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1. Introdution

The Fourier Transform (FT) is a powerful tool for sienti� omputation whih is found

in numerous applied areas [3℄,[11℄. For example, in image reonstrution, from a set of line

integrals of the density of an objet we get a disrete sampling of the Fourier transform of the

density by applying the Fourier slie theorem [9℄. So we need to reonstrut the values of the

density at some disrete set of points in the objet. The Fourier method is one of the tools to

ahieve this aim. It is lear that we an exatly reonstrut a ompatly supported funtion

from all the values of its Fourier transform. However, when we only know a disrete set

of values, how an we reover some disrete values of the original funtion? For simpliity,

in this paper we only disuss the ase that the density f(�) is a funtion of one variable

x 2 R = (�1;+1), but the results an be easily extended to the multi-dimensional ase.

From a mathematial point of view, this problem an be desribed as follows. We �rst

make the following assumptions.

Assumptions. The funtion f(x) satis�es

1. f(�) is de�ned for every x 2 R, 2 L

2

(R); f(x) = 0 for x 62 [0; 1℄ and sup

x2[0;1℄

jf(x)j � C,

where C > 0 is a onstant.

2. f(x) has at most a �nite number of points of disontinuity z

1

; � � � ; z

l

and they are given.

3. For x 62 Z = fz

1

; � � � ; z

l

g, f

0

(x) exists and sup

x62Z

jf

0

(x)j � C.

Assumptions 1-3 are realisti in pratial problems. In another paper, we disuss the ase

with unknown points of disontinuity. If the support of f(x) is in the interval [a; b℄ 6= [0; 1℄,

then we an use a linear transformation � =

x�a

b�a

to hange the support to [0; 1℄.

The Fourier transform and inverse Fourier transform of f(x) are respetively de�ned as

^

f(!) =

+1

Z

�1

f(x)e

�i2�x!

dx =

1

Z

0

f(x)e

�i2�x!

dx (1)

and

f(x) =

+1

Z

�1

^

f(!)e

i2�x!

d!; a:e: (2)
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Beause f(x) is ompatly supported in [0; 1℄,

^

f(!) is suÆiently smooth (Paley-Wiener's

Theorem, [2℄). Notie that in this ase, the support of

^

f(!) is R.

Let

0 = x

0

< x

1

< � � � < x

N�1

< x

N

= 1; �x

j

= x

j+1

� x

j

= �x =

1

N

(3)

and

f

j

= f(�

j

); j = 0; : : : ; N � 1 with �

j

= x

j

+ Æ; (4)

where 0 � Æ � �x is a onstant.

One approah to obtain approximate values of ff

j

; j = 0; : : : ; N � 1g is as follows.

Suppose that when j!j is suÆiently large, there exists a positive onstant W suh that

when j!j �W , the orresponding interval in the integral (2) an be ignored. Then one has

that

f(x) �

W

Z

�W

^

f(!)e

i2�x!

d!; 0 � x � 1: (5)

Approximating the integral (5) by a Riemann sum, one has [4℄

f

j

�

M�1

X

k=0

^

f(!

k

)e

�i2��

j

!

k

�!

k

; j = 0; : : : ; N � 1; (6)

where

�W = !

0

< !

1

< � � � < !

M�1

< !

M

=W; and �!

k

= !

k+1

� !

k

= �! =

2W

M

:

Beause of the fat that the integral (5) is approximated by the Riemann sum (6), one

an get a good approximation only for small �! and so M must be large for a �xed W ,

and one needs a large number of sampling values of

^

f(!

k

). On the other hand, one wants

to apply the fast Fourier transform (FFT) to redue the amount of omputations, and this

implies taking the maximal frequeny W =

1

2�x

and hoosing M = N . In the ase that the

support of f(x) is [0; 1℄, �! =

2W

M

= 1, so using the Riemann sum (6) will result in large

error. If one takes �! = O(�x) = O(

1

N

) and W =

1

2�x

, then the amount of omputations

would be O(N

3

), it would be prohibitively large for large N .
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Another approah to obtain approximate values of ff

j

; j = 0; : : : ; N �1g is for the ase

that the support of f(x) is [a; b℄, with A = b � a > 1, see, e.g, [11℄. In this ase, (2) is

replaed by

^

f(!) =

+1

Z

�1

f(x)e

�i2�x!

dx =

b

Z

a

f(x)e

�i2�x!

dx (7)

and the nodes fx

k

g are de�ned as

a = x

0

< x

1

< � � � < x

N�1

< x

N

= b; �x

j

= x

j+1

� x

j

= �x =

A

N

:

Then in the Riemann sum (6) one hooses W =

1

2�x

and M = N allowing the appliation

of the FFT. In this ase, �! =

1

A

and �x =

A

N

so the sampling interval �! depends on

the support of f(x) and using the Riemann sum (6) will also result in large error. To get a

good approximation of the problem, several types of window funtions are used to redue

the error [8℄, [3℄. In x3 we list some widely used window funtions.

In this paper we derive a new relation between the disrete Fourier transform of a

disrete sampling set of f(x) and its Fourier transform. From this relation we obtain a

new window funtion that gives rise to a new eÆient algorithm to reonstrut the original

funtion from the disrete samplings of its Fourier transform. With this new approah the

FFT an be used and muh better auray than that previously obtained in the literature

is ahieved.

The paper is organized as follows. Setion 2 lists some formulae of the disrete Fourier

transform of a disrete sampling values ff

j

; j = 0; 1; � � � ; N � 1g of the funtion f(x), the

Fourier transform of f(x) with the frequeny k, and the Fourier expansion of f(x) if we

just onsider that f(�) is de�ned over its support [0; 1℄; Setion 3 derives a new approximate

relation between the Fourier transform with frequeny k and the disrete Fourier transform;

from this relation the new window funtion �

k

is dedued; Setion 4 presents our algorithms

for the reonstrution of ff

j

; j = 0; 1; � � � ; N � 1g from a disrete sampling of its Fourier

transform f

^

f

k

; k = �N=2; ; � � � ; N=2 � 1g ; Setion 5 shows several numerial experiments

that illustrate the advantages of the new approah; Setion 6 onludes the paper with some

remarks.
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2. The Disrete Fourier Transform, the Fourier Transform

and the Fourier Expansion

The goal of this paper is to derive an approximate relation between the disrete Fourier

transform and Fourier transform with frequeny k of the funtion f(x), so that we an

use the FFT to evaluate ff

j

; j = 0; � � � ; N � 1g eÆiently and aurately. In this setion

we highlight some results and motivation for the disrete Fourier transform, the Fourier

transform and the Fourier expansion.

1. The disrete Fourier transform:

For a given funtion f(x) 2 L

2

(R) with support in [0; 1℄ and an even integer N > 0, let

fx

j

; j = 0; � � � ; N � 1g and ff

j

; j = 0; � � � ; N � 1g be de�ned as in (3) and (4), respetively.

Then the disrete Fourier transform of ff

j

; j = 0; � � � ; N � 1g is

~

f

k

=

1

N

N�1

X

j=0

f

j

e

�i2k�

j

N

;�N=2 � k � N=2� 1 (8)

and the inverse formula is:

f

j

=

N=2�1

X

k=�N=2

~

f

k

e

i2k�

j

N

; j = 0; : : : ; N � 1: (9)

The disrete Fourier transform is the mapping between the N omplex numbers ff

j

; j =

0; : : : ; N � 1g and the N omplex numbers f

~

f

k

; k = �N=2; : : : ; N=2 � 1g. We an use the

fast Fourier transform (FFT) to ompute them.

2. The Fourier transform with frequeny k:

For a given funtion f(x) 2 L

2

(R) with support in [0; 1℄, its Fourier transform is given

in (1). From (8) and (9), in order to establish the relation between the disrete Fourier

transform and the Fourier transform of f(x), we just need to establish the relation between

the disrete Fourier transform and the Fourier transform with frequeny k. From (1) we

obtain

^

f

k

�

^

f(k) =

1

Z

0

f(x)e

�i2k�x

dx; k = 0;�1;�2; : : : : (10)
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If f is a real valued funtion,

^

f

�k

=

^

f

k

.

3. The Fourier expansion:

The set of funtions fe

i2k�x

; k = 0;�1;�2; : : :g is an orthogonal system over the interval

[0,1℄. Beause the support of f(x) is in the interval [0; 1℄, we an also onsider f(x) as

de�ned on [0,1℄, and we an obtain the Fourier expansion of f(x):

Sf(x) =

+1

X

k=�1



k

e

i2k�x

(11)

with the Fourier oeÆients



k

=

1

Z

0

f(x)e

�i2k�x

dx; k = 0;�1;�2; : : : : (12)

Sf(x) represents the formal expansion of f in terms of the Fourier orthogonal system

fe

i2k�x

; k = 0;�1;�2; : : :g. If f is a real valued funtion, 

�k

= 

k

.

Notie that the Fourier oeÆient 

k

in (12) is exatly the same as

^

f

k

, the Fourier

transform of f(x) with frequeny k in (10).

The trunated Fourier expansion of f(x) is

P

N

f(x) =

N=2�1

X

k=�N=2



k

e

i2k�x

(13)

Equation (13) is di�erent from the theoretial disussion of trunated Fourier transform,

but it orresponds diretly to the way in pratial omputation is atually programmed.

In order to make this expansion rigorous, one has to ope with some problems: when

and in what sense is the transform onvergent, what is the relation between the transform

and the funtion f(x), and how rapidly does the series onverge. It is well known that if

f(x) 2 C

1

(0; 1) and f

(p)

(0) = f

(p)

(1) for all p = 0; 1 � � �, then

P

N

f(x)! f(x) exponentially for N !1; 8x 2 [0; 1℄:

But when f(x) has points of disontinuity, or even when f(x) 2 C

1

(0; 1) but is not periodi,

then the onvergene is poor and the Gibbs phenomenon ours. In this ase, one needs to
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use window funtions (also alled smoothing funtions) to redue osillations nearby points

of disontinuity [8℄, [5℄, [3℄. [6℄ proposes another approah to this problem.

3. A New Relation Between

^

f

k

And

~

f

k

. A New Window

Funtion

In this setion we will derive a new approximate relation between

^

f

k

and

~

f

k

from whih

we will be able to provide a new window funtion to redue the error when performing the

FFT to evaluate ff

j

; j = 0; � � � ; N � 1g. We �rst present the main theoretial results of

this setion.

Theorem 1. Suppose that the funtion f(x) satis�es Assumptions 1-3, fx

j

g

N

0

and ff

j

g

N�1

0

are de�ned as in (3) and (4) respetively, and z

k

2 fx

j

g

N�1

1

; k = 1; : : : ; l: Then

j

^

f

k

� a

k

~

f

k

j � C(f)�x (14)

where

a

k

=

8

>

<

>

:

1; k = 0;

N(e

�i2k�=N

�1)

�i2k�

=

sin(k�=N)

k�=N

e

�ik�=N

; k 6= 0;

(15)

and C(f) is a nonnegative onstant depending upon f .

Proof: We �rst prove the ase that k 6= 0. For the partitions of the nodes fx

j

; j =

0; 1; � � � ; N � 1g de�ned in (3) and the disrete values ff

j

; j = 0; 1; � � � ; N � 1g de�ned in

(4) we have (notie that x

j

=

j

N

)

x

j+1

Z

x

j

e

�i2k�x

dx =

e

�i2k�x

�i2k�

j

x

j+1

x

j

= e

�i2k�

j

N

e

�i2k�=N

� 1

�i2k�

;

from whih we obtain

x

j+1

Z

x

j

e

�i2k�x

dx =

a

k

N

e

�i2k�j

N

: (16)

Notie that the above equality also holds when k = 0. We then use the retangular rule for

the approximation of integral to obtain
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^

f

k

=

N�1

X

j=0

x

j+1

Z

x

j

f(x)e

�i2k�x

dx =

N�1

X

j=0

f

j

x

j+1

Z

x

j

e

�i2k�x

dx+ r

k

(�x);

where r

k

(�x) is the error term to be spei�ed later. So

^

f

k

=

N�1

X

j=0

f

j

e

�i2k�

j

N

e

�i2k�=N

� 1

�i2k�

+ r

k

(�x):

Sine

~

f

k

=

1

N

N�1

X

j=0

f

j

e

�i2k�

j

N

;�N=2 � k � N=2� 1;

we have

^

f

k

=

~

f

k

N(e

�i2k�=N

� 1)

�i2k�

+ r

k

(�x) = a

k

~

f

k

+ r

k

(�x): (17)

Now we turn to estimate the term r

k

(�x). Suppose that the derivative of f(x) exists

in the subinterval (x

j

; x

j+1

), then for any x 2 (x

j

; x

j+1

) we have that

f(x) = f

j

+ f

0

(�)(x � �

j

); for some � 2 (x

j

; x

j+1

)

and using (15), (16) and Assumption 3 we get

j

x

j+1

Z

x

j

(f(x)� f

j

)e

�i2k�x

dxj �

x

j+1

Z

x

j

sup

�

jf

0

(�)jj(x � �

j

)jdx �

1

2

C(�x)

2

;

where C is de�ned in Assumption 1. If we hoose �

j

as x

j

+�x=2, the bound above will

be

1

4

C(�x)

2

.From the above inequality and from (8), (10), (15), (16) and (17), we obtain

jr

k

(�x)j = j

^

f

k

� a

k

~

f

k

j �

N�1

P

j=0

x

j+1

R

x

j

jf(x)� f

j

jdx

� N

1

2

C(�x)

2

� C(f)�x;

(18)

In the ase that k = 0, then the value of integral (16) is 1=N . Following the proof for the

ase k 6= 0, we an easily obtain the same estimate (14) with a

0

= 1. Thus we omplete the

proof of the theorem.
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The following remarks are in order.

1. Let �

k

=

1

a

k

. Then we have from (15)

�

k

=

8

>

<

>

:

1; k = 0;

k�=N

sin(k�=N)

e

ik�=N

; k 6= 0;

(19)

and it an be veri�ed that

1 � j�

k

j �

�

2

from the well known inequality

2

�

�

sin �

�

� 1 for 0 < � �

�

2

:

2. When omputing the approximate values ff

j

; j = 0; 1; � � � ; N � 1g using the FFT,

we use the approximate values for

~

f

k

:

~

f

k

� �

k

^

f

k

k = �N=2; � � � ; N=2 � 1: (20)

Notie that �

k

is a window funtion. There are other well known window funtions (see,

e.g, [8℄, pp. 532-538, [3℄, pp. 45-53

1

):

(a). The Lanzos' window funtion �

(1)

k

=

8

>

<

>

:

1; k = 0;

sin(k�=N)

k�=N

; k 6= 0;

.

(b). The Raised Cosine window funtion �

(2)

k

=

1+os(k�=N)

2

.

(). The Ces�aro's window funtion �

(3)

k

= 1� jkj=(N=2 + 1).

All these three window funtions are real. The main reason to introdue these window

funtions is to redue osillations nearby the points of disontinuity, and the auray is a

seondary onsideration.

The magnitude of the window funtion �

k

is the inverse of the Lanzos' window funtion,

and �

k

also has a phase hange e

ik�=N

. We laim that our window funtion is the best one,

in the sense that with this window funtion we establish an aurate relation between

~

f

k

and

1

In the formulae of [3℄, �

(1)

k

=

sin(2k�=N)

2k�=N

and �

(2)

k

=

1+os(2k�=N)

2

. We �nd in our omputations that the

window funtions �

(1)

k

and �

(2)

k

without the fator two are better.
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^

f

k

via formula (14). Furthermore, we an obtain a very good approximation for funtions

f(x) ontaining points of disontinuity and/or f(1) 6= f(0).

3. In two speial ases, we even obtain astonishing results (exat reovery of ff(�

j

) =

f

j

g

N�1

0

), as shown by the following orollaries.

Corollary 1. Suppose that f(x) is a step funtion supported in [0; 1℄. Let fx

j

g

N

0

and

ff

j

g

N�1

0

be de�ned by (3) and (4) respetively, suh that all interior points of subinterval

(x

j

; x

j+1

) are not points of disontinuity for j = 0; 1; � � � ; N � 1. If f

j

= f(�

j

) = f(x

j

+ Æ)

with 0 < Æ < �x, then

a

k

~

f

k

=

^

f

k

k = �N=2; � � � ; N=2 � 1; (21)

and so by using the inverse FFT from f�

k

^

f

k

g

N=2�1

�N=2

we reover the values f

j

exatly.

Proof. In the estimation of r

k

(�x) in formula (18) of Theorem 1, we have C = 0 under

the ondition of the orollary. So r

k

(�x) = 0 therefore

~

f

k

= �

k

^

f

k

k = �N=2; � � � ; N=2 � 1;

ompleting the proof of the orollary.

Corollary 2. Suppose that f(x) is a funtion with support in [0; 1℄, suh that f(x) =

�x + � for x 2 [0; 1℄. Let fx

j

g

N

0

and ff

j

g

N�1

0

be de�ned in (3) and (4) respetively. If

f

j

= f(�

j

) = f(x

j

+�x=2), then

^

f

k

= a

k

~

f

k

k = �N=2; � � � ; N=2 � 1; (22)

and so by using the inverse FFT from f�

k

^

f

k

g

N=2�1

�N=2

we reover the values f

j

exatly.

Proof. Under the onditions of the orollary, for k = �N=2; � � � ; N=2 � 1; we have by

integrating by parts

x

j+1

Z

x

j

(f(x)� f

j

)e

�i2k�x

dx = B

k

�e

�i2k�j=N

; B

k

=

8

>

<

>

:

0; k = 0;

i(

os(k�=N)

2kN�

�

sin(k�=N)

4k

2

N�

2

); k 6= 0:

Notie that B

k

is independent of j. So substituting the above identity into the formula for
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r

k

(�x) in the proof of Theorem 1, we obtain for k = �N=2; � � � ; N=2 � 1;

r

k

(�x) =

^

f

k

� a

k

~

f

k

=

N�1

P

j=0

x

j+1

R

x

j

(f(x)� f

j

)e

�i2k�x

dx

= B

k

�

N�1

P

j=0

e

�i2k�j=N

= 0;

ompleting the proof of the orollary.

We remark here that the above results also hold for the ase where the support of f(x)

is in [a; b℄.

From the onditions of Theorem 1, we have assumed that the points of disontinuity of

f(x) are equally distributed and they oinide with some nodes x

j

. For pratial problems,

we have to onsider the ase in whih the points of disontinuity are loated at any plae.

For onveniene, we assume that f(x) has only one point of disontinuity inside the interval

(0,1), denoted as z, and x

p

< z < x

p

+1=N; 0 < p < N �1. Now, we will use new partitions

of nodes so that the derivative of f(x) exists on every subinterval. Let

0 = x

0

< x

1

< � � � < x

p

< z < x

p+2

< � � � < x

N�1

< x

N

= 1; (23)

�x

j

= x

j+1

� x

j

= �x =

1

N

; j 6= p; p+ 1;�x

p

= z � x

p

;�x

p+1

= x

p+2

� z; (24)

and

f

j

= f(�

j

); j = 0; : : : ; N � 1 with �

j

= x

j

+ Æ

j

; (25)

where 0 � Æ

j

= Æ � �x; j = 0; : : : ; N � 1; j 6= p; p+ 1; 0 � Æ

p

� �x

p

and 0 � Æ

p+1

� �x

p+1

are some onstants.

We get a new approximate relation between

^

f

k

and

~

f

k

as follows

Theorem 2. Suppose that the funtion f(x) satis�es Assumptions 1-3, and f(x) only has

one interior point of disontinuity z. The partitions of nodes of interval [0,1℄ and ff

j

g

N�1

0

are de�ned in (23) - (25) respetively. Then

j

^

f

k

� a

k

~

f

k

� (f

p

� f

p+1

)ĝ

k

j � C(f)�x (26)

where

ĝ

k

=

8

>

<

>

:

z � x

p+1

; k = 0;

1

�i2�k

(e

�i2�zk

� e

�i2�x

p+1

k

); k 6= 0;

(27)
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and C(f) is a nonnegative onstant depending upon f . fa

k

g is the same as that in Theorem

1.

Proof:The proof is similar to that of Theorem 1. We �rst onsider the ase that k 6= 0. We

use the retangular rule for the approximation of integral to get

^

f

k

=

N�1

X

j=0;j 6=p;p+1

x

j+1

Z

x

j

f(x)e

�i2k�x

dx+

z

Z

x

p

f(x)e

�i2k�x

dx+

x

p+2

Z

z

f(x)e

�i2k�x

dx

=

N�1

X

j=0;j 6=p;p+1

f

j

x

j+1

Z

x

j

e

�i2k�x

dx+ f

p

z

Z

x

p

e

�i2k�x

dx+ f

p+1

x

p+2

Z

z

e

�i2k�x

dx+ e

k

(�x);

where e

k

(�x) is the error term (we observe that this error depends on 2�x) . To use the

results in Theorem 1, we rewrite the equality above as

^

f

k

=

N�1

X

j=0

f

j

x

j+1

Z

x

j

e

�i2k�x

dx� f

p

x

p+1

Z

z

e

�i2k�x

dx+ f

p+1

x

p+1

Z

z

e

�i2k�x

dx

Aording to Theorem 1, we have

^

f

k

= a

k

~

f

k

+ (f

p

� f

p+1

)ĝ

k

+ e

k

(�x) (28)

Similarly, we an easily get the estimate for e

k

(�x)

j

z

Z

x

p

(f(x)� f

p

)e

�i2k�x

dxj �

z

Z

x

p

sup

�

jf

0

(�)jj(x � �

p

)jdx �

1

2

C(z � x

p

)

2

�

1

2

C(�x)

2

;

and

j

x

p+2

Z

z

(f(x)� f

p+1

)e

�i2k�x

dxj �

x

p+2

Z

z

sup

�

jf

0

(�)jj(x� �

p+1

)jdx �

1

2

C(x

p+2

� z)

2

� 2C(�x)

2

;

So, we have

12



je

k

(�x)j = j

^

f

k

� a

k

~

f

k

� (f

p

� f

p+1

)ĝ

k

j �

N�1

P

j=0;j 6=p;p+1

x

j+1

R

x

j

jf(x)� f

j

jdx

+

z

R

x

p

jf(x)� f

p

jdx+

x

p+2

R

z

jf(x)� f

p+1

jdx

� (N � 1)

1

2

C(�x)

2

+ 2(�x)

2

� C(f)�x;

(29)

In the ase that k = 0, we have that

z

Z

x

p+1

dx = z � x

p+1

= ĝ

0

(30)

Following the proof for the ase k 6= 0, we an get the same estimate (29) with a

0

= 0.

Thus we omplete the proof of the Theorem.

4. Reonstrution Algorithms

Having established an approximate relationship between the disrete Fourier transform

and the Fourier transform of the funtion f(x) in the previous setion, we an easily reover

the disrete set ff

j

; j = 0; 1 : : : ; N � 1g of the funtion f(x) from the Fourier transform of

f(x) with frequeny k for k = �N=2; � � � ; N=2 � 1. We will present two algorithms for the

ases in whih f(x) satis�es the onditions of Theorem 1 and 2 respetively. If f(x) satis�es

the onditions of Theorem 1, then, we have

Algorithm 1. Given f

^

f(k); k = �N=2; : : : ; N=2 � 1g .

Step 1. Set

~

f

k

:= �

k

^

f

k

for k = �N=2; � � � ; N=2� 1;

where �

k

satis�es (19).

Step 2. Evaluate

Rf

j

=

N=2�1

X

k=�N=2

~

f

k

e

i2k�

j

N

for j = 0; : : : ; N � 1

using the IFFT, where fRf

j

; j = 0; : : : ; N � 1g is the reonstruted funtion at f�

j

; j =

0; : : : ; N � 1g:

13



We only need N multipliations for step 1 and O(N log

2

N) for the IFFT operations in

Step 2, so the amount of omputation in this algorithm is not large. If f(x) satis�es the

onditions of Theorem 2, then, we apply formula (28), so, we have

�

k

^

f

k

�

~

f

k

+ (f

p

� f

p+1

)�

k

ĝ

k

; k = �N=2; : : : ; N=2 � 1

Denoting the inverse Fourier transform of f�

k

^

f

k

g

N=2�1

�N=2

and f�

k

ĝ

k

g

N=2�1

�N=2

by fh

j

g

N�1

0

and

fg

j

g

N�1

0

respetively , we obtain

h

j

= f

j

+ (f

p

� f

p+1

)g

j

; j = 0; : : : ; N � 1 (31)

We an get ff

j

g

N�1

0

by solving the set of equations (31). The algorithm is desribed in the

following.

Algorithm 2. Given f

^

f(k); k = �N=2; : : : ; N=2 � 1g and fĝ(k); k = �N=2; : : : ; N=2 � 1g

Step 1. Set

~

h

k

:= �

k

^

f

k

for k = �N=2; � � � ; N=2 � 1;

~g

k

:= �

k

ĝ

k

for k = �N=2; � � � ; N=2 � 1;

where �

k

satis�es (19).

Step 2. Evaluate

h

j

=

N=2�1

X

k=�N=2

~

h

k

e

i2k�

j

N

for j = 0; : : : ; N � 1

g

j

=

N=2�1

X

k=�N=2

~g

k

e

i2k�

j

N

for j = 0; : : : ; N � 1

using the IFFT.

Step 3. Find the solution of equations (31) as follows

3.1

8

>

<

>

:

(1� g

p

)Rf

p

� g

p

Rf

p+1

= h

p

g

p+1

Rf

p

+ (1� g

p+1

)Rf

p+1

= h

p+1

(32)
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3.2

Rf

j

= h

j

� (Rf

p

�Rf

p+1

)g

j

; j = 0; : : : ; N � 1; j 6= p; p+ 1: (33)

We only need 2N multipliations for step 1,O(Nlog

2

N) for 2 IFFT operations in step 2, and

a few operations for �nding solution (32) and (33) in step 3, so the amount of omputation

in this algorithm is the same order of Algorithm 1. If f(x) has more than one point of

disontinuity whih have the same harateristi with z, we an get a similar algorithm.

In that ase, we will have more IFFT operations in step 2 and �nd solution of a set of

ompliated equations in step 3. Of ourse, we an evaluate it by iteration method .

Using the same idea, we an get a reonstrution algorithm for multi-dimensional fun-

tions.

5. Numerial Examples

In this setion, we show the results from several numerial experiments to illustrate the

behavior the algorithms. All the omputations were performed using MATLAB on a Sun

Workstation at the Applied Mathematis Department, State University of Campinas, SP,

Brazil. The mahine preision is u � 10

�16

.

For the �rst three examples, we perform omputations by using Algorithm 1 with N =

64; 128; 256. In the last two examples, we performed omputations by using Algorithm

1 and 2 respetively with N = 128. We ompared the pointwise error of reonstrution

methods using di�erent window funtions �

k

, �

(1)

k

, �

(2)

k

and �

(3)

k

. We also alulate the

mean-square errors de�ned as:

e =

v

u

u

t

1

N

N�1

X

j=0

jf

j

�Rf

j

j

2

(34)

Example 1. Funtion f

1

(x):

f

1

(x) =

8

>

<

>

:

x; x 2 [0; 1℄;

0; x 62 [0; 1℄:

(35)
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Figure 1: The graphi of the pointwise reonstruted error log

10

jRf

1

(x)� f

1

(x)j with N =

256. (a) - (d) are respetively for f�

k

g and f�

(m)

k

;m = 1; 2; 3g:
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Notie that in the interval (0; 1), f

1

(x) is analyti, f

1

(0) 6= f

1

(1).

Fig. 1 ,(a) - (d) shows the graphis of the pointwise errors by using the window funtions

f�

k

g and f�

(m)

k

;m = 1; 2; 3grespetively with N = 256.

From Fig. 1, we see that our reonstrution error is about O(10

�16

) aused by roundo�

error beause f

1

(x) is linear in [0,1℄, whih veri�es Corollary 2.

Table 1 lists the mean-square errors for reonstrution methods by using di�erent win-

dow funtions with N = 64; 128; 256.

Table 1. Mean-square error for f

1

(x)

N �

k

�

(1)

k

�

(2)

k

�

(3)

k

64 1.7408�10

�16

2.0253 �10

�2

2.3987�10

�2

4.8369�10

�2

128 2.0529 �10

�16

1.4317�10

�2

1.6957 �10

�2

3.4700 �10

�2

256 6.0281�10

�16

1.0123 �10

�2

1.1990 �10

�2

2.4717 �10

�2

Example 2. Funtion f

2

(x):

f

2

(x) =

8

>

<

>

:

1; x 2 I � [0; 1=4) [ [1=2; 5=8) [ [3=4; 7=8);

0; otherwise:

(36)

Notie that f

2

(x) is a step funtion with 6 points of disontinuity.

In Fig. 2, (a) - (d) are graphis of the pointwise error by using the window funtions

f�

k

g and f�

(m)

k

;m = 1; 2; 3grespetively with N = 256.

From Fig. 2, we see that our reonstrution error is about O(10

�16

) aused by roundo�

error, whih veri�es Corollary 1.

Table 2 lists the mean-square errors for reonstrution methods by using di�erent win-

dow funtions with N = 64; 128; 256.

Table 2. Mean-square error for f

2

(x)

N �

k

�

(1)

k

�

(2)

k

�

(3)

k

64 1.1510�10

�15

4.9144�10

�2

5.8302�10

�2

1.1888�10

�1

128 1.7342�10

�15

3.4986�10

�2

4.1457�10

�2

8.5176�10

�2

256 2.4355�10

�15

2.4781�10

�2

2.9355�10

�2

6.0614�10

�2
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Figure 2: The graphi of the pointwise reonstruted error log

10

jRf

2

(x)� f

2

(x)j with N =

256. (a) - (d) are respetively for f�

k

g and f�

(m)

k

;m = 1; 2; 3g:
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Example 3. Funtion f

3

(x):

f

3

(x) =

8

>

<

>

:

x

2

; x 2 [0; 1℄;

0; x 62 [0; 1℄:

(37)

Notie that in the interval (0; 1), f

3

(x) is analyti, f

3

(0) 6= f

3

(1).
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−1

0
(b)
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−1

0
(c)
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−6
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−4
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−2

−1

0
(d)

Figure 3: The graphi of the pointwise reonstruted error log

10

jRf

3

(x)� f

3

(x)j with N =

256. (a) - (d) are respetively for f�

k

g and f�

(m)

k

;m = 1; 2; 3g:

Fig. 3 shows the graphi of the original funtion. In Fig. 6, (a) - (d) are graphis of

the pointwise error by using the window funtions f�

k

g and f�

(m)

k

;m = 1; 2; 3grespetively

with N = 256.

From Fig. 3, we see that our reonstruted error using the window funtion �

k

at the

points near x = 0 and x = 1 are muh smaller than using any other window funtions.

So we an greatly redue the osillations of the Gibbs phenomenon in the reonstruted

funtion.

Table 3 lists the mean-square errors for reonstrution methods by using di�erent win-

dow funtions with N = 64; 128; 256.
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Table 3. Mean-square error for f

3

(x)

N �

k

�

(1)

k

�

(2)

k

�

(3)

k

64 4.1411�10

�4

2.0253�10

�2

2.3987�10

�2

4.8442�10

�2

128 1.4665�10

�4

1.4317�10

�2

1.6957�10

�2

3.4727�10

�2

256 5.1891�10

�5

1.0123�10

�2

1.1990�10

�2

2.4727�10

�2

Example 4. Funtion f

4

(x):

f

4

(x) =

8

>

<

>

:

0; x 2 [0; 0:5 + 1=256℄;

1; x 62 [0; 0:5 + 1=256℄:

(38)

We divide interval [0,1℄ into 128 equal subintervals (N = 128), so this example satis�es

the onditions of Theorem 2.

Fig. 4 shows the graphi of the original funtion and the reonstrutions. In Fig. 5, (a)

- (d) are graphis of the pointwise error by using Algorithm 1 with four window funtions

f�

k

g and f�

(m)

k

;m = 1; 2; 3grespetively and (e) is for Algorithm 2 with window funtion

f�

k

g. From Fig. 5, we see that the reonstrution errors are more or less the same by using

Algorithm 1 with four window funtions f�

k

g and f�

(m)

k

;m = 1; 2; 3g, and their mean-square

errors are 4:9869 � 10

�2

; 4:7283 � 10

�2

; 4:7745 � 10

�2

and 5:8743 � 10

�2

respetively. But,

the reonstrution error is abour O(10

�16

) aused by roundo� error by using Algorithm 2

with our window funtion, the mean-square error of whih is 1:1654 � 10

�15

.

Example 5. Funtion f

5

(x):

f

5

(x) =

8

>

<

>

:

x

2

; x 2 [0; 0:5 + 1=256℄;

os(x); x 62 [0; 0:5 + 1=256℄:

(39)

Like Example 4, we divide interval [0,1℄ into 128 equal subintervals (N = 128).

Fig. 6 shows the graphi of the original funtion and the reonstrutions. In Fig. 10,

(a) - (d) are the graphis of the pointwise error by using Algorithm 1 with four window

funtions f�

k

g and f�

(m)

k

;m = 1; 2; 3g respetively and (e) is for Algorithm 2 with window

funtion f�

k

g. From Fig. 7, we see that the reonstrution errors are more or less the

same by using Algorithm 1 with four window funtions f�

k

g and f�

(m)

k

;m = 1; 2; 3g, and

20



0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0
(a)

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0
(b)

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0
(c)

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0
(d)

0 0.2 0.4 0.6 0.8 1
−16

−15.5

−15

−14.5

−14
(e)

Figure 4: The graphi of the pointwise reonstruted error log

10

jRf

4

(x)� f

4

(x)j with N =

128. (a) - (d) are respetively for using Algorithm 1 with f�

k

g and f�

(m)

k

;m = 1; 2; 3g: (e)

is for using Algorithm 2 with f�

k

g.
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Figure 5: The original and reonstruted gragpi of f

5

(x). (a) is for orginal graphi, (b) -

(e) are for using Algorithm 1 with f�

k

g and f�

(m)

k

;m = 1; 2; 3g respetively. (f) is for using

Algorithm 2 with f�

k

g.
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their mean-square errors are 3:0958� 10

�2

; 2:8930� 10

�2

; 2:9071� 10

�2

,and 3:4523� 10

�2

respetively. But, by using Algorithm 2 with our window funtion, the reonstrution error

at the point near x = 0:5+1=256 is muh smaller than using Algorithm 1 with four window

funtions, the mean-square error of whih is 2:0141 � 10

�4

. It shows that we an greatly

redue the osillations of the Gibbs phenomenon in the reonstruted funtion.

The above numerial examples show that the window funtion �

k

introdued in this

paper is the best one for reonstruting a funtion having ompat support whih has

points of disontinuity and/or is not periodi over the interval of support. Of ourse, we

have to use Algorithm 1 and 2 respetively aording to the di�erent points of disontinuity

of f(x).

5. Conlusion

In this paper, we have derived a new relation between the disrete Fourier transform

of a disrete sampling set of ompatly supported funtion and its Fourier transform and

provided an error estimation. From this relation we have obtained a new window funtion

�

k

whih is muh better than any known window funtion to redue osillations in the

Gibbs phenomenon. We have proposed a new eÆient algorithm to reonstrut the original

funtion from the disrete sampling of its Fourier transform, whih an adopt the fast

Fourier transform and has muh better auray than those in the literature. Several

numerial experiments have also been provided to demonstrate the results.
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