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Abstract

The objetive of this article is to establish the existence of nontrivial solution for
a class of quasilinear elliptic problems with the nonlinearity satisfying the critical
growth condition. Our proof combines perturbation arguments, the concentration-
compactness principle, appropriate estimates for the levels associated with the Moun-
tain Pass theorem, and the argument employed by Brezis and Nirenberg to study
semilinear elliptic problems with critical growth.

1 Introduction

In this article, we use variational methods to study the following quasilinear problem:

—Apu =P "L+ A\f(z,u) in RV,
(GP) u >0 in RY,
S |VulP de < oo,

where Apu = —div(|Vu[P~2Vu) is the p—Laplacian of u, p* = NN—Z) is the critical Sobolev

exponent, 1 < p < N, A > 0 is a real parameter and f : IR x IR — IR satisfies the
following conditions:

(f1) f € C(RN x IR, IR) and f(z,0) = 0.

(f2) Given R > 0 there exist O € [p,p*) and positive constants ar,br > 0 such that

|f(z,8)| < ars®® ™' +br, V]z| <R, Vs>0.
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(f3) There exist r1,72,q € (1,p*), with r; < ¢ < 73, an open subset Qy C RY,c; €

D
L7 =i (IRN), i = 1,2, and a positive constant a such that

f(I,S) < Cl(x)srlil +02($)ST2717 Vz € RNa s> 07
F(z,s) > as?, VzeQ, s>0,

where F(z,s) = [; f(z,t)dt.

We also assume a version of the famous Ambrosetti-Rabinowitz condition [3],

p*
(f1) There exist p < 7 < p*, 1 < pu < p*, and c3 € L»*—# (IRY) such that
1
—f(x,s)s — F(z,s) > —c3(x)s”, Vo € RN, s > 0.
.

Observing that v = 0 is a (trivial) solution of (GP), our objective in this article
is to apply minimax methods to study the existence of nontrivial solutions for (GP).
However, it should be pointed out that we may not apply directly such methods since,
under conditions (f1) — (f41), the associated functional is not well defined in general. We
also note that we look for weak solution u € DYP(IRY) in the sense of distributions (See
definition in Section 2).

Our technique combines pertubation arguments, the concentration-compactness prin-
ciple [1, 2], appropriate estimates for the levels associated with the Mountain Pass Theorem
[3], and the argument employed by Brezis and Nirenberg [4] to study semilinear elliptic
problems with critical growth.

Considering ¢ € IR given by condition (f3), in our first result we also suppose the
following technical condition:

(H) q € (]-7p*) S&tisﬁes ﬁ = p* — %1 < q
p

Note that p < p, p = p and p > p for p> < N, p> = N and p? > N, respectively. We can
now state our main theorem on the existence of a nontrivial solution for (GP):

Theorem 1.1 Suppose [ satisfies (f1) — (f1), with q,r1 given by (f3) and q satisfying
condition (H). Then,

1. If 1 < 1y < p, there exists \* > 0 such that problem (GP) possesses a nontrivial
solution for every A € (0, \*).

2. If p <r < p*, then problem (GP) possesses a nontrivial solution for every A > 0.



We observe that a particular and relevant case associated with problem (GP) is given
by

—Apu = uP 71 + Aa(z)u?™t in RV,
(P) w>0in RV,
Sy |VulP dz < oo,

where g € (1,p*) satisfies (H) and a : IR — IR is a continuous function satisfying the
condition

(a0) at =maz(a,0) € Lz’f—*q(]RN) and 3 2o € IRY such that a(zo) > 0.
The following result is a direct consequence of Theorem 1.1,

Theorem 1.2 Suppose q satisfies (H) and a satisfies (ag). Then,

1. If1 < q < p, there exists \* > 0 such that problem (P) possesses a nontrivial solution
for every X € (0, A%).

2. If p < q < p*, then problem (P) possesses a nontrivial solution for every A > 0.

We observe that f(z,s) = a(z)s? ! satisfies (f1) — (f2), (f3) withri =qg=1r2,c; = a*
and ¢ =0, and (fy) with 7 = ¢g=p and ¢ =0if ¢ > p, and 7 € (p,p*), p = ¢ and
03:(%—%)a+ if1<g<p.

Assuming the positivity of the primitive of the nonlinearity, we do not need to consider

condition (H). More specifically, supposing
(fs) F(x,5) = [y f(z,t)dt >0 Yz € RN, s >0,

we obtain
Theorem 1.3 Suppose f satisfies (f1) — (f5), with ry given by condition (f3). Then,

1. If 1 <1y < p, there exists \* > 0 such that problem (GP) possesses a nontrivial
solution for every A € (0, \*).

2. If p < r < p*, then problem (GP) possesses a nontrivial solution for every A > 0.

It is worthwhile to mention that Theorem 1.3 provides a version of Theorem 1.2 when
a > 0, without assuming that ¢ satisfies condition (H).

Problems involving critical Sobolev exponents have been considered by several authors
since the seminal work of Brezis and Nirenberg [4], mainly when the domain is bounded.
In recent years, the related problem for unbounded domain has been intensively studied
(See, e.g., [5, 6, 7, 8, 9, 10] and their references).



In [5], Ben-Naoum, Troestler and Willem proved the existence of a nontrivial solution
for (P), defined on a domain Q C IRY, by considering the problem:

(P) minimize E(u) = [o(|VulP + a(z)|u|?) dz,
on the constraint u € DYP(Q), [, |ulP” dz =1,
where a € L7 4 (2), a < 0 on some subset of © with positive measure and g > p* — 1%

when p? > N.
A recent result by Alves and Gongalves [6] (See also [7]) establishes the existence
of a nontrivial solution for (P), with h(z) replacing Aa(z) and satisfying h(z) > 0 and

he L. In [6], it is supposed that either 1 < g < p and h is small, or p < ¢ < p*.
In [8], Benci and Cerami considered the case p = ¢ = 2 and proved that problem (P)
has at least one solution if a(z) is a negative function, strictly negative somewhere, having

LN/2 norm bounded and belonging to LP(IRY), for every p in a suitable neighbourhood of
N

2
Our theorems may be seen as a complement for the above mentioned results. We

observe that in Theorems 1.1 and 1.3 a more general class of nonlinearity is considered.
We also note that condition (f3) provides only a local growth restriction on f~(z,s) =

max{—f(z,s),0}. For example, we do not assume a~ € Lpf——q(BN) in Theorem 1.2.
Finally, we should mention that our argument also holds for quasilinear equations defined
on bounded or unbounded domains € C IR with Dirichlet boundary conditions.

To prove Theorems 1.1 and 1.3, we first provide a technical result that establishes
the existence of a weak solution in the sense of distributions for a class of quasilinear
problems which may not have the associated functional well defined. In this technical
result we assume the existence of a bounded sequence in DP of almost critical points
for a sequence of functionals of class C'. The main tool for our proof of this result
is the concentration-compactness principle [1, 2]. To apply such result, we modify the
nonlinearity, obtaining a family of functionals. Employing conditions (f2) — (f3), we show
that these functionals satisfy the geometric hypotheses of the Mountain Pass Theorem in
a uniform way. Using this fact, (f4) and our technical result, we are able to verify the
existence of a sequence in D'P(IRN) converging weakly to a solution of (GP). Finally,
we argue by contradiction, assuming that (GP) possesses only the trivial solution. This
allows us to employ an argument similar to the one used by Brezis and Nirenberg in [4],
deriving a contradiction.

The article is organized in the following way: Section 2 contains some preliminary
materials, including the version of the Mountain Pass Theorem used in this article. In
Section 3, we establish the above mentioned technical result. In Section 4, the estimates
for the geometric hypotheses of the Mountain Pass Theorem are verified. Section 5 is
devoted to prove the estimates from above for the critical levels. In Section 6, we prove



Theorem 1.1. In Section 7, we establish the estimates when conditions (f3) and (fs) are
assumed. There, we also present a proof of Theorem 1.3.

2 Preliminaries

Motivated by the Sobolev embedding WP (IRN) «— LP"(IRN), for 1 < p < N, and p* =
NN—27, we define D'? = DUVP(IRN) as the closure of D(IRY), the space of C*°-functions
with compact support, with respect to norm given by

o= ([ 1vopar)”

Inspired by the work of Brezis and Nirenberg, [4], we make use in our argument of the
extremal functions associated with the above embedding. For this purpose, we denote by
S the best Sobolev constant, that is,

P
in { Jue Vul? o } (2.1)
uEDl’p\{U} (fﬂ{N |’U,|p* dI)P/P

The infimum in (2.1) is achieved by the functions (See Talenti [11], Egnell [12]),

N—p

{welv = pto - vy}

we(z) = N-—p

2\ "p
(-+ 12777

Jcll? = e |7, = SN/P, Ve > 0.

, Yz e RN, £>0, (2.2)

with

By weak solution of (GP), we mean a function v € D™ such that u > 0 a.e. in RY
and the following identity holds:

/ \Vu|N 2Vu.Védr — / lul”” Lo dz — A/ f(z,u)pdr =0,
RN RN RN

for every ¢ € D(IRY).

Following a well known device used to obtain a solution for (GP), we let f(z,s) =
f(x,0) =0, for every z € IRY and s < 0.

To modify the nonlinearity, we choose ¢ € D(IRY) satisfying 0 < ¢(z) < 1, ¢ =
on the ball B(0,1), and ¢ = 0 on IRY \ B(0,2). Let n € IN and ¢p(z) = #(£). Define



fn(z,s) = ¢p(z)f(z,s), and consider the sequence of problems:

_ — Pl i N
(GP)s { Apu = u + Afn(z,u), in R"Y,

u>0, ue€ D

We now recall the variational framework associated with problem (G P),,. Considering
D' endowed with norm ||u|| = ||Vu||», the functional associated with (GP),, is given by

1 1 .
In(u) = —/ |VulP de — —*/ (u™)P" dx — )\/ F,(z,u)dx,
P JRN p* JRN RN

where ut = max{u,0} and F,(z,s) = [ fn(z,t) dt. By hypothesis (f2) and our construc-
tion, the functional I, ,, is well defined and belongs to C*(D?, IR) (See[13]). Furthermore,

I:\,n(u)gb = /JRN |Vu|p72Vu.V¢d:v — /IRN (u+)p*71¢d:1: — A/IRN fnlz,u)pde.

for every u and ¢ € D',
Now, for the sake of completeness, we state a basic compactness result (See [5] for a
proof),

Proposition 2.1 Let  be a domain, not necessarily bounded, of RN, 1 < p < N,
1<g<p*, anda € LPP——Q(Q) Then, the functional

DY?(Q) = R :u+— /a|u|qd:v,
Q
s well defined and weakly continuous.

Finally, we state the version of the Mountain Pass Theorem of Ambrosetti-Rabinowitz
[3] used in this work. Given E a real Banach space, ® € C1(E, R) and ¢ € IR, we recall
that (u,) C F is a Palais-Smale (P.S). sequence associated with functional ® if ®(u,) — ¢,
and @ (u,) — 0, as n — oo.

Theorem 2.2 Let E be a real Banach space and suposse ® € C1(E, IR), with ®(0) = 0,
satisfies
(®1) There exist positive constants (3, p such that ®(u) > B, ||u|| = p,
(®2) There exists e € E, |le|| > p, such that ®(e) < 0.
Then, for the constant

¢ = inf sup ®(u) > 5,

yer ueg (W) =25

where I' = {y € C([0,1], E); v(0) =0,v(1) = e}, there exists a (PS). sequence (uj) in E
associated with ®.



3 Technical result

In this section we study the existence of a weak solution in the sense of distributions for
the p-Laplacian in IR". Consider g(z,s) € C(IRY x IR, IR) satisfying
(g1) Given R > 0 there exist positive constants ag, br such that for every z € IRY with
|z| < R, and s € IR,

l9(z,5)| < agls/”" " + bp.

The associated functional I in D" is defined by

I(u) = % /IRN IVl de — /IRN G, u) dz, (3.1)

where G(z,s) = [5 g(z,t)dt. It is clear that, under condition (g;), I may assume the
values too. However, if we assume the following stronger version of condition (g;),

(92) There exist a > 0, b € Co(IRY), the space of continuous functions with compact
support in IR, such that, for every z € RN and s € IR,

l9(z,5)] < alslP" =" + b(x),

then, I belongs to C*(D'?, IR) and critical points of I are weak solutions of the associated
quasilinear equation in IRYN. To establish the existence of a solution for the associated
equation when (g2) does not hold, we suppose the existence of a sequence of functions
{gn} C C(IRN x IR, IR) satisfying (go) and converging to g. More specifically, we assume

(93) Given n € IN there exists g, € C(IRY x IR, IR) satisfying (g2) and
g(x,s) = gn(z,s), V|z| <n, s RY.

Let I, be the sequence of functionals in D'? associated with g, via (3.1). We can now
state our main result in this section,

Proposition 3.1 Suppose g(z,s) € C(IRYN x IR, IR) satisfies (g1) and (g3). Then, any
bounded sequence (u,) C DYP such that I;l(un) — 0, as n — 00, possesses a subsequence
converging weakly to a solution of

—Ayu = g(z,u), in RY,
u € D'P.

Remark 3.2 We observe that in [14], we prove a related result for the N-Laplacian on
bounded domain of IR™N when the nonlinearity possesses exponential growth. But, unlike
what happens in [14], here the functional is not of class C'.



The proof of Proposition 3.1 will be carried out through a series of steps. First, by
Sobolev embedding and the principle of concentration-compactness [1, 2], we may assume
that there exist u € D'P, a nonnegative measure v on IRY, and sequences (z;) € RY,v; >
0 and Dirac measures 0z, such that

,

up — u, weakly in DLP,

Uy, — u, strongly in Lj (IRYN), 1< s < p*,

un(z) = u(z), a.e. in RY,

= v = [uf?" + 3% vid,, weakly® in M(IRY),
|Vu, [P — u, weakly* in M(RY),

L > vPIP" < 0.

(3.2)

Lemma 3.3 There exists at most a finite number of points x; on bounded subsets of IR .

Proof: First, we note that it suffices to prove that there exists at most a finite number of
points z; on B(0,r) for every r > 0. From (2.1) and Lemma 1.2 in [1], we obtain

D
ul}) = Sv7°. (33)
Now, for every £ > 0, we set ¢.(z) = p(*=2), x € R", where ¢ € D(IR"),0 < ¢(z) <

1,4(z) = 1 on B(0,1), and ¢(z) = 0 on RN \ B(0,2). Since I, (u,) — 0, as n — oo, and
(1euy) is a bounded sequence, we have

/ |Vt [P~ 2V, V (heuy,) do = / Gn(z, up)Yeun, dz + o(1).
RN RN

By conditions (g1), with R > 2r, and (g3), for n sufficiently large, we get

/ |Vt [P2 VUV (1hetiy) dz < aR/ |un|p*1,bE dx—i—bR/ |un e dz + o(1).
RN RN RN

Now, from (3.2), taking n — oo, we have

n—0o0

lim |Vt P2V, V (euy) do < aR/ e dv + bR/ |ultpe da.
RN RN RN
Invoking Lemma 1.2 in [1] again and taking € — 0, we obtain

n({zi}) < arv{zi}) = arvi.

Thus, from (3.3), we get agy; > Syiz% and, consequently, v; > o Since ), Vil% < 00,

we conclude the proof of Lemma 3.3. u
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Lemma 3.4 Let K C IRY be a compact set. Then, there exist ng € IN and M = M(K) >
0 such that

[ lonte w5 de <M, Ve

Proof: Take ny € IN such that K C B(0,n9). From (g3), we have g,(z,u,(z)) =
g(x,up(x)), for every x € K, and n > ng. Now, by condition (g;) with R = nq,

" _*
/ |9n (@, un (2 ))lp"*1 dz < (2an0) 7 T |[unl[f e + (2bny) 7 T|K|, V1> no.

The lemma, follows by the Sobolev embedding and the hypothesis that (u,) is a bounded

sequence. u

Lemma 3.5 Let K C (RN \ {z;}) be a compact set. Then u, — u strongly in LP" (K),
as n — oo.

Proof: Let r > 0 such that K C B(0,7). By Lemma 3.3, there exists at most a finite
number of points z; on B(0,r). Since K is a compact set and KN{z;} =0, 0 = d(K, {z;}),
the distance between K and {z;}, with z; € B(0,r), is positive. Let 0 < ¢ < ¢ and define
A. ={z € B(0,r) | d(z,K) < €}. Choose 1 € D(IRN),0 < (z) < 1,4 =1 on A, and
¢ =0 on RN \ A.. By construction, we have

/ |un|p* dr <
K

Since supp(y) C A: and A, N {z;} =0, with z; € B(0,r), from (3.2), we obtain

i p* — p* -
nlg{)losup/K lup|P dz < /IRNQ/)dV— /jRN YlulP dr =

= / lulP” dzg/ lulP” dz.
Ac Ac

Now, taking € — 0 and applying the Lebesgue’s Dominated Convergence Theorem, we get
Jim sup/ |un|?" dz < / lulP” da.

On the other hand, since u, — u weakly in L?" (K), it follows that

lull o 1y < lim inf [Jun| o (1c)-

Consequently, as LP" (K) is uniformly convex, u, — u strongly in LP"(K). Lemma 3.5 is
proved. [



Lemma 3.6 Let K C RN \ {z;} be a compact set. Then, Vu, — Vu strongly in
(LP(K)Y, as n — oo.

Proof: Let ¢ € C§°(IRYN \ {z;}) such that 9 = 1 on K and 0 < ¢) < 1. Using that the
function h : RN — IR, h(x) = |z|P is strictly convex, we have

0< (|Vun|p72Vun — |Vu|p*2Vu) V(u, — u).
Consequently,

0 < / (|Vun|p_2Vun - |Vu|p_2Vu) N(up —u)de <
K

< / (|Vun|p_2Vun - |Vu|p_2Vu) V(up —u)pde,
RN

and
Jic [(\Vup|P2Vu, — |VulP2Vu).(V(uy — u))] dz <
< [y [V Py — [Vu, [P~2(Vauy, . Vu)tp — (3.4)
— |VulP~2(Vu.V (uy, — uw))y] da.

On the other hand, since I,(u,) — 0, as n — 0o, we also have
/IRN (VP2 (Vu Vup + (Vuu Vip)u) = ga (e, un)u] de = of1),  (35)
as n — oo. Moreover, since (1u,) is a bounded sequence in D'P, we get
/IRN (19?4 + [P~V V), — thga(, un )] do = o(1), (3.6)

as n — oo. Combining (3.4)-(3.6), we obtain

0 < [k [([Vun|P~2Vu, — |Vu|P2Vu).V(up, — u)] dz <
< Jrx gn (@, upn)(un — u) dz + [pn [V un P~ (Vg Vi) (un, — u) do+
+ [y [VulP2Vu.V (u — up)p dz + o(1), as n — oc.

Applying Lemma 3.4 for the compact set = supp(1), and using Holder’s inequality, we
get
0 < [ [([Vup[P~2Vuy, — |[VulP~2Vu).V (u, — u)] dz <

_p
< M7 lup = ull o () + 1Vl oo (@) [un P~ lu = wnl o)+
+ [y [VulP=2Vu(Vu, — Vu)ipdz + o(1), as n — oo.

Now, applying Lemma 3.5 for the compact set Q = supp(¢p) C (RN \ {z;}), from (3.2)
and boundedness of (u,), we have

/ (|Vun|p_2Vun - |Vu|p_2Vu) V(up —u)dzr — 0, as n — oo.
K

10



Counsidering that

Cola—blP  ifp>2,

C"l_ibi_p ifl<p<?2,

(lal""a — [bIP~*b,a — ) > {
P {Tal+1ol)

for every a, b € IR (See [15]), if p > 2, we get
n— 00

lim C, / |Vuy, — VulP dz = 0.

Furthermore, when 1 < p < 2, we have

U2
lim C, [V = Vi

dz = 0. 3.7
n—oo P [ (|Vu| + [Vun|)2P z (3.7)

Thus, by Holder’s inequality,

Up—U (
Jic 9 (=)l d = Jye V|<+ e );;, o (| V| + [Vu)) 25 da <

2;1]
< (Jie pentncths dz)” (Jie(|Vun| + |Vul)? dz) 2

Finally, from this last inequality, (3.7), and the boundedness of (uy), we have

n— 00

lim / |Vu, — VulP dz = 0.
K
Lemma 3.6 is proved.
As a direct consequence of Lemma 3.6, we have

Corollary 3.7 The sequence (u,) C DP possesses a subsequence (un,) satisfying
Vi, (z) = Vu(z), for almost every z € IR .

Finally, we conclude the proof of Proposition 3.1: Given ¢ € D(IRY), take ng > 0
such that supp(¢) C B(0,np). From (g3), we have

gn(:r,s) = g(x,s), Vz e supp(gb), and n > no- (38)
Condition (g;), with R > ng, and (3.8) provide
l9n (%, 8)$ ()| < (ars” " + br)|¢(z)|, Vo € supp(¢), s € RY, n > no. (3.9)

Invoking (3.2), (3.9) and the fact that (u,) C D'* is a bounded sequence, it follows that
(gn(z,un)p) and (|Vu,|[P~2Vu, V) are uniformly integrable families in L'(IRY). Thus,
by Vitali’s Theorem and Corollary 3.7, we get

11nln%oo fRN gn(x,un(iv))gb(x) dr = fRN g($7u(x))¢($) d.’L‘, v¢ € D(RN)J (3 10)
limy o0 [n [Vun|P 2Vu, Vo dr = [py |VulP 2VuVedz, V¢ € D(IRY). '

11



Consequently, from (3.10) and I,,(u,) — 0, as n — oo, we have
/ |VulP2VuV ¢ ds — / g(z,u(z))p(z) dr =0, V¢ € D(IRY).
RN RN

Proposition 3.1 is proved.

4 Mountain pass geometry

In this section, we prove that the family of functionals I ,, satisfies conditions (®;) and
(®2) of Theorem 2.2 in a uniform way.

Lemma 4.1 Suppose f satisfies (f2) and (f3). Then,

1. If 1 <1 < p, there exists X\* > 0 such that, for every A € (0,X*), I, satisfies (91),
with B and p independent of n.

2. If p < 11 < p*, then for every A > 0, I, satisfies (1), with B and p independent
of n.

Proof: Let v € D", and u # 0. Using Holder’s inequality with exponents p*p_*ri and &~
1= 1,2, we have
/IRN ci(z)(u®)" do < ||CzH ||U+||rLip*- (4.1)
Now, from the definition of ¢, (f3), (2.1) and (4. ), we get
) = Sl = ullfye =2 [ Fato,u)do 2
an(u) = pu p*uLp* IRNn:r,u T >
1 1 *
> L Ll - =
1 1 )\
> _““Hp_p*SP*/P " Sn/p” all | HUIV1 -
il
T‘QSTQ/p
Case 1: 1 <r; < p. We have
o bl e
p(Z_ pP-p) _ T Ty
Buna) 2 ulP (3 = bl ) = Al + —LE ),

12



Consider

1 el el
_ p*—p — 141 "2 47y
Q) = *Sp*/pt and R(?) 71 STL/P * roST2/P "
Since Q(t) — 0, as t — 0, there exists p > 0 such that
1
- —Q(p) >0

p
Now, we choose A\* > 0 such that

1 *
E—mm—xmm>a

Consequently, there exist p and 8 > 0, with p and 8 independent of n, such that
Din(u) = B, |ull = p.

Case 2: p <r; < p*. We have
1 e A

1
r(2 _ r-p _
D) 2l (5 rorT el el
- el e ).
Considering
1 . A A

— p —p o+ ri—p « T2—P

Q) = p*Sp*/pt * Sn/p“ 1“ t * TQSTz/pHCQHLP’%Tt ’

we note that Q(t) — 0, as t — 0, since p < rq § ro. Hence, there exists p > 0 such that

1
- —Q(p) >0
’ (p)
Consequently, we get p and 8 > 0, with p and 8 > 0 independent of n, such that
Don(u) > B, |lull = p.
[

Lemma 4.1 is proved.

Lemma 4.2 Suppose f satisfies (f2) and (f3). Then, for every X > 0 and n € IN, I,
satisfies (Pg).

Proof: Consider ) given by (f3) and ¢ € D(IRY), a positive function with supp(¢) C Q.
For every t > 0, we have

An@¢)<f—/ |V¢de———:/ Aaﬁ[;VWde

Since p* > p, there exists ¢ > 0 sufficiently large such that Iy, (t¢) < 0 and |[t¢|| > p,
with p given by Lemma 4.1. This proves the lemma. u
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5 Estimates

Considering Qy given by (f3), we take g € Qy and ry > 0 such that B(zg,2rq) C Q.
Now, let ny € IN be such that B(zg,2r9) C B(0,n9). Choose ¢ € D(IRY) satisfying
0<¢ <1, ¢=1on the ball B(zg,7), and ¢ =0 on RN \ B(xg,2ry). Given £ > 0 and
we defined in Section 2, set

o = W
T [lpwell o
Then, v, satisfies (See, e.g., [4], [9])
XEE/N|VUE|pd$§S+O(6¥), as ¢ — 0. (5.1)
R

Proposition 5.1 Suppose f satisfies (f2) and (f3), with q satisfying condition (H). Then,
for every A > 0, there exist € > 0, ng € IN and dy > 0 such that, for every n > ng,

1 ~
max{ Iy (tve) | £ > 0} < dy < Nsif.

Proof: From (f3) and the definitions of ¢,, and v., we have

tP P
Iy (tve) = ;XE — F — A/RN F,(z,tv.)dx <
tP P
< = Xe - - )\tq/ alve | dz = Jy(tve).
p p RN

Thus, to prove the proposition, it suffices to obtain ¢ > 0 and d) > 0 such that
1
max{Jy(tv:) | t > 0} < d) < NSP .
We argue as in the proof of Lemma 4.2. Given ¢ > 0, there exists some ¢, > 0 such that
ax Jy(tve) = Jy(tev:) and iJ(t )=0int=t
I?ZOX)\UE—)\EUE ndt)\va—n—a-

This implies
1
0<t.<XX.
On the other hand, from Lemma 4.1 and (5.1), we have

t

(U]

0< B < J(tvs) < E(S+0( 7).

Sl



Hence, there exists o > 0 such that

1
ay<t. < XF? Ve>N0.

Since the function h(s) = %XE - ‘% is increasing on the interval (0, X2" ), we obtain

1 N
In(teve) < WXEP — daap? /JRN |ve|? de.

From (5.1) and using the inequality

(b+c)* <b*+ab+o)* e Vb, ¢ >0, Va>1,

N—p

withb=S8,c=0("» N

), and o = 2 we get
]. N/ N—-p q

Ia(teve) < =SVP+0(e 7 ) — )\ao/ alve|?dx.
N RN

Thus, there exists M > 0 such that

1 N-p Aad
In(teve) < NSN/”—l—& P (M— N__Op /RN a|vg|qd:v> <

e p
1 \ q (N—Zp)q
N—
< —sN/p +€Tp <M_ zi[))/ - z (N-p)q dl‘).

By changing variables, we obtain
1 N-
Mtevs) < 8V 457 <M—

1-p

(N=p) N-p (p—1)N | p—N e P N-1
q [(=F~- Jg+ =2~ = S
e B ¢ (1 o 95 )

4 /-1y T

Furthermore, for ¢ > 0 sufficiently small, we have

/g P SN—I 1 SN—I 27
——ds > / ——ds > ———,
0 (1 4 sp/-1)) T 0 (14 sp/-1))" 5 N

because g(s) = (1 + sP/P=1))=1 > ¢(1) = 27! for s € [0,1]. Consequently, there exists a
positive constant C', such that

— (N—p) — (p—1)N —
J/\(teve) < %SN/I) + 6¥ <M — AC&K P2p —%)q-ﬁ- - 4 +%]>.
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Since ((1\;;;)) _ Wep) )g+ (p;l)N + p;N is negative, when ¢ satisfies condition (H), we find

go > 0 such that

N—p [((pr)iu)q+(P*1)N+ﬂ]
Ia(tegve,) < dy = —S NP f g7 <M ACey ¥ 7 v )
1
—gN/p,
< N
Proposition 5.1 is proved. u

6 Theorem 1.1

In view of Lemmas 4.1 and 4.2, we may apply Theorem 2.2 to the sequence of functionals
I n, obtaining a positive level ¢y ,,, and a (PS)., , sequence (ugn))j in D'P | ie.,
I)\n( (n )) — c\p, and IAn( (n )) —0 as j — oo.

Moreover, from Lemma 4.1 and Proposition 5.1 , we have

1
0<B<cy\n= 1nfsupl)\n( ) <dy < —gN/p,
Y€l uey N

Taking a subsequence if necessary, we find c) € [, d,] such that
cy = nlggo Can-

Thus, given 0 < e < min{cy, LSN/”} there exists ng > 0 such that ¢y, € (cx —€, c\ +¢)
(n)

for every n > ng. Now, for each n > ng, there exists u, = (O satisfying
cx—e<Iyp(up) <cy+e, (6.1)
and , )
M (n) | < = (6.2)

Lemma 6.1 The sequence (uy) is bounded in DP.

Proof: From (f4), there exist 7 € (p,p*) and p € (1,p*) such that
1. 1 1

1 1
Iyn(up) — I/\n(un)un—(z—)—;)ﬂun“p (;—p—)||u+||p -+
+ < [z, up)uy, — Fp(z, un)> dx (6.3)
RN
1 1 1 1
s (2_ 2 Pt It _ / -
> (= DllwlP+ G = D = [ @] .
1 1 1 1
> (== ugllP + (= = =) luF P e
> (p T)HU | +(T pe lug I - ol
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On the other hand, from (6.1) and (6.2), we have

1, 1
LA (in) = — I 7 ()t < C + = (6.4)

Denoting h(t) = (£ — I%)tp* — A|es||t*, for t > 0, from (6.3), (6.4), and using that h(t) is
bounded from below, we conclude that the sequence (u,) is bounded in D*?. Lemma 6.1
is proved. u

Applying Proposition 3.1 to the diagonal sequence (u,), we obtain a weak solution u
for problem (GP). The final step is the verification that « is nontrivial. First of all, we
note that v~ = 0. Effectively

b
—\|P +3\(2 —\2) 2 —
[ Verde < [ (V@HE +9G)R)* de =
= / |Vuy|P de.
RN
Thus, the sequence (u;;) is bounded in D'?. Consequently, I;\yn(un)(u;) — 0, as n — oo.
Since I;\n(un)(u;) = %Hu;“”, it follows that u; — 0 in DYP, as n — oo.

Now, we assume by contradiction that v = 0 is the only possible solution of (GP).
Let
[ = lim luf P d.
n—o0 JIRN

From (f3) and (6.2), we have

0= lim I\, (un)up > lim [ ([VunlP = ush 7" = Actfun[™* = Aealun|™) da.

n—00 T n—oo JRN

Consequently, by Proposition 2.1, we have

lim |Vu,|Pde <. (6.5)
RN

n—0o0

We claim that [ > 0. Effectively, arguing by contradiction, we suppose that [ = 0. Under
this assumption, from (6.5) and (f3), Iy n(un) — 0, as n — oo. But this is impossible in
view of (6.1). The claim is proved.

Invoking (2.1), we have

p_
IVaally > IV = S( [ )™ (6:)

As a direct consequence of (6.6), and (6.5), we obtain

ST

[>8 (6.7)
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By (f1), (6.1) and (6.2), we get

1 . . 1.
NSN/p > dy>cey = llm IAyn(un) = l1m {I)Hn(un) — ;I)\yn(un)un] =

1 1 1 1 *
1 +
= Jim |G = DIVl + (= D I~ [ cantida
> tim (2 = 2)Sunl? SRR td
> Jlim |G Sl + (= 7, [ edide] .

Consequently, from Proposition 2.1 and (6.7), we have

1 1 1 1 1
—_gN/p S D) (2~ ) >
R e N
1 1 1 1
> (== 2)SE (- )V = —SN/P.
p T T p*
This concludes the proof of Theorem 1.1. u

7 Theorem 1.3

In this section we establish a proof of Theorem 1.3. The key ingredient is the verification
of Proposition 5.1 under conditions (f3) and (f5). To obtain such result we exploit the
positivity of the function F'(z,s). Considering the extremal functions w. defined by (2.2),
we have

Proposition 7.1 Suppose f satisfies (f2),(f3), and (fs). Then, for every X > 0, there
exist € > 0, ng € IN and dy > 0 such that, for every n > ng

1 ~
max{Iyn(tw.) | £ > 0} < dy < NSIZ.

Proof: Let ng € IN such that Oy = B(0,n9) N Qy # 0. From (f2),(f3), (f5) and our
definition of I ,, for every n > ng, we have

*

w P
I n(t’wg) = (_ i SN/p >\/ ¢n (xutwa) de <
p D*
P tP”
< (== —)SMP X[ u (@) F (e, tw.) do <
p p 2o
P tP”
<(E-SsMr—att [ fuftdo = 20w,
p p* lo
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Thus, it suffices to obtain € > 0 and d) > 0 such that
1
max{Jy(tw;) | t > 0} < dy < NSN/”.

To prove such result we follow the argument employed in [6]. By (2.2), the sequence w,
is bounded in Lp?(]RN) and w.(z) — 0 a.e. in RY, as ¢ — 0. Thus, w. — 0 weakly

in L%(]RN), as € = 0. On the other hand, the restriction w. |g belongs to Wi? ().
Hence, by the Sobolev Embedding Theorem, w. — 0 strongly in L"(B(0,2n)), for every
1 < r < p*. Consequently,

lim [ |w|?dx =0.
e—=0./Q,

Therefore, there exists €9 > 0 such that
1
0 < Jx(we,) < —=SN/P, (7.1)
N
Now, arguing as in the proof of Lemma 4.2 , we take ¢, > 0 such that
Ix(teqwe,) = max{Jy(twe) | t > 0}.
Since %I,\,n(twm) =0, for t = t,, we get
(12t — g L) g Aatg(;l/ lwe, |9 da = 0. (7.2)
Qo

From (7.1) and (7.2), we have
0 <ty <1

Observing that the function h(t) = % — t;* achieves its maximum at ¢ = 1, we get

1
J)\(tE()wEo) < d/\ = J)\(wEO) < NSN/p
Proposition 7.1 is proved. u

Finally, we observe that the proof of Theorem 1.3 follows by the same argument
employed in the proof of Theorem 1.1, with Proposition 7.1 replacing Proposition 5.1.
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