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Abstra
t

The objetive of this arti
le is to establish the existen
e of nontrivial solution for

a 
lass of quasilinear ellipti
 problems with the nonlinearity satisfying the 
riti
al

growth 
ondition. Our proof 
ombines perturbation arguments, the 
on
entration-


ompa
tness prin
iple, appropriate estimates for the levels asso
iated with the Moun-

tain Pass theorem, and the argument employed by Brezis and Nirenberg to study

semilinear ellipti
 problems with 
riti
al growth.

1 Introdu
tion

In this arti
le, we use variational methods to study the following quasilinear problem:

(GP )

8

>

<

>

:

��

p

u = u

p

�

�1

+ �f(x; u) in IR

N

;

u � 0 in IR

N

;

R

IR

N

jruj

p

dx <1;

where �

p

u = �div(jruj

p�2

ru) is the p�Lapla
ian of u, p

�

=

Np

N�p

is the 
riti
al Sobolev

exponent, 1 < p < N , � > 0 is a real parameter and f : IR

N

� IR �! IR satis�es the

following 
onditions:

(f

1

) f 2 C(IR

N

� IR; IR) and f(x; 0) � 0.

(f

2

) Given R > 0 there exist �

R

2 [p; p

�

) and positive 
onstants a

R

; b

R

> 0 su
h that

jf(x; s)j � a

R

s

�

R

�1

+ b

R

; 8 jxj � R; 8 s � 0:

�
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(f

3

) There exist r

1

; r

2

; q 2 (1; p

�

), with r

1

� q � r

2

, an open subset 


0

� IR

N

; 


i

2

L

p

�

p

�

�r

i

(IR

N

), i = 1; 2, and a positive 
onstant a su
h that

(

f(x; s) � 


1

(x)s

r

1

�1

+ 


2

(x)s

r

2

�1

; 8x 2 IR

N

; s � 0;

F (x; s) � as

q

; 8x 2 


0

; s � 0;

where F (x; s) =

R

s

0

f(x; t) dt.

We also assume a version of the famous Ambrosetti{Rabinowitz 
ondition [3℄,

(f

4

) There exist p < � < p

�

, 1 < � < p

�

, and 


3

2 L

p

�

p

�

��

(IR

N

) su
h that

1

�

f(x; s)s� F (x; s) � �


3

(x)s

�

; 8x 2 IR

N

; s � 0:

Observing that u � 0 is a (trivial) solution of (GP ), our obje
tive in this arti
le

is to apply minimax methods to study the existen
e of nontrivial solutions for (GP ).

However, it should be pointed out that we may not apply dire
tly su
h methods sin
e,

under 
onditions (f

1

)� (f

4

), the asso
iated fun
tional is not well de�ned in general. We

also note that we look for weak solution u 2 D

1;p

(IR

N

) in the sense of distributions (See

de�nition in Se
tion 2).

Our te
hnique 
ombines pertubation arguments, the 
on
entration-
ompa
tness prin-


iple [1, 2℄, appropriate estimates for the levels asso
iated with the Mountain Pass Theorem

[3℄, and the argument employed by Brezis and Nirenberg [4℄ to study semilinear ellipti


problems with 
riti
al growth.

Considering q 2 IR given by 
ondition (f

3

), in our �rst result we also suppose the

following te
hni
al 
ondition:

(H) q 2 (1; p

�

) satis�es p̂ = p

�

�

p

p�1

< q:

Note that p̂ < p, p̂ = p and p̂ > p for p

2

< N , p

2

= N and p

2

> N , respe
tively. We 
an

now state our main theorem on the existen
e of a nontrivial solution for (GP ):

Theorem 1.1 Suppose f satis�es (f

1

) � (f

4

), with q; r

1

given by (f

3

) and q satisfying


ondition (H). Then,

1. If 1 < r

1

� p, there exists �

�

> 0 su
h that problem (GP ) possesses a nontrivial

solution for every � 2 (0; �

�

).

2. If p < r

1

< p

�

, then problem (GP ) possesses a nontrivial solution for every � > 0.
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We observe that a parti
ular and relevant 
ase asso
iated with problem (GP ) is given

by

(P )

8

>

<

>

:

��

p

u = u

p

�

�1

+ �a(x)u

q�1

in IR

N

;

u � 0 in IR

N

;

R

IR

N

jruj

p

dx <1;

where q 2 (1; p

�

) satis�es (H) and a : IR

N

�! IR is a 
ontinuous fun
tion satisfying the


ondition

(a

0

) a

+

= max(a; 0) 2 L

p

�

p

�

�q

(IR

N

) and 9 x

0

2 IR

N

su
h that a(x

0

) > 0:

The following result is a dire
t 
onsequen
e of Theorem 1.1,

Theorem 1.2 Suppose q satis�es (H) and a satis�es (a

0

). Then,

1. If 1 < q � p, there exists �

�

> 0 su
h that problem (P ) possesses a nontrivial solution

for every � 2 (0; �

�

).

2. If p < q < p

�

, then problem (P ) possesses a nontrivial solution for every � > 0.

We observe that f(x; s) = a(x)s

q�1

satis�es (f

1

)�(f

2

), (f

3

) with r

1

= q = r

2

, 


1

= a

+

and 


2

� 0, and (f

4

) with � = q = � and 


3

� 0 if q > p, and � 2 (p; p

�

), � = q and




3

= (

1

q

�

1

�

)a

+

if 1 < q � p.

Assuming the positivity of the primitive of the nonlinearity, we do not need to 
onsider


ondition (H). More spe
i�
ally, supposing

(f

5

) F (x; s) =

R

s

0

f(x; t) dt � 0 8x 2 IR

N

; s � 0,

we obtain

Theorem 1.3 Suppose f satis�es (f

1

)� (f

5

), with r

1

given by 
ondition (f

3

). Then,

1. If 1 < r

1

� p, there exists �

�

> 0 su
h that problem (GP ) possesses a nontrivial

solution for every � 2 (0; �

�

).

2. If p < r

1

< p

�

, then problem (GP ) possesses a nontrivial solution for every � > 0.

It is worthwhile to mention that Theorem 1.3 provides a version of Theorem 1.2 when

a � 0, without assuming that q satis�es 
ondition (H).

Problems involving 
riti
al Sobolev exponents have been 
onsidered by several authors

sin
e the seminal work of Brezis and Nirenberg [4℄, mainly when the domain is bounded.

In re
ent years, the related problem for unbounded domain has been intensively studied

(See, e.g., [5, 6, 7, 8, 9, 10℄ and their referen
es).
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In [5℄, Ben-Naoum, Troestler and Willem proved the existen
e of a nontrivial solution

for (P ), de�ned on a domain 
 � IR

N

, by 
onsidering the problem:

(P

0

)

(

minimize E(u) =

R




(jruj

p

+ a(x)juj

q

) dx;

on the 
onstraint u 2 D

1;p

(
);

R




juj

p

�

dx = 1;

where a 2 L

p

�

p

�

�q

(
), a < 0 on some subset of 
 with positive measure and q > p

�

�

p

p�1

when p

2

> N .

A re
ent result by Alves and Gon�
alves [6℄ (See also [7℄) establishes the existen
e

of a nontrivial solution for (P ), with h(x) repla
ing �a(x) and satisfying h(x) � 0 and

h 2 L

p

�

p

�

�q

. In [6℄, it is supposed that either 1 < q < p and h is small, or p < q < p

�

.

In [8℄, Ben
i and Cerami 
onsidered the 
ase p = q = 2 and proved that problem (P )

has at least one solution if a(x) is a negative fun
tion, stri
tly negative somewhere, having

L

N=2

norm bounded and belonging to L

p

(IR

N

), for every p in a suitable neighbourhood of

N

2

�

Our theorems may be seen as a 
omplement for the above mentioned results. We

observe that in Theorems 1.1 and 1.3 a more general 
lass of nonlinearity is 
onsidered.

We also note that 
ondition (f

3

) provides only a lo
al growth restri
tion on f

�

(x; s) �

maxf�f(x; s); 0g. For example, we do not assume a

�

2 L

p

�

p

�

�q

(IR

N

) in Theorem 1.2.

Finally, we should mention that our argument also holds for quasilinear equations de�ned

on bounded or unbounded domains 
 � IR

N

with Diri
hlet boundary 
onditions.

To prove Theorems 1.1 and 1.3, we �rst provide a te
hni
al result that establishes

the existen
e of a weak solution in the sense of distributions for a 
lass of quasilinear

problems whi
h may not have the asso
iated fun
tional well de�ned. In this te
hni
al

result we assume the existen
e of a bounded sequen
e in D

1;p

of almost 
riti
al points

for a sequen
e of fun
tionals of 
lass C

1

. The main tool for our proof of this result

is the 
on
entration-
ompa
tness prin
iple [1, 2℄. To apply su
h result, we modify the

nonlinearity, obtaining a family of fun
tionals. Employing 
onditions (f

2

)� (f

3

), we show

that these fun
tionals satisfy the geometri
 hypotheses of the Mountain Pass Theorem in

a uniform way. Using this fa
t, (f

4

) and our te
hni
al result, we are able to verify the

existen
e of a sequen
e in D

1;p

(IR

N

) 
onverging weakly to a solution of (GP ). Finally,

we argue by 
ontradi
tion, assuming that (GP ) possesses only the trivial solution. This

allows us to employ an argument similar to the one used by Brezis and Nirenberg in [4℄,

deriving a 
ontradi
tion.

The arti
le is organized in the following way: Se
tion 2 
ontains some preliminary

materials, in
luding the version of the Mountain Pass Theorem used in this arti
le. In

Se
tion 3, we establish the above mentioned te
hni
al result. In Se
tion 4, the estimates

for the geometri
 hypotheses of the Mountain Pass Theorem are veri�ed. Se
tion 5 is

devoted to prove the estimates from above for the 
riti
al levels. In Se
tion 6, we prove

4



Theorem 1.1. In Se
tion 7, we establish the estimates when 
onditions (f

3

) and (f

5

) are

assumed. There, we also present a proof of Theorem 1.3.

2 Preliminaries

Motivated by the Sobolev embedding W

1;p

(IR

N

) ,! L

p

�

(IR

N

), for 1 < p < N , and p

�

=

Np

N�p

, we de�ne D

1;p

� D

1;p

(IR

N

) as the 
losure of D(IR

N

), the spa
e of C

1

-fun
tions

with 
ompa
t support, with respe
t to norm given by

k�k =

�

Z

IR

N

jr�j

p

dx

�

1=p

:

Inspired by the work of Brezis and Nirenberg, [4℄, we make use in our argument of the

extremal fun
tions asso
iated with the above embedding. For this purpose, we denote by

S the best Sobolev 
onstant, that is,

S = inf

u2D

1;p

nf0g

�

R

IR

N

jruj

p

dx

(

R

IR

N

juj

p

�

dx)

p=p

�

�

: (2.1)

The in�mum in (2.1) is a
hieved by the fun
tions (See Talenti [11℄, Egnell [12℄),

w

"

(x) =

�

N"[(N � p)=(p� 1)℄

p�1

�

N�p

p

2

�

"+ jxj

p

p�1

�

N�p

p

; 8x 2 IR

N

; " > 0; (2.2)

with

kw

"

k

p

= kw

"

k

p

�

L

p

�

= S

N=p

; 8 " > 0:

By weak solution of (GP ), we mean a fun
tion u 2 D

1;p

su
h that u � 0 a.e. in IR

N

and the following identity holds:

Z

IR

N

jruj

N�2

ru:r�dx�

Z

IR

N

juj

p

�

�1

�dx� �

Z

IR

N

f(x; u)�dx = 0;

for every � 2 D(IR

N

).

Following a well known devi
e used to obtain a solution for (GP ), we let f(x; s) =

f(x; 0) = 0, for every x 2 IR

N

and s < 0.

To modify the nonlinearity, we 
hoose � 2 D(IR

N

) satisfying 0 � �(x) � 1, � � 1

on the ball B(0; 1), and � � 0 on IR

N

n B(0; 2). Let n 2 IN and �

n

(x) = �(

x

n

). De�ne

5



f

n

(x; s) = �

n

(x)f(x; s), and 
onsider the sequen
e of problems:

(GP )

n

(

��

p

u = u

p

�

�1

+ �f

n

(x; u); in IR

N

;

u � 0; u 2 D

1;p

:

We now re
all the variational framework asso
iated with problem (GP )

n

. Considering

D

1;p

endowed with norm kuk = kruk

L

p

, the fun
tional asso
iated with (GP )

n

is given by

I

�;n

(u) =

1

p

Z

IR

N

jruj

p

dx�

1

p

�

Z

IR

N

(u

+

)

p

�

dx� �

Z

IR

N

F

n

(x; u) dx;

where u

+

= maxfu; 0g and F

n

(x; s) =

R

s

0

f

n

(x; t) dt. By hypothesis (f

2

) and our 
onstru
-

tion, the fun
tional I

�;n

is well de�ned and belongs to C

1

(D

1;p

; IR) (See[13℄). Furthermore,

I

0

�;n

(u)� =

Z

IR

N

jruj

p�2

ru:r�dx�

Z

IR

N

(u

+

)

p

�

�1

�dx� �

Z

IR

N

f

n

(x; u)�dx:

for every u and � 2 D

1;p

.

Now, for the sake of 
ompleteness, we state a basi
 
ompa
tness result (See [5℄ for a

proof),

Proposition 2.1 Let 
 be a domain, not ne
essarily bounded, of IR

N

, 1 � p < N ,

1 � q < p

�

, and a 2 L

p

�

p

�

�q

(
). Then, the fun
tional

D

1;p

(
) ! IR : u 7�!

Z




ajuj

q

dx;

is well de�ned and weakly 
ontinuous.

Finally, we state the version of the Mountain Pass Theorem of Ambrosetti-Rabinowitz

[3℄ used in this work. Given E a real Bana
h spa
e, � 2 C

1

(E; IR) and 
 2 IR, we re
all

that (u

n

) � E is a Palais-Smale (PS)




sequen
e asso
iated with fun
tional � if �(u

n

)! 
,

and �

0

(u

n

)! 0, as n!1.

Theorem 2.2 Let E be a real Bana
h spa
e and suposse � 2 C

1

(E; IR), with �(0) = 0,

satis�es

(�

1

) There exist positive 
onstants �, � su
h that �(u) � �, kuk = �,

(�

2

) There exists e 2 E, kek > �, su
h that �(e) � 0.

Then, for the 
onstant


 = inf


2�

sup

u2


�(u) � �;

where � = f
 2 C([0; 1℄; E); 
(0) = 0; 
(1) = eg, there exists a (PS)




sequen
e (u

j

) in E

asso
iated with �.
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3 Te
hni
al result

In this se
tion we study the existen
e of a weak solution in the sense of distributions for

the p-Lapla
ian in IR

N

. Consider g(x; s) 2 C(IR

N

� IR; IR) satisfying

(g

1

) Given R > 0 there exist positive 
onstants a

R

, b

R

su
h that for every x 2 IR

N

with

jxj � R, and s 2 IR,

jg(x; s)j � a

R

jsj

p

�

�1

+ b

R

:

The asso
iated fun
tional I in D

1;p

is de�ned by

I(u) =

1

p

Z

IR

N

jruj

p

dx�

Z

IR

N

G(x; u) dx; (3.1)

where G(x; s) =

R

s

0

g(x; t) dt. It is 
lear that, under 
ondition (g

1

), I may assume the

values �1. However, if we assume the following stronger version of 
ondition (g

1

),

(g

2

) There exist a > 0, b 2 C

0

(IR

N

), the spa
e of 
ontinuous fun
tions with 
ompa
t

support in IR

N

, su
h that, for every x 2 IR

N

and s 2 IR,

jg(x; s)j � ajsj

p

�

�1

+ b(x);

then, I belongs to C

1

(D

1;p

; IR) and 
riti
al points of I are weak solutions of the asso
iated

quasilinear equation in IR

N

. To establish the existen
e of a solution for the asso
iated

equation when (g

2

) does not hold, we suppose the existen
e of a sequen
e of fun
tions

fg

n

g � C(IR

N

� IR; IR) satisfying (g

2

) and 
onverging to g. More spe
i�
ally, we assume

(g

3

) Given n 2 IN there exists g

n

2 C(IR

N

� IR; IR) satisfying (g

2

) and

g(x; s) = g

n

(x; s); 8 jxj � n; s 2 IR

N

:

Let I

n

be the sequen
e of fun
tionals in D

1;p

asso
iated with g

n

via (3.1). We 
an now

state our main result in this se
tion,

Proposition 3.1 Suppose g(x; s) 2 C(IR

N

� IR; IR) satis�es (g

1

) and (g

3

). Then, any

bounded sequen
e (u

n

) � D

1;p

su
h that I

0

n

(u

n

) ! 0, as n ! 1, possesses a subsequen
e


onverging weakly to a solution of

(

��

p

u = g(x; u); in IR

N

;

u 2 D

1;p

:

Remark 3.2 We observe that in [14℄, we prove a related result for the N -Lapla
ian on

bounded domain of IR

N

when the nonlinearity possesses exponential growth. But, unlike

what happens in [14℄, here the fun
tional is not of 
lass C

1

.

7



The proof of Proposition 3.1 will be 
arried out through a series of steps. First, by

Sobolev embedding and the prin
iple of 
on
entration-
ompa
tness [1, 2℄, we may assume

that there exist u 2 D

1;p

, a nonnegative measure � on IR

N

, and sequen
es (x

i

) 2 IR

N

; �

i

>

0 and Dira
 measures Æ

x

i

su
h that

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

u

n

* u; weakly in D

1;p

;

u

n

! u; strongly in L

s

lo


(IR

N

); 1 � s < p

�

;

u

n

(x)! u(x); a.e. in IR

N

;

ju

n

j

p

�

* � = juj

p

�

+

P

i

�

i

Æ

x

i

; weakly* in M(IR

N

);

jru

n

j

p

* �; weakly* in M(IR

N

);

P

i

�

i

p=p

�

<1:

(3.2)

Lemma 3.3 There exists at most a �nite number of points x

i

on bounded subsets of IR

N

.

Proof: First, we note that it suÆ
es to prove that there exists at most a �nite number of

points x

i

on B(0; r) for every r > 0. From (2.1) and Lemma 1.2 in [1℄, we obtain

�(fx

i

g) � S�

p

p

�

i

: (3.3)

Now, for every " > 0, we set  

"

(x) =  (

x�x

i

"

), x 2 IR

N

, where  2 D(IR

N

); 0 �  (x) �

1;  (x) � 1 on B(0; 1), and  (x) � 0 on IR

N

n B(0; 2). Sin
e I

0

n

(u

n

)! 0, as n!1, and

( 

"

u

n

) is a bounded sequen
e, we have

Z

IR

N

jru

n

j

p�2

ru

n

:r( 

"

u

n

) dx =

Z

IR

N

g

n

(x; u

n

) 

"

u

n

dx+ o(1):

By 
onditions (g

1

), with R > 2r, and (g

3

), for n suÆ
iently large, we get

Z

IR

N

jru

n

j

p�2

ru

n

:r( 

"

u

n

) dx � a

R

Z

IR

N

ju

n

j

p

�

 

"

dx+ b

R

Z

IR

N

ju

n

j 

"

dx+ o(1):

Now, from (3.2), taking n!1, we have

lim

n!1

Z

IR

N

jru

n

j

p�2

ru

n

:r( 

"

u

n

) dx � a

R

Z

IR

N

 

"

d� + b

R

Z

IR

N

juj 

"

dx:

Invoking Lemma 1.2 in [1℄ again and taking "! 0, we obtain

�(fx

i

g) � a

R

�(fx

i

g) = a

R

�

i

:

Thus, from (3.3), we get a

R

�

i

� S�

i

p

p

�

and, 
onsequently, �

i

�

S

N

p

a

R

. Sin
e

P

i

�

i

p

p

�

< 1,

we 
on
lude the proof of Lemma 3.3.
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Lemma 3.4 Let K � IR

N

be a 
ompa
t set. Then, there exist n

0

2 IN and M =M(K) >

0 su
h that

Z

K

jg

n

(x; u

n

(x))j

p

�

p

�

�1

dx �M; 8n � n

0

:

Proof: Take n

0

2 IN su
h that K � B(0; n

0

). From (g

3

), we have g

n

(x; u

n

(x)) =

g(x; u

n

(x)), for every x 2 K, and n � n

0

. Now, by 
ondition (g

1

) with R = n

0

,

Z

K

jg

n

(x; u

n

(x))j

p

�

p

�

�1

dx � (2a

n

0

)

p

�

p

�

�1

ku

n

k

p

�

L

p

�

+ (2b

n

0

)

p

�

p

�

�1

jKj; 8n � n

0

:

The lemma follows by the Sobolev embedding and the hypothesis that (u

n

) is a bounded

sequen
e.

Lemma 3.5 Let K � (IR

N

n fx

i

g) be a 
ompa
t set. Then u

n

! u strongly in L

p

�

(K),

as n!1.

Proof: Let r > 0 su
h that K � B(0; r). By Lemma 3.3, there exists at most a �nite

number of points x

i

on B(0; r). Sin
eK is a 
ompa
t set andK\fx

i

g = ;, Æ = d(K; fx

i

g),

the distan
e between K and fx

i

g, with x

i

2 B(0; r), is positive. Let 0 < " < Æ and de�ne

A

"

= fx 2 B(0; r) j d(x;K) < "g. Choose  2 D(IR

N

); 0 �  (x) � 1;  � 1 on A

"

2

, and

 � 0 on IR

N

n A

"

. By 
onstru
tion, we have

Z

K

ju

n

j

p

�

dx �

Z

A

"

 ju

n

j

p

�

dx =

Z

IR

N

 ju

n

j

p

�

dx:

Sin
e supp( ) � A

"

and A

"

\ fx

i

g = ;, with x

i

2 B(0; r), from (3.2), we obtain

lim

n!1

sup

Z

K

ju

n

j

p

�

dx �

Z

IR

N

 d� =

Z

IR

N

 juj

p

�

dx =

=

Z

A

"

 juj

p

�

dx �

Z

A

"

juj

p

�

dx:

Now, taking "! 0 and applying the Lebesgue's Dominated Convergen
e Theorem, we get

lim

n!1

sup

Z

K

ju

n

j

p

�

dx �

Z

K

juj

p

�

dx:

On the other hand, sin
e u

n

* u weakly in L

p

�

(K), it follows that

kuk

L

p

�

(K)

� lim

n!1

inf ku

n

k

L

p

�

(K)

:

Consequently, as L

p

�

(K) is uniformly 
onvex, u

n

! u strongly in L

p

�

(K). Lemma 3.5 is

proved.
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Lemma 3.6 Let K � IR

N

n fx

i

g be a 
ompa
t set. Then, ru

n

! ru strongly in

(L

p

(K))

N

, as n!1.

Proof: Let  2 C

1

0

(IR

N

n fx

i

g) su
h that  = 1 on K and 0 �  � 1. Using that the

fun
tion h : IR

N

! IR; h(x) = jxj

p

is stri
tly 
onvex, we have

0 �

�

jru

n

j

p�2

ru

n

� jruj

p�2

ru

�

:r(u

n

� u):

Consequently,

0 �

Z

K

�

jru

n

j

p�2

ru

n

� jruj

p�2

ru

�

:r(u

n

� u) dx �

�

Z

IR

N

�

jru

n

j

p�2

ru

n

� jruj

p�2

ru

�

:r(u

n

� u) dx;

and

R

K

�

(jru

n

j

p�2

ru

n

� jruj

p�2

ru):(r(u

n

� u))

�

dx �

�

R

IR

N

�

jru

n

j

p

 � jru

n

j

p�2

(ru

n

:ru) �

� jruj

p�2

(ru:r(u

n

� u)) 

�

dx:

(3.4)

On the other hand, sin
e I

0

n

(u

n

)! 0, as n!1, we also have

Z

IR

N

h

jru

n

j

p�2

((ru

n

ru) + (ru

n

r )u)�  g

n

(x; u

n

)u

i

dx = o(1); (3.5)

as n!1. Moreover, sin
e ( u

n

) is a bounded sequen
e in D

1;p

, we get

Z

IR

N

h

jru

n

j

p

 + jru

n

j

p�2

(ru

n

r )u

n

�  g

n

(x; u

n

)u

i

dx = o(1); (3.6)

as n!1. Combining (3.4)-(3.6), we obtain

0 �

R

K

�

(jru

n

j

p�2

ru

n

� jruj

p�2

ru):r(u

n

� u)

�

dx �

�

R

IR

N

 g

n

(x; u

n

)(u

n

� u) dx+

R

IR

N

jru

n

j

p�2

(ru

n

:r )(u

n

� u) dx+

+

R

IR

N

jruj

p�2

ru:r(u� u

n

) dx+ o(1); as n!1:

Applying Lemma 3.4 for the 
ompa
t set 
 = supp( ), and using Holder's inequality, we

get

0 �

R

K

�

(jru

n

j

p�2

ru

n

� jruj

p�2

ru):r(u

n

� u)

�

dx �

�M

p

�

p

�

�1

ku

n

� uk

L

p

�

(
)

+ kr k

L

1

(
)

ku

n

k

p�1

ku� u

n

k

L

p

(
)

+

+

R

IR

N

jruj

p�2

ru(ru

n

�ru) dx+ o(1); as n!1:

Now, applying Lemma 3.5 for the 
ompa
t set 
 = supp( ) � (IR

N

n fx

i

g), from (3.2)

and boundedness of (u

n

), we have

Z

K

�

jru

n

j

p�2

ru

n

� jruj

p�2

ru

�

:r(u

n

� u) dx! 0; as n!1:
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Considering that

(jaj

p�2

a� jbj

p�2

b; a� b) �

(

C

p

ja� bj

p

if p � 2;

C

p

ja�bj

2

(jaj+jbj)

2�p

if 1 < p < 2;

for every a, b 2 IR

N

(See [15℄), if p � 2, we get

lim

n!1

C

p

Z

K

jru

n

�ruj

p

dx = 0:

Furthermore, when 1 < p < 2, we have

lim

n!1

C

p

Z

K

jru

n

�ruj

2

(jruj+ jru

n

j)

2�p

dx = 0: (3.7)

Thus, by Holder's inequality,

R

K

jr(u

n

� u)j

p

dx =

R

K

jr(u

n

�u)j

p

(jru

n

j+jruj)

p(p�2)

2

(jru

n

j+ jruj)

p(p�2)

2

dx �

�

�

R

K

jr(u

n

�u)j

2

(jru

n

j+jruj)

2�p

dx

�

p

2

(

R

K

(jru

n

j+ jruj)

p

dx)

2�p

2

:

Finally, from this last inequality, (3.7), and the boundedness of (u

n

), we have

lim

n!1

Z

K

jru

n

�ruj

p

dx = 0:

Lemma 3.6 is proved.

As a dire
t 
onsequen
e of Lemma 3.6, we have

Corollary 3.7 The sequen
e (u

n

) � D

1;p

possesses a subsequen
e (u

n

j

) satisfying

ru

n

j

(x)!ru(x), for almost every x 2 IR

N

.

Finally, we 
on
lude the proof of Proposition 3.1: Given � 2 D(IR

N

), take n

0

> 0

su
h that supp(�) � B(0; n

0

). From (g

3

), we have

g

n

(x; s) = g(x; s); 8x 2 supp(�); and n � n

0

: (3.8)

Condition (g

1

), with R > n

0

, and (3:8) provide

jg

n

(x; s)�(x)j � (a

R

s

p

�

�1

+ b

R

)j�(x)j; 8x 2 supp(�); s 2 IR

N

; n � n

0

: (3.9)

Invoking (3.2), (3.9) and the fa
t that (u

n

) � D

1;p

is a bounded sequen
e, it follows that

(g

n

(x; u

n

)�) and (jru

n

j

p�2

ru

n

r�) are uniformly integrable families in L

1

(IR

N

). Thus,

by Vitali's Theorem and Corollary 3.7, we get

(

lim

n!1

R

IR

N

g

n

(x; u

n

(x))�(x) dx =

R

IR

N

g(x; u(x))�(x) dx; 8� 2 D(IR

N

);

lim

n!1

R

IR

N

jru

n

j

p�2

ru

n

r�dx =

R

IR

N

jruj

p�2

rur�dx; 8� 2 D(IR

N

):

(3.10)

11



Consequently, from (3.10) and I

0

n

(u

n

)! 0, as n!1, we have

Z

IR

N

jruj

p�2

rur�dx�

Z

IR

N

g(x; u(x))�(x) dx = 0; 8� 2 D(IR

N

):

Proposition 3.1 is proved.

4 Mountain pass geometry

In this se
tion, we prove that the family of fun
tionals I

�;n

satis�es 
onditions (�

1

) and

(�

2

) of Theorem 2.2 in a uniform way.

Lemma 4.1 Suppose f satis�es (f

2

) and (f

3

). Then,

1. If 1 < r

1

� p, there exists �

�

> 0 su
h that, for every � 2 (0; �

�

), I

�;n

satis�es (�

1

),

with � and � independent of n.

2. If p < r

1

< p

�

, then for every � > 0, I

�;n

satis�es (�

1

), with � and � independent

of n.

Proof: Let u 2 D

1;p

, and u 6= 0. Using Holder's inequality with exponents

p

�

p

�

�r

i

and

p

�

r

i

,

i = 1; 2, we have

Z

IR

N




i

(x)(u

+

)

r

i

dx � k


i

k

L

p

�

p

�

�r

i

ku

+

k

r

i

L

p

�

: (4.1)

Now, from the de�nition of �

n

, (f

3

), (2.1) and (4.1), we get

I

�;n

(u) =

1

p

kuk

p

�

1

p

�

kuk

p

�

L

p

�

� �

Z

IR

N

F

n

(x; u) dx �

�

1

p

kuk

p

�

1

p

�

kuk

p

�

L

p

�

� �k


1

k

L

p

�

p

�

�r

1

kuk

r

1

L

p

�

� �k


2

k

L

p

�

p

�

�r

2

kuk

r

2

L

p

�

�

�

1

p

kuk

p

�

1

p

�

S

p

�

=p

kuk

p

�

�

�

r

1

S

r

1

=p

k


1

k

L

p

�

p

�

�r

1

kuk

r

1

�

�

�

r

2

S

r

2

=p

k


2

k

L

p

�

p

�

�r

2

kuk

r

2

:

Case 1: 1 < r

1

� p. We have

I

�;n

(u) � kuk

p

�

1

p

�

1

p

�

S

p

�

=p

kuk

p

�

�p

�

� �

�k


1

k

L

p

�

p

�

�r

1

r

1

S

r

1

=p

kuk

r

1

+

k


2

k

L

p

�

p

�

�r

2

r

2

S

r

2

=p

kuk

r

2

�

:
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Consider

Q(t) =

1

p

�

S

p

�

=p

t

p

�

�p

and R(t) =

k


1

k

L

p

�

p

�

�r

1

r

1

S

r

1

=p

t

r

1

+

k


2

k

L

p

�

p

�

�r

2

r

2

S

r

2

=p

t

r

2

;

Sin
e Q(t)! 0, as t! 0, there exists � > 0 su
h that

1

p

�Q(�) > 0:

Now, we 
hoose �

�

> 0 su
h that

1

p

�Q(�)� �

�

R(�) > 0:

Consequently, there exist � and � > 0, with � and � independent of n, su
h that

I

�;n

(u) � �; kuk = �:

Case 2: p < r

1

< p

�

. We have

I

�;n

(u) � kuk

p

�

1

p

�

1

p

�

S

p

�

=p

kuk

p

�

�p

�

�

r

1

S

r

1

=p

k


1

k

L

p

�

p

�

�r

1

kuk

r

1

�p

�

�

�

r

2

S

r

2

=p

k


2

k

L

p

�

p

�

�r

2

kuk

r

2

�p

�

:

Considering

Q(t) =

1

p

�

S

p

�

=p

t

p

�

�p

+

�

r

1

S

r

1

=p

k


1

k

L

p

�

p

�

�r

1

t

r

1

�p

+

�

r

2

S

r

2

=p

k


2

k

L

p

�

p

�

�r

2

t

r

2

�p

;

we note that Q(t)! 0, as t! 0, sin
e p < r

1

� r

2

. Hen
e, there exists � > 0 su
h that

1

p

�Q(�) > 0:

Consequently, we get � and � > 0, with � and � > 0 independent of n, su
h that

I

�;n

(u) � �; kuk = �:

Lemma 4.1 is proved.

Lemma 4.2 Suppose f satis�es (f

2

) and (f

3

). Then, for every � > 0 and n 2 IN , I

�;n

satis�es (�

2

).

Proof: Consider 


0

given by (f

3

) and � 2 D(IR

N

), a positive fun
tion with supp(�) � 


0

.

For every t > 0, we have

I

�;n

(t�) �

t

p

p

Z

IR

N

jr�j

p

dx�

t

p

�

p

�

Z

IR

N

j�j

p

�

dx� �at

q

Z

IR

N

j�j

q

dx:

Sin
e p

�

> p, there exists t > 0 suÆ
iently large su
h that I

�;n

(t�) < 0 and kt�k > �,

with � given by Lemma 4.1. This proves the lemma.
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5 Estimates

Considering 


0

given by (f

3

), we take x

0

2 


0

and r

0

> 0 su
h that B(x

0

; 2r

0

) � 


0

.

Now, let n

0

2 IN be su
h that B(x

0

; 2r

0

) � B(0; n

0

). Choose � 2 D(IR

N

) satisfying

0 � � � 1, � � 1 on the ball B(x

0

; r

0

), and � � 0 on IR

N

n B(x

0

; 2r

0

). Given " > 0 and

w

"

de�ned in Se
tion 2, set

v

"

=

�w

"

k�w

"

k

L

p

�

�

Then, v

"

satis�es (See, e.g., [4℄, [9℄)

X

"

�

Z

IR

N

jrv

"

j

p

dx � S +O("

N�p

p

); as "! 0: (5.1)

Proposition 5.1 Suppose f satis�es (f

2

) and (f

3

), with q satisfying 
ondition (H). Then,

for every � > 0, there exist " > 0, n

0

2 IN and d

�

> 0 su
h that, for every n � n

0

,

maxfI

�;n

(tv

"

) j t � 0g � d

�

<

1

N

S

N

p

:

Proof: From (f

3

) and the de�nitions of �

n

and v

"

, we have

I

�;n

(tv

"

) =

t

p

p

X

"

�

t

p

�

p

�

� �

Z

IR

N

F

n

(x; tv

"

) dx �

�

t

p

p

X

"

�

t

p

�

p

�

� �t

q

Z

IR

N

ajv

"

j

q

dx � J

�

(tv

"

):

Thus, to prove the proposition, it suÆ
es to obtain " > 0 and d

�

> 0 su
h that

maxfJ

�

(tv

"

) j t � 0g � d

�

<

1

N

S

N

p

:

We argue as in the proof of Lemma 4.2. Given " > 0, there exists some t

"

> 0 su
h that

max

t�0

J

�

(tv

"

) = J

�

(t

"

v

"

) and

d

dt

J

�

(tv

"

) = 0 in t = t

"

:

This implies

0 < t

"

� X

1

p

�

�p

"

:

On the other hand, from Lemma 4.1 and (5.1), we have

0 < � � J

�

(t

"

v

"

) �

t

p

"

p

(S +O("

N�p

p

)):

14



Hen
e, there exists �

0

> 0 su
h that

�

0

� t

"

� X

1

p

�

�p

"

; 8 " > 0:

Sin
e the fun
tion h(s) =

s

p

p

X

"

�

s

p

�

p

�

is in
reasing on the interval (0;X

1

p

�

�p

"

), we obtain

J

�

(t

"

v

"

) �

1

N

X

N

p

"

� �a�

0

q

Z

IR

N

jv

"

j

q

dx:

From (5.1) and using the inequality

(b+ 
)

�

� b

�

+ �(b+ 
)

��1


 8 b; 
 � 0; 8� > 1;

with b = S, 
 = O("

N�p

p

), and � =

N

p

, we get

J

�

(t

"

v

"

) �

1

N

S

N=p

+O("

N�p

p

)� ��

q

0

Z

IR

N

ajv

"

j

q

dx:

Thus, there exists M > 0 su
h that

J

�

(t

"

v

"

) �

1

N

S

N=p

+ "

N�p

p

�

M �

��

q

0

"

N�p

p

Z

IR

N

ajv

"

j

q

dx

�

�

�

1

N

S

N=p

+ "

N�p

p

�

M �

�a�

q

0

"

N�p

p

Z

B(0;1)

"

(N�p)q

p

2

("+ jxj

p

p�1

)

(N�p)q

p

dx

�

:

By 
hanging variables, we obtain

J

�

(t

"

v

"

) �

1

N

S

N=p

+ "

N�p

p

�

M�

��aw

N�1

�

q

0

"

[(

(N�p)

p

2

�

N�p

p

)q+

(p�1)N

p

+

p�N

p

℄

Z

"

1�p

p

0

s

N�1

(1 + s

p=(p�1)

)

(N�p)q

p

ds

�

:

Furthermore, for " > 0 suÆ
iently small, we have

Z

"

1�p

p

0

s

N�1

(1 + s

p=(p�1)

)

(N�p)q

p

ds �

Z

1

0

s

N�1

(1 + s

p=(p�1)

)

(N�p)q

p

ds �

2

(p�N)q

p

N

;

be
ause g(s) = (1 + s

p=(p�1)

)

�1

� g(1) = 2

�1

for s 2 [0; 1℄. Consequently, there exists a

positive 
onstant C, su
h that

J

�

(t

"

v

"

) �

1

N

S

N=p

+ "

N�p

p

�

M � �C"

[(

(N�p)

p

2

�

N�p

p

)q+

(p�1)N

p

+

p�N

p

℄

�

:
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Sin
e (

(N�p)

p

2

�

(N�p)

p

)q+

(p�1)N

p

+

p�N

p

is negative, when q satis�es 
ondition (H), we �nd

"

0

> 0 su
h that

J

�

(t

"

0

v

"

0

) < d

�

�

1

N

S

N=p

+ "

N�p

p

0

�

M � �C"

[(

(N�p)

p

2

�

N�p

p

)q+

(p�1)N

p

+

p�N

p

℄

0

�

<

1

N

S

N=p

:

Proposition 5.1 is proved.

6 Theorem 1.1

In view of Lemmas 4.1 and 4.2, we may apply Theorem 2.2 to the sequen
e of fun
tionals

I

�;n

, obtaining a positive level 


�;n

, and a (PS)




�;n

sequen
e (u

(n)

j

)

j

in D

1;p

, i.e.,

I

�;n

(u

(n)

j

)! 


�;n

and I

0

�;n

(u

(n)

j

)! 0 as j !1:

Moreover, from Lemma 4.1 and Proposition 5.1 , we have

0 < � � 


�;n

= inf


2�

sup

u2


I

�;n

(u) � d

�

<

1

N

S

N=p

:

Taking a subsequen
e if ne
essary, we �nd 


�

2 [�; d

�

℄ su
h that




�

= lim

n!1




�;n

:

Thus, given 0 < � < minf


�

;

1

N

S

N=p

g, there exists n

0

> 0 su
h that 


�;n

2 (


�

� � ; 


�

+ �)

for every n � n

0

. Now, for ea
h n � n

0

, there exists u

n

= u

(n)

j

n

satisfying




�

� � < I

�;n

(u

n

) < 


�

+ �; (6.1)

and

kI

0

�;n

(u

n

)k �

1

n

: (6.2)

Lemma 6.1 The sequen
e (u

n

) is bounded in D

1;p

.

Proof: From (f

4

), there exist � 2 (p; p

�

) and � 2 (1; p

�

) su
h that

I

�;n

(u

n

) �

1

�

I

0

�;n

(u

n

)u

n

= (

1

p

�

1

�

)ku

n

k

p

+ (

1

�

�

1

p

�

)ku

+

n

k

p

�

L

p

�

+

+ �

Z

IR

N

�

1

�

f

n

(x; u

n

)u

n

� F

n

(x; u

n

)

�

dx � (6.3)

� (

1

p

�

1

�

)ku

n

k

p

+ (

1

�

�

1

p�

)ku

+

n

k

p

�

L

p

�

� �

Z

IR

N




3

(x)ju

+

n

j

�

dx:

� (

1

p

�

1

�

)ku

n

k

p

+ (

1

�

�

1

p

�

)ku

+

n

k

p

�

L

p

�

� �k


3

k

L

p

�

p

�

��

ku

+

n

k

�

L

p

�

:
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On the other hand, from (6.1) and (6.2), we have

I

n;�

(u

n

)�

1

�

I

0

n;�

(u

n

)u

n

� C +

1

�

ku

n

k: (6.4)

Denoting h(t) = (

1

�

�

1

p

�

)t

p

�

� �k


3

kt

�

, for t � 0, from (6.3), (6.4), and using that h(t) is

bounded from below, we 
on
lude that the sequen
e (u

n

) is bounded in D

1;p

. Lemma 6.1

is proved.

Applying Proposition 3.1 to the diagonal sequen
e (u

n

), we obtain a weak solution u

for problem (GP ). The �nal step is the veri�
ation that u is nontrivial. First of all, we

note that u

�

= 0. E�e
tively

Z

IR

N

jr(u

�

n

)j

p

dx �

Z

IR

N

�

jr(u

+

n

)j

2

+ jr(u

�

n

)j

2

�

p

2

dx =

=

Z

IR

N

jru

n

j

p

dx:

Thus, the sequen
e (u

�

n

) is bounded in D

1;p

. Consequently, I

0

�;n

(u

n

)(u

�

n

)! 0, as n!1.

Sin
e I

0

�;n

(u

n

)(u

�

n

) =

1

p

ku

�

n

k

p

, it follows that u

�

n

! 0 in D

1;p

, as n!1.

Now, we assume by 
ontradi
tion that u � 0 is the only possible solution of (GP ).

Let

l = lim

n!1

Z

IR

N

ju

+

n

j

p

�

dx:

From (f

3

) and (6.2), we have

0 = lim

n!1

I

0

�;n

(u

n

)u

n

� lim

n!1

Z

IR

N

�

jru

n

j

p

� ju

+

n

j

p

�

� �


1

ju

n

j

r

1

� �


2

ju

n

j

r

2

�

dx:

Consequently, by Proposition 2.1, we have

lim

n!1

Z

IR

N

jru

n

j

p

dx � l: (6.5)

We 
laim that l > 0. E�e
tively, arguing by 
ontradi
tion, we suppose that l = 0. Under

this assumption, from (6.5) and (f

3

), I

�;n

(u

n

) ! 0, as n ! 1. But this is impossible in

view of (6.1). The 
laim is proved.

Invoking (2.1), we have

kru

n

k

p

p

� kr(u

+

n

)k

p

p

� S

�

Z

IR

N

ju

+

n

j

p

�

�

p

p

�

: (6.6)

As a dire
t 
onsequen
e of (6.6), and (6.5), we obtain

l � S

N

p

: (6.7)
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By (f

4

), (6.1) and (6.2), we get

1

N

S

N=p

> d

�

� 


�

= lim

n!1

I

�;n

(u

n

) = lim

n!1

�

I

�;n

(u

n

)�

1

�

I

0

�;n

(u

n

)u

n

�

=

= lim

n!1

�

(

1

p

�

1

�

)kru

n

k

p

+ (

1

�

�

1

p

�

)ku

+

n

k

p

�

L

p

�

�

Z

IR

N




3

u

�

n

dx

�

�

� lim

n!1

�

(

1

p

�

1

�

)Sku

n

k

p

L

p

�

+ (

1

�

�

1

p

�

)ku

+

n

k

p

�

L

p

�

�

Z

IR

N




3

u

�

n

dx

�

:

Consequently, from Proposition 2.1 and (6.7), we have

1

N

S

N=p

> (

1

p

�

1

�

)Sl

p=p

�

+ (

1

�

�

1

p

�

)l �

� (

1

p

�

1

�

)S

1+

N

p

�

+ (

1

�

�

1

p

�

)S

N=p

=

1

N

S

N=p

:

This 
on
ludes the proof of Theorem 1.1.

7 Theorem 1.3

In this se
tion we establish a proof of Theorem 1.3. The key ingredient is the veri�
ation

of Proposition 5.1 under 
onditions (f

3

) and (f

5

). To obtain su
h result we exploit the

positivity of the fun
tion F (x; s). Considering the extremal fun
tions w

"

de�ned by (2.2),

we have

Proposition 7.1 Suppose f satis�es (f

2

); (f

3

), and (f

5

). Then, for every � > 0, there

exist " > 0, n

0

2 IN and d

�

> 0 su
h that, for every n � n

0

maxfI

�;n

(tw

"

) j t � 0g � d

�

<

1

N

S

N

p

:

Proof: Let n

0

2 IN su
h that

^




0

� B(0; n

0

) \ 


0

6= ;. From (f

2

); (f

3

); (f

5

) and our

de�nition of I

�;n

, for every n � n

0

, we have

I

�;n

(tw

"

) = (

t

p

p

�

t

p

�

p

�

)S

N=p

� �

Z

IR

N

�

n

(x)F (x; tw

"

) dx �

� (

t

p

p

�

t

p

�

p

�

)S

N=p

� �

Z

^




0

�

n

(x)F (x; tw

"

) dx �

� (

t

p

p

�

t

p

�

p

�

)S

N=p

� �at

q

Z

^




0

jw

"

j

q

dx � J

�

(tw

"

):
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Thus, it suÆ
es to obtain " > 0 and d

�

> 0 su
h that

maxfJ

�

(tw

"

) j t � 0g � d

�

<

1

N

S

N=p

:

To prove su
h result we follow the argument employed in [6℄. By (2.2), the sequen
e w

"

is bounded in L

p

�

q

(IR

N

) and w

"

(x) ! 0 a.e. in IR

N

, as " ! 0. Thus, w

"

* 0 weakly

in L

p

�

q

(IR

N

), as " ! 0. On the other hand, the restri
tion w

"

j

^




0

belongs to W

1;p

(

^




0

).

Hen
e, by the Sobolev Embedding Theorem, w

"

! 0 strongly in L

r

(B(0; 2n)), for every

1 � r < p

�

. Consequently,

lim

"!0

Z

^




0

jw

"

j

q

dx = 0:

Therefore, there exists "

0

> 0 su
h that

0 < J

�

(w

"

0

) <

1

N

S

N=p

: (7.1)

Now, arguing as in the proof of Lemma 4.2 , we take t

"

0

> 0 su
h that

J

�

(t

"

0

w

"

0

) = maxfJ

�

(tw

"

) j t � 0g:

Sin
e

d

dt

I

�;n

(tw

"

0

) = 0, for t = t

"

0

, we get

(t

p�1

"

0

� t

p

�

�1

"

0

)S

N=p

� �at

q�1

"

0

Z

^




0

jw

"

0

j

q

dx = 0: (7.2)

From (7.1) and (7.2), we have

0 < t

"

0

< 1:

Observing that the fun
tion h(t) =

t

p

p

�

t

p

�

p

�

a
hieves its maximum at t = 1, we get

J

�

(t

"

0

w

"

0

) � d

�

� J

�

(w

"

0

) <

1

N

S

N=p

:

Proposition 7.1 is proved.

Finally, we observe that the proof of Theorem 1.3 follows by the same argument

employed in the proof of Theorem 1.1, with Proposition 7.1 repla
ing Proposition 5.1.
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