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Abstrat

In this artile it is used minimax methods to study the existene and multipliity

of solutions for the N-Laplaian equation on bounded domains of IR

N

, with Dirihlet

boundary onditions, when the nonlinearity has exponential growth. The subritial

and ritial ase are onsidered.

1 Introdution

In this artile, we study the existene and multipliity of solutions for a solutions for the

following quasilinear ellipti problem

(P )

�

8

>

<

>

:

��

N

u = �div(jruj

N�2

ru) = �f(x; u); in 
;

u � 0; in 
;

u = 0; on �
;

where 
 is a bounded smooth domain in IR

N

(N � 2) with boundary �
; � > 0 is a real

parameter, and the nonlinearity f(x; s) satis�es

(f

1

) f :

�


� IR! IR is a ontinuous funtion and f(x; 0) > 0, for every x 2 
,

and the growth ondition

(f)

�

0

There exists �

0

� 0 suh that

�
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lim

s!1

jf(x; s)j

exp(�s

N=N�1

)

=

(

0; 8 � > �

0

; unif. on

�


;

+1; 8 � < �

0

; unif. on

�


:

In the literature [1, 10, 11℄, f(x; s) is said to have subritial or ritial growth when

�

0

= 0 or �

0

> 0, respetively. We note that suh notion is motivated by Trudinger-Moser

estimates [17, 23℄ whih provide

exp(�juj

N=N�1

) 2 L

1

(
); 8 u 2W

1;N

0

(
); 8 � > 0; (1.1)

and

sup

jjujj

W

1;N

0

�1

Z




exp(�juj

N=N�1

) dx � C(N) 2 IR; 8 � � �

N

= Nw

1

N�1

N�1

; (1.2)

where w

k

is the volume of S

k

. We also observe that a typial and relevant ase to be

onsidered for problem (P )

�

is given by f(x; s) = exp(�

0

s

N=N�1

).

In our �rst result, we establish the existene of a solution for (P )

�

when � > 0 is

suÆiently small,

Theorem 1.1 Suppose f(x; s) satis�es (f

1

) and (f)

�

0

. Then, there exists � > 0 suh that

problem (P )

�

possesses at least one solution for every � 2 (0; �).

To obtain the existene of a seond solution for problem (P )

�

in the subritial ase,

we assume that f(x; s) satis�es

(f

2

) There are onstants � > N and R > 0 suh that

0 < �F (x; s) � sf(x; s); 8 x 2

�


; s � R:

Theorem 1.2 (Seond solution: Subritial ase) Suppose f(x; s) satis�es (f

1

), (f

2

) and

(f)

�

0

, with �

0

= 0. Then, there exists � > 0 suh that problem (P )

�

possesses at least two

solutions for every � 2 (0; �).

Note that (f

2

) is the version of the famous Ambrosetti-Rabinowitz ondition [3℄ for

the N-Laplaian. It implies, in partiular, that f(x; s)=s

N

!1, as s!1, uniformly on

�


.

In our next result, we provide the existene of two solutions for (P )

�

when f(x; s) has

ritial growth. In that ase, we shall need to suppose a stronger version of ondition (f

2

),

(

^

f

2

) For every � > N , there exists R(�) > 0 suh that

0 < �F (x; s) � sf(x; s);8 x 2

�


; s � R(�):

2



Assuming the following further restrition on the growth of f(x; s),

(f

3

) There exists an open set

^


 � 
 suh that

lim

s!1

inf

x2

^




f(x; s)

exp(�

0

s

N=N�1

)

=1;

we obtain

Theorem 1.3 (Seond solution: Critial ase) Suppose f(x; s) satis�es (f

1

), (

^

f

2

), (f

3

)

and (f)

�

0

, with �

0

> 0. Then, there exists � > 0 suh that problem (P )

�

possesses at least

two solutions for every � 2 (0; �).

Exploiting the onvexity of the primitive F (x; s), in our �nal result we are able to

onsider a weaker version of (f

3

), obtaining the same onlusion of Theorem 1.3. More

spei�ally, we suppose

(

^

f

3

) There exist an open set

^


 � 


lim

s!1

inf

x2

^




f(x; s)s

�

exp(�

0

s

N=N�1

)

=1;

where � =

1

2(N�1)

if N = 3, and � =

1

N�1

otherwise.

(f

4

) F (x; :) is onvex on [0;1) for every x 2

^


 � 
,

^


 given by (

^

f

3

),

Theorem 1.4 (Seond solution: Convex Critial ase) Suppose f(x; s) satis�es (f

1

),

(

^

f

2

), (

^

f

3

), (f

4

) and (f)

�

0

, with �

0

> 0. Then, there exists � > 0 suh that problem (P )

�

possesses at least two solutions for every � 2 (0; �).

We observe that Theorem 1.4 establishes the existene of two solutions of (P )

�

for

� > 0 suÆiently small when f(x; s) = exp(�

0

s

N=N�1

).

As it is well known, the lassial Liouville-Gelfand problem is given by

(LG)

�

8

>

<

>

:

��u = �e

u

; in 
;

u > 0; in 
;

u = 0; on �
;

where 
 is a bounded domain in IR

N

(N � 1) with boundary �
, and � > 0 is a real

parameter. First onsidered by Liouville [16℄, for the ase N = 1, and afterwards by Bratu

[4℄, for N = 2, and Gelfand [13℄, for N � 1, this problem has been extensively studied

during the last three deades (See [7, 8, 12℄ and referenes therein). As observed in [12℄,

3



problem (LG)

�

is of great relevane sine it appears in mathematial models assoiated

with astrophysial phenomena and to problems in ombustion reations.

In [8℄, Crandall and Rabinowitz used bifuration theory to establish the existene of

one solution for problem (LG)

�

, for � > 0 suÆiently small, and a nonlinearity f(x; s)

replaing e

s

. In [8℄ no growth restrition on f(x; s) is assumed. To obtain suh result, those

authors assume f(x; s) 2 C

3

(
 � IR; IR), f

s

(x; 0) > 0 and f

ss

(x; s) > 0, for every x 2 


and s > 0 Supposing that f(x; s) has a subritial growth, they show that this solution

is a loal minimum for the assoiated funtional. Then, using ritial point theory, they

are able to prove the existene of a seond solution. We note that Theorems 1.3 and

1.4 improve the last mentioned result of [8℄ when N = 2 sine they allow f(x; s) to have

ritial growth. In partiular, we may onsider f(x; s) = e

s

2

.

In [12℄, Garia Azorero and Peral Alonso proved the existene of solutions for (LG)

�

,

with � > 0 suÆiently small, when the Laplaian is replaed by a p-Laplaian operator.

The nonexistene of solutions for (LG)

�

for this more general lass of operators, when

� > 0 is suÆiently large, was also established in [12℄. We should also mention the artile

by Cl�ement, Figueiredo and Mitidieri [7℄, where the exat number of solutions for an

operator more general that the p-Laplaian is established when 
 is an open ball of IR

N

.

In [7℄, it is not assumed any growth restrition on f(x; s).

We note that the solutions mentioned in Theorems 1.1{1.4 are weak solutions of (P )

�

(See [19℄). We also observe that in this artile, we use minimax methods to derive suh

solutions.

To prove Theorem 1.1, we �rst provide an abstrat result that establishes the existene

of a ritial point for a funtional of lass C

1

de�ned on a real Banah spae assuming a

version of the famous Palais-Smale ondition for the weak topology (See De�nitions and

Proposition 2.2 in Setion 2). Motivated by the argument used in [18℄, we prove that the

assoiated funtional satis�es suh ondition under hypotheses (f

1

) and (f)

�

0

. Taking

� > 0 suÆiently small, we are able to apply the mentioned abstrat result. In our proof

of Theorem 1.2, we use ondition (f

2

) to verify that the assoiated funtional satis�es the

Palais-Smale ondition. As in [8℄, this provides the existene of a seond solution for (P )

�

via the Mountain Pass Theorem [3℄.

In the proofs of Theorems 1.3 and 1.4, we argue by ontradition, assuming that

Theorem 1.1 provides the only possible solution of (P )

�

. This assumption and ondition

(

^

f

2

) allow us to use the argument of Brezis and Nirenberg [6℄ and a result of Lions [15℄ to

verify that the assoiated funtional satis�es the Palais-Smale ondition on a given interval

of the real line.We use onditions (f

3

) and (

^

f

3

), respetively, to establish that the level

assoiated with the Mountain Pass Theorem belongs to this interval. As in the proof of

Theorem 1.2, that implies the existene of a seond solution.

Finally, we should mention that the existene of a nonzero solution for (P )

�

when

f(x; 0) � 0 has been intensively studied in reent years (See [1, 2, 10, 11℄ and referenes

4



therein) . As it is shown in [1℄ (See also [10℄), when f(x; s) � 0, for s � 0, a weaker version

of (f

3

) may be onsidered. We also observe that our method may be used to improve suh

results sine in those artiles a stronger version of (

^

f

2

) is assumed. Condition (f

3

) an

also be used in that setting to study the ase where f(x; s) may assume negative values.

The artile is organized in the following way: In Setion 2, we introdue the notion

of Palais-Smale ondition for the weak topology and establish two abstrat results whih

are used to prove our results. There, we also reall the variational framework assoiated

with (P )

�

and state a version of Trudinger-Moser inequality (1.2) for W

1;N

(
) when 


is an open ball in IR

N

. In setion 2, we also state a result by Lions [15℄ that will be

used, via ontradition, to verify (PS)



, for  below a given level, when ondition (f)

�

0

holds with �

0

> 0. In Setion 3, we prove the weak version of Palais-Smale ondition

for the assoiated funtional. In Setion 4, we prove Theorems 1.1 and 1.2. In Setion

5 we establish the estimates that are used to prove Theorem 1.3. In Setion 6, we prove

Theorem 1.3. In Setion 7, we establish the estimates for the assoiated funtional when

onditions (

^

f

3

) and (f

4

) are assumed. There, we also present the proof of Theorem 1.4. In

Appendix A, we prove the Trundinger-Moser inequality mentioned in Setion 2. Finally, in

Appendix B, we prove an inequality for vetor �elds on IR

N

, used in Setion 7 to establish

the neessary estimates.

2 Preliminaries

Given E a real Banah spae and � a funtional of lass C

1

on E, we reall that � satis�es

Palais-Smale ondition at level  2 IR [Denoted (PS)



℄ on an open set O � E if every

sequene (u

n

) � O for whih (i) �(u

n

) !  and (ii) �

0

(u

n

) ! 0, as n ! 1, possesses

a onverging subsequene. We also observe that � satis�es (PS)



if it satis�es (PS)



on

E, and we say that � satis�es (PS) when it satis�es (PS)



for every  2 IR. Finally, we

note that every sequene (u

n

) � E satisfying (i) and (ii) is alled a Palais-Smale [(PS)℄

sequene.

To establish the existene of a ritial point when the funtional is bounded from below

on a losed onvex subsets of E, we introdue a version of the Palais-Smale ondition for

the weak topology.

De�nition 2.1 Given  2 IR, we say that � 2 C

1

(E; IR) satis�es the (wPS)



on A � E

if every sequene (u

n

) � A for whih �(u

n

) !  and �

0

(u

n

) ! 0, as n!1, possesses a

subsequene onverging weakly to a ritial point of �. We say that � satis�es (wPS) on

A if � satis�es (wPS)



on A, for every  2 IR. When � satis�es (wPS) on E, we simply

say that � satis�es (wPS).

5



Assuming

(�

1

) There exist a losed bounded set A � E, onstants  � b 2 IR, and u

0

2

Æ

A

suh that

(i) �(u) � ; 8 u 2 A,

(ii) �(u) � b � �(u

0

); 8 u 2 �A,

we de�ne



1

= inf

u2A

�(u): (2.1)

The following abstrat result provides a ritial point for � under onditions (�

1

) and

(wPS).

Proposition 2.2 Let E be a real Banah spae. Suppose � 2 C

1

(E; IR) satis�es (�

1

),

with A a losed bounded onvex subset of E. Then, � possesses a ritial point u 2 A

provided it satis�es (wPS)



1

on A.

Proof: Arguing by ontradition, we suppose that � does not have a ritial point u 2 A.

Under this assumption, we laim that � satis�es (PS)



1

on

Æ

A

. E�etively, given a sequene

(u

n

) �

Æ

A

suh that �(u

n

) ! 

1

and �

0

(u

n

) ! 0, as n ! 1, by (wPS)



1

, (u

n

) possesses

a subsequene onverging weakly to a ritial point u. Furthermore, u 2 A sine A is a

losed onvex subset of E. This ontradits our assumption and proves the laim.

We note that  � 

1

� �(u

0

). If 

1

= �(u

0

), the onlusion is immediate. Thus, we

may assume 

1

< �(u

0

) � b. In this ase, we take 0 < " < �(u

0

)� 

1

. Then, we argue as

in Proposition 2.7 of [19℄, using a loal version of the Deformation Lemma [21℄, to obtain

a ontradition with the de�nition of 

1

. Proposition 2.2 is proved.

Remark 2.3 When � satis�es (PS)



1

on

Æ

A

, the seond part of the proof of Proposition

2.2 shows that atually � possesses a loal minimum u 2

Æ

A

suh that �(u) = 

1

.

Taking b 2 IR and A, given by (�

1

), we onsider

(�

2

) There exists e 2 E n A suh that

�(e) � b � �(u); 8 u 2 �A;

and we de�ne



2

= inf

g2�

max

u2g

�(u) � b;

6



where

� = fg 2 C([0; 1℄; E); g(0) = u

0

; g(1) = eg:

As a onsequene of Proposition 2.2, Remark 2.3 and the argument employed in [21℄,

we obtain the following version of the Mountain Pass Theorem [3℄.

Proposition 2.4 Let E be a real Banah spae. Suppose � 2 C

1

(E; IR) satis�es (�

1

),

with A losed and onvex subset of E, and (�

2

). Then, � possesses at least two ritial

points provided it satis�es (PS)



, for every  � 

2

.

Proof: By Proposition 2.2 and Remark 2.3, � possesses a loal minimum u

1

2

Æ

A

suh that

�(u

1

) = 

1

. Furthermore, if � does not have any ritial point on �A, we may invoke the

loal version of the Deformation Lemma [21℄ one more time to obtain a neighbourhood V

of u

0

and � > 0 suh that u

0

2 V , e 62 V and



1

� maxf�(u

0

);�(e)g < inf

u2�A

�(u) + � � inf

u2�V

�(u) � 

2

:

Consequently, by the Mountain Pass Theorem [3℄, 

2

is a ritial value of �. The propo-

sition is proved.

Observe that when 

1

= 

2

, by the above proof, � must have a ritial point u 2 �A

suh that �(u) = 

1

.

Now, we reall the variational framework assoiated with problem (P )

�

. Considering

the Sobolev spae W

1;N

0

(
) endowed with the norm

kuk =

�

Z




jruj

N

dx

�

1=N

; 8 u 2W

1;N

0

(
);

the funtional assoiated with (P )

�

I

�

: W

1;N

0

(
)! IR is given by

I

�

(u) =

1

N

Z




jruj

N

dx� �

Z




F (x; u) dx; 8 u 2W

1;N

0

(
); (2.2)

where we assume f(x; s) = f(x; 0), for every x 2

�


, s < 0, and we take F (x; s) =

R

s

0

f(x; t) dt, for x 2

�


, s 2 IR. Under the hypothesis (f)

�

0

, the funtional I

�

is well

de�ned and belongs to C

1

(W

1;N

0

(
); IR) (See [1, 10℄). Furthermore,

I

0

�

(u)v =

Z




jruj

N�2

rurv dx� �

Z




f(x; u)v dx; 8 u; v 2W

1;N

0

(
):

Thus, every ritial point of I

�

is a weak solution of (P )

�

.

We also remark that if f(x; s) satis�es onditions (f

1

) and (f)

�

0

, then, for every

� > �

0

, there exists C = C(�) > 0 suh that

maxfjf(x; s)j; jF (x; s)jg � C exp(�jsj

N

N�1

); 8 x 2

�


; s � 0: (2.3)

7



As a diret onsequene of (1.1) and (2.3), we obtain that F (x; u(x)) 2 L

1

(
) and

f(x; u(x)) 2 L

q

(
), for every q � 1, whenever u 2W

1;N

0

(
).

The following lemma establishes a version of Trudinger-Moser inequality (1.2) for

W

1;N

(
) when 
 is an open ball in IR

N

.

Lemma 2.5 Let B(x

0

; R) be an open ball in IR

N

with radius R > 0 and enter x

0

2 IR

N

.

Then, there exist onstants �̂ = �̂(N) > 0 and C(N;R) > 0 suh that

Z

B(x

0

;R)

exp(�̂juj

N=N�1

) dx � C(N;R);

for every u 2W

1;N

(B(x

0

; R)) suh that kuk

W

1;N

(B(x

0

;R))

� 1.

Proof: For the sake of ompleteness, we present the proof of Lemma 2.5 in Appendix A.

Finally, we state a theorem due to Lions [15℄ whih will be essential to verify, via

ontradition, that the funtional I

�

satis�es (PS)



, for  below a given level, when f(x; s)

satis�es the ritial growth ondition.

Theorem 2.6 Let fu

n

2 W

1;N

0

(
) j ku

n

k = 1g be a sequene in W

1;N

0

(
) onverging

weakly to a nonzero funtion u. Then, for every 0 < p < (1� kuk

N

)

�1

N�1

, we have

sup

n2IN

Z




exp

�

p�

N

ju

n

j

N

N�1

�

dx <1:

3 (wPS) ondition

In this setion, we shall prove a tehnial result that will be used to establish (wPS)

ondition for the funtional I

�

(u), de�ned by (2.2), when the nonlinearity f(x; s) satis�es

the ritial growth ondition,

(f

5

) There exist �;C > 0 suh that

jf(x; s)j � C exp

�

�jsj

N

N�1

�

; 8 x 2

�


; s 2 IR:

Our objetive is to verify that any bounded sequene (u

n

) �W

1;N

0

(
) suh that I

0

�

(u

n

)!

0, as n!1, possesses a subsequene onverging weakly to a solution of (P )

�

. Suh result

provides (wPS) ondition for the funtional I

�

.

Considering that next result is independent of the parameter � > 0, we denote by (P )

and I the problem (P )

�

and the funtional I

�

, respetively.

The proof of the following proposition is based on the argument used in [18℄ for the

Neumann problem (See also [10℄).

8



Proposition 3.1 Let 
 be a bounded smooth domain in IR

N

. Suppose f(x; s) 2 C(

�


 �

IR; IR) satis�es (f

5

). Then, any bounded sequene (u

n

) � W

1;N

0

(
) suh that I

0

(u

n

)! 0,

as n!1, possesses a subsequene onverging weakly to a solution of (P).

Remark 3.2 (i) Note that Proposition 3.1 generalizes to the N-Laplaian a well known

fat for the Laplaian operator on 
 � IR

N

, N > 2, when the nonlinearity f(x; s) satis�es

the polynomial ritial growth ondition. (ii) We also observe that in Proposition 3.1 it

is not assumed that (u

n

) is a Palais-Smale sequene sine I(u

n

) may be unbounded. (iii)

Finally, we note that in [22℄, we prove a similar result for the p-Laplaian on 
 = IR

N

.

The proof of Proposition 3.1 will be arried out in a series of steps. First, by

the Sobolev Embedding Theorem, Banah-Alaoglu Theorem and the haraterization of

C(

�


)

�

, given by the Riesz Representation Theorem [20℄, we may suppose that there exist

u 2W

1;N

0

(
) and � 2M(

�


), the spae of regular Borel measure on

�


, suh that

8

>

>

>

>

>

<

>

>

>

>

>

:

u

n

* u; weakly in W

1;N

0

(
);

jru

n

j

N

* �; weakly� in M(

�


);

u

n

! u; strongly in L

p

(
); 1 � p <1;

u

n

(x)! u(x); a. e. in 
;

ju

n

(x)j � h

p

(x); a. e. in 
; where h

p

2 L

p

(
); 1 � p <1:

(3.1)

Now, we �x 0 < � < 1 suh that ��

N

N�1

< �̂, with �̂ given by Lemma 2.5. Setting




�

= fx 2 
 j �(x) � �g, we have that 


�

is a �nite set sine � is a bounded nonnegative

measure on

�


. Furthermore,

Lemma 3.3 Let K � (
 n 


�

) be a ompat set. Then, there exist q > 1 and M =

M(K) > 0 suh that

Z

K

jf(x; u

n

(x))j

q

dx �M; 8 n 2 IN:

Proof: To prove suh result, we take q > 1 suh that �q�

N

N�1

< �̂ and onsider r

1

=

dist(K; �
[


�

) > 0, the distane between K and �
[


�

. For every x 2 K, there exists

0 < r

x

< r

1

suh that

�(B(x; 2r

x

)) + kuk

N

L

N

(B(x;2r

x

))

< �

N

: (3.2)

Using the ompatness of K, we �nd j 2 IN so that

K �

j

[

i=1

B(x

i

; r

x

i

) �

j

[

i=1

B

i

: (3.3)
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Applying (3.1) and (3.2), we �nd n

0

2 IN suh that

ku

n

k

N

W

1;N

(B

i

)

� �

N

; 8 n � n

0

; 1 � i � j:

Consequently, from Lemma 2.5, (f

5

), (3.3) and our hoie of q, there exists M > 0 suh

that

Z

K

jf(x; u

n

(x))j

q

dx �

N

X

i=1

Z

B

i

exp

0

�

�̂

 

ju

n

(x)j

ku

n

k

W

1;N

(B

i

)

!

N

N�1

1

A

dx �M;

for every n � n

0

. This proves the lemma.

Lemma 3.4 Let K � (
 n 


�

) be a ompat set. Then, ru

n

! ru, strongly in

(L

N

(K))

N

, as n!1.

Proof: Taking  2 C

1

0

(
 n 


�

) suh that  � 1, on K, and 0 �  � 1, and onsidering

that

(jaj

N�2

a� jbj

N�2

b) � (a� b) � 2

2�N

ja� bj

N

; 8 a; b 2 IR

N

; (3.4)

we obtain

2

2�N

kru

n

�ruk

N

L

N

(K)

�

�

R




h

(jru

n

j

N�2

ru

n

� jruj

N�2

ru):(ru

n

�ru)

i

 dx =

=

R




h

jru

n

j

N

 � jru

n

j

N�2

(ru

n

:ru) �

� jruj

N�2

(ru:r(u

n

� u)) 

i

dx:

(3.5)

As I

0

(u

n

)! 0, as n!1, we have

Z




h

jru

n

j

N�2

((ru

n

:ru) + (ru

n

:r )u)�  f(x; u

n

)u

i

dx = o(1); (3.6)

as n!1. Moreover, sine ( u

n

) is a bounded sequene in W

1;N

0

(
), we also have

Z




h

jru

n

j

N

 + jru

n

j

N�2

(ru

n

:r )u

n

�  f(x; u

n

)u

n

i

dx = o(1); (3.7)

as n!1. Combining (3.5)-(3.7), we obtain

2

2�N

kru

n

�ruk

N

L

N

(K)

�

�

R




 f(x; u

n

)(u

n

� u) dx+

R




jru

n

j

N�2

(u� u

n

)(ru

n

:r ) dx+

+

R




jruj

N�2

(ru:r(u� u

n

)) dx+ o(1); as n!1:

10



Applying Lemma 3.3, for the ompat set supp � (
n


�

), and using H�older's inequality,

we get

2

2�N

kru

n

�ruk

N

L

N

(K)

�

� kpsik

L

1

(
)

M

1

q

ku

n

� uk

L

q

q�1

(
)

+ kr k

L

1

(
)

kru

n

k

N�1

L

N

(
)

ku� u

n

k

L

N

(
)

+

+

R




jruj

N�2

 (ru:r(u� u

n

)) dx+ o(1); as n!1:

The hypothesis that (u

n

) �W

1;N

0

(
) is bounded and (3.1) show that ru

n

!ru, strongly

in (L

N

(K))

N

, as desired. The lemma is proved.

As a diret onsequene of Lemma 3.4, we have

Corollary 3.5 The sequene (u

n

) � W

1;N

0

(
) possesses a subsequene (u

n

i

) satisfying

ru

n

i

(x)! ru(x), for almost every x 2 
.

The following Lemma shows that I

0

(u) restrited to W

1;N

0

(
 n 


�

) is the null operator.

Lemma 3.6

(I

0

(u); �) =

Z




jruj

N�2

(ru:r�) dx�

Z




f(x; u)�dx = 0; (3.8)

for every � 2 C

1

0

(
 n 


�

).

Proof: Given � 2 C

1

0

(
n


�

), by H�older's inequality and the fat that (u

n

) �W

1;N

0

(
) is

a bounded sequene, we have that (jru

n

i

j

N�2

ru

n

i

:r�) is a family of uniformly integrable

funtions in L

1

(
). Thus, by Vitali's Theorem [20℄ and Corollary 3.5, we get

Z




jru

n

i

j

N�2

(ru

n

i

:r�) dx!

Z




jruj

N�2

(ru:r�) dx; as i!1: (3.9)

We also assert that

Z




f(x; u

n

i

)�dx!

Z




f(x; u)�dx; as i!1; (3.10)

for every � 2 C

1

0

(
 n 


�

). E�etively, by Lemma 3.3, there exist q > 1 and M

1

> 0 so

that

Z

K

2

jf(x; u

n

)j

q

dx �M

1

; (3.11)

where K

2

= supp�. Given � > 0, from (3.1) and Egoro�'s Theorem, there exists E � 


suh that jEj < � and u

n

(x) ! u(x), uniformly on (
 n E). Using H�older's inequality,

(3.11), and (f

5

), we get M

2

> 0 suh that

11



j

R




(f(x; u

n

)� f(x; u))�dxj �

�

R


nE

jf(x; u

n

)� f(x; u)jj�j dx +M

2

�

q�1

q

:

As � > 0 an be hosen arbitrarily small and f(x; u

n

(x))! f(x; u(x)), uniformly on 
nE,

we derive (3.10). Now, we use (3.9), (3.10) and the fat that I

0

(u

n

) ! 0, as n ! 1, to

verify that (3.8) holds.

In the following, we onlude the proof of Proposition 3.1. In view of (1.1), (f

5

) and

the density of C

1

0

(
) in W

1;N

0

(
), it suÆes to show that relation (3.8) holds for every

� 2 C

1

0

(
).

Given � 2 C

1

0

(
) suh that supp� \ 


�

6= ;, we take K = supp�,

^




�

= 


�

\K =

fy

1

; : : :; y

l

g, 1 � l � j, and r

1

> 0 suh that 2r

1

< jy

i

�y

m

j, i 6= m, and 2r

1

< dist(K; �
).

We onsider,  2 C

1

(IR; IR) suh that 0 �  � 1,  � 1, on [0; 1℄, and  � 0, on [2;1),

and we de�ne

 

i;r

(x) =  (

jx� y

i

j

r

); 8 x 2 
; 1 � i � l; 0 < r < r

1

:

We also set  

l+1;r

(x) = 1 �

P

l

i=1

 

i;r

(x), for every x 2 
. Hene, �(x) �

P

l+1

i=1

� 

i;r

(x)

and � 

l+1;r

2 C

1

0

(
 n 


�

). From Lemma 3.6, we have

(I

0

(u); �) =

P

l

i=1

R




jruj

N�2

(ru;r(� 

i;r

)) dx�

�

P

l

i=1

R




f(x; u)� 

i;r

dx; 8 0 < r < r

1

:

(3.12)

Applying H�older's inequality, for every 1 � i � l, we get

j

R




jruj

N�2

(ru:r(� 

i;r

)) dxj �

h

R

B

i

jruj

N

dx

i

N�1

N

h

kr�k

L

1

(
)

k 

i;r

k

L

N

(B

i

)

+

+ k�k

L

1

(
)

kr 

i;r

k

L

N

(B

i

)

i

;

(3.13)

where B

i

� B(y

i

; 2r), 0 < r < r

1

. On the other hand, from the �rst Trudinger-Moser

inequality (1.1) and (f

5

), we �nd M

3

> 0 suh that, for every 1 � i � l,

j

Z




f(x; u)� 

i;r

dxj �M

3

k�k

L

1

(
)

jB

i

j

N�1

2N

k 

i;r

k

L

N

(
)

: (3.14)

We use our de�nition of  

i;r

to get M

4

> 0 so that

k 

i;r

k

W

1;N

(B

i

)

�M

4

; 8 0 < r < r

1

; 1 � i � l:

Consequently, given � > 0, by Lebesgue's Dominated Convergene Theorem, (3.13)

and (3.14), we �nd 0 < r

2

< r

1

so that

12



(

j

R




jruj

N�2

(ru:r(� 

i;r

)) dxj < �;

j

R




f(x; u)� 

i;r

dxj < �; 8 1 � i � l; 0 < r < r

2

:

(3.15)

for every 0 < r < r

2

, 1 � i � l. From (3.12), (3.15) and the fat that � > 0 an be hosen

arbitrarily small, we obtain that (3.8) holds for every � 2 C

1

0

(
). This onludes the

proof of Proposition 3.1.

As a diret onsequene of Proposition 3.1, we have the following results:

Corollary 3.7 Let 
 be a bounded smooth domain in IR

N

. Suppose that

f(x; s) 2 C(

�


� IR; IR) satis�es (f

5

). Then, I satis�es (wPS) on A, for every bounded

set A �W

1;N

0

(
).

Corollary 3.8 Let 
 be a bounded smooth domain in IR

N

. Suppose that f(x; s) 2 C(

�


�

IR; IR) satis�es (f

5

). Then, I satis�es (wPS) provided every (PS) sequene assoiated with

I possesses a bounded subsequene.

4 Theorems 1.1 and 1.2

In this setion, we apply the abstrat results desribed in Setion 2 to prove Theorems 1.1

and 1.2.

Proof of Theorem 1.1: The weak solution of problem (P

�

) will be established with

the aid of Proposition 2.2. For this, it suÆes to verify that I

�

, for � > 0 suÆiently

small, satis�es (�

1

) and (wPS)



1

on the losure of B(0; �), denoted by B[0; �℄, for some

appropriate value of � > 0.

Given � > �

0

, we take � 2

�

0;

�

�

N

�

�

N�1

N

�

and use (2.3) to obtain C

1

> 0 suh that

I

�

(u) �

1

N

jjujj

N

� �C

1

R




exp(�juj

N

N�1

) dx =

=

1

N

jjujj

N

� �C

1

R




exp

�

�jjujj

N

N�1

�

juj

jjujj

�

N

N�1

�

dx;

for every u 2 W

1;N

0

(
) suh that kuk � �. Hene, by Trudinger-Moser inequality (1.2),

we �nd C

2

(N) > 0 suh that

I

�

(u) �

1

N

kuk

N

� �C

2

(N);

for every u 2 B[0; �℄.

Taking � = N

�1

C

2

(N)

�1

�

N

, u

0

= 0,  = ��C

2

(N), b = 0, and onsidering 

�

= 

1

,



1

given by (2.1), we have that I

�

satis�es ondition (�

1

), for every 0 < � <

�

�.
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Finally, we observe that onditions (f

1

), (f)

�

0

and Corollary 3.7 imply that I

�

satis�es

(wPS) ondition on B[0; �℄. Theorem 1.1 is proved.

Before proving Theorem 1.2, we note that, from (f

1

) and (f

2

), there exists a onstant

C > 0 suh that

F (x; s) � Cjsj

�

� C; 8 x 2

�


; s � 0: (4.1)

Proof of Theorem 1.2: Considering � > 0, given in the proof of Theorem 1.1, we have

that the funtional I

�

satis�es (�

1

), for every � 2 (0; �). Thus, by Proposition 2.4 , it

suÆes to verify that I

�

satis�es (�

2

) and (PS) for suh values of �.

Choosing u 2 W

1;N

0

(
) n f0g suh that u(x) > 0, for every x 2 
, from (4.1), we

obtain

I

�

(tu) �

t

N

N

jjujj

N

� �Ct

�

Z




u

�

dx+ Cj
j:

Therefore, I

�

(tu) ! �1, as t ! +1, sine C > 0 and � > N . Consequently, I

�

satis�es �

2

.

Now, we shall verify that I

�

satis�es (PS). Let (u

n

) � W

1;N

0

(
) be a sequene suh

that (I

�

(u

n

)) � IR is bounded, and I

0

�

(u

n

)! 0, as n!1, i.e,

j

1

N

Z




jru

n

j

N

dx� �

Z




F (x; u

n

) dxj � C <1 ; 8 n 2 IN; (4.2)

and

j

Z




jru

n

j

N�2

ru

n

rv dx� �

Z




f(x; u

n

)v dxj � "

n

jjvjj; (4.3)

for every v 2 W

1;N

0

(
), where "

n

! 0, as n ! 1. Taking � > N , given by (f

2

), we use

(4.2) and (4.3) to get

Z




jru

n

j

N

dx� �

Z




(�F (x; u

n

)� f(x; u

n

)u

n

) dx � C + "

n

jju

n

jj:

From this inequality, (f

2

), and our de�nition of f(x; s) for s � 0, we onlude that (u

n

) is

a bounded sequene in W

1;N

0

(
). Consequently, we may assume that

u

n

* u weakly in W

1;N

0

(
); u

n

! u strongly in L

q

(
); 8 q > 1:

From (4.3), with v = u

n

� u, we have

lim

n!1

f

Z




jru

n

j

N�2

ru

n

r(u

n

� u) dx� �

Z




f(x; u

n

)(u

n

� u) dxg = 0: (4.4)

Using H�older's inequality, we may estimate the seond integral in the above equation,

14



j

Z




f(x; u

n

)(u

n

� u) dxj � (

Z




jf(x; u

n

)j

p

dx)

1=p

jju

n

� ujj

L

q

;

where p; q > 1 are �xed with

1

q

+

1

p

= 1. Noting that (u

n

) is a bounded sequene, we may

�nd � > �

0

= 0 suh that �pjju

n

jj

N=N�1

< �

N

, for every n 2 IN . Hene, by (2.3), we

have

Z




jf(x; u

n

)(u

n

� u)jdx � C

�

Z




exp

�

p�jju

n

jj

N

N�1

(

ju

n

j

jju

n

jj

)

N

N�1

��

1

p

jju

n

� ujj

L

q

:

Thus, by Trudinger-Moser inequality (1.2), we obtain C

2

> 0 suh that

j

Z




f(x; u

n

)(u

n

� u) dxj � C

2

jju

n

� ujj

L

q

:

Sine u

n

! u strongly in L

q

(
), from (4.4) and the above inequality, we have

lim

n!1

Z




jru

n

j

N�2

ru

n

r(u

n

� u) dx = 0:

On the other hand,

lim

n!1

Z




jruj

N�2

rur(u

n

� u) dx = 0;

beause u

n

* u weakly in W

1;N

0

(
). Consequently,

lim

n!1

Z

(jru

n

j

N�2

ru

n

� jruj

N�2

ru)(ru

n

�ru) dx = 0:

Thus, by inequality (3.4), we have

lim

n!1

Z




jru

n

�ruj

N

dx = 0:

This implies that I

�

satis�es (PS) ondition. Theorem 1.2 is proved.

Remark 4.1 As it is shown in [9℄ (See also [14℄.), any solution of (P )

�

is in C

1;�

(
),

for N � 3, and in C

2;�

(
), for N = 2.
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5 Estimates

We start this setion with the de�nition of Moser funtions (See [17℄). Let x

0

2 
 and

R > 0 be suh that the ball B(x

0

; R) of radius R entered at x

0

is ontained in 
. The

Moser funtions are de�ned for 0 < r < R by

M

r

(x) =

1

w

1=N

N�1

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(log

R

r

)

N�1

N

; if 0 � jx� x

0

j � r;

log(

R

jx�x

0

j

)

(log

R

r

)

1=N

; if r � jx� x

0

j � R;

0; if jx� x

0

j � R:

Then,M

r

2W

1;N

0

(
); jjM

r

jj = 1 and supp (M

r

) is ontained in B(x

0

; R). Considering

^


 given by (f

3

), we take x

0

2

^


 and onsider the Moser sequene M

n

(x) =M

R

n

n

(x) where

R

n

= (log n)

1�N

N

, for every n 2 IN . Without loss of generality, we may suppose that

supp(M

n

) �

^


, for every n 2 IN .

Taking

�

� > 0 and u

�

, for � 2 (0;

�

�), given in the proof of Theorem 1.1, we have

Proposition 5.1 Suppose f(x; s) satis�es (f

1

); (f)

�

0

, with �

0

> 0, and (f

3

). Then, for

every � 2 (0;

�

�), there exists n 2 IN suh that

maxfI

�

(u

�

+ tM

n

) j t � 0g < I

�

(u

�

) +

1

N

(

�

N

�

0

)

N�1

:

The proof of Proposition 5.1 will be arried out through the veri�ation of several

steps. First, we suppose by ontradition that, for every n, we have

maxfI

�

(u

�

+ tM

n

) j t � 0g � I

�

(u

�

) +

1

N

(

�

N

�

0

)

N�1

: (5.1)

Now, we apply the argument employed in the proof of Theorem 1.2 to onlude that

I

�

(u

�

+ tM

n

)! �1, as t!1, for every n 2 IN . Thus, there exists t

n

> 0 suh that

I

�

(u

�

+ t

n

M

n

) = maxfI

�

(u

�

+ tM

n

) j t � 0g: (5.2)

The following lemmas provide estimates for the value of t

n

.

Lemma 5.2 The sequene (t

n

) � IR is bounded.
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Proof: Sine

d

dt

[I

�

(u

�

+ tM

n

)℄ = 0 for t = t

n

, it follows that

Z




jr(u

�

+ t

n

M

n

)j

N�2

r(u

�

+ t

n

M

n

) � rM

n

dx = �

Z




f(x; u

�

+ t

n

M

n

)M

n

dx:

Invoking Holder's inequality, we obtain

ku

�

+ t

n

M

n

k

N�1

� �

Z




f(x; u

�

+ t

n

M

n

)M

n

dx: (5.3)

We observe that given M > 0, from (f

3

), there exists a positive onstant C suh that

f(x; s) �M exp(�

0

jsj

N=N�1

)� C; 8 s � 0; x 2

^


: (5.4)

Thus, from (5.3)-(5.4), the de�nition of the funtion M

n

and the nonnegativity of u

�

, we

have

ku

�

+ t

n

M

n

k

N�1

� �M

Z

B(x

0

;R

n

)

exp(�

0

jt

n

M

n

j

N

N�1

)M

n

dx

� �C

Z

B(x

0

;R

n

)

M

n

dx:

Using the de�nition of the funtion M

n

one more time, we �nd

^

C > 0 suh that

ku

�

+M

n

k

N�1

� �M

Z

B(x

0

;

R

n

n

)

exp(�

0

jt

n

M

n

j

N

N�1

)M

n

dx

� �

^

CR

N

n

=

�Mw

N�1

N

N�1

N

exp

��

�

0

�

N

t

N

N�1

n

� 1

�

N logn

�

R

N

n

(log n)

N�1

N

��

^

CR

N

n

:

Hene, from the de�nition of R

n

, we get

ku

�

+M

n

k

N�1

�

�Mw

N�1

N

N�1

N

exp

��

�

0

�

N

t

N

N�1

n

� 1

�

N log n

�

� �

^

CR

N

n

: (5.5)

Sine R

n

! 0, as n!1, from (5.5), we onlude that (t

n

) � IR is a bounded sequene.

Lemma 5.2 is proved.

Lemma 5.3 There exist a positive onstant C = C(�; �

0

; N) and n

0

2 IN suh that

t

N=N�1

n

�

�

N

�

0

�

CR

N

n

(log n)

1=N

; 8 n � n

0

:
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Proof: From equation (5.1),

I

�

(u

�

) +

1

N

(

�

N

�

0

)

N�1

�

1

N

Z




jr(u

�

+ t

n

M

n

)j

N

dx� �

Z




F (x; u

�

+ t

n

M

n

) dx:

Hene,

1

N

�

�

N

�

0

�

N�1

�

t

N

n

N

� �

Z




(F (x; u

�

+ t

n

M

n

)� F (x; u

�

)) dx+

+

1

N

N�1

X

k=1

 

N

k

!

t

k

n

Z




jru

�

j

N�k

jrM

n

j

k

dx:

Furthermore,

F (x; u

�

+ t

n

M

n

)� F (x; u

�

) =

Z

t

n

M

n

0

f(x; s+ u

�

) ds � �mt

n

M

n

;

where m � 0 is given by (f

1

) and (f)

�

0

. Consequently,

1

N

�

�

N

�

0

�

N�1

�

t

N

n

N

+ �mt

n

Z




M

n

dx+

+

1

N

N�1

X

k=1

 

N

k

!

t

k

n

Z




jru

�

j

N�k

jrM

n

j

k

dx: (5.6)

On the other hand, from the de�nition of the sequene (M

n

), we have

Z




M

n

dx =

R

N

n

w

N�1

N

N�1

N

(

2(log n)

N�1

N

n

N

+

1

N

(1�

1

n

N

)

1

(log n)

1=N

)

(5.7)

Z




jru

�

j

n�k

jrM

n

j

k

dx � C(N;n; �; k)

1

(log n)

k=N

; (5.8)

where C(N;n; �; k) =

R

Nk

n

w

(1�

k

N

)

N�1

(N�k)

(1�

1

n

N�k

)jjru

�

jj

N�k

L

1

.

Using (5.6)-(5.8) and Lemma 5.2, we �nd a onstant C > 0 suh that

t

N=N�1

n

� (

�

N

�

0

)(1 �

C(

�

N

�

0

)

N�1

R

N

n

(logN)

1=n

)

1=(N�1)

:

A diret appliation of Mean Value Theorem to the funtion h(s) = (1� s)

1=(N�1)

on the

above relation provides the onlusion of Lemma 5.3.

Now, we shall use Lemmas 5.2 and 5.3 to derive the desired ontradition. From (5.5),

Lemma 5.3 and the de�nition of R

n

, we obtain
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ku

�

+ t

n

M

n

k

N�1

�

�Mw

N�1

N

N�1

N

exp

�

�

�

0

CN

�

N

�

� �

^

CR

N

n

:

Thus,

�Mw

N�1

N

N�1

N

exp

�

�

�

0

CN

�

N

�

� (ku

�

k+ t

n

)

N�1

+ �

^

CR

N

n

:

But, this ontradits Lemma 5.2, sine M an be arbitrarily hosen and R

n

! 0, as

n!1. Proposition 5.1 is proved.

6 Theorem 1.3

In this setion, after the veri�ation of some preliminary results, we prove Theorem 1.3.

Lemma 6.1 Suppose f(x; s) satis�es (f

1

), (

^

f

2

) and (f)

�

0

. Then, any (PS) sequene

(u

n

) � W

1;N

0

(
) assoiated with I

�

possesses a subsequene (u

n

i

) onverging weakly in

W

1;N

0

(
) to a solution u of (P )

�

. Furthermore,

Z




F (x; u

n

i

(x)) dx!

Z




F (x; u(x)) dx; as n!1:

Remark 6.2 We note that Lemma 6.1 also holds when f(x; s) satis�es (

^

f

2

) and (f)

�

0

for s � �R(�), and s � 0, respetively.

Proof: Consider a sequene (u

n

) �W

1;N

0

(
) suh that

(

I

�

(u

n

)! ;

I

0

�

(u

n

)! 0; as n!1:

(6.1)

Arguing as in Setion 4, we obtain that (u

n

) is a bounded sequene. Therefore, by Propo-

sition 3.1, there exists a subsequene, that we ontinue to denote by (u

n

), onverging

weakly inW

1;N

0

(
) to a solution u of (P )

�

. Moreover, we may assume that u

n

(x)! u(x),

for almost every x 2 
. From (6.1) and (f

1

), we get

ku

�

n

k

N

� ku

�

n

k

N

+ �

Z




f(x; 0)u

�

n

(x) dx � kI

0

�

(u

n

)kku

�

n

k ! 0; (6.2)

as n ! 1. Hene, u

n

(x) ! u(x) � 0, as n ! 1, for almost every x 2 
. Now, we �x

�

1

> N , and we onsider R

1

= R(�

1

) > 0 given by (

^

f

2

). From (6.1) and (

^

f

2

), we �nd

M

1

> 0 suh that
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Z

fju

n

(x)j�R

1

g

�

1

�

1

f(x; u

n

(x))u

n

(x)� F (x; u

n

(x))

�

dx �M

1

: (6.3)

Observing that jfx 2 
 j u

n

(x) � �R

1

gj ! 0, as n ! 1, from (2.3), (6.2), (6.3) and

H�older's inequality, we have

Z

fu

+

n

(x)�R

1

g

�

1

�

1

f(x; u

+

n

(x))u

+

n

(x)� F (x; u

+

n

(x))

�

dx �M

1

: (6.4)

Given � > 0, we take �

2

> �

1

suh that

�

1

M

1

�

2

��

1

� � and R

2

> maxfR

1

; R(�

2

)g, R(�

2

) given

by (

^

f

2

). Applying (6.4) and (

^

f

2

), we obtain

Z

fu

+

n

(x)�R

2

g

jF (x; u

+

n

(x))j dx � �: (6.5)

Applying Egoro�'s Theorem, we �nd E � 
 suh that jEj < � and u

n

(x) ! u(x), as

n!1, uniformly on (
 nE). Hene, from (2.3) and (6.2), we have

j

R




[F (x; u

n

(x))� F (x; u(x))℄ dx �

�

R

E

jF (x; u

+

n

(x))j dx +

R

E

jF (x; u(x))j dx + o(1); as n!1:

(6.6)

Fixed q > 1, we use (2.3) and H�older's inequality to get M

2

> 0 suh that

Z

E

jF (x; u(x))j dx �M

2

�

1

q

: (6.7)

From (6.5), (6.7) and Lesbegue's Dominated Convergene Theorem, we have

R

E

jF (x; u

+

n

(x))j dx � �+

R

E\f0�u

n

(x)�R

2

g

jF (x; u

+

n

(x))j dx �

� �+

R

E\f0�u

n

(x)�R

2

g

jF (x; u(x))j dx + o(1) �

� �+M

2

�

1

q

+ o(1); as n!1:

The above inequality, (6.6), (6.7) and the fat that � > 0 an be hosen arbitrarily provide

the onlusion of the proof of Lemma 6.1.

Considering 

�

= I

�

(u

�

) +

1

N

�

�

N

�

0

�

N�1

, with u

�

given by the proof of Theorem 1.1,

we shall verify that I

�

satis�es (PS) ondition below the level 

�

, whenever we suppose

that u = u

�

is the only possible solution of (P )

�

.

Lemma 6.3 Suppose f(x; s) satis�es (f

1

), (f

�

0

), with �

0

> 0, and (

^

f

2

). Assume that u

�

is the only possible solution of (P )

�

, for 0 < � <

�

�. Then, I

�

satis�es (PS)



, for every

 < 

�

= I

�

(u

�

) +

1

N

�

�

N

�

0

�

N�1

.
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Proof: Let (u

n

) �W

1;N

0

(
) be a sequene suh that

(

I

�

(u

n

)!  < 

�

;

I

0

�

(u

n

)! 0; as; n!1:

(6.8)

Sine u

�

is the only solution of (P )

�

, by Lemma 6.1, we may assume that u

n

* u

�

, as

n!1, weakly in W

1;N

0

(
) and

Z




F (x; u

n

(x)) dx!

Z




F (x; u

�

(x)) dx; as n!1: (6.9)

From (6.8) and (6.9), we have

ku

n

k

N

! N

�

+ �

Z




F (x; u

�

(x)) dx

�

; as n!1: (6.10)

Taking v

n

=

u

n

ku

n

k

, we get that

v

n

* v =

u

�

[N(+ d)℄

1

N

;

where d = �

R




F (x; u

�

(x)) dx. Considering � > �

0

suh that

 < I

�

(u

�

) +

1

N

�

�

N

�

�

N�1

; (6.11)

by (2.3), we �nd q > 1 and C > 0 so that

jf(x; s)j

q

� C exp

�

�jsj

N

N�1

�

; 8 x 2 
; s 2 IR:

Thus,

Z




jf(x; u

n

(x))j

q

dx � C

Z




exp

�

�ku

n

k

N

N�1

jv

n

(x)j

N

N�1

�

dx; (6.12)

for every n 2 IN . On the other hand, by (6.11),

1� kvk

N

< (

�

N

�

)

N�1

1

N(+ d)

:

Consequently, from (6.10), there exists p > 0 suh that

�

�

N

ku

n

k

N

N�1

< p <

�

1� kvk

N

�

�1

N�1

:

Hene, by Theorem 2.6 and (6.12), there exists M > 0 suh that

Z




jf(x; u

n

(x))j

q

dx �M; 8 n 2 IN:
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Applying Egoro�'s Theorem, the above inequaltiy and the argument employed in the proof

of Proposition 3.1, we obtain

Z




f(x; u

n

(x))u

n

(x) dx!

Z




f(x; u

�

(x))u

�

(x) dx; as n!1:

Therefore, by (6.8),

ku

n

k

N

! �

Z




f(x; u

�

(x))u

�

(x) dx = ku

�

k

N

:

The Lemma 6.3 is proved.

Now, we may onlude the proof of Theorem 1.3. Arguing by ontradition, we

suppose that u

�

, for 0 < � <

�

�, is the only possible solution of (P )

�

. By Lemma 6.3, I

�

satis�es (PS)



for every  < 

�

. Furthermore, by the argument employed in the proof of

Theorem 1.1, I

�

satis�es (�

1

) on B[0; �℄, for � > 0 suÆiently small. Hene, Proposition

2.2 and Remark 2.3 imply u

�

2

Æ

B

[0; �℄. Invoking Propositions 5.1 and 2.4 and Lemma 6.3,

we onlude that I

�

possesses at least two ritial points. However, this ontradits the

fat that u

�

is the only ritial point of I

�

. Theorem 1.3 is proved.

7 Theorem 1.4

In this setion we establish a proof of Theorem 1.4. The key ingredient is the veri�ation

of Proposition 5.1 under onditions (

^

f

3

) and (f

4

). To obtain suh result we exploit the

onvexity of the funtion F (x; s) and the fat that u

�

, for � 2 (0;

�

�), is a solution of (P )

�

.

First, we state a basi result that will be used in our estimates.

Lemma 7.1 Let a; b 2 IR

N

; N � 2, and h:; :i the standard salar produt in IR

N

. Then,

there exists a nonnegative polynomial p

N

(x; y) (p

2

� 0) suh that

ja+ bj

N

� jaj

N

+N jaj

N�2

ha; bi+ jbj

N

+ p

N

(jaj; jbj): (7.1)

Furthermore, the smallest exponent of the variable y of p

N

(x; y) is 3=2 for N = 3 and 2

for N � 4, and the greatest exponent of y is stritly smaller than N .

Proof: We present a proof of Lemma 7.1 in Appendix B.

Now, we are ready to establish the version of Proposition 5.1. Consider �,

^




given by (

^

f

3

). Let x

0

2

^


 and the Moser sequene assoiated M

n

= M

R

n

n

, where

R

n

= (log n)

�

(N�1)(1��)

N

2

if N � 3, and R

n

= R if N = 2, where R > 0 is hosen so

that B(x

0

; R) �

^


.
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Proposition 7.2 Suppose f(x; s) satis�es (f

1

); (f)

�

0

, with �

0

> 0, (

^

f

3

), and (f

4

). Then,

for every � 2 (0;

�

�), there exists n 2 IN suh that

maxfI

�

(u

�

+ tM

n

) j t � 0g < I

�

(u

�

) +

1

N

(

�

N

�

0

)

N�1

:

Arguing as in the proof of Proposition 5.1, we suppose by ontradition that for every

n 2 IN , (5.1) holds. As before, there exists t

n

2 IR satisfying equation (5.2). The following

two results are versions of Lemmas 5.2 and 5.3 for this new situation.

Lemma 7.3 The sequene (t

n

) � IR is bounded.

Proof: Arguing as in the proof of Lemma 5.2, we have that equation (5.3) must hold. By

(f

1

) and (f

4

), for every x 2

^


, the funtion f(x; :) is positive on [0;1) and nondereasing.

Thus, from (5.3),

ku

�

+ t

n

M

n

k

N�1

� �

Z

B(x

0

;

R

n

n

)

f(x; t

n

M

n

)M

n

dx: (7.2)

Now, by (

^

f

3

), given M > 0 there exists R

M

> 0 suh that

s

�

f(x; s) �M exp(�

o

s

N

N�1

); 8 s � R

M

; x 2

^


: (7.3)

Consequently, by the de�nition of M

n

, for n suÆiently large, we get

t

n

ku

�

+ t

n

M

n

k

N�1

� �Mw

N�1

N

N�1

exp

" 

�

0

�

N

t

N

N�1

n

� 1 +

logR

N

n

N logn

+

+

(N � 1)(1 � �) log(log n)

N log n

�

N log n

�

:

Now, from de�nition of R

n

, we have

logR

N

n

N log n

=

(� � 1)(N � 1) log(logn)

N logn

! 0; as n!1:

Thus, we onlude that (t

n

) � IR is a bounded sequene. The lemma is proved.

Lemma 7.4 There exist n

0

> 0, and a postive onstant C(�; �

0

; N) � 0 (C(�; �

0

; 2) = 0)

suh that

t

N=N�1

n

�

�

N

�

0

�

CR

N

n

(log n)

=N

; 8 n � n

0

;

where  = 3=2 if N = 3, and  = 2 if N � 4.
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Proof: From equations (5.1)-(5.2), we have

I

�

(u

�

) +

1

N

(

�

0

�

N

)

N�1

� I

�

(u

�

+ t

n

M

n

):

Consequently,

1

N

(

�

0

�

N

)

N�1

�

1

N

Z




(jru

�

+r(t

n

M

n

)j

N

� jru

�

j

N

) dx

� �

Z




(F (x; u

�

+ t

n

M

n

)� F (x; u

�

)) dx: (7.4)

Using Lemma 7.1 with a = ru

�

(x), and b = r(t

n

M

n

(x)), we have

Z




�

jru

�

+r(t

n

M

N

)j

N

� jru

�

j

N

�

dx � (7.5)

Z




�

N jru

�

j

N�2

ru

�

r(t

n

M

n

) + jr(t

n

M

n

)j

N

+ p

N

(jru

�

j; jr(t

n

M

n

)j)

�

dx:

From (7.4), (7.5), kM

n

k = 1, and the fat that u

�

is a solution of (P )

�

, we obtain

1

N

(

�

0

�

N

)

N�1

�

t

N

n

N

� �

Z




[(F (x; u

�

+ t

n

M

n

)� F (x; u

�

)� f(x; u

�

)t

n

M

n

)

+ p

N

(jru

�

j; jr(t

n

M

n

)j)℄ dx: (7.6)

Hene, from (7.6) and (f

4

), we get

1

N

(

�

0

�

N

)

N�1

�

t

N

n

N

+

Z




p

N

(jru

�

j; jr(t

n

M

n

)j) dx: (7.7)

In the partiular ase N = 2, from Lemma 7.1, we have that p

2

= 0. From (7.7), we

obtain

t

N

N�1

n

�

�

0

�

N

�

Thus, it suÆes to onsider N � 3. Using the de�nition of the funtion M

n

, we obtain

the following estimates

Z




jru

�

j

l

jrM

n

j

k

dx � kru

�

k

l

L

1

(
)

R

N

n

w

N�k

N

N�1

(N � k)(log n)

k

N

; 8 l � 0; 1 � k < N: (7.8)

Now, from (7.8), Lemma 7.3, and the de�nition of the polynomial p

N

(x; y) (See Lemma

7.1.), there exists a positive onstant C suh that

Z




p

N

(jru

�

j; jr(t

n

M

n

)j) dx �

CR

N

n

(log n)

=N

; (7.9)
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where  = 3/2, for N = 3, and  = 2, for N � 4. Hene, from (7.7), (7.9), we have

t

N

n

N

�

1

N

(

�

0

�

N

)

N�1

�

CR

N

n

(log n)



N

�

Arguing as in the proof of Lemma 5.2, we get the onlusion of Lemma 7.4.

To prove Proposition 7.2, we use Lemmas 7.3 and 7.4 to derive the desired ontradi-

tion. From (7.2) and (7.3), for n suÆiently large, we have

t

�

n

ku

�

+ t

n

M

n

k � �M

Z

B(x

0

;

R

n

N

)

exp(�

0

jt

n

M

n

j

N

N�1

)M

1��

n

dx:

Using the de�nition of M

n

and Lemma 7.4, we get

t

�

n

ku

�

+ t

n

M

n

k � �Mw

N�(1��)

N

N�1

exp

 

�NCR

N

n

logn

(log n)

=N

!

R

N

n

(log n)

(N�1)(1��)

N

; (7.10)

for N � 3, and

t

�

n

ku

�

+ t

n

M

n

k � �Mw

N�1

N

N�1

R

N

exp[(

�

0

�

N

t

N

N�1

n

� 1)N logn℄ � �Mw

N�1

N

N�1

R

N

; (7.11)

for N = 2.

From the de�nition of R

n

, we obtain

R

N

n

(log n)

(N�1)(1��)

N

= 1; and

R

N

n

log n

(log n)

=N

= 1: (7.12)

From (7.10) or (7.11) and (7.12), we have a ontradition beause the left hand sides

of (7.10) and (7.11) are bounded and M an be hosen arbitrarily large. This proves

Proposition 7.2.

Finally, we observe that the proof of Theorem 1.4 follows the same argument employed

in the proof of Theorem 1.3, with Proposition 7.2 replaing Proposition 5.1.

8 Appendix A

In this Appendix, we prove Lemma 2.5. First, we note that, without loss of generality, we

may suppose B(x

0

; R) = B(0; R) � B

R

.

Setting u

M

=

1

B

R

R

B

R

u(x) dx, we may apply Lemma 7.16 in [14℄ to �nd C = C(N) > 0

suh that

ju(x)� u

M

j � C(N)

Z

B

R

jru(y)j

jx� yj

N�1

dy; a. e. in B

R

:
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Taking v(x) = u(x)� u

M

, h 2 L

p

(B

R

), p > 1, q =

p

p�1

, and we use H�older's inequality, as

in [23℄, to obtain

R

B

R

jh(x)jjv(x)j dx �

� C(N)

"

R R

B

R

�B

R

jh(x)j

jx�yj

N�

1

q

dxdy

#

N�1

N

"

R R

B

R

�B

R

jru(x)j

N

jh(x)j

jx�yj

N�1

q

dxdy

#

1

N

:

Observing that the diameter of B

R

is equal to 2R, we get a onstant C

1

(N) > 0 suh that

Z Z

B

R

�B

R

jh(x)j

jx� yj

N�

1

q

dxdy � C

1

(N)qkhk

L

p

(B

R

)

R

N+1

q

:

Applying H�older's inequality one more time, we �nd C

2

(N) > 0 suh that

Z

B

R

jh(x)j

jx� yj

N�1

q

dx � C

2

(N)khk

L

p

(B

R

)

R

1

q

:

Combining the above inequalities, we �nd C

3

(N) > 0 suh that

Z

B

R

jh(x)jjv(x)j dx � C

3

(N)q

N�1

N

R

N

q
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L
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(B

R

)

kruk

L

N
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R

)

;

for every h 2 L

p

(B

R

). Therefore,

kvk

L

q

(B

R

)

� C

3

(N)q

N�1

N

R

N

q

kruk

L

N

(B

R

)

;

for every q > 1. Consequently, there exists C

4

(N) > 0 so that

Z

B

R

ju� u

M

j

Nq

N�1

dx � C

4

(N)q

q

R

N

;

whenever u 2 W

1;N

(B

R

), kuk

W

1;N

(B

R

)

� 1. Now, we use the power series expansion of

 (t) = e

t

and the above inequality to derive

R

B

R

exp(�ju � u

M

j

N

N�1

) dx �

� jB

R

j+ �

R

B

R

ju� u

M
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N
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dx+R
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1
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�

q

C

4

(N)

q

q

q
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;

if kuk

W

1;N

(B

R

)

� 1. Hene, there exist �̂ = �̂(N) > 0, and C

5

(N) > 0 suh that

Z

B

R

exp
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N
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M
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5

(N)R
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:
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Sine

ju

M

j � C

6

(N)R

�1

kuk

L

N

(B

R

)

; 8 u 2W

1;N

(B

R

);

for some C

6

(N) > 0, we may use the onvexity of the funtion  (t) = t

N

N�1

to obtain

C(N;R) > 0 suh that

Z

B

R

exp

�

�̂juj

N

N�1

�

dx � C(N;R);

for every u 2W

1;N

(B

R

) satisfying kuk

W

1;N

(B

R

)

� 1. Lemma 2.5 is proved.

9 Appendix B

In this Appendix we prove Lemma 7.1. First, we establish an inequality that will be

neessary in the sequel.

Lemma 9.1 Let x; y be real numbers with x > 0 and x+ y � 0. Consider k =

N

2

, where

N 2 IN , and N � 3. Then, there exist nonnegative onstants C

1

; C

2

suh that

(x+ y)

k

� x

k

+ kx

k�1

y + jyj

k

+C

1

xjyj

k�1

+ C

2

x

k�2

y

2

:

Furthermore, C

1

= C

2

= 0 if N = 3 and 4, and C

1

= 0 when N = 5.

Proof: Sine x > 0 and (x+ y)

k

= x

k

(1+ yx

�1

)

k

, it suÆes to onsider (1 + z)

k

for every

z � �1.

(i) CaseN = 3. Let g(z) = 1+

3

2

z+jzj

3

2

�(1+z)

3

2

, for every z � �1. We must show that

the funtion g is nonnegative. Diret alulation shows that g

0

(z) � 0 for every z � 0, and

g(0) = 0. When z 2 [�1; 0℄, we onsider r = jzj. Thus, g(z) = h(r) = 1�

3

2

r+r

3

2

�(1�r)

3

2

,

and h

0

(r) � 0, and h(0) = 0. Hene, g(z) � 0 for every z � �1.

(ii) Case N = 4. The proof is immediate.

(iii) Case N = 5. Consider the polynomial funtion:

P (z) = (1 + z)

5

2

� (1 +

5

2

z + jzj

5

2

):

By L'Hospital's Theorem, we have

lim

jzj!0

P (z)

z

2

=

15

8

�

Moreover, by Mean Value Theorem, we get

lim

jzj!1

P (z)

z

2

= 0:
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Consequently, there exists a nonnegative onstant C suh that

(1 + z)

k

� 1 +

5

2

z + jzj

5

2

+ Cz

2

; 8 z 2 IR:

(iv) Case N � 6. Consider the polynomial funtion:

P

k

(z) = (1 + z)

k

� (1 + kz + jzj

k

); where k =

N

2

; and z � �1:

Arguing as above, we have
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jzj!0

P

k

(z)

z

2

=

k(k � 1)

2

;

and

lim

jzj!1

P

k

(z)

jzj

k�1

= k:

Consequently, there exist nonegative onstants C

1

, C

2

suh that

(1 + z)

k

� 1 + kz + jzj

k

+ C

1

jzj

k�1

+ C

2

z

2

; 8 z 2 IR:

Lemma 7.3 is proved.

Proof of Lemma 7.1: The proof is immediate when N = 2. Thus, it suÆes to verify

the lemma for N � 3. Writing

ja+ bj

N

= (ja+ bj

2

)

N=2

= (jaj

2

+ 2ha; bi+ jbj

2

)

N=2

;

and using Lemma 9.1 with x = jaj

2

, and y = 2ha; bi+ jbj

2

, we have
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:

Applying Lemma 9.1 one more time, we obtain

ja+ bj

N

� jaj

N

+N jaj

N�2

ha; bi+ jbj

N

+ p

N

(jaj; jbj);

where

p

N
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Finally, sine C

1

= C

2

= 0 if N = 3 and 5, and C

1

= 0 when N = 5, from the

de�nition of p

N

we onlude that the smallest exponent of jbj is 3/2, for N = 3, and 2, for

N � 4, and the greatest exponent of jbj is stritly smaller than N . Lemma 7.1 is proved.
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