and � is the Lagrange multiplier assoiated to the

onstraint

P

5

i=1

x

i

= r

1

.

In a similar way, we see that the optimality onditions of the optimiza-

tion problem orrresponding to (8)-(9) with the objetive funtion g(x; y) =

P

5

i=1

q

i

(x

i

; y

i

) are:

�r

y

g(x; y) + �1 � 0; y � 0; (13)

h�r

y

g(x; y) + �1; yi = 0; (14)

5

X

i=1

y

i

= r

2

: (15)

The onditions (10)-(15) are the equilibrium onditions that determine

the investments of both agenies. The set of all these onditions do not

represent optimality onditions of any optimization problem, but a omple-

mentarity problem that an be written in many forms as a nonlinear system

of equations. One of them is:

min f[�r

x

f(x; y) + �1℄

i

; x

i

g = 0; i = 1; : : : ; 5; (16)

min f[�r

y

g(x; y) + �1℄

i

; y

i

g = 0; i = 1; : : : ; 5; (17)
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5

X

i=1

x

i

= r

1

;

5

X

i=1

y

i

= r

2

: (18)

The equilibrium onditions (16)-(18) form a 12 � 12 nonsmooth system of

equations that an be solved, for example, using the method introdued

in [5, 8℄. Its solution represents the investments of the agenies under the

limitation of resoures r

1

; r

2

in a de�nite period of time t (say, one year).

We want to study the behavior of this system as time progreeds, when it

is subjet to hanges in r

1

or r

2

. However, we take into aount that the

real system is resistant to large hanges in investments, so that the objetive

funtions f(x; y) and g(x; y) are going to be replaed by f(x; y)�

�

2

kx� �xk

2

and g(x; y) �

�

2

ky � �yk

2

, where �x and �y represent the investments at the

previous period of time and � > 0 represents the resistane of the system to

abrupt hanges. So, the equilibrium onditions at period t + 1 turn out to

be:

min f[�r

x

f(x; y) + �(x� �x) + �1℄

i

; x

i

g = 0; i = 1; : : : ; 5; (19)

min f[�r

y

g(x; y) + �(y � �y) + �1℄

i

; y

i

g = 0; i = 1; : : : ; 5; (20)

5

X

i=1

x

i

= r

1

;

5

X

i=1

y

i

= r

2

: (21)

Starting with r

1

= 25 and r

2

= 11, we want to simulate the behav-

ior of the system during 10 periods of time, under the following boundary

onditions:

(1) r

1

doubles at t = 2 and r

2

remains onstant;

(2) r

2

doubles at t = 2 and r

1

remains onstant;

(3) both r

1

and r

2

double at t = 2.

For eah situation, we want to analyze di�erent degrees of resistane of

the system, taking � = 0; 1 and 10. Obviously, in the ase � = 0 the ten

problems are ompletely independent and the solution for t = 2; : : : ; 10 are

the same.

An external iteration was �nished when we ahieved

kF (x

k

)k � 10

�5

: (22)

We stopped the internal (inexat) iterations when

jF

i

(x

k+1

1

; : : : ; x

k+1

i�1

; x

k+1

i

)j � 0:1jF

i

(x

k+1

1

; : : : ; x

k+1

i�1

; x

k

i

)j: (23)

For the �rst period of time we run the algorithm of [5℄ with several

di�erent initial vetors and the same stopping riteria as above. The results

are given in the following tables.

8



Case (1): r

1

doubles and r

2

does not hange.

Time x(1) x(2) x(3) x(4) x(5) y(1) y(2) y(3) y(4) y(5)

1 0.000 25.000 0.000 0.000 0.000 0.000 0.000 9.258 1.742 0.000

2-10 0.000 50.000 0.000 0.000 0.000 0.000 0.000 9.258 1.742 0.000

Table 4.1: Solution for � = 0:

Time x(1) x(2) x(3) x(4) x(5) y(1) y(2) y(3) y(4) y(5)

1 0.000 25.000 0.000 0.000 0.000 0.000 0.000 9.258 1.742 0.000

2 4.916 31.797 4.001 5.305 3.981 0.000 0.183 8.975 1.842 0.000

3 4.848 33.537 3.032 5.592 2.990 0.000 0.341 8.743 1.916 0.000

4 4.787 35.229 2.095 5.860 2.028 0.000 0.468 8.573 1.959 0.000

5 4.722 36.879 1.193 6.108 1.099 0.000 0.543 8.502 1.955 0.000

6 4.624 38.487 0.350 6.328 0.212 0.000 0.494 8.658 1.849 0.000

7 4.132 39.703 0.000 6.165 0.000 0.000 0.299 9.059 1.643 0.000

8 3.457 40.726 0.000 5.817 0.000 0.000 0.110 9.413 1.477 0.000

9 2.799 41.723 0.000 5.477 0.000 0.000 0.000 9.683 1.317 0.000

10 2.179 42.658 0.000 5.163 0.000 0.000 0.000 9.847 1.153 0.000

Table 4.2: Solution for � = 1:

Time x(1) x(2) x(3) x(4) x(5) y(1) y(2) y(3) y(4) y(5)

1 0.000 25.000 0.000 0.000 0.000 0.000 0.000 9.258 1.742 0.000

2 4.989 30.186 4.897 5.032 4.895 0.000 0.021 9.225 1.754 0.000

3 4.979 30.371 4.795 5.064 4.791 0.000 0.042 9.192 1.766 0.000

4 4.969 30.555 4.692 5.096 4.687 0.000 0.062 9.161 1.777 0.000

5 4.959 30.739 4.591 5.128 4.583 0.000 0.082 9.129 1.789 0.000

6 4.950 30.922 4.489 5.159 4.479 0.000 0.101 9.099 1.800 0.000

7 4.941 31.104 4.388 5.191 4.376 0.000 0.121 9.068 1.811 0.000

8 4.932 31.285 4.287 5.222 4.274 0.000 0.140 9.039 1.821 0.000

9 4.923 31.466 4.187 5.253 4.171 0.000 0.159 9.010 1.832 0.000

10 4.915 31.642 4.087 5.283 4.069 0.000 0.177 8.981 1.842 0.000

Table 4.3: Solution for � = 10:
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Case (2): r

1

does not hange and r

2

doubles.

Time x(1) x(2) x(3) x(4) x(5) y(1) y(2) y(3) y(4) y(5)

1 0.000 25.000 0.000 0.000 0.000 0.000 0.000 9.258 1.742 0.000

2-10 0.000 50.000 0.000 0.000 0.000 0.000 0.000 19.401 2.599 0.000

Table 4.4: Solution for � = 0:

Time x(1) x(2) x(3) x(4) x(5) y(1) y(2) y(3) y(4) y(5)

1 0.000 25.000 0.000 0.000 0.000 0.000 0.000 9.258 1.742 0.000

2 0.000 25.000 0.000 0.000 0.000 1.754 2.391 12.214 4.187 1.454

3 0.000 25.000 0.000 0.000 0.000 1.342 2.576 12.943 4.402 0.737

4 0.000 25.000 0.000 0.000 0.000 0.962 2.750 13.645 4.587 0.057

5 0.000 25.000 0.000 0.000 0.000 0.478 2.757 14.163 4.602 0.000

6 0.000 25.000 0.000 0.000 0.000 0.042 2.733 14.636 4.589 0.000

7 0.000 25.000 0.000 0.000 0.000 0.000 2.578 14.965 4.456 0.000

8 0.000 25.000 0.000 0.000 0.000 0.000 2.410 15.267 4.323 0.000

9 0.000 25.000 0.000 0.000 0.000 0.000 2.241 15.556 4.203 0.000

10 0.000 25.000 0.000 0.000 0.000 0.000 2.074 15.833 4.093 0.000

Table 4.5: Solution for � = 1:

Time x(1) x(2) x(3) x(4) x(5) y(1) y(2) y(3) y(4) y(5)

1 0.000 25.000 0.000 0.000 0.000 0.000 0.000 9.258 1.742 0.000

2 0.000 25.000 0.000 0.000 0.000 2.152 2.219 11.536 3.970 2.123

3 0.000 25.000 0.000 0.000 0.000 2.105 2.239 11.613 3.997 2.046

4 0.000 25.000 0.000 0.000 0.000 2.058 2.258 11.690 4.024 1.970

5 0.000 25.000 0.000 0.000 0.000 2.012 2.277 11.767 4.050 1.894

6 0.000 25.000 0.000 0.000 0.000 1.966 2.296 11.844 4.076 1.818

7 0.000 25.000 0.000 0.000 0.000 1.920 2.316 11.921 4.102 1.742

8 0.000 25.000 0.000 0.000 0.000 1.874 2.335 11.997 4.127 1.667

9 0.000 25.000 0.000 0.000 0.000 1.829 2.354 12.073 4.152 1.592

10 0.000 25.000 0.000 0.000 0.000 1.784 2.373 12.149 4.177 1.517

Table 4.6: Solution for � = 10:
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Case (3): r

1

and r

2

double.

Time x(1) x(2) x(3) x(4) x(5) y(1) y(2) y(3) y(4) y(5)

1 0.000 25.000 0.000 0.000 0.000 0.000 0.000 9.258 1.742 0.000

2-10 0.000 50.000 0.000 0.000 0.000 0.000 0.000 19.401 2.599 0.000

Table 4.7: Solution for � = 0:

Time x(1) x(2) x(3) x(4) x(5) y(1) y(2) y(3) y(4) y(5)

1 0.000 25.000 0.000 0.000 0.000 0.000 0.000 9.258 1.742 0.000

2 4.779 31.625 4.184 5.250 4.162 1.929 2.693 11.583 4.122 1.674

3 4.586 33.211 3.382 5.482 3.338 1.668 3.168 11.730 4.279 1.156

4 4.419 34.760 2.595 5.696 2.530 1.413 3.623 11.907 4.410 0.647

5 4.276 36.272 1.825 5.888 1.740 1.159 4.050 12.130 4.513 0.148

6 4.164 37.740 1.076 6.052 0.969 0.811 4.348 12.350 4.492 0.000

7 4.099 39.146 0.362 6.171 0.223 0.386 4.522 12.733 4.360 0.000

8 3.854 40.189 0.000 5.957 0.000 0.000 4.545 13.349 4.106 0.000

9 3.430 41.009 0.000 5.560 0.000 0.000 4.431 13.813 3.756 0.000

10 3.025 41.800 0.000 5.175 0.000 0.000 4.307 14.252 3.441 0.000

Table 4.8: Solution for � = 1:

Time x(1) x(2) x(3) x(4) x(5) y(1) y(2) y(3) y(4) y(5)

1 0.000 25.000 0.000 0.000 0.000 0.000 0.000 9.258 1.742 0.000

2 4.975 30.166 4.917 5.027 4.915 2.172 2.251 11.469 3.962 2.147

3 4.951 30.332 4.834 5.053 4.830 2.144 2.302 11.480 3.982 2.093

4 4.927 30.498 4.751 5.079 4.745 2.116 2.352 11.491 4.002 2.040

5 4.903 30.663 4.669 5.105 4.660 2.088 2.402 11.502 4.021 1.987

6 4.880 30.828 4.586 5.131 4.576 2.060 2.452 11.514 4.040 1.934

7 4.856 30.992 4.504 5.156 4.491 2.032 2.502 11.525 4.059 1.881

8 4.834 31.156 4.422 5.182 4.407 2.005 2.552 11.537 4.078 1.828

9 4.811 31.319 4.340 5.207 4.323 1.978 2.602 11.549 4.096 1.775

10 4.789 31.482 4.258 5.232 4.239 1.950 2.651 11.562 4.114 1.722

Table 4.9: Solution for � = 10:
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These experiments were run using a modest omputer environment (PC

486 with 66 MHz) and the ode was written in Fortran. The results were

ompletely satisfatory from the point of view of onvergene, onsidering

omputer time and human ost. Moreover, the results of the simulations

were onsistent with independent qualitative analyses. Therefore, the algo-

rithm introdued in this paper helped to validate the model onsidered in

this setion.
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