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Abstrat

The objetive of this artile is to establish the existene of nontrivial solution for

a lass of quasilinear ellipti problems with the nonlinearity satisfying the ritial

growth ondition. Our proof ombines perturbation arguments, the onentration-

ompatness priniple, appropriate estimates for the levels assoiated with the Moun-

tain Pass theorem, and the argument employed by Brezis and Nirenberg to study

semilinear ellipti problems with ritial growth.

1 Introdution

In this artile, we use variational methods to study the following quasilinear problem:

(GP )

8

>

<

>

:

��

p

u = u

p

�

�1

+ �f(x; u) in IR

N

;

u � 0 in IR

N

;

R

IR

N

jruj

p

dx <1;

where �

p

u = �div(jruj

p�2

ru) is the p�Laplaian of u, p

�

=

Np

N�p

is the ritial Sobolev

exponent, 1 < p < N , � > 0 is a real parameter and f : IR

N

� IR �! IR satis�es the

following onditions:

(f

1

) f 2 C(IR

N

� IR; IR) and f(x; 0) � 0.

(f

2

) Given R > 0 there exist �

R

2 [p; p

�

) and positive onstants a

R

; b

R

> 0 suh that

jf(x; s)j � a

R

s

�

R

�1

+ b

R

; 8 jxj � R; 8 s � 0:

�
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(f

3

) There exist r

1

; r

2

; q 2 (1; p

�

), with r

1

� q � r

2

, an open subset 


0

� IR

N

; 

i

2

L

p

�

p

�

�r

i

(IR

N

), i = 1; 2, and a positive onstant a suh that

(

f(x; s) � 

1

(x)s

r

1

�1

+ 

2

(x)s

r

2

�1

; 8x 2 IR

N

; s � 0;

F (x; s) � as

q

; 8x 2 


0

; s � 0;

where F (x; s) =

R

s

0

f(x; t) dt.

We also assume a version of the famous Ambrosetti{Rabinowitz ondition [3℄,

(f

4

) There exist p < � < p

�

, 1 < � < p

�

, and 

3

2 L

p

�

p

�

��

(IR

N

) suh that

1

�

f(x; s)s� F (x; s) � �

3

(x)s

�

; 8x 2 IR

N

; s � 0:

Observing that u � 0 is a (trivial) solution of (GP ), our objetive in this artile

is to apply minimax methods to study the existene of nontrivial solutions for (GP ).

However, it should be pointed out that we may not apply diretly suh methods sine,

under onditions (f

1

)� (f

4

), the assoiated funtional is not well de�ned in general. We

also note that we look for weak solution u 2 D

1;p

(IR

N

) in the sense of distributions (See

de�nition in Setion 2).

Our tehnique ombines pertubation arguments, the onentration-ompatness prin-

iple [1, 2℄, appropriate estimates for the levels assoiated with the Mountain Pass Theorem

[3℄, and the argument employed by Brezis and Nirenberg [4℄ to study semilinear ellipti

problems with ritial growth.

Considering q 2 IR given by ondition (f

3

), in our �rst result we also suppose the

following tehnial ondition:

(H) q 2 (1; p

�

) satis�es p̂ = p

�

�

p

p�1

< q:

Note that p̂ < p, p̂ = p and p̂ > p for p

2

< N , p

2

= N and p

2

> N , respetively. We an

now state our main theorem on the existene of a nontrivial solution for (GP ):

Theorem 1.1 Suppose f satis�es (f

1

) � (f

4

), with q; r

1

given by (f

3

) and q satisfying

ondition (H). Then,

1. If 1 < r

1

� p, there exists �

�

> 0 suh that problem (GP ) possesses a nontrivial

solution for every � 2 (0; �

�

).

2. If p < r

1

< p

�

, then problem (GP ) possesses a nontrivial solution for every � > 0.
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We observe that a partiular and relevant ase assoiated with problem (GP ) is given

by

(P )

8

>

<

>

:

��

p

u = u

p

�

�1

+ �a(x)u

q�1

in IR

N

;

u � 0 in IR

N

;

R

IR

N

jruj

p

dx <1;

where q 2 (1; p

�

) satis�es (H) and a : IR

N

�! IR is a ontinuous funtion satisfying the

ondition

(a

0

) a

+

= max(a; 0) 2 L

p

�

p

�

�q

(IR

N

) and 9 x

0

2 IR

N

suh that a(x

0

) > 0:

The following result is a diret onsequene of Theorem 1.1,

Theorem 1.2 Suppose q satis�es (H) and a satis�es (a

0

). Then,

1. If 1 < q � p, there exists �

�

> 0 suh that problem (P ) possesses a nontrivial solution

for every � 2 (0; �

�

).

2. If p < q < p

�

, then problem (P ) possesses a nontrivial solution for every � > 0.

We observe that f(x; s) = a(x)s

q�1

satis�es (f

1

)�(f

2

), (f

3

) with r

1

= q = r

2

, 

1

= a

+

and 

2

� 0, and (f

4

) with � = q = � and 

3

� 0 if q > p, and � 2 (p; p

�

), � = q and



3

= (

1

q

�

1

�

)a

+

if 1 < q � p.

Assuming the positivity of the primitive of the nonlinearity, we do not need to onsider

ondition (H). More spei�ally, supposing

(f

5

) F (x; s) =

R

s

0

f(x; t) dt � 0 8x 2 IR

N

; s � 0,

we obtain

Theorem 1.3 Suppose f satis�es (f

1

)� (f

5

), with r

1

given by ondition (f

3

). Then,

1. If 1 < r

1

� p, there exists �

�

> 0 suh that problem (GP ) possesses a nontrivial

solution for every � 2 (0; �

�

).

2. If p < r

1

< p

�

, then problem (GP ) possesses a nontrivial solution for every � > 0.

It is worthwhile to mention that Theorem 1.3 provides a version of Theorem 1.2 when

a � 0, without assuming that q satis�es ondition (H).

Problems involving ritial Sobolev exponents have been onsidered by several authors

sine the seminal work of Brezis and Nirenberg [4℄, mainly when the domain is bounded.

In reent years, the related problem for unbounded domain has been intensively studied

(See, e.g., [5, 6, 7, 8, 9, 10℄ and their referenes).
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In [5℄, Ben-Naoum, Troestler and Willem proved the existene of a nontrivial solution

for (P ), de�ned on a domain 
 � IR

N

, by onsidering the problem:

(P

0

)

(

minimize E(u) =

R




(jruj

p

+ a(x)juj

q

) dx;

on the onstraint u 2 D

1;p

(
);

R




juj

p

�

dx = 1;

where a 2 L

p

�

p

�

�q

(
), a < 0 on some subset of 
 with positive measure and q > p

�

�

p

p�1

when p

2

> N .

A reent result by Alves and Gon�alves [6℄ (See also [7℄) establishes the existene

of a nontrivial solution for (P ), with h(x) replaing �a(x) and satisfying h(x) � 0 and

h 2 L

p

�

p

�

�q

. In [6℄, it is supposed that either 1 < q < p and h is small, or p < q < p

�

.

In [8℄, Beni and Cerami onsidered the ase p = q = 2 and proved that problem (P )

has at least one solution if a(x) is a negative funtion, stritly negative somewhere, having

L

N=2

norm bounded and belonging to L

p

(IR

N

), for every p in a suitable neighbourhood of

N

2

�

Our theorems may be seen as a omplement for the above mentioned results. We

observe that in Theorems 1.1 and 1.3 a more general lass of nonlinearity is onsidered.

We also note that ondition (f

3

) provides only a loal growth restrition on f

�

(x; s) �

maxf�f(x; s); 0g. For example, we do not assume a

�

2 L

p

�

p

�

�q

(IR

N

) in Theorem 1.2.

Finally, we should mention that our argument also holds for quasilinear equations de�ned

on bounded or unbounded domains 
 � IR

N

with Dirihlet boundary onditions.

To prove Theorems 1.1 and 1.3, we �rst provide a tehnial result that establishes

the existene of a weak solution in the sense of distributions for a lass of quasilinear

problems whih may not have the assoiated funtional well de�ned. In this tehnial

result we assume the existene of a bounded sequene in D

1;p

of almost ritial points

for a sequene of funtionals of lass C

1

. The main tool for our proof of this result

is the onentration-ompatness priniple [1, 2℄. To apply suh result, we modify the

nonlinearity, obtaining a family of funtionals. Employing onditions (f

2

)� (f

3

), we show

that these funtionals satisfy the geometri hypotheses of the Mountain Pass Theorem in

a uniform way. Using this fat, (f

4

) and our tehnial result, we are able to verify the

existene of a sequene in D

1;p

(IR

N

) onverging weakly to a solution of (GP ). Finally,

we argue by ontradition, assuming that (GP ) possesses only the trivial solution. This

allows us to employ an argument similar to the one used by Brezis and Nirenberg in [4℄,

deriving a ontradition.

The artile is organized in the following way: Setion 2 ontains some preliminary

materials, inluding the version of the Mountain Pass Theorem used in this artile. In

Setion 3, we establish the above mentioned tehnial result. In Setion 4, the estimates

for the geometri hypotheses of the Mountain Pass Theorem are veri�ed. Setion 5 is

devoted to prove the estimates from above for the ritial levels. In Setion 6, we prove

4



Theorem 1.1. In Setion 7, we establish the estimates when onditions (f

3

) and (f

5

) are

assumed. There, we also present a proof of Theorem 1.3.

2 Preliminaries

Motivated by the Sobolev embedding W

1;p

(IR

N

) ,! L

p

�

(IR

N

), for 1 < p < N , and p

�

=

Np

N�p

, we de�ne D

1;p

� D

1;p

(IR

N

) as the losure of D(IR

N

), the spae of C

1

-funtions

with ompat support, with respet to norm given by

k�k =

�

Z

IR

N

jr�j

p

dx

�

1=p

:

Inspired by the work of Brezis and Nirenberg, [4℄, we make use in our argument of the

extremal funtions assoiated with the above embedding. For this purpose, we denote by

S the best Sobolev onstant, that is,

S = inf

u2D

1;p

nf0g

�

R

IR

N

jruj

p

dx

(

R

IR

N

juj

p

�

dx)

p=p

�

�

: (2.1)

The in�mum in (2.1) is ahieved by the funtions (See Talenti [11℄, Egnell [12℄),

w

"

(x) =

�

N"[(N � p)=(p� 1)℄

p�1

�

N�p

p

2

�

"+ jxj

p

p�1

�

N�p

p

; 8x 2 IR

N

; " > 0; (2.2)

with

kw

"

k

p

= kw

"

k

p

�

L

p

�

= S

N=p

; 8 " > 0:

By weak solution of (GP ), we mean a funtion u 2 D

1;p

suh that u � 0 a.e. in IR

N

and the following identity holds:

Z

IR

N

jruj

N�2

ru:r�dx�

Z

IR

N

juj

p

�

�1

�dx� �

Z

IR

N

f(x; u)�dx = 0;

for every � 2 D(IR

N

).

Following a well known devie used to obtain a solution for (GP ), we let f(x; s) =

f(x; 0) = 0, for every x 2 IR

N

and s < 0.

To modify the nonlinearity, we hoose � 2 D(IR

N

) satisfying 0 � �(x) � 1, � � 1

on the ball B(0; 1), and � � 0 on IR

N

n B(0; 2). Let n 2 IN and �

n

(x) = �(

x

n

). De�ne

5



f

n

(x; s) = �

n

(x)f(x; s), and onsider the sequene of problems:

(GP )

n

(

��

p

u = u

p

�

�1

+ �f

n

(x; u); in IR

N

;

u � 0; u 2 D

1;p

:

We now reall the variational framework assoiated with problem (GP )

n

. Considering

D

1;p

endowed with norm kuk = kruk

L

p

, the funtional assoiated with (GP )

n

is given by

I

�;n

(u) =

1

p

Z

IR

N

jruj

p

dx�

1

p

�

Z

IR

N

(u

+

)

p

�

dx� �

Z

IR

N

F

n

(x; u) dx;

where u

+

= maxfu; 0g and F

n

(x; s) =

R

s

0

f

n

(x; t) dt. By hypothesis (f

2

) and our onstru-

tion, the funtional I

�;n

is well de�ned and belongs to C

1

(D

1;p

; IR) (See[13℄). Furthermore,

I

0

�;n

(u)� =

Z

IR

N

jruj

p�2

ru:r�dx�

Z

IR

N

(u

+

)

p

�

�1

�dx� �

Z

IR

N

f

n

(x; u)�dx:

for every u and � 2 D

1;p

.

Now, for the sake of ompleteness, we state a basi ompatness result (See [5℄ for a

proof),

Proposition 2.1 Let 
 be a domain, not neessarily bounded, of IR

N

, 1 � p < N ,

1 � q < p

�

, and a 2 L

p

�

p

�

�q

(
). Then, the funtional

D

1;p

(
) ! IR : u 7�!

Z




ajuj

q

dx;

is well de�ned and weakly ontinuous.

Finally, we state the version of the Mountain Pass Theorem of Ambrosetti-Rabinowitz

[3℄ used in this work. Given E a real Banah spae, � 2 C

1

(E; IR) and  2 IR, we reall

that (u

n

) � E is a Palais-Smale (PS)



sequene assoiated with funtional � if �(u

n

)! ,

and �

0

(u

n

)! 0, as n!1.

Theorem 2.2 Let E be a real Banah spae and suposse � 2 C

1

(E; IR), with �(0) = 0,

satis�es

(�

1

) There exist positive onstants �, � suh that �(u) � �, kuk = �,

(�

2

) There exists e 2 E, kek > �, suh that �(e) � 0.

Then, for the onstant

 = inf

2�

sup

u2

�(u) � �;

where � = f 2 C([0; 1℄; E); (0) = 0; (1) = eg, there exists a (PS)



sequene (u

j

) in E

assoiated with �.
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3 Tehnial result

In this setion we study the existene of a weak solution in the sense of distributions for

the p-Laplaian in IR

N

. Consider g(x; s) 2 C(IR

N

� IR; IR) satisfying

(g

1

) Given R > 0 there exist positive onstants a

R

, b

R

suh that for every x 2 IR

N

with

jxj � R, and s 2 IR,

jg(x; s)j � a

R

jsj

p

�

�1

+ b

R

:

The assoiated funtional I in D

1;p

is de�ned by

I(u) =

1

p

Z

IR

N

jruj

p

dx�

Z

IR

N

G(x; u) dx; (3.1)

where G(x; s) =

R

s

0

g(x; t) dt. It is lear that, under ondition (g

1

), I may assume the

values �1. However, if we assume the following stronger version of ondition (g

1

),

(g

2

) There exist a > 0, b 2 C

0

(IR

N

), the spae of ontinuous funtions with ompat

support in IR

N

, suh that, for every x 2 IR

N

and s 2 IR,

jg(x; s)j � ajsj

p

�

�1

+ b(x);

then, I belongs to C

1

(D

1;p

; IR) and ritial points of I are weak solutions of the assoiated

quasilinear equation in IR

N

. To establish the existene of a solution for the assoiated

equation when (g

2

) does not hold, we suppose the existene of a sequene of funtions

fg

n

g � C(IR

N

� IR; IR) satisfying (g

2

) and onverging to g. More spei�ally, we assume

(g

3

) Given n 2 IN there exists g

n

2 C(IR

N

� IR; IR) satisfying (g

2

) and

g(x; s) = g

n

(x; s); 8 jxj � n; s 2 IR

N

:

Let I

n

be the sequene of funtionals in D

1;p

assoiated with g

n

via (3.1). We an now

state our main result in this setion,

Proposition 3.1 Suppose g(x; s) 2 C(IR

N

� IR; IR) satis�es (g

1

) and (g

3

). Then, any

bounded sequene (u

n

) � D

1;p

suh that I

0

n

(u

n

) ! 0, as n ! 1, possesses a subsequene

onverging weakly to a solution of

(

��

p

u = g(x; u); in IR

N

;

u 2 D

1;p

:

Remark 3.2 We observe that in [14℄, we prove a related result for the N -Laplaian on

bounded domain of IR

N

when the nonlinearity possesses exponential growth. But, unlike

what happens in [14℄, here the funtional is not of lass C

1

.

7



The proof of Proposition 3.1 will be arried out through a series of steps. First, by

Sobolev embedding and the priniple of onentration-ompatness [1, 2℄, we may assume

that there exist u 2 D

1;p

, a nonnegative measure � on IR

N

, and sequenes (x

i

) 2 IR

N

; �

i

>

0 and Dira measures Æ

x

i

suh that

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

u

n

* u; weakly in D

1;p

;

u

n

! u; strongly in L

s

lo

(IR

N

); 1 � s < p

�

;

u

n

(x)! u(x); a.e. in IR

N

;

ju

n

j

p

�

* � = juj

p

�

+

P

i

�

i

Æ

x

i

; weakly* in M(IR

N

);

jru

n

j

p

* �; weakly* in M(IR

N

);

P

i

�

i

p=p

�

<1:

(3.2)

Lemma 3.3 There exists at most a �nite number of points x

i

on bounded subsets of IR

N

.

Proof: First, we note that it suÆes to prove that there exists at most a �nite number of

points x

i

on B(0; r) for every r > 0. From (2.1) and Lemma 1.2 in [1℄, we obtain

�(fx

i

g) � S�

p

p

�

i

: (3.3)

Now, for every " > 0, we set  

"

(x) =  (

x�x

i

"

), x 2 IR

N

, where  2 D(IR

N

); 0 �  (x) �

1;  (x) � 1 on B(0; 1), and  (x) � 0 on IR

N

n B(0; 2). Sine I

0

n

(u

n

)! 0, as n!1, and

( 

"

u

n

) is a bounded sequene, we have

Z

IR

N

jru

n

j

p�2

ru

n

:r( 

"

u

n

) dx =

Z

IR

N

g

n

(x; u

n

) 

"

u

n

dx+ o(1):

By onditions (g

1

), with R > 2r, and (g

3

), for n suÆiently large, we get

Z

IR

N

jru

n

j

p�2

ru

n

:r( 

"

u

n

) dx � a

R

Z

IR

N

ju

n

j

p

�

 

"

dx+ b

R

Z

IR

N

ju

n

j 

"

dx+ o(1):

Now, from (3.2), taking n!1, we have

lim

n!1

Z

IR

N

jru

n

j

p�2

ru

n

:r( 

"

u

n

) dx � a

R

Z

IR

N

 

"

d� + b

R

Z

IR

N

juj 

"

dx:

Invoking Lemma 1.2 in [1℄ again and taking "! 0, we obtain

�(fx

i

g) � a

R

�(fx

i

g) = a

R

�

i

:

Thus, from (3.3), we get a

R

�

i

� S�

i

p

p

�

and, onsequently, �

i

�

S

N

p

a

R

. Sine

P

i

�

i

p

p

�

< 1,

we onlude the proof of Lemma 3.3.
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Lemma 3.4 Let K � IR

N

be a ompat set. Then, there exist n

0

2 IN and M =M(K) >

0 suh that

Z

K

jg

n

(x; u

n

(x))j

p

�

p

�

�1

dx �M; 8n � n

0

:

Proof: Take n

0

2 IN suh that K � B(0; n

0

). From (g

3

), we have g

n

(x; u

n

(x)) =

g(x; u

n

(x)), for every x 2 K, and n � n

0

. Now, by ondition (g

1

) with R = n

0

,

Z

K

jg

n

(x; u

n

(x))j

p

�

p

�

�1

dx � (2a

n

0

)

p

�

p

�

�1

ku

n

k

p

�

L

p

�

+ (2b

n

0

)

p

�

p

�

�1

jKj; 8n � n

0

:

The lemma follows by the Sobolev embedding and the hypothesis that (u

n

) is a bounded

sequene.

Lemma 3.5 Let K � (IR

N

n fx

i

g) be a ompat set. Then u

n

! u strongly in L

p

�

(K),

as n!1.

Proof: Let r > 0 suh that K � B(0; r). By Lemma 3.3, there exists at most a �nite

number of points x

i

on B(0; r). SineK is a ompat set andK\fx

i

g = ;, Æ = d(K; fx

i

g),

the distane between K and fx

i

g, with x

i

2 B(0; r), is positive. Let 0 < " < Æ and de�ne

A

"

= fx 2 B(0; r) j d(x;K) < "g. Choose  2 D(IR

N

); 0 �  (x) � 1;  � 1 on A

"

2

, and

 � 0 on IR

N

n A

"

. By onstrution, we have

Z

K

ju

n

j

p

�

dx �

Z

A

"

 ju

n

j

p

�

dx =

Z

IR

N

 ju

n

j

p

�

dx:

Sine supp( ) � A

"

and A

"

\ fx

i

g = ;, with x

i

2 B(0; r), from (3.2), we obtain

lim

n!1

sup

Z

K

ju

n

j

p

�

dx �

Z

IR

N

 d� =

Z

IR

N

 juj

p

�

dx =

=

Z

A

"

 juj

p

�

dx �

Z

A

"

juj

p

�

dx:

Now, taking "! 0 and applying the Lebesgue's Dominated Convergene Theorem, we get

lim

n!1

sup

Z

K

ju

n

j

p

�

dx �

Z

K

juj

p

�

dx:

On the other hand, sine u

n

* u weakly in L

p

�

(K), it follows that

kuk

L

p

�

(K)

� lim

n!1

inf ku

n

k

L

p

�

(K)

:

Consequently, as L

p

�

(K) is uniformly onvex, u

n

! u strongly in L

p

�

(K). Lemma 3.5 is

proved.
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Lemma 3.6 Let K � IR

N

n fx

i

g be a ompat set. Then, ru

n

! ru strongly in

(L

p

(K))

N

, as n!1.

Proof: Let  2 C

1

0

(IR

N

n fx

i

g) suh that  = 1 on K and 0 �  � 1. Using that the

funtion h : IR

N

! IR; h(x) = jxj

p

is stritly onvex, we have

0 �

�

jru

n

j

p�2

ru

n

� jruj

p�2

ru

�

:r(u

n

� u):

Consequently,

0 �

Z

K

�

jru

n

j

p�2

ru

n

� jruj

p�2

ru

�

:r(u

n

� u) dx �

�

Z

IR

N

�

jru

n

j

p�2

ru

n

� jruj

p�2

ru

�

:r(u

n

� u) dx;

and

R

K

�

(jru

n

j

p�2

ru

n

� jruj

p�2

ru):(r(u

n

� u))

�

dx �

�

R

IR

N

�

jru

n

j

p

 � jru

n

j

p�2

(ru

n

:ru) �

� jruj

p�2

(ru:r(u

n

� u)) 

�

dx:

(3.4)

On the other hand, sine I

0

n

(u

n

)! 0, as n!1, we also have

Z

IR

N

h

jru

n

j

p�2

((ru

n

ru) + (ru

n

r )u)�  g

n

(x; u

n

)u

i

dx = o(1); (3.5)

as n!1. Moreover, sine ( u

n

) is a bounded sequene in D

1;p

, we get

Z

IR

N

h

jru

n

j

p

 + jru

n

j

p�2

(ru

n

r )u

n

�  g

n

(x; u

n

)u

i

dx = o(1); (3.6)

as n!1. Combining (3.4)-(3.6), we obtain

0 �

R

K

�

(jru

n

j

p�2

ru

n

� jruj

p�2

ru):r(u

n

� u)

�

dx �

�

R

IR

N

 g

n

(x; u

n

)(u

n

� u) dx+

R

IR

N

jru

n

j

p�2

(ru

n

:r )(u

n

� u) dx+

+

R

IR

N

jruj

p�2

ru:r(u� u

n

) dx+ o(1); as n!1:

Applying Lemma 3.4 for the ompat set 
 = supp( ), and using Holder's inequality, we

get

0 �

R

K

�

(jru

n

j

p�2

ru

n

� jruj

p�2

ru):r(u

n

� u)

�

dx �

�M

p

�

p

�

�1

ku

n

� uk

L

p

�

(
)

+ kr k

L

1

(
)

ku

n

k

p�1

ku� u

n

k

L

p

(
)

+

+

R

IR

N

jruj

p�2

ru(ru

n

�ru) dx+ o(1); as n!1:

Now, applying Lemma 3.5 for the ompat set 
 = supp( ) � (IR

N

n fx

i

g), from (3.2)

and boundedness of (u

n

), we have

Z

K

�

jru

n

j

p�2

ru

n

� jruj

p�2

ru

�

:r(u

n

� u) dx! 0; as n!1:

10



Considering that

(jaj

p�2

a� jbj

p�2

b; a� b) �

(

C

p

ja� bj

p

if p � 2;

C

p

ja�bj

2

(jaj+jbj)

2�p

if 1 < p < 2;

for every a, b 2 IR

N

(See [15℄), if p � 2, we get

lim

n!1

C

p

Z

K

jru

n

�ruj

p

dx = 0:

Furthermore, when 1 < p < 2, we have

lim

n!1

C

p

Z

K

jru

n

�ruj

2

(jruj+ jru

n

j)

2�p

dx = 0: (3.7)

Thus, by Holder's inequality,

R

K

jr(u

n

� u)j

p

dx =

R

K

jr(u

n

�u)j

p

(jru

n

j+jruj)

p(p�2)

2

(jru

n

j+ jruj)

p(p�2)

2

dx �

�

�

R

K

jr(u

n

�u)j

2

(jru

n

j+jruj)

2�p

dx

�

p

2

(

R

K

(jru

n

j+ jruj)

p

dx)

2�p

2

:

Finally, from this last inequality, (3.7), and the boundedness of (u

n

), we have

lim

n!1

Z

K

jru

n

�ruj

p

dx = 0:

Lemma 3.6 is proved.

As a diret onsequene of Lemma 3.6, we have

Corollary 3.7 The sequene (u

n

) � D

1;p

possesses a subsequene (u

n

j

) satisfying

ru

n

j

(x)!ru(x), for almost every x 2 IR

N

.

Finally, we onlude the proof of Proposition 3.1: Given � 2 D(IR

N

), take n

0

> 0

suh that supp(�) � B(0; n

0

). From (g

3

), we have

g

n

(x; s) = g(x; s); 8x 2 supp(�); and n � n

0

: (3.8)

Condition (g

1

), with R > n

0

, and (3:8) provide

jg

n

(x; s)�(x)j � (a

R

s

p

�

�1

+ b

R

)j�(x)j; 8x 2 supp(�); s 2 IR

N

; n � n

0

: (3.9)

Invoking (3.2), (3.9) and the fat that (u

n

) � D

1;p

is a bounded sequene, it follows that

(g

n

(x; u

n

)�) and (jru

n

j

p�2

ru

n

r�) are uniformly integrable families in L

1

(IR

N

). Thus,

by Vitali's Theorem and Corollary 3.7, we get

(

lim

n!1

R

IR

N

g

n

(x; u

n

(x))�(x) dx =

R

IR

N

g(x; u(x))�(x) dx; 8� 2 D(IR

N

);

lim

n!1

R

IR

N

jru

n

j

p�2

ru

n

r�dx =

R

IR

N

jruj

p�2

rur�dx; 8� 2 D(IR

N

):

(3.10)

11



Consequently, from (3.10) and I

0

n

(u

n

)! 0, as n!1, we have

Z

IR

N

jruj

p�2

rur�dx�

Z

IR

N

g(x; u(x))�(x) dx = 0; 8� 2 D(IR

N

):

Proposition 3.1 is proved.

4 Mountain pass geometry

In this setion, we prove that the family of funtionals I

�;n

satis�es onditions (�

1

) and

(�

2

) of Theorem 2.2 in a uniform way.

Lemma 4.1 Suppose f satis�es (f

2

) and (f

3

). Then,

1. If 1 < r

1

� p, there exists �

�

> 0 suh that, for every � 2 (0; �

�

), I

�;n

satis�es (�

1

),

with � and � independent of n.

2. If p < r

1

< p

�

, then for every � > 0, I

�;n

satis�es (�

1

), with � and � independent

of n.

Proof: Let u 2 D

1;p

, and u 6= 0. Using Holder's inequality with exponents

p

�

p

�

�r

i

and

p

�

r

i

,

i = 1; 2, we have

Z

IR

N



i

(x)(u

+

)

r

i

dx � k

i

k

L

p

�

p

�

�r

i

ku

+

k

r

i

L

p

�

: (4.1)

Now, from the de�nition of �

n

, (f

3

), (2.1) and (4.1), we get

I

�;n

(u) =

1

p

kuk

p

�

1

p

�

kuk

p

�

L

p

�

� �

Z

IR

N

F

n

(x; u) dx �

�

1

p

kuk

p

�

1

p

�

kuk

p

�

L

p

�

� �k

1

k

L

p

�

p

�

�r

1

kuk

r

1

L

p

�

� �k

2

k

L

p

�

p

�

�r

2

kuk

r

2

L

p

�

�

�

1

p

kuk

p

�

1

p

�

S

p

�

=p

kuk

p

�

�

�

r

1

S

r

1

=p

k

1

k

L

p

�

p

�

�r

1

kuk

r

1

�

�

�

r

2

S

r

2

=p

k

2

k

L

p

�

p

�

�r

2

kuk

r

2

:

Case 1: 1 < r

1

� p. We have

I

�;n

(u) � kuk

p

�

1

p

�

1

p

�

S

p

�

=p

kuk

p

�

�p

�

� �

�k

1

k

L

p

�

p

�

�r

1

r

1

S

r

1

=p

kuk

r

1

+

k

2

k

L

p

�

p

�

�r

2

r

2

S

r

2

=p

kuk

r

2

�

:
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Consider

Q(t) =

1

p

�

S

p

�

=p

t

p

�

�p

and R(t) =

k

1

k

L

p

�

p

�

�r

1

r

1

S

r

1

=p

t

r

1

+

k

2

k

L

p

�

p

�

�r

2

r

2

S

r

2

=p

t

r

2

;

Sine Q(t)! 0, as t! 0, there exists � > 0 suh that

1

p

�Q(�) > 0:

Now, we hoose �

�

> 0 suh that

1

p

�Q(�)� �

�

R(�) > 0:

Consequently, there exist � and � > 0, with � and � independent of n, suh that

I

�;n

(u) � �; kuk = �:

Case 2: p < r

1

< p

�

. We have

I

�;n

(u) � kuk

p

�

1

p

�

1

p

�

S

p

�

=p

kuk

p

�

�p

�

�

r

1

S

r

1

=p

k

1

k

L

p

�

p

�

�r

1

kuk

r

1

�p

�

�

�

r

2

S

r

2

=p

k

2

k

L

p

�

p

�

�r

2

kuk

r

2

�p

�

:

Considering

Q(t) =

1

p

�

S

p

�

=p

t

p

�

�p

+

�

r

1

S

r

1

=p

k

1

k

L

p

�

p

�

�r

1

t

r

1

�p

+

�

r

2

S

r

2

=p

k

2

k

L

p

�

p

�

�r

2

t

r

2

�p

;

we note that Q(t)! 0, as t! 0, sine p < r

1

� r

2

. Hene, there exists � > 0 suh that

1

p

�Q(�) > 0:

Consequently, we get � and � > 0, with � and � > 0 independent of n, suh that

I

�;n

(u) � �; kuk = �:

Lemma 4.1 is proved.

Lemma 4.2 Suppose f satis�es (f

2

) and (f

3

). Then, for every � > 0 and n 2 IN , I

�;n

satis�es (�

2

).

Proof: Consider 


0

given by (f

3

) and � 2 D(IR

N

), a positive funtion with supp(�) � 


0

.

For every t > 0, we have

I

�;n

(t�) �

t

p

p

Z

IR

N

jr�j

p

dx�

t

p

�

p

�

Z

IR

N

j�j

p

�

dx� �at

q

Z

IR

N

j�j

q

dx:

Sine p

�

> p, there exists t > 0 suÆiently large suh that I

�;n

(t�) < 0 and kt�k > �,

with � given by Lemma 4.1. This proves the lemma.
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5 Estimates

Considering 


0

given by (f

3

), we take x

0

2 


0

and r

0

> 0 suh that B(x

0

; 2r

0

) � 


0

.

Now, let n

0

2 IN be suh that B(x

0

; 2r

0

) � B(0; n

0

). Choose � 2 D(IR

N

) satisfying

0 � � � 1, � � 1 on the ball B(x

0

; r

0

), and � � 0 on IR

N

n B(x

0

; 2r

0

). Given " > 0 and

w

"

de�ned in Setion 2, set

v

"

=

�w

"

k�w

"

k

L

p

�

�

Then, v

"

satis�es (See, e.g., [4℄, [9℄)

X

"

�

Z

IR

N

jrv

"

j

p

dx � S +O("

N�p

p

); as "! 0: (5.1)

Proposition 5.1 Suppose f satis�es (f

2

) and (f

3

), with q satisfying ondition (H). Then,

for every � > 0, there exist " > 0, n

0

2 IN and d

�

> 0 suh that, for every n � n

0

,

maxfI

�;n

(tv

"

) j t � 0g � d

�

<

1

N

S

N

p

:

Proof: From (f

3

) and the de�nitions of �

n

and v

"

, we have

I

�;n

(tv

"

) =

t

p

p

X

"

�

t

p

�

p

�

� �

Z

IR

N

F

n

(x; tv

"

) dx �

�

t

p

p

X

"

�

t

p

�

p

�

� �t

q

Z

IR

N

ajv

"

j

q

dx � J

�

(tv

"

):

Thus, to prove the proposition, it suÆes to obtain " > 0 and d

�

> 0 suh that

maxfJ

�

(tv

"

) j t � 0g � d

�

<

1

N

S

N

p

:

We argue as in the proof of Lemma 4.2. Given " > 0, there exists some t

"

> 0 suh that

max

t�0

J

�

(tv

"

) = J

�

(t

"

v

"

) and

d

dt

J

�

(tv

"

) = 0 in t = t

"

:

This implies

0 < t

"

� X

1

p

�

�p

"

:

On the other hand, from Lemma 4.1 and (5.1), we have

0 < � � J

�

(t

"

v

"

) �

t

p

"

p

(S +O("

N�p

p

)):
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Hene, there exists �

0

> 0 suh that

�

0

� t

"

� X

1

p

�

�p

"

; 8 " > 0:

Sine the funtion h(s) =

s

p

p

X

"

�

s

p

�

p

�

is inreasing on the interval (0;X

1

p

�

�p

"

), we obtain

J

�

(t

"

v

"

) �

1

N

X

N

p

"

� �a�

0

q

Z

IR

N

jv

"

j

q

dx:

From (5.1) and using the inequality

(b+ )

�

� b

�

+ �(b+ )

��1

 8 b;  � 0; 8� > 1;

with b = S,  = O("

N�p

p

), and � =

N

p

, we get

J

�

(t

"

v

"

) �

1

N

S

N=p

+O("

N�p

p

)� ��

q

0

Z

IR

N

ajv

"

j

q

dx:

Thus, there exists M > 0 suh that

J

�

(t

"

v

"

) �

1

N

S

N=p

+ "

N�p

p

�

M �

��

q

0

"

N�p

p

Z

IR

N

ajv

"

j

q

dx

�

�

�

1

N

S

N=p

+ "

N�p

p

�

M �

�a�

q

0

"

N�p

p

Z

B(0;1)

"

(N�p)q

p

2

("+ jxj

p

p�1

)

(N�p)q

p

dx

�

:

By hanging variables, we obtain

J

�

(t

"

v

"

) �

1

N

S

N=p

+ "

N�p

p

�

M�

��aw

N�1

�

q

0

"

[(

(N�p)

p

2

�

N�p

p

)q+

(p�1)N

p

+

p�N

p

℄

Z

"

1�p

p

0

s

N�1

(1 + s

p=(p�1)

)

(N�p)q

p

ds

�

:

Furthermore, for " > 0 suÆiently small, we have

Z

"

1�p

p

0

s

N�1

(1 + s

p=(p�1)

)

(N�p)q

p

ds �

Z

1

0

s

N�1

(1 + s

p=(p�1)

)

(N�p)q

p

ds �

2

(p�N)q

p

N

;

beause g(s) = (1 + s

p=(p�1)

)

�1

� g(1) = 2

�1

for s 2 [0; 1℄. Consequently, there exists a

positive onstant C, suh that

J

�

(t

"

v

"

) �

1

N

S

N=p

+ "

N�p

p

�

M � �C"

[(

(N�p)

p

2

�

N�p

p

)q+

(p�1)N

p

+

p�N

p

℄

�

:
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Sine (

(N�p)

p

2

�

(N�p)

p

)q+

(p�1)N

p

+

p�N

p

is negative, when q satis�es ondition (H), we �nd

"

0

> 0 suh that

J

�

(t

"

0

v

"

0

) < d

�

�

1

N

S

N=p

+ "

N�p

p

0

�

M � �C"

[(

(N�p)

p

2

�

N�p

p

)q+

(p�1)N

p

+

p�N

p

℄

0

�

<

1

N

S

N=p

:

Proposition 5.1 is proved.

6 Theorem 1.1

In view of Lemmas 4.1 and 4.2, we may apply Theorem 2.2 to the sequene of funtionals

I

�;n

, obtaining a positive level 

�;n

, and a (PS)



�;n

sequene (u

(n)

j

)

j

in D

1;p

, i.e.,

I

�;n

(u

(n)

j

)! 

�;n

and I

0

�;n

(u

(n)

j

)! 0 as j !1:

Moreover, from Lemma 4.1 and Proposition 5.1 , we have

0 < � � 

�;n

= inf

2�

sup

u2

I

�;n

(u) � d

�

<

1

N

S

N=p

:

Taking a subsequene if neessary, we �nd 

�

2 [�; d

�

℄ suh that



�

= lim

n!1



�;n

:

Thus, given 0 < � < minf

�

;

1

N

S

N=p

g, there exists n

0

> 0 suh that 

�;n

2 (

�

� � ; 

�

+ �)

for every n � n

0

. Now, for eah n � n

0

, there exists u

n

= u

(n)

j

n

satisfying



�

� � < I

�;n

(u

n

) < 

�

+ �; (6.1)

and

kI

0

�;n

(u

n

)k �

1

n

: (6.2)

Lemma 6.1 The sequene (u

n

) is bounded in D

1;p

.

Proof: From (f

4

), there exist � 2 (p; p

�

) and � 2 (1; p

�

) suh that

I

�;n

(u

n

) �

1

�

I

0

�;n

(u

n

)u

n

= (

1

p

�

1

�

)ku

n

k

p

+ (

1

�

�

1

p

�

)ku

+

n

k

p

�

L

p

�

+

+ �

Z

IR

N

�

1

�

f

n

(x; u

n

)u

n

� F

n

(x; u

n

)

�

dx � (6.3)

� (

1

p

�

1

�

)ku

n

k

p

+ (

1

�

�

1

p�

)ku

+

n

k

p

�

L

p

�

� �

Z

IR

N



3

(x)ju

+

n

j

�

dx:

� (

1

p

�

1

�

)ku

n

k

p

+ (

1

�

�

1

p

�

)ku

+

n

k

p

�

L

p

�

� �k

3

k

L

p

�

p

�

��

ku

+

n

k

�

L

p

�

:
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On the other hand, from (6.1) and (6.2), we have

I

n;�

(u

n

)�

1

�

I

0

n;�

(u

n

)u

n

� C +

1

�

ku

n

k: (6.4)

Denoting h(t) = (

1

�

�

1

p

�

)t

p

�

� �k

3

kt

�

, for t � 0, from (6.3), (6.4), and using that h(t) is

bounded from below, we onlude that the sequene (u

n

) is bounded in D

1;p

. Lemma 6.1

is proved.

Applying Proposition 3.1 to the diagonal sequene (u

n

), we obtain a weak solution u

for problem (GP ). The �nal step is the veri�ation that u is nontrivial. First of all, we

note that u

�

= 0. E�etively

Z

IR

N

jr(u

�

n

)j

p

dx �

Z

IR

N

�

jr(u

+

n

)j

2

+ jr(u

�

n

)j

2

�

p

2

dx =

=

Z

IR

N

jru

n

j

p

dx:

Thus, the sequene (u

�

n

) is bounded in D

1;p

. Consequently, I

0

�;n

(u

n

)(u

�

n

)! 0, as n!1.

Sine I

0

�;n

(u

n

)(u

�

n

) =

1

p

ku

�

n

k

p

, it follows that u

�

n

! 0 in D

1;p

, as n!1.

Now, we assume by ontradition that u � 0 is the only possible solution of (GP ).

Let

l = lim

n!1

Z

IR

N

ju

+

n

j

p

�

dx:

From (f

3

) and (6.2), we have

0 = lim

n!1

I

0

�;n

(u

n

)u

n

� lim

n!1

Z

IR

N

�

jru

n

j

p

� ju

+

n

j

p

�

� �

1

ju

n

j

r

1

� �

2

ju

n

j

r

2

�

dx:

Consequently, by Proposition 2.1, we have

lim

n!1

Z

IR

N

jru

n

j

p

dx � l: (6.5)

We laim that l > 0. E�etively, arguing by ontradition, we suppose that l = 0. Under

this assumption, from (6.5) and (f

3

), I

�;n

(u

n

) ! 0, as n ! 1. But this is impossible in

view of (6.1). The laim is proved.

Invoking (2.1), we have

kru

n

k

p

p

� kr(u

+

n

)k

p

p

� S

�

Z

IR

N

ju

+

n

j

p

�

�

p

p

�

: (6.6)

As a diret onsequene of (6.6), and (6.5), we obtain

l � S

N

p

: (6.7)
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By (f

4

), (6.1) and (6.2), we get

1

N

S

N=p

> d

�

� 

�

= lim

n!1

I

�;n

(u

n

) = lim

n!1

�

I

�;n

(u

n

)�

1

�

I

0

�;n

(u

n

)u

n

�

=

= lim

n!1

�

(

1

p

�

1

�

)kru

n

k

p

+ (

1

�

�

1

p

�

)ku

+

n

k

p

�

L

p

�

�

Z

IR

N



3

u

�

n

dx

�

�

� lim

n!1

�

(

1

p

�

1

�

)Sku

n

k

p

L

p

�

+ (

1

�

�

1

p

�

)ku

+

n

k

p

�

L

p

�

�

Z

IR

N



3

u

�

n

dx

�

:

Consequently, from Proposition 2.1 and (6.7), we have

1

N

S

N=p

> (

1

p

�

1

�

)Sl

p=p

�

+ (

1

�

�

1

p

�

)l �

� (

1

p

�

1

�

)S

1+

N

p

�

+ (

1

�

�

1

p

�

)S

N=p

=

1

N

S

N=p

:

This onludes the proof of Theorem 1.1.

7 Theorem 1.3

In this setion we establish a proof of Theorem 1.3. The key ingredient is the veri�ation

of Proposition 5.1 under onditions (f

3

) and (f

5

). To obtain suh result we exploit the

positivity of the funtion F (x; s). Considering the extremal funtions w

"

de�ned by (2.2),

we have

Proposition 7.1 Suppose f satis�es (f

2

); (f

3

), and (f

5

). Then, for every � > 0, there

exist " > 0, n

0

2 IN and d

�

> 0 suh that, for every n � n

0

maxfI

�;n

(tw

"

) j t � 0g � d

�

<

1

N

S

N

p

:

Proof: Let n

0

2 IN suh that

^




0

� B(0; n

0

) \ 


0

6= ;. From (f

2

); (f

3

); (f

5

) and our

de�nition of I

�;n

, for every n � n

0

, we have

I

�;n

(tw

"

) = (

t

p

p

�

t

p

�

p

�

)S

N=p

� �

Z

IR

N

�

n

(x)F (x; tw

"

) dx �

� (

t

p

p

�

t

p

�

p

�

)S

N=p

� �

Z

^




0

�

n

(x)F (x; tw

"

) dx �

� (

t

p

p

�

t

p

�

p

�

)S

N=p

� �at

q

Z

^




0

jw

"

j

q

dx � J

�

(tw

"

):
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Thus, it suÆes to obtain " > 0 and d

�

> 0 suh that

maxfJ

�

(tw

"

) j t � 0g � d

�

<

1

N

S

N=p

:

To prove suh result we follow the argument employed in [6℄. By (2.2), the sequene w

"

is bounded in L

p

�

q

(IR

N

) and w

"

(x) ! 0 a.e. in IR

N

, as " ! 0. Thus, w

"

* 0 weakly

in L

p

�

q

(IR

N

), as " ! 0. On the other hand, the restrition w

"

j

^




0

belongs to W

1;p

(

^




0

).

Hene, by the Sobolev Embedding Theorem, w

"

! 0 strongly in L

r

(B(0; 2n)), for every

1 � r < p

�

. Consequently,

lim

"!0

Z

^




0

jw

"

j

q

dx = 0:

Therefore, there exists "

0

> 0 suh that

0 < J

�

(w

"

0

) <

1

N

S

N=p

: (7.1)

Now, arguing as in the proof of Lemma 4.2 , we take t

"

0

> 0 suh that

J

�

(t

"

0

w

"

0

) = maxfJ

�

(tw

"

) j t � 0g:

Sine

d

dt

I

�;n

(tw

"

0

) = 0, for t = t

"

0

, we get

(t

p�1

"

0

� t

p

�

�1

"

0

)S

N=p

� �at

q�1

"

0

Z

^




0

jw

"

0

j

q

dx = 0: (7.2)

From (7.1) and (7.2), we have

0 < t

"

0

< 1:

Observing that the funtion h(t) =

t

p

p

�

t

p

�

p

�

ahieves its maximum at t = 1, we get

J

�

(t

"

0

w

"

0

) � d

�

� J

�

(w

"

0

) <

1

N

S

N=p

:

Proposition 7.1 is proved.

Finally, we observe that the proof of Theorem 1.3 follows by the same argument

employed in the proof of Theorem 1.1, with Proposition 7.1 replaing Proposition 5.1.
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