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1. Introdu
tion

The Fourier Transform (FT) is a powerful tool for s
ienti�
 
omputation whi
h is found

in numerous applied areas [3℄,[11℄. For example, in image re
onstru
tion, from a set of line

integrals of the density of an obje
t we get a dis
rete sampling of the Fourier transform of the

density by applying the Fourier sli
e theorem [9℄. So we need to re
onstru
t the values of the

density at some dis
rete set of points in the obje
t. The Fourier method is one of the tools to

a
hieve this aim. It is 
lear that we 
an exa
tly re
onstru
t a 
ompa
tly supported fun
tion

from all the values of its Fourier transform. However, when we only know a dis
rete set

of values, how 
an we re
over some dis
rete values of the original fun
tion? For simpli
ity,

in this paper we only dis
uss the 
ase that the density f(�) is a fun
tion of one variable

x 2 R = (�1;+1), but the results 
an be easily extended to the multi-dimensional 
ase.

From a mathemati
al point of view, this problem 
an be des
ribed as follows. We �rst

make the following assumptions.

Assumptions. The fun
tion f(x) satis�es

1. f(�) is de�ned for every x 2 R, 2 L

2

(R); f(x) = 0 for x 62 [0; 1℄ and sup

x2[0;1℄

jf(x)j � C,

where C > 0 is a 
onstant.

2. f(x) has at most a �nite number of points of dis
ontinuity z

1

; � � � ; z

l

and they are given.

3. For x 62 Z = fz

1

; � � � ; z

l

g, f

0

(x) exists and sup

x62Z

jf

0

(x)j � C.

Assumptions 1-3 are realisti
 in pra
ti
al problems. In another paper, we dis
uss the 
ase

with unknown points of dis
ontinuity. If the support of f(x) is in the interval [a; b℄ 6= [0; 1℄,

then we 
an use a linear transformation � =

x�a

b�a

to 
hange the support to [0; 1℄.

The Fourier transform and inverse Fourier transform of f(x) are respe
tively de�ned as

^

f(!) =

+1

Z

�1

f(x)e

�i2�x!

dx =

1

Z

0

f(x)e

�i2�x!

dx (1)

and

f(x) =

+1

Z

�1

^

f(!)e

i2�x!

d!; a:e: (2)
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Be
ause f(x) is 
ompa
tly supported in [0; 1℄,

^

f(!) is suÆ
iently smooth (Paley-Wiener's

Theorem, [2℄). Noti
e that in this 
ase, the support of

^

f(!) is R.

Let

0 = x

0

< x

1

< � � � < x

N�1

< x

N

= 1; �x

j

= x

j+1

� x

j

= �x =

1

N

(3)

and

f

j

= f(�

j

); j = 0; : : : ; N � 1 with �

j

= x

j

+ Æ; (4)

where 0 � Æ � �x is a 
onstant.

One approa
h to obtain approximate values of ff

j

; j = 0; : : : ; N � 1g is as follows.

Suppose that when j!j is suÆ
iently large, there exists a positive 
onstant W su
h that

when j!j �W , the 
orresponding interval in the integral (2) 
an be ignored. Then one has

that

f(x) �

W

Z

�W

^

f(!)e

i2�x!

d!; 0 � x � 1: (5)

Approximating the integral (5) by a Riemann sum, one has [4℄

f

j

�

M�1

X

k=0

^

f(!

k

)e

�i2��

j

!

k

�!

k

; j = 0; : : : ; N � 1; (6)

where

�W = !

0

< !

1

< � � � < !

M�1

< !

M

=W; and �!

k

= !

k+1

� !

k

= �! =

2W

M

:

Be
ause of the fa
t that the integral (5) is approximated by the Riemann sum (6), one


an get a good approximation only for small �! and so M must be large for a �xed W ,

and one needs a large number of sampling values of

^

f(!

k

). On the other hand, one wants

to apply the fast Fourier transform (FFT) to redu
e the amount of 
omputations, and this

implies taking the maximal frequen
y W =

1

2�x

and 
hoosing M = N . In the 
ase that the

support of f(x) is [0; 1℄, �! =

2W

M

= 1, so using the Riemann sum (6) will result in large

error. If one takes �! = O(�x) = O(

1

N

) and W =

1

2�x

, then the amount of 
omputations

would be O(N

3

), it would be prohibitively large for large N .
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Another approa
h to obtain approximate values of ff

j

; j = 0; : : : ; N �1g is for the 
ase

that the support of f(x) is [a; b℄, with A = b � a > 1, see, e.g, [11℄. In this 
ase, (2) is

repla
ed by

^

f(!) =

+1

Z

�1

f(x)e

�i2�x!

dx =

b

Z

a

f(x)e

�i2�x!

dx (7)

and the nodes fx

k

g are de�ned as

a = x

0

< x

1

< � � � < x

N�1

< x

N

= b; �x

j

= x

j+1

� x

j

= �x =

A

N

:

Then in the Riemann sum (6) one 
hooses W =

1

2�x

and M = N allowing the appli
ation

of the FFT. In this 
ase, �! =

1

A

and �x =

A

N

so the sampling interval �! depends on

the support of f(x) and using the Riemann sum (6) will also result in large error. To get a

good approximation of the problem, several types of window fun
tions are used to redu
e

the error [8℄, [3℄. In x3 we list some widely used window fun
tions.

In this paper we derive a new relation between the dis
rete Fourier transform of a

dis
rete sampling set of f(x) and its Fourier transform. From this relation we obtain a

new window fun
tion that gives rise to a new eÆ
ient algorithm to re
onstru
t the original

fun
tion from the dis
rete samplings of its Fourier transform. With this new approa
h the

FFT 
an be used and mu
h better a

ura
y than that previously obtained in the literature

is a
hieved.

The paper is organized as follows. Se
tion 2 lists some formulae of the dis
rete Fourier

transform of a dis
rete sampling values ff

j

; j = 0; 1; � � � ; N � 1g of the fun
tion f(x), the

Fourier transform of f(x) with the frequen
y k, and the Fourier expansion of f(x) if we

just 
onsider that f(�) is de�ned over its support [0; 1℄; Se
tion 3 derives a new approximate

relation between the Fourier transform with frequen
y k and the dis
rete Fourier transform;

from this relation the new window fun
tion �

k

is dedu
ed; Se
tion 4 presents our algorithms

for the re
onstru
tion of ff

j

; j = 0; 1; � � � ; N � 1g from a dis
rete sampling of its Fourier

transform f

^

f

k

; k = �N=2; ; � � � ; N=2 � 1g ; Se
tion 5 shows several numeri
al experiments

that illustrate the advantages of the new approa
h; Se
tion 6 
on
ludes the paper with some

remarks.
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2. The Dis
rete Fourier Transform, the Fourier Transform

and the Fourier Expansion

The goal of this paper is to derive an approximate relation between the dis
rete Fourier

transform and Fourier transform with frequen
y k of the fun
tion f(x), so that we 
an

use the FFT to evaluate ff

j

; j = 0; � � � ; N � 1g eÆ
iently and a

urately. In this se
tion

we highlight some results and motivation for the dis
rete Fourier transform, the Fourier

transform and the Fourier expansion.

1. The dis
rete Fourier transform:

For a given fun
tion f(x) 2 L

2

(R) with support in [0; 1℄ and an even integer N > 0, let

fx

j

; j = 0; � � � ; N � 1g and ff

j

; j = 0; � � � ; N � 1g be de�ned as in (3) and (4), respe
tively.

Then the dis
rete Fourier transform of ff

j

; j = 0; � � � ; N � 1g is

~

f

k

=

1

N

N�1

X

j=0

f

j

e

�i2k�

j

N

;�N=2 � k � N=2� 1 (8)

and the inverse formula is:

f

j

=

N=2�1

X

k=�N=2

~

f

k

e

i2k�

j

N

; j = 0; : : : ; N � 1: (9)

The dis
rete Fourier transform is the mapping between the N 
omplex numbers ff

j

; j =

0; : : : ; N � 1g and the N 
omplex numbers f

~

f

k

; k = �N=2; : : : ; N=2 � 1g. We 
an use the

fast Fourier transform (FFT) to 
ompute them.

2. The Fourier transform with frequen
y k:

For a given fun
tion f(x) 2 L

2

(R) with support in [0; 1℄, its Fourier transform is given

in (1). From (8) and (9), in order to establish the relation between the dis
rete Fourier

transform and the Fourier transform of f(x), we just need to establish the relation between

the dis
rete Fourier transform and the Fourier transform with frequen
y k. From (1) we

obtain

^

f

k

�

^

f(k) =

1

Z

0

f(x)e

�i2k�x

dx; k = 0;�1;�2; : : : : (10)
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If f is a real valued fun
tion,

^

f

�k

=

^

f

k

.

3. The Fourier expansion:

The set of fun
tions fe

i2k�x

; k = 0;�1;�2; : : :g is an orthogonal system over the interval

[0,1℄. Be
ause the support of f(x) is in the interval [0; 1℄, we 
an also 
onsider f(x) as

de�ned on [0,1℄, and we 
an obtain the Fourier expansion of f(x):

Sf(x) =

+1

X

k=�1




k

e

i2k�x

(11)

with the Fourier 
oeÆ
ients




k

=

1

Z

0

f(x)e

�i2k�x

dx; k = 0;�1;�2; : : : : (12)

Sf(x) represents the formal expansion of f in terms of the Fourier orthogonal system

fe

i2k�x

; k = 0;�1;�2; : : :g. If f is a real valued fun
tion, 


�k

= 


k

.

Noti
e that the Fourier 
oeÆ
ient 


k

in (12) is exa
tly the same as

^

f

k

, the Fourier

transform of f(x) with frequen
y k in (10).

The trun
ated Fourier expansion of f(x) is

P

N

f(x) =

N=2�1

X

k=�N=2




k

e

i2k�x

(13)

Equation (13) is di�erent from the theoreti
al dis
ussion of trun
ated Fourier transform,

but it 
orresponds dire
tly to the way in pra
ti
al 
omputation is a
tually programmed.

In order to make this expansion rigorous, one has to 
ope with some problems: when

and in what sense is the transform 
onvergent, what is the relation between the transform

and the fun
tion f(x), and how rapidly does the series 
onverge. It is well known that if

f(x) 2 C

1

(0; 1) and f

(p)

(0) = f

(p)

(1) for all p = 0; 1 � � �, then

P

N

f(x)! f(x) exponentially for N !1; 8x 2 [0; 1℄:

But when f(x) has points of dis
ontinuity, or even when f(x) 2 C

1

(0; 1) but is not periodi
,

then the 
onvergen
e is poor and the Gibbs phenomenon o

urs. In this 
ase, one needs to
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use window fun
tions (also 
alled smoothing fun
tions) to redu
e os
illations nearby points

of dis
ontinuity [8℄, [5℄, [3℄. [6℄ proposes another approa
h to this problem.

3. A New Relation Between

^

f

k

And

~

f

k

. A New Window

Fun
tion

In this se
tion we will derive a new approximate relation between

^

f

k

and

~

f

k

from whi
h

we will be able to provide a new window fun
tion to redu
e the error when performing the

FFT to evaluate ff

j

; j = 0; � � � ; N � 1g. We �rst present the main theoreti
al results of

this se
tion.

Theorem 1. Suppose that the fun
tion f(x) satis�es Assumptions 1-3, fx

j

g

N

0

and ff

j

g

N�1

0

are de�ned as in (3) and (4) respe
tively, and z

k

2 fx

j

g

N�1

1

; k = 1; : : : ; l: Then

j

^

f

k

� a

k

~

f

k

j � C(f)�x (14)

where

a

k

=

8

>

<

>

:

1; k = 0;

N(e

�i2k�=N

�1)

�i2k�

=

sin(k�=N)

k�=N

e

�ik�=N

; k 6= 0;

(15)

and C(f) is a nonnegative 
onstant depending upon f .

Proof: We �rst prove the 
ase that k 6= 0. For the partitions of the nodes fx

j

; j =

0; 1; � � � ; N � 1g de�ned in (3) and the dis
rete values ff

j

; j = 0; 1; � � � ; N � 1g de�ned in

(4) we have (noti
e that x

j

=

j

N

)

x

j+1

Z

x

j

e

�i2k�x

dx =

e

�i2k�x

�i2k�

j

x

j+1

x

j

= e

�i2k�

j

N

e

�i2k�=N

� 1

�i2k�

;

from whi
h we obtain

x

j+1

Z

x

j

e

�i2k�x

dx =

a

k

N

e

�i2k�j

N

: (16)

Noti
e that the above equality also holds when k = 0. We then use the re
tangular rule for

the approximation of integral to obtain
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^

f

k

=

N�1

X

j=0

x

j+1

Z

x

j

f(x)e

�i2k�x

dx =

N�1

X

j=0

f

j

x

j+1

Z

x

j

e

�i2k�x

dx+ r

k

(�x);

where r

k

(�x) is the error term to be spe
i�ed later. So

^

f

k

=

N�1

X

j=0

f

j

e

�i2k�

j

N

e

�i2k�=N

� 1

�i2k�

+ r

k

(�x):

Sin
e

~

f

k

=

1

N

N�1

X

j=0

f

j

e

�i2k�

j

N

;�N=2 � k � N=2� 1;

we have

^

f

k

=

~

f

k

N(e

�i2k�=N

� 1)

�i2k�

+ r

k

(�x) = a

k

~

f

k

+ r

k

(�x): (17)

Now we turn to estimate the term r

k

(�x). Suppose that the derivative of f(x) exists

in the subinterval (x

j

; x

j+1

), then for any x 2 (x

j

; x

j+1

) we have that

f(x) = f

j

+ f

0

(�)(x � �

j

); for some � 2 (x

j

; x

j+1

)

and using (15), (16) and Assumption 3 we get

j

x

j+1

Z

x

j

(f(x)� f

j

)e

�i2k�x

dxj �

x

j+1

Z

x

j

sup

�

jf

0

(�)jj(x � �

j

)jdx �

1

2

C(�x)

2

;

where C is de�ned in Assumption 1. If we 
hoose �

j

as x

j

+�x=2, the bound above will

be

1

4

C(�x)

2

.From the above inequality and from (8), (10), (15), (16) and (17), we obtain

jr

k

(�x)j = j

^

f

k

� a

k

~

f

k

j �

N�1

P

j=0

x

j+1

R

x

j

jf(x)� f

j

jdx

� N

1

2

C(�x)

2

� C(f)�x;

(18)

In the 
ase that k = 0, then the value of integral (16) is 1=N . Following the proof for the


ase k 6= 0, we 
an easily obtain the same estimate (14) with a

0

= 1. Thus we 
omplete the

proof of the theorem.
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The following remarks are in order.

1. Let �

k

=

1

a

k

. Then we have from (15)

�

k

=

8

>

<

>

:

1; k = 0;

k�=N

sin(k�=N)

e

ik�=N

; k 6= 0;

(19)

and it 
an be veri�ed that

1 � j�

k

j �

�

2

from the well known inequality

2

�

�

sin �

�

� 1 for 0 < � �

�

2

:

2. When 
omputing the approximate values ff

j

; j = 0; 1; � � � ; N � 1g using the FFT,

we use the approximate values for

~

f

k

:

~

f

k

� �

k

^

f

k

k = �N=2; � � � ; N=2 � 1: (20)

Noti
e that �

k

is a window fun
tion. There are other well known window fun
tions (see,

e.g, [8℄, pp. 532-538, [3℄, pp. 45-53

1

):

(a). The Lan
zos' window fun
tion �

(1)

k

=

8

>

<

>

:

1; k = 0;

sin(k�=N)

k�=N

; k 6= 0;

.

(b). The Raised Cosine window fun
tion �

(2)

k

=

1+
os(k�=N)

2

.

(
). The Ces�aro's window fun
tion �

(3)

k

= 1� jkj=(N=2 + 1).

All these three window fun
tions are real. The main reason to introdu
e these window

fun
tions is to redu
e os
illations nearby the points of dis
ontinuity, and the a

ura
y is a

se
ondary 
onsideration.

The magnitude of the window fun
tion �

k

is the inverse of the Lan
zos' window fun
tion,

and �

k

also has a phase 
hange e

ik�=N

. We 
laim that our window fun
tion is the best one,

in the sense that with this window fun
tion we establish an a

urate relation between

~

f

k

and

1

In the formulae of [3℄, �

(1)

k

=

sin(2k�=N)

2k�=N

and �

(2)

k

=

1+
os(2k�=N)

2

. We �nd in our 
omputations that the

window fun
tions �

(1)

k

and �

(2)

k

without the fa
tor two are better.
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^

f

k

via formula (14). Furthermore, we 
an obtain a very good approximation for fun
tions

f(x) 
ontaining points of dis
ontinuity and/or f(1) 6= f(0).

3. In two spe
ial 
ases, we even obtain astonishing results (exa
t re
overy of ff(�

j

) =

f

j

g

N�1

0

), as shown by the following 
orollaries.

Corollary 1. Suppose that f(x) is a step fun
tion supported in [0; 1℄. Let fx

j

g

N

0

and

ff

j

g

N�1

0

be de�ned by (3) and (4) respe
tively, su
h that all interior points of subinterval

(x

j

; x

j+1

) are not points of dis
ontinuity for j = 0; 1; � � � ; N � 1. If f

j

= f(�

j

) = f(x

j

+ Æ)

with 0 < Æ < �x, then

a

k

~

f

k

=

^

f

k

k = �N=2; � � � ; N=2 � 1; (21)

and so by using the inverse FFT from f�

k

^

f

k

g

N=2�1

�N=2

we re
over the values f

j

exa
tly.

Proof. In the estimation of r

k

(�x) in formula (18) of Theorem 1, we have C = 0 under

the 
ondition of the 
orollary. So r

k

(�x) = 0 therefore

~

f

k

= �

k

^

f

k

k = �N=2; � � � ; N=2 � 1;


ompleting the proof of the 
orollary.

Corollary 2. Suppose that f(x) is a fun
tion with support in [0; 1℄, su
h that f(x) =

�x + � for x 2 [0; 1℄. Let fx

j

g

N

0

and ff

j

g

N�1

0

be de�ned in (3) and (4) respe
tively. If

f

j

= f(�

j

) = f(x

j

+�x=2), then

^

f

k

= a

k

~

f

k

k = �N=2; � � � ; N=2 � 1; (22)

and so by using the inverse FFT from f�

k

^

f

k

g

N=2�1

�N=2

we re
over the values f

j

exa
tly.

Proof. Under the 
onditions of the 
orollary, for k = �N=2; � � � ; N=2 � 1; we have by

integrating by parts

x

j+1

Z

x

j

(f(x)� f

j

)e

�i2k�x

dx = B

k

�e

�i2k�j=N

; B

k

=

8

>

<

>

:

0; k = 0;

i(


os(k�=N)

2kN�

�

sin(k�=N)

4k

2

N�

2

); k 6= 0:

Noti
e that B

k

is independent of j. So substituting the above identity into the formula for

10



r

k

(�x) in the proof of Theorem 1, we obtain for k = �N=2; � � � ; N=2 � 1;

r

k

(�x) =

^

f

k

� a

k

~

f

k

=

N�1

P

j=0

x

j+1

R

x

j

(f(x)� f

j

)e

�i2k�x

dx

= B

k

�

N�1

P

j=0

e

�i2k�j=N

= 0;


ompleting the proof of the 
orollary.

We remark here that the above results also hold for the 
ase where the support of f(x)

is in [a; b℄.

From the 
onditions of Theorem 1, we have assumed that the points of dis
ontinuity of

f(x) are equally distributed and they 
oin
ide with some nodes x

j

. For pra
ti
al problems,

we have to 
onsider the 
ase in whi
h the points of dis
ontinuity are lo
ated at any pla
e.

For 
onvenien
e, we assume that f(x) has only one point of dis
ontinuity inside the interval

(0,1), denoted as z, and x

p

< z < x

p

+1=N; 0 < p < N �1. Now, we will use new partitions

of nodes so that the derivative of f(x) exists on every subinterval. Let

0 = x

0

< x

1

< � � � < x

p

< z < x

p+2

< � � � < x

N�1

< x

N

= 1; (23)

�x

j

= x

j+1

� x

j

= �x =

1

N

; j 6= p; p+ 1;�x

p

= z � x

p

;�x

p+1

= x

p+2

� z; (24)

and

f

j

= f(�

j

); j = 0; : : : ; N � 1 with �

j

= x

j

+ Æ

j

; (25)

where 0 � Æ

j

= Æ � �x; j = 0; : : : ; N � 1; j 6= p; p+ 1; 0 � Æ

p

� �x

p

and 0 � Æ

p+1

� �x

p+1

are some 
onstants.

We get a new approximate relation between

^

f

k

and

~

f

k

as follows

Theorem 2. Suppose that the fun
tion f(x) satis�es Assumptions 1-3, and f(x) only has

one interior point of dis
ontinuity z. The partitions of nodes of interval [0,1℄ and ff

j

g

N�1

0

are de�ned in (23) - (25) respe
tively. Then

j

^

f

k

� a

k

~

f

k

� (f

p

� f

p+1

)ĝ

k

j � C(f)�x (26)

where

ĝ

k

=

8

>

<

>

:

z � x

p+1

; k = 0;

1

�i2�k

(e

�i2�zk

� e

�i2�x

p+1

k

); k 6= 0;

(27)
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and C(f) is a nonnegative 
onstant depending upon f . fa

k

g is the same as that in Theorem

1.

Proof:The proof is similar to that of Theorem 1. We �rst 
onsider the 
ase that k 6= 0. We

use the re
tangular rule for the approximation of integral to get

^

f

k

=

N�1

X

j=0;j 6=p;p+1

x

j+1

Z

x

j

f(x)e

�i2k�x

dx+

z

Z

x

p

f(x)e

�i2k�x

dx+

x

p+2

Z

z

f(x)e

�i2k�x

dx

=

N�1

X

j=0;j 6=p;p+1

f

j

x

j+1

Z

x

j

e

�i2k�x

dx+ f

p

z

Z

x

p

e

�i2k�x

dx+ f

p+1

x

p+2

Z

z

e

�i2k�x

dx+ e

k

(�x);

where e

k

(�x) is the error term (we observe that this error depends on 2�x) . To use the

results in Theorem 1, we rewrite the equality above as

^

f

k

=

N�1

X

j=0

f

j

x

j+1

Z

x

j

e

�i2k�x

dx� f

p

x

p+1

Z

z

e

�i2k�x

dx+ f

p+1

x

p+1

Z

z

e

�i2k�x

dx

A

ording to Theorem 1, we have

^

f

k

= a

k

~

f

k

+ (f

p

� f

p+1

)ĝ

k

+ e

k

(�x) (28)

Similarly, we 
an easily get the estimate for e

k

(�x)

j

z

Z

x

p

(f(x)� f

p

)e

�i2k�x

dxj �

z

Z

x

p

sup

�

jf

0

(�)jj(x � �

p

)jdx �

1

2

C(z � x

p

)

2

�

1

2

C(�x)

2

;

and

j

x

p+2

Z

z

(f(x)� f

p+1

)e

�i2k�x

dxj �

x

p+2

Z

z

sup

�

jf

0

(�)jj(x� �

p+1

)jdx �

1

2

C(x

p+2

� z)

2

� 2C(�x)

2

;

So, we have

12



je

k

(�x)j = j

^

f

k

� a

k

~

f

k

� (f

p

� f

p+1

)ĝ

k

j �

N�1

P

j=0;j 6=p;p+1

x

j+1

R

x

j

jf(x)� f

j

jdx

+

z

R

x

p

jf(x)� f

p

jdx+

x

p+2

R

z

jf(x)� f

p+1

jdx

� (N � 1)

1

2

C(�x)

2

+ 2
(�x)

2

� C(f)�x;

(29)

In the 
ase that k = 0, we have that

z

Z

x

p+1

dx = z � x

p+1

= ĝ

0

(30)

Following the proof for the 
ase k 6= 0, we 
an get the same estimate (29) with a

0

= 0.

Thus we 
omplete the proof of the Theorem.

4. Re
onstru
tion Algorithms

Having established an approximate relationship between the dis
rete Fourier transform

and the Fourier transform of the fun
tion f(x) in the previous se
tion, we 
an easily re
over

the dis
rete set ff

j

; j = 0; 1 : : : ; N � 1g of the fun
tion f(x) from the Fourier transform of

f(x) with frequen
y k for k = �N=2; � � � ; N=2 � 1. We will present two algorithms for the


ases in whi
h f(x) satis�es the 
onditions of Theorem 1 and 2 respe
tively. If f(x) satis�es

the 
onditions of Theorem 1, then, we have

Algorithm 1. Given f

^

f(k); k = �N=2; : : : ; N=2 � 1g .

Step 1. Set

~

f

k

:= �

k

^

f

k

for k = �N=2; � � � ; N=2� 1;

where �

k

satis�es (19).

Step 2. Evaluate

Rf

j

=

N=2�1

X

k=�N=2

~

f

k

e

i2k�

j

N

for j = 0; : : : ; N � 1

using the IFFT, where fRf

j

; j = 0; : : : ; N � 1g is the re
onstru
ted fun
tion at f�

j

; j =

0; : : : ; N � 1g:

13



We only need N multipli
ations for step 1 and O(N log

2

N) for the IFFT operations in

Step 2, so the amount of 
omputation in this algorithm is not large. If f(x) satis�es the


onditions of Theorem 2, then, we apply formula (28), so, we have

�

k

^

f

k

�

~

f

k

+ (f

p

� f

p+1

)�

k

ĝ

k

; k = �N=2; : : : ; N=2 � 1

Denoting the inverse Fourier transform of f�

k

^

f

k

g

N=2�1

�N=2

and f�

k

ĝ

k

g

N=2�1

�N=2

by fh

j

g

N�1

0

and

fg

j

g

N�1

0

respe
tively , we obtain

h

j

= f

j

+ (f

p

� f

p+1

)g

j

; j = 0; : : : ; N � 1 (31)

We 
an get ff

j

g

N�1

0

by solving the set of equations (31). The algorithm is des
ribed in the

following.

Algorithm 2. Given f

^

f(k); k = �N=2; : : : ; N=2 � 1g and fĝ(k); k = �N=2; : : : ; N=2 � 1g

Step 1. Set

~

h

k

:= �

k

^

f

k

for k = �N=2; � � � ; N=2 � 1;

~g

k

:= �

k

ĝ

k

for k = �N=2; � � � ; N=2 � 1;

where �

k

satis�es (19).

Step 2. Evaluate

h

j

=

N=2�1

X

k=�N=2

~

h

k

e

i2k�

j

N

for j = 0; : : : ; N � 1

g

j

=

N=2�1

X

k=�N=2

~g

k

e

i2k�

j

N

for j = 0; : : : ; N � 1

using the IFFT.

Step 3. Find the solution of equations (31) as follows

3.1

8

>

<

>

:

(1� g

p

)Rf

p

� g

p

Rf

p+1

= h

p

g

p+1

Rf

p

+ (1� g

p+1

)Rf

p+1

= h

p+1

(32)
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3.2

Rf

j

= h

j

� (Rf

p

�Rf

p+1

)g

j

; j = 0; : : : ; N � 1; j 6= p; p+ 1: (33)

We only need 2N multipli
ations for step 1,O(Nlog

2

N) for 2 IFFT operations in step 2, and

a few operations for �nding solution (32) and (33) in step 3, so the amount of 
omputation

in this algorithm is the same order of Algorithm 1. If f(x) has more than one point of

dis
ontinuity whi
h have the same 
hara
teristi
 with z, we 
an get a similar algorithm.

In that 
ase, we will have more IFFT operations in step 2 and �nd solution of a set of


ompli
ated equations in step 3. Of 
ourse, we 
an evaluate it by iteration method .

Using the same idea, we 
an get a re
onstru
tion algorithm for multi-dimensional fun
-

tions.

5. Numeri
al Examples

In this se
tion, we show the results from several numeri
al experiments to illustrate the

behavior the algorithms. All the 
omputations were performed using MATLAB on a Sun

Workstation at the Applied Mathemati
s Department, State University of Campinas, SP,

Brazil. The ma
hine pre
ision is u � 10

�16

.

For the �rst three examples, we perform 
omputations by using Algorithm 1 with N =

64; 128; 256. In the last two examples, we performed 
omputations by using Algorithm

1 and 2 respe
tively with N = 128. We 
ompared the pointwise error of re
onstru
tion

methods using di�erent window fun
tions �

k

, �

(1)

k

, �

(2)

k

and �

(3)

k

. We also 
al
ulate the

mean-square errors de�ned as:

e =

v

u

u

t

1

N

N�1

X

j=0

jf

j

�Rf

j

j

2

(34)

Example 1. Fun
tion f

1

(x):

f

1

(x) =

8

>

<

>

:

x; x 2 [0; 1℄;

0; x 62 [0; 1℄:

(35)
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Figure 1: The graphi
 of the pointwise re
onstru
ted error log

10

jRf

1

(x)� f

1

(x)j with N =

256. (a) - (d) are respe
tively for f�

k

g and f�

(m)

k

;m = 1; 2; 3g:
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Noti
e that in the interval (0; 1), f

1

(x) is analyti
, f

1

(0) 6= f

1

(1).

Fig. 1 ,(a) - (d) shows the graphi
s of the pointwise errors by using the window fun
tions

f�

k

g and f�

(m)

k

;m = 1; 2; 3grespe
tively with N = 256.

From Fig. 1, we see that our re
onstru
tion error is about O(10

�16

) 
aused by roundo�

error be
ause f

1

(x) is linear in [0,1℄, whi
h veri�es Corollary 2.

Table 1 lists the mean-square errors for re
onstru
tion methods by using di�erent win-

dow fun
tions with N = 64; 128; 256.

Table 1. Mean-square error for f

1

(x)

N �

k

�

(1)

k

�

(2)

k

�

(3)

k

64 1.7408�10

�16

2.0253 �10

�2

2.3987�10

�2

4.8369�10

�2

128 2.0529 �10

�16

1.4317�10

�2

1.6957 �10

�2

3.4700 �10

�2

256 6.0281�10

�16

1.0123 �10

�2

1.1990 �10

�2

2.4717 �10

�2

Example 2. Fun
tion f

2

(x):

f

2

(x) =

8

>

<

>

:

1; x 2 I � [0; 1=4) [ [1=2; 5=8) [ [3=4; 7=8);

0; otherwise:

(36)

Noti
e that f

2

(x) is a step fun
tion with 6 points of dis
ontinuity.

In Fig. 2, (a) - (d) are graphi
s of the pointwise error by using the window fun
tions

f�

k

g and f�

(m)

k

;m = 1; 2; 3grespe
tively with N = 256.

From Fig. 2, we see that our re
onstru
tion error is about O(10

�16

) 
aused by roundo�

error, whi
h veri�es Corollary 1.

Table 2 lists the mean-square errors for re
onstru
tion methods by using di�erent win-

dow fun
tions with N = 64; 128; 256.

Table 2. Mean-square error for f

2

(x)

N �

k

�

(1)

k

�

(2)

k

�

(3)

k

64 1.1510�10

�15

4.9144�10

�2

5.8302�10

�2

1.1888�10

�1

128 1.7342�10

�15

3.4986�10

�2

4.1457�10

�2

8.5176�10

�2

256 2.4355�10

�15

2.4781�10

�2

2.9355�10

�2

6.0614�10

�2
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Figure 2: The graphi
 of the pointwise re
onstru
ted error log

10

jRf

2

(x)� f

2

(x)j with N =

256. (a) - (d) are respe
tively for f�

k

g and f�

(m)

k

;m = 1; 2; 3g:
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Example 3. Fun
tion f

3

(x):

f

3

(x) =

8

>

<

>

:

x

2

; x 2 [0; 1℄;

0; x 62 [0; 1℄:

(37)

Noti
e that in the interval (0; 1), f

3

(x) is analyti
, f

3

(0) 6= f

3

(1).
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0
(d)

Figure 3: The graphi
 of the pointwise re
onstru
ted error log

10

jRf

3

(x)� f

3

(x)j with N =

256. (a) - (d) are respe
tively for f�

k

g and f�

(m)

k

;m = 1; 2; 3g:

Fig. 3 shows the graphi
 of the original fun
tion. In Fig. 6, (a) - (d) are graphi
s of

the pointwise error by using the window fun
tions f�

k

g and f�

(m)

k

;m = 1; 2; 3grespe
tively

with N = 256.

From Fig. 3, we see that our re
onstru
ted error using the window fun
tion �

k

at the

points near x = 0 and x = 1 are mu
h smaller than using any other window fun
tions.

So we 
an greatly redu
e the os
illations of the Gibbs phenomenon in the re
onstru
ted

fun
tion.

Table 3 lists the mean-square errors for re
onstru
tion methods by using di�erent win-

dow fun
tions with N = 64; 128; 256.
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Table 3. Mean-square error for f

3

(x)

N �

k

�

(1)

k

�

(2)

k

�

(3)

k

64 4.1411�10

�4

2.0253�10

�2

2.3987�10

�2

4.8442�10

�2

128 1.4665�10

�4

1.4317�10

�2

1.6957�10

�2

3.4727�10

�2

256 5.1891�10

�5

1.0123�10

�2

1.1990�10

�2

2.4727�10

�2

Example 4. Fun
tion f

4

(x):

f

4

(x) =

8

>

<

>

:

0; x 2 [0; 0:5 + 1=256℄;

1; x 62 [0; 0:5 + 1=256℄:

(38)

We divide interval [0,1℄ into 128 equal subintervals (N = 128), so this example satis�es

the 
onditions of Theorem 2.

Fig. 4 shows the graphi
 of the original fun
tion and the re
onstru
tions. In Fig. 5, (a)

- (d) are graphi
s of the pointwise error by using Algorithm 1 with four window fun
tions

f�

k

g and f�

(m)

k

;m = 1; 2; 3grespe
tively and (e) is for Algorithm 2 with window fun
tion

f�

k

g. From Fig. 5, we see that the re
onstru
tion errors are more or less the same by using

Algorithm 1 with four window fun
tions f�

k

g and f�

(m)

k

;m = 1; 2; 3g, and their mean-square

errors are 4:9869 � 10

�2

; 4:7283 � 10

�2

; 4:7745 � 10

�2

and 5:8743 � 10

�2

respe
tively. But,

the re
onstru
tion error is abour O(10

�16

) 
aused by roundo� error by using Algorithm 2

with our window fun
tion, the mean-square error of whi
h is 1:1654 � 10

�15

.

Example 5. Fun
tion f

5

(x):

f

5

(x) =

8

>

<

>

:

x

2

; x 2 [0; 0:5 + 1=256℄;


os(x); x 62 [0; 0:5 + 1=256℄:

(39)

Like Example 4, we divide interval [0,1℄ into 128 equal subintervals (N = 128).

Fig. 6 shows the graphi
 of the original fun
tion and the re
onstru
tions. In Fig. 10,

(a) - (d) are the graphi
s of the pointwise error by using Algorithm 1 with four window

fun
tions f�

k

g and f�

(m)

k

;m = 1; 2; 3g respe
tively and (e) is for Algorithm 2 with window

fun
tion f�

k

g. From Fig. 7, we see that the re
onstru
tion errors are more or less the

same by using Algorithm 1 with four window fun
tions f�

k

g and f�

(m)

k

;m = 1; 2; 3g, and
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Figure 4: The graphi
 of the pointwise re
onstru
ted error log

10

jRf

4

(x)� f

4

(x)j with N =

128. (a) - (d) are respe
tively for using Algorithm 1 with f�

k

g and f�

(m)

k

;m = 1; 2; 3g: (e)

is for using Algorithm 2 with f�

k

g.
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Figure 5: The original and re
onstru
ted gragpi
 of f

5

(x). (a) is for orginal graphi
, (b) -

(e) are for using Algorithm 1 with f�

k

g and f�

(m)

k

;m = 1; 2; 3g respe
tively. (f) is for using

Algorithm 2 with f�

k

g.
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their mean-square errors are 3:0958� 10

�2

; 2:8930� 10

�2

; 2:9071� 10

�2

,and 3:4523� 10

�2

respe
tively. But, by using Algorithm 2 with our window fun
tion, the re
onstru
tion error

at the point near x = 0:5+1=256 is mu
h smaller than using Algorithm 1 with four window

fun
tions, the mean-square error of whi
h is 2:0141 � 10

�4

. It shows that we 
an greatly

redu
e the os
illations of the Gibbs phenomenon in the re
onstru
ted fun
tion.

The above numeri
al examples show that the window fun
tion �

k

introdu
ed in this

paper is the best one for re
onstru
ting a fun
tion having 
ompa
t support whi
h has

points of dis
ontinuity and/or is not periodi
 over the interval of support. Of 
ourse, we

have to use Algorithm 1 and 2 respe
tively a

ording to the di�erent points of dis
ontinuity

of f(x).

5. Con
lusion

In this paper, we have derived a new relation between the dis
rete Fourier transform

of a dis
rete sampling set of 
ompa
tly supported fun
tion and its Fourier transform and

provided an error estimation. From this relation we have obtained a new window fun
tion

�

k

whi
h is mu
h better than any known window fun
tion to redu
e os
illations in the

Gibbs phenomenon. We have proposed a new eÆ
ient algorithm to re
onstru
t the original

fun
tion from the dis
rete sampling of its Fourier transform, whi
h 
an adopt the fast

Fourier transform and has mu
h better a

ura
y than those in the literature. Several

numeri
al experiments have also been provided to demonstrate the results.
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