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1. Introduction

The Fourier Transform (FT) is a powerful tool for scientific computation which is found
in numerous applied areas [3],[11]. For example, in image reconstruction, from a set of line
integrals of the density of an object we get a discrete sampling of the Fourier transform of the
density by applying the Fourier slice theorem [9]. So we need to reconstruct the values of the
density at some discrete set of points in the object. The Fourier method is one of the tools to
achieve this aim. It is clear that we can exactly reconstruct a compactly supported function
from all the values of its Fourier transform. However, when we only know a discrete set
of values, how can we recover some discrete values of the original function? For simplicity,
in this paper we ounly discuss the case that the density f(-) is a function of one variable
x € R = (—00,+00), but the results can be easily extended to the multi-dimensional case.

From a mathematical point of view, this problem can be described as follows. We first
make the following assumptions.

Assumptions. The function f(z) satisfies

1. f(-) is defined for every z € R, € L*(R); f(z) = 0 for « ¢ [0,1] and sup,eo,11|f(2)] < C,
where C' > 0 is a constant.

2. f(z) has at most a finite number of points of discontinuity z1,- -, z; and they are given.
3. Forx & Z = {z1,---, 21}, f'(x) exists and sup,gz|f'(z)] < C.

Assumptions 1-3 are realistic in practical problems. In another paper, we discuss the case
with unknown points of discontinuity. If the support of f(x) is in the interval [a, b] # [0, 1],
then we can use a linear transformation §{ = $=% to change the support to [0, 1].

The Fourier transform and inverse Fourier transform of f(z) are respectively defined as

+0o0 1
fw = [ s@e s de = [ f@)eda (1
—00 0
and
+0oo
flz) = / F(w)e?™ dw, a.e. (2)



Because f(z) is compactly supported in [0,1], f(w) is sufficiently smooth (Paley-Wiener’s
Theorem, [2]). Notice that in this case, the support of f (w) is R.

Let
O=xp<z1 < --<oy_1<zny=1, AI]':I]'_Fl—Ij:AJL':% (3)
and
fi=1fm), 3=0,...,N =1 with n; = z; + 6, (4)
where 0 < 0 < Az is a constant.
One approach to obtain approximate values of {f;, j = 0,...,N — 1} is as follows.

Suppose that when |w]| is sufficiently large, there exists a positive constant W such that
when |w| > W, the corresponding interval in the integral (2) can be ignored. Then one has

that

w
flz) =~ / f(w)e?™ dw, 0 < z < 1. (5)
-w
Approximating the integral (5) by a Riemann sum, one has [4]

M-1

~

f] ~ Z f(wk)e_ﬂﬂankAwkaj = 07 s 7N - ]-7 (6)
k=0

where

2W
W=w<w < <wpy_1 <wy =W, and Awkzwkﬂ—wk:Aw:ﬁ.

Because of the fact that the integral (5) is approximated by the Riemann sum (6), one
can get a good approximation only for small Aw and so M must be large for a fixed W,
and one needs a large number of sampling values of f (wg). On the other hand, one wants
to apply the fast Fourier transform (FFT) to reduce the amount of computations, and this
implies taking the maximal frequency W = ﬁ and choosing M = N. In the case that the
support of f(z) is [0,1], Aw = &¥ = 1, so using the Riemann sum (6) will result in large
error. If one takes Aw = O(Az) = O(%) and W = 51—, then the amount of computations
would be O(N?), it would be prohibitively large for large N.



Another approach to obtain approximate values of {f;, 7 =0,..., N —1} is for the case
that the support of f(z) is [a,b], with A = b —a > 1, see, e.g, [11]. In this case, (2) is

replaced by

+00 b
fw = [ fayeede = [ fayeeds ()
and the nodes {zy} are defined as
A
a=xg<x1 < - <zny_1<TNy=Db, ij:$j+]__$j:AfL‘:ﬁ.

Then in the Riemann sum (6) one chooses W = ﬁ and M = N allowing the application
of the FFT. In this case, Aw = % and Az = % so the sampling interval Aw depends on
the support of f(z) and using the Riemann sum (6) will also result in large error. To get a
good approximation of the problem, several types of window functions are used to reduce
the error [8], [3]. In §3 we list some widely used window functions.

In this paper we derive a new relation between the discrete Fourier transform of a
discrete sampling set of f(z) and its Fourier transform. From this relation we obtain a
new window function that gives rise to a new efficient algorithm to reconstruct the original
function from the discrete samplings of its Fourier transform. With this new approach the
FFT can be used and much better accuracy than that previously obtained in the literature
is achieved.

The paper is organized as follows. Section 2 lists some formulae of the discrete Fourier
transform of a discrete sampling values {f;, j =0,1,---, N — 1} of the function f(z), the
Fourier transform of f(x) with the frequency k, and the Fourier expansion of f(z) if we
just consider that f(-) is defined over its support [0, 1]; Section 3 derives a new approximate
relation between the Fourier transform with frequency k£ and the discrete Fourier transform;
from this relation the new window function oy is deduced; Section 4 presents our algorithms
for the reconstruction of {f;,j = 0,1,---,N — 1} from a discrete sampling of its Fourier
transform { fo, k=—N /2,,---,N/2 —1} ; Section 5 shows several numerical experiments
that illustrate the advantages of the new approach; Section 6 concludes the paper with some

remarks.



2. The Discrete Fourier Transform, the Fourier Transform

and the Fourier Expansion

The goal of this paper is to derive an approximate relation between the discrete Fourier
transform and Fourier transform with frequency £ of the function f(x), so that we can
use the FFT to evaluate {f;,7 = 0,---, N — 1} efficiently and accurately. In this section
we highlight some results and motivation for the discrete Fourier transform, the Fourier
transform and the Fourier expansion.

1. The discrete Fourier transform:

For a given function f(z) € L?(R) with support in [0, 1] and an even integer N > 0, let
{zj, 7=0,---,N—1} and {fj, j =0,---, N —1} be defined as in (3) and (4), respectively.

Then the discrete Fourier transform of {f;, j =0,---,N — 1} is
B ] N-1 .
k= > fieT N —N/2 <k < N/2-1 (8)
j=0
and the inverse formula is:

N/2—1

fi= Y fue®N,j=0,...,N -1 (9)

The discrete Fourier transform is the mapping between the N complex numbers {f;,j =
0,...,N — 1} and the N complex numbers {fk,k = —N/2,...,N/2 —1}. We can use the
fast Fourier transform (FFT) to compute them.

2. The Fourier transform with frequency k:

For a given function f(z) € L?(R) with support in [0, 1], its Fourier transform is given
in (1). From (8) and (9), in order to establish the relation between the discrete Fourier
transform and the Fourier transform of f(x), we just need to establish the relation between
the discrete Fourier transform and the Fourier transform with frequency k. From (1) we

obtain

flz)e R0y |k =0,4+1,42,.... (10)
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If f is a real valued function, f_k = ﬁ

3. The Fourier expansion:

The set of functions {e"?™® k = 0,41,42,...} is an orthogonal system over the interval
[0,1]. Because the support of f(x) is in the interval [0, 1], we can also consider f(x) as

defined on [0,1], and we can obtain the Fourier expansion of f(z):

+o00
Sf(zr) = Z cpe ke (11)

k=—00

with the Fourier coeflicients

1
cp = /f(:z,-)e—“k”dx, k=0,+1,42,.... (12)
0

Sf(z) represents the formal expansion of f in terms of the Fourier orthogonal system
{ek7® | = 0,41,42,...}. If f is a real valued function, c¢_j = .

Notice that the Fourier coefficient ¢j in (12) is exactly the same as fr, the Fourier
transform of f(z) with frequency k in (10).

The truncated Fourier expansion of f(z) is

N/2-1

Pyf(z)= Y e (13)

k=—N/2
Equation (13) is different from the theoretical discussion of truncated Fourier transform,
but it corresponds directly to the way in practical computation is actually programmed.
In order to make this expansion rigorous, one has to cope with some problems: when
and in what sense is the transform convergent, what is the relation between the transform

and the function f(z), and how rapidly does the series converge. It is well known that if

f(z) € C*®(0,1) and f®)(0) = f@ (1) for all p=0,1---, then
Py f(z) = f(z) exponentially for N — oo, Vz € [0,1].

But when f(z) has points of discontinuity, or even when f(z) € C°°(0,1) but is not periodic,

then the convergence is poor and the Gibbs phenomenon occurs. In this case, one needs to



use window functions (also called smoothing functions) to reduce oscillations nearby points

of discontinuity [8], [5], [3]. [6] proposes another approach to this problem.

3. A New Relation Between fk And f.. A New Window

Function

In this section we will derive a new approximate relation between fk and fk from which
we will be able to provide a new window function to reduce the error when performing the
FFT to evaluate {f;, j =0,---,N —1}. We first present the main theoretical results of
this section.

Theorem 1. Suppose that the function f(z) satisfies Assumptions 1-3, {z;}{ and {f;}5 "
are defined as in (3) and (4) respectively, and z; € {xj}iv_l, k=1,...,l. Then

|fe — arfi| < C(f)Az (14)
where
1, k=0,
ap = N(e—iQkﬂ-/N_l) Sin(kﬂ'/N) 7ik7T/N (]-5)
—i2kw = Tka/N € , k#0,

and C(f) is a nonnegative constant depending upon f.
Proof: We first prove the case that k& # 0. For the partitions of the nodes {z;, j =
0,1,---,N — 1} defined in (3) and the discrete values {f;, 7 = 0,1,---, N — 1} defined in

(4) we have (notice that z; = %)

N
Tj+1 ; ;
—i2kwx . —i2kmw /N
—i2knx g, _ € Tj+1 _ _—i2knl € N1
e dr = — |z =e R —
—i2km —12km
T
from which we obtain
Tj+1
. ap —i2knj
/ e 2k gy — ~e N - (16)
T

Notice that the above equality also holds when k£ = 0. We then use the rectangular rule for

the approximation of integral to obtain



N—1 Tt N-1 Tt

fk; _ Z / f(z)efikavdz — Z fj / efiZkﬁzdl._i_Tk(Al.),

Jj=0 xj = Tj

 N-1 e d e—i2km/N _ 1
= il R — Azx).

Tk E) fye —i%kn +7"k( x)

Since
1 N o d
=¥ > fieTN —N/2 <k < NJ2 -1,
j=0

we have

N( —i2kw /N _ 1)

5 + 1 (Az) = agfr, + i (Az). (17)

fro = fr

Now we turn to estimate the term r(Axz). Suppose that the derivative of f(z) exists

in the subinterval (z;,2;41), then for any « € (xj,z;11) we have that

f(@) = f;+ [ (€)(z —n;), for some & € (x5, z541)

and using (15), (16) and Assumption 3 we get

Tjt1 Tj+1 )
| / — fe wdal < [ supelf (€)@ — ny)lde < OB,
Zj

where C' is deﬁned in Assumption 1. If we choose n; as z; + Az/2, the bound above will

be $C(Az)%.From the above inequality and from (8), (10), (15), (16) and (17), we obtain

—1 Tj+1
re(Az)| = | fe — arfr] < Z [ 1f(z) = fildz
Jj=0 z; (18)

< NiC(Az)? = C(f)Ax,

In the case that £ = 0, then the value of integral (16) is 1/N. Following the proof for the
case k # 0, we can easily obtain the same estimate (14) with ap = 1. Thus we complete the

proof of the theorem.



The following remarks are in order.

1. Let 0}, = -=. Then we have from (15)

ak'

1, k=0, (19)
o =
kr/N___ikn/N
sin(7IZ7r/N)eZ ™/ , k#0,
and it can be verified that
T
1< |Uk| < 5
from the well known inequality
Egsmegl for 0<0§z.
T 0 2

2. When computing the approximate values {f;, j = 0,1,---,N — 1} using the FFT,

we use the approximate values for fk:
fe~opfe k=-N/2,--- N/2 —1. (20)

Notice that oy is a window function. There are other well known window functions (see,

e.g, [8], pp. 532-538, [3], pp. 45-531):
1, k=0,
(a). The Lanczos’ window function a,(;) = , .
sin(kmw/N) k0
kn/N ’

(b). The Raised Cosine window function o*,(f) = w

(c). The Ceséaro’s window function 01(63) =1—|k|/(N/2+1).

All these three window functions are real. The main reason to introduce these window
functions is to reduce oscillations nearby the points of discontinuity, and the accuracy is a
secondary consideration.

The magnitude of the window function oy, is the inverse of the Lanczos’ window function,

ikm /N

and oy, also has a phase change e . We claim that our window function is the best one,

in the sense that with this window function we establish an accurate relation between fk and

'In the formulae of [3], O’,(cl) = % and U,(f) = w We find in our computations that the
(1)
k

window functions o, and U,(f) without the factor two are better.



fr via formula (14). Furthermore, we can obtain a very good approximation for functions
f(z) containing points of discontinuity and/or f(1) # f(0).

3. In two special cases, we even obtain astonishing results (exact recovery of {f(n;) =
fi év *1), as shown by the following corollaries.
Corollary 1. Suppose that f(z) is a step function supported in [0,1]. Let {z;}}" and
{£i}37"! be defined by (3) and (4) respectively, such that all interior points of subinterval
(zj,z41) are not points of discontinuity for j = 0,1,---,N — L. If f; = f(n;) = f(z; +6)
with 0 < § < Az, then

apfe = fx k=-N/2,--- ,N/2 -1, (21)

and so by using the inverse FFT from {oy fk}ivz/\? /;1 we recover the values f; exactly.
Proof. In the estimation of r5x(Az) in formula (18) of Theorem 1, we have C' = 0 under

the condition of the corollary. So rx(Az) = 0 therefore
fe=orfr k=-N/2,---,N/2—1,

completing the proof of the corollary.

Corollary 2. Suppose that f(z) is a function with support in [0, 1], such that f(z) =
ar + B for z € [0,1]. Let {z;}Y and {f;}5'"' be defined in (3) and (4) respectively. If
fi = f(n;) = f(zj + Az/2), then

fr=arfr k=-N/2,--- N/2 -1, (22)
and so by using the inverse FFT from {oy fk}]_vf\? /;1 we recover the values f; exactly.
Proof. Under the conditions of the corollary, for Kk = —N/2,---,N/2 — 1, we have by

integrating by parts

Tj+1

. . 0, k=0,
(f(I) . fj)e—ﬂkmvdx _ Bkae—ﬂkﬂj/N, B =

(ke ~ Sewar ) K A0

Zj

Notice that By is independent of j. So substituting the above identity into the formula for

10



r(Az) in the proof of Theorem 1, we obtain for k = —N/2,--- N/2 — 1,

N . N—1Zj+1 ok
ri(Az) = fi — apfr = ZO (f(z) = fj)e” " dx
= o
Nl ' 'J J
= Bra 3 e—z2k7r]/N =0,

§j=0
completing the proof of the corollary.

We remark here that the above results also hold for the case where the support of f(z)
is in [a, b].

From the conditions of Theorem 1, we have assumed that the points of discontinuity of
f(z) are equally distributed and they coincide with some nodes x;. For practical problems,
we have to consider the case in which the points of discontinuity are located at any place.
For convenience, we assume that f(z) has only one point of discontinuity inside the interval
(0,1), denoted as z, and z, < z < 2, +1/N,0 < p < N —1. Now, we will use new partitions

of nodes so that the derivative of f(z) exists on every subinterval. Let

0=z <21 < <XPp <2< Tpr2 < - <ay_1 <Ny =1, (23)
Azj=xj1 —j = Az = %,j #p,p+ 1,0z, =2 —2p, Axp 1 = Tpio — 2, (24)

and
fi=fmn), 3=0,...,N —1 with n; = z; + ¢;, (25)

where 0 <9, =0 < Az,j=0,...,N—-1,7 #p,p+ 1,0 <, <Azpand 0 < 0py1 < Axpyg
are some constants.

We get a new approximate relation between fk and fk as follows
Theorem 2. Suppose that the function f(z) satisfies Assumptions 1-3, and f(z) only has
N—1

one interior point of discontinuity z. The partitions of nodes of interval [0,1] and {f;};

are defined in (23) - (25) respectively. Then

\fi = anfi — (fp — fpr1)k| < C(f)As (26)
where
. Z— Tpyi, k=0,
Ik = 1 ’ —12wzk —i27xpr1k (27)
—i27k (6 —¢€ pt )7 k 7é 07

11



and C(f) is a nonnegative constant depending upon f. {ay} is the same as that in Theorem
1.
Proof:The proof is similar to that of Theorem 1. We first consider the case that k # 0. We

use the rectangular rule for the approximation of integral to get

N—1 Tj+1 Tp+2

fk — Z f(x)efika'a:d:L,_'_/f(x)efikavdx+ / f(x)efikavd:L,

N-—-1 Tj+1 z Tp+2

= Z fj efiZkﬁzd:L,_i_fp/efiZkﬁzdx_i_prrl / efz'Zlmrzdx_i_ek(Am)7
]:Oa]¢p:p+1 x] Tp z

where e (Az) is the error term (we observe that this error depends on 2Az) . To use the
results in Theorem 1, we rewrite the equality above as
N—1 Tj+1 Tp+1 Tp+1
fk — Z f_') efiQkﬂajdx o fp / efiZkﬂ':Ed:L, + fp+]. / efiZkﬂ':Ed:L,
Jj=0 T z z

According to Theorem 1, we have

fr = anfi + (fp — fpt1)dn + ex(Ax) (28)

Similarly, we can easily get the estimate for e (Ax)

z z

. . 1 1
[ (@) = f)e ] < [ supelf ©ll( ~ mlds < 50~ 5,)* < SC(Aw),
and
Tp+2 Tp+2

[ 0@ = fpre @) < [ supd s @l = np)lde < 5y — 2 < 20(A0)%

z z

So, we have

12



e(A0) = s — arfe — o — fodinl < 5 [ 1f(@) = filde

Tpi2 Jj=0,j#p,p+1 z;
+xf |f(z) = fpldz + zf |f(z) — fpy1|dz (29)
< (N = 1)50(A2)* + 2¢(A2)* = C(f) Az,

In the case that £ = 0, we have that

z
/ dr =z —2pr1 = go (30)
Tp+1

Following the proof for the case k # 0, we can get the same estimate (29) with ag = 0.

Thus we complete the proof of the Theorem.

4. Reconstruction Algorithms

Having established an approximate relationship between the discrete Fourier transform
and the Fourier transform of the function f(z) in the previous section, we can easily recover
the discrete set {fj,7 =0,1..., N — 1} of the function f(z) from the Fourier transform of
f(x) with frequency k for k = —N/2,---  N/2 — 1. We will present two algorithms for the
cases in which f(z) satisfies the conditions of Theorem 1 and 2 respectively. If f(x) satisfies
the conditions of Theorem 1, then, we have
Algorithm 1. Given {f(k),k = —N/2,...,N/2 -1} .

Step 1. Set
fr = opfp for k=—N/2,--- \N/2 —1,

where oy, satisfies (19).
Step 2. Evaluate
N/2-1

Rfj= 3 fre® "% forj=0,...,N -1
k=—N/2

using the IFFT, where {Rf;,j7 = 0,...,N — 1} is the reconstructed function at {n;,j =
0,...,N —1}.

13



We only need N multiplications for step 1 and O(N logy N) for the IFFT operations in
Step 2, so the amount of computation in this algorithm is not large. If f(z) satisfies the

conditions of Theorem 2, then, we apply formula (28), so, we have

oufi = fr + (fp — for1)okdi kb = —N/2,... ,N/2 - 1

Denoting the inverse Fourier transform of {oy fk}]f]/\? /_21 and {akgk}]f]/\?/j by {h;}5""" and

{gj}év ~1 respectively , we obtain

hj = fi+ (fp— fp+1)95,5 =0,...,N —1 (31)

We can get {f;}0" ! by solving the set of equations (31). The algorithm is described in the
following.
Algorithm 2. Given {f(k),k =—-N/2,...,N/2 — 1} and {g(k),k = —N/2,...,N/2 — 1}
Step 1. Set

hy := opfy, for k= —N/2,--- N/2 — 1,

gr = ogg for k= —-N/2,--- /N/2 -1,

where oy, satisfies (19).

Step 2. Evaluate

N/2—1 4

hi= S e forj=0,...,N 1
k=—N/2
N/2—1 4

gi= > eV forj=0,...,N—1
k:—N/2

using the IFFT.
Step 3. Find the solution of equations (31) as follows
3.1
(1 —gp)Rfp — gpRfp+1 = hyp
gp+1Bfp + (L= gpr1)Rfpr1 = hpta

(32)

14



3.2

We only need 2N multiplications for step 1,0(NlogsN) for 2 IFFT operations in step 2, and
a few operations for finding solution (32) and (33) in step 3, so the amount of computation
in this algorithm is the same order of Algorithm 1. If f(z) has more than one point of
discontinuity which have the same characteristic with z, we can get a similar algorithm.
In that case, we will have more IFFT operations in step 2 and find solution of a set of
complicated equations in step 3. Of course, we can evaluate it by iteration method .

Using the same idea, we can get a reconstruction algorithm for multi-dimensional func-

tions.

5. Numerical Examples

In this section, we show the results from several numerical experiments to illustrate the
behavior the algorithms. All the computations were performed using MATLAB on a Sun
Workstation at the Applied Mathematics Department, State University of Campinas, SP,
Brazil. The machine precision is u ~ 10716,

For the first three examples, we perform computations by using Algorithm 1 with N =
64, 128, 256. In the last two examples, we performed computations by using Algorithm
1 and 2 respectively with N = 128. We compared the pointwise error of reconstruction
methods using different window functions oy, a,(cl), a,(f) and a,(f). We also calculate the

mean-square errors defined as:

| V-1
GZJN > =R (34)
j=0
Example 1. Function fi(z):
floy =4 & EE [0, 1], (35)
0, z¢[0,1]

15



(@) (b)
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Figure 1: The graphic of the pointwise reconstructed error logio|Rf1(x) — fi1(z)| with N =
256. (a) - (d) are respectively for {o}} and {a,(cm,m =1,2,3}.
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Notice that in the interval (0,1), fi(x) is analytic, f1(0) # f1(1).
Fig. 1 ,(a) - (d) shows the graphics of the pointwise errors by using the window functions

{ok} and {a,(cm),m = 1,2, 3}respectively with N = 256.
From Fig. 1, we see that our reconstruction error is about O(1071%) caused by roundoff

error because fi(z) is linear in [0,1], which verifies Corollary 2.

Table 1 lists the mean-square errors for reconstruction methods by using different win-

dow functions with N = 64, 128, 256.

Table 1. Mean-square error for fi(x)
N O O’,(Cl) U,(f) a,(:’)
64 | 1.7408x10716 | 2.0253 x102 | 2.3987x10~2 | 4.8369x102
128 | 2.0529 x10716 | 1.4317x1072 | 1.6957 x1072 | 3.4700 x10 2
256 | 6.0281x10716 | 1.0123 x1072 | 1.1990 x10~2 | 2.4717 x10~2
Example 2. Function fo(z):
1, zel=[0,1/4)U][1/2,5/8) U[3/4,7/8),
fa(w) = . (36)
0, otherwise.

Notice that fo(x) is a step function with 6 points of discontinuity.

In Fig. 2, (a) - (d) are graphics of the pointwise error by using the window functions

{ok} and {a,(cm),m = 1,2, 3}respectively with N = 256.
From Fig. 2, we see that our reconstruction error is about O(10716) caused by roundoff

error, which verifies Corollary 1.
Table 2 lists the mean-square errors for reconstruction methods by using different win-

dow functions with N = 64, 128, 256.

Table 2. Mean-square error for fo(x)
N O a,gl) a,(f) a,(:’)
64 | 1.1510x10715 | 4.9144x1072 | 5.8302x1072 | 1.1888x10~!
128 | 1.7342x10715 | 3.4986x1072 | 4.1457x1072 | 8.5176x 102
256 | 2.4355x1071% | 2.4781x1072 | 2.9355x1072 | 6.0614x 102
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Example 3. Function f3(z):

B T2, z €[0,1],
fs(z) = (37)
0, z¢&][0,1].

Notice that in the interval (0, 1), f3(x) is analytic, f3(0) # f3(1).

@) (b)
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Figure 3: The graphic of the pointwise reconstructed error logig|Rf3(z) — f3(z)| with N =
256. (a) - (d) are respectively for {o}} and {a,gm),m =1,2,3}.

Fig. 3 shows the graphic of the original function. In Fig. 6, (a) - (d) are graphics of
the pointwise error by using the window functions {0y} and {a,(cm),m = 1,2, 3}respectively
with N = 256.

From Fig. 3, we see that our reconstructed error using the window function oy, at the
points near £ = 0 and = 1 are much smaller than using any other window functions.
So we can greatly reduce the oscillations of the Gibbs phenomenon in the reconstructed
function.

Table 3 lists the mean-square errors for reconstruction methods by using different win-

dow functions with N = 64, 128, 256.

19



Table 3. Mean-square error for f3(x)

N O O',(CD U,(f) U,(f)

64 | 4.1411x107% | 2.0253x1072 | 2.3987x 102 | 4.8442x102

128 | 1.4665x10~% | 1.4317x1072 | 1.6957x1072 | 3.4727x 102

256 | 5.1891x107° | 1.0123x10°2 | 1.1990x10"2 | 2.4727x 102

Example 4. Function fy(z):

file) = 0, z€1[0,0.5+ 1/256], (38)
1, = ¢]0,0.5+1/256].

We divide interval [0,1] into 128 equal subintervals (N = 128), so this example satisfies
the conditions of Theorem 2.

Fig. 4 shows the graphic of the original function and the reconstructions. In Fig. 5, (a)

- (d) are graphics of the pointwise error by using Algorithm 1 with four window functions

{o}} and {al(cm),m = 1,2, 3}respectively and (e) is for Algorithm 2 with window function

{ok}. From Fig. 5, we see that the reconstruction errors are more or less the same by using

Algorithm 1 with four window functions {0y} and {al(cm ,m =1,2,3}, and their mean-square

errors are 4.9869 x 1072, 4.7283 x 1072,4.7745 x 10~ ?and 5.8743 x 1072 respectively. But,

the reconstruction error is abour O(10~!6) caused by roundoff error by using Algorithm 2

with our window function, the mean-square error of which is 1.1654 x 10715,

Example 5. Function f5(x):

fi(e) = 72, z € [0,0.5 + 1/256], (30)
cos(z), = ¢0,0.5+ 1/256].
Like Example 4, we divide interval [0,1] into 128 equal subintervals (N = 128).
Fig. 6 shows the graphic of the original function and the reconstructions. In Fig. 10,
(a) - (d) are the graphics of the pointwise error by using Algorithm 1 with four window

)

functions {o}} and {a,(cm ,m = 1,23} respectively and (e) is for Algorithm 2 with window
function {oy}. From Fig. 7, we see that the reconstruction errors are more or less the

same by using Algorithm 1 with four window functions {0} and {al(cm,m =1,2,3}, and
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Figure 4: The graphic of the pointwise reconstructed error logig|Rf4(z) — fa(z)| with N =
128. (a) - (d) are respectively for using Algorithm 1 with {0y} and {U,(cm),m =1,2,3}. (e)

is for using Algorithm 2 with {oy}.
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their mean-square errors are 3.0958 x 1072, 2.8930 x 1072,2.9071 x 10~2,and 3.4523 x 102
respectively. But, by using Algorithm 2 with our window function, the reconstruction error
at the point near z = 0.5+ 1/256 is much smaller than using Algorithm 1 with four window
functions, the mean-square error of which is 2.0141 x 10™*. It shows that we can greatly
reduce the oscillations of the Gibbs phenomenon in the reconstructed function.

The above numerical examples show that the window function o introduced in this
paper is the best one for reconstructing a function having compact support which has
points of discontinuity and/or is not periodic over the interval of support. Of course, we

have to use Algorithm 1 and 2 respectively according to the different points of discontinuity

of f(x).

5. Conclusion

In this paper, we have derived a new relation between the discrete Fourier transform
of a discrete sampling set of compactly supported function and its Fourier transform and
provided an error estimation. From this relation we have obtained a new window function
o which is much better than any known window function to reduce oscillations in the
Gibbs phenomenon. We have proposed a new efficient algorithm to reconstruct the original
function from the discrete sampling of its Fourier transform, which can adopt the fast
Fourier transform and has much better accuracy than those in the literature. Several

numerical experiments have also been provided to demonstrate the results.
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