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x0 Introdution

Let (M; g; J

M

) be a osympleti almost Hermitian manifold and (N; h; J

N

) a

(1,2)-sympleti almost Hermitian manifold. A traditional approah for onstruting
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harmoni maps between M and N is to �nd holomorphi maps among them beause

in this ase, holomorphi maps are rather speial harmoni maps ([8℄ and [15℄).

When the target manifolds are omplex ag manifolds, an alternative

method is to study horizontal almost omplex strutures more generally, horizontal

f -strutures, sine the horizontal holomorphi maps are harmoni for all invariant

metris [2℄. For instane, Eells and Wood showed that linearly full harmoni maps

of S

2

into ICP

n

arises by homogeneous projetion from a horizontally holomorphi

map into the manifold of full ag in IC

n+1

. One of the authors established that these

maps (whih he alls Eells-Wood maps) are harmoni for all the invariants metris

[17℄.

Let F = F (n

1

; :::; n

k

;N) denote the omplex ag manifold

U(N)

U(n

1

)� :::� U(n

k

)

where n

1

+ n

2

+ ::: + n

k

= N . The results of Borel and Hirzebruh [4℄ show

that there are 2

(

k

2

)

U(N)-invariant almost omplex strutures on F . Among of

them, the natural and remarkable ones are the anonial omplex struture J

1

and

orresponding paraboli almost omplex struture J

2

[10℄ [13℄. Denote by F the

set f0 = V

0

� V

1

� ::: � V

k

= IC

N

; dimV

i

=

X

j=1

n

j

; n

j

� 1g. We say that suh F

has height k � 1 (see [9℄ for more details).

The anonial omplex struture J

1

on F is the one indued by the inlu-

sion of F into a produt of Grassmannians is given by: (V

0

� V

1

� ::: � V

k

) 7!

(V

1

; V

2

; :::; V

k

).

The orresponding paraboli almost omplex struture is obtained by ipping

the orientation of J

1

on ker d�, where � is the homogeneous projetion from F to a

omplex Grassamannian given by

(E

1

; :::; E

k

) 7!

M

i

E

2i

and (E

1

; :::; E

k

) are the legs of the ag 0 = V

0

� V

1

� ::: � V

k

= IC

N

[4℄. There

are many maps into F whih are holomorphi with respet to these almost omplex

strutures. For example, we an prove that every harmoni map S

2

! G

r

( IC

N

)
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is overed by a J

2

-holomorphi map into a suitable ag manifold [11℄, [6℄. The

Gauss maps for totally geodesi immersions of K�ahler manifolds to omplex proje-

tive spaes are J

1

-holomorphi maps into ertain ag manifolds [13℄. However, an

arbitrary almost omplex struture J on F in general, is not horizontal. (See x8 for

more details).

Notie that the height two ag manifolds admit a homogeneous metri whih is

(1,2)-sympleti for J

2

(i.e., if 
 is the orresponding K�ahler form, then d


(1;2)

= 0)

[9℄, [7℄ and [14℄. Hene in this speial ase we are able to obtain harmoni maps into

F (n

1

; n

2

; n

3

;N) from J

2

-holomorphi maps via the use of the well known Theorem

of Lihnerowiz [15℄. Hene our problem of produing harmoni maps into ag

manifolds is redued to the question of �nding a J

2

-(1,2)-sympleti metri for an

arbitrary height ag manifolds

All these left invariant metris on F have dimension

�

k

2

�

. Among of then, a

natural one is the normal metri [13℄. It is indued from the natural bi-invariant

metri on U(N) and it has the largest isometry group. But suh a metri is not

well behaved from the point of view of omplex geometry. We remark, exept in

the ase where the Lie algebra is equal to u(2), the normal metri is not K�ahler [17℄

[14℄. For the desription of invariant K�ahler-Einstein metris for see [1℄. From [8℄,

we obtain that the normal metri on F (1; 1; 1; 3) is (1,2)-sympleti. The general

ase is unknown to us.

Aording to Burstall and Salamon [10℄ U(N)-invariant almost omplex stru-

tures on F of height k�1 are 1-1 orrespondene with direted graphs with k nodes

(or equivalently k-tournaments). In a similar way we an see that eah left invariant

metri on F orresponds to assoiate a stritly positive salar to eah edge in the

tournament (see [17℄ and [2℄).

Using the k-tournament tehnique we, in this note, study Hermitian stru-

tures on ag manifolds and produe some new examples of harmoni maps into ag

manifolds. Our main results are:

1) Every sympleti or Hermitian (1,2)-sympleti omplex ag manifold must
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be a K�ahler one. (See Theorem 3.4 and Theorem 3.5).

2) Every integrable (resp. paraboli) invariant almost omplex struture on

a ag manifold admits families of dimension n-1 (resp. n) of left invariant K�ahler

(resp. (1,2)-sympleti) metris.

3) The normal metri is (1,2)-sympleti with respet to some invariant almost

omplex struture into the ag manifold F if and only if the height of F is less than

3.

4) In onstrast to 1) and 2) when the height of F is at least 3, there are two

large lasses of invariant almost omplex strutures on F whih don't admit any left

invariant (1,2)-sympleti metri. In partiular, any invariant almost omplex stru-

ture in a height three ag manifold doesn't admit a left invariant (1,2)-sympleti

if the almost omplex struture is not integrable and paraboli.

x1 introdues invariant Hermitian metris and invariant almost omplex stru-

tures on omplex ag manifolds and in x2 we investigate the K�ahler forms and their

exterior di�erentiations.

x3 establishes integrability onditions for almost omplex strutures, and gives

expliit formulas for the K�ahler metris.

x4 is devoted to desribing paraboli invariant almost omplex strutures. We

onstrut n-dimensional (1,2)-sympleti metri for eah of suh struture.

In x5 we disuss almost omplex strutures that don't admit any left-invariant

metri. A expliit desription was given for K�ahler metris and (1.2)-sympleti

metris in the ase of F(3) and F(4) in x6. In x7 we apply Gale's inequality

in [12℄ to the geometry of the invariant metri arising from the Killing form.

Several neessary remarks will be presented in x8. Finally, as appliation, in x9,

we onstrut some new harmoni maps from surfaes or ag manifolds into ag

manifolds.
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x1 Invariant almost omplex strutures and Hermitian metris on F (N)

Without loss of generality, we onsider full omplex ag manifolds F =

F (1; 1; :::1;N) := F (N) (see x8).

We indiate with ! the Maurer-Cartan form of U(N), that is dZ = !:Z, for a

unitary frame Z = (Z

1

; :::; Z

n

). At the identity of U(N), we have

dZ = ! = (!

ij

) (1.1)

and at the Lie algebra level, we write

u

�

(n)

IC

=

M

i;j

(spanf!

ij

g � spanf!

ij

g)

=

M

i

(spanf!

ii

g � spanf!

ii

g)[

M

i 6=j

(spanf!

ij

g � spanf!

ij

g)℄

= (u(1) + :::+ u(1))

� IC

� (

M

i 6=j

D

IC

ij

) (1.2)

where

D

ij

= spanfRe!

ij

; Im!

ij

g (1:3)

Eah real vetor spae D

ij

has two invariant almost omplex strutures, with its

(1,0)-type forms generated by !

ij

and !

ij

respetively. The results of Borel and

Hirzebruh [4℄ show that there are 2

(

N

2

)

U(N)-invariant almost omplex struture J

on F (N) determined by the hoie of one of these two strutures in eah D

ij

. We

see that suh a hoie de�nes a tournament J (J) with players T = f1; 2; :::; Ng.

Indeed the spae of (1; 0)-otangent vetor at the identity oset, an be identi�ed

with

m

1;0

=

Span

i!j

f!

ij

g (1.4)
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where

J (J) = fi! j; i; j = 1; :::; n with i 6= jg (1:5)

The basi referenes are Moon [16℄ and Reid and Beineke [18℄.

Now we de�ne all of left-invariant metris on F (N) (see [2℄), namely

ds

2

�

=

X

i;j

�

ij

!

ij


 !

ij

(1.6)

where

� = (�

ij

) (1.7)

is a real symmetri matrix anel satis�es that

�

ij

(

> 0 if i 6= j

= 0 if i = j

(1.8)

For an alternative desription, see for example [17℄

(1.6)-(1.8) de�nes an Hermitian metri on F (N) for eah invariant almost

omplex struture J , beause:

ds

2

�

(JX; JY ) =

X

i;j

�

ij

!

ij

(JX)!

ij

(JY )

=

X

i;j

�

ij

J!

ij

(X)J!

ij

(Y )

=

X

i;j

�

ij

"

ij

p

�1!

ij

(X)"

ij

(�

p

�1)!

ij

(Y )

=

X

i;j

�

ij

"

2

ij

!

ij


 !

ij

(X; Y ) = ds

2

�

(X; Y ) (1.9)

for any vetor �elds X and Y where

"

ij

=

8

>

<

>

:

1 i! j

�1 j ! i

0 i = j

(1.10)

It is lear that " := ("

ij

) is anti-symmetri.

x2 K�ahler forms and their exterior di�erentiations

Let

P

N

be the permutation group of N elements with identity e. For eah

� 2

P

N

, the K�ahler form 
, with respet to the U(N)-invariant almost Hermitian
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struture orresponding tournament J (J), (see (1.5)) and left-invariant Hermitian

metri ds

2

�

(see (1.6)), is de�ned by


(X; Y ) := ds

2

�

(X; JY )

=

X

i;j

�

�(i)�(j)

!

�(i)�(j)

(X)J!

�(i)�(j)

(Y )

=

X

�

�(i)�(j)

"

�(i)�(j)

(�

p

�1)!

�(i)�(j)

(X)!

�(i)�(j)

(Y )

= �

p

�1(

X

i<j

+

X

i>j

)"

�(i)�(j)

�

�(i)�(j)

[!

�(i)�(j)

(X)!

�(i)�(j)

(Y )℄

= �

p

�1

X

i<j

"

�(i)�(j)

�

�(i)�(j)

[!

�(i)�(j)

(X)!

�(i)�(j)

(Y )� !

�(j)�(i)

(X)!

�(j)�(i)

(Y )℄

= �

p

�1

X

i<j

"

�(i)�(j)

�

�(i)�(j)

[!

�(i)�(j)

(X)!

�(i)�(j)

(Y )� !

�(i)�(j)

(Y )!

�(i)�(j)

(X)℄

= �2

p

�1

X

i<j

"

�(i)�(j)

�

�(i)�(j)

!

�(i)�(j)

^ !

�(i)�(j)

(X; Y ) (2.1)

where "

ij

is de�ned in (1.10). the K�ahler form 
 is given by: It follows that


 = �2

p

�1

X

i<j

�

�(i)�(j)

!

�(i)�(j)

^ !

�(i)�(j)

(2.2)

for arbitrary � 2

P

N

and

�

ij

:= "

ij

�

ij

(2.3)

satis�es that

�

ij

+ �

ji

= 0 (2.4)

By di�erentiating (2.2) and using the Maurer-Cartan equations for U(N) one

dedues the following

p

�1

2

d
 =

X

i<j

�

�(i)�(j)

[(d!

�(i)�(j)

^ !

�(i)�(j)

� !

�(i)�(j)

^ (d!

�(i)�(j)

)℄

=

X

i<j

�

�(i)�(j)

[

X

k

!

�(i)�(k)

^ !

�(k)�(j)

^ !

�(i)�(j)

�

X

k

!

�(i)�(j)

^ !

�(i)�(k)

^ !

�(k)�(j)

℄

=

X

i<j

�

�(i)�(j)

[(!

�(i)�(i)

+ !

�(i)�(i)

) ^ !

�(i)�(j)

^ !

�(i)�(j)

+ !

�(i)�(j)

^ (!

�(j)�(j)

+ !

�(j)�(j)

) ^ !

�(i)�(j)
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+

X

k 6=i;j

!

�(i)�(k)

^ !

�(k)�(j)

^ !

�(i)�(j)

�

X

k 6=i;j

!

�(i)�(k)

^ !

�(k)�(j)

^ !

�(i)�(j)

℄

= 2

p

�1

X

i<j

�

�(i)�(j)

X

k 6=i;j

Im(!

�(i)�(k)

^ !

�(k)�(j)

^ !

�(i)�(j)

) (2.5)

Hene we get

1

4

d
 = (

X

k<i<j

+

X

i<k<j

+

X

i<j<k

)�

�(i)�(j)

� Im(!

�(i)�(k)

^ !

�(k)�(j)

^ !

�(i)�(j)

)

=

X

i<j<k

[�

�(j)�(k)

Im(!

�(j)�(i)

^ !

�(i)�(k)

^ !

�(j)�(k)

) + �

�(i)�(k)

Im(!

�(i)�(j)

^ !

�(j)�(k)

^ !

�(i)�(k)

)

+�

�(i)�(j)

Im(!

�(i)�(k)

^ !

�(k)�(j)

^ !

�(i)�(j)

)℄

=

X

i<j<k

C

�(i)�(j)�(k)

	

�(i)�(j)�(k)

(2.6)

where

C

ijk

= �

ij

� �

ik

+ �

jk

(2.7)

and

	

ijk

= Im(!

ij

^ !

ik

^ !

jk

) (2:8)

We denote by IC

p;q

the spae of omplex forms with degree (p; q) in F (N).

Then for any i; j; k we either have

	

ijk

2 IC

0;3

� IC

3;0

(2.9)

or

	

ijk

2 IC

1;2

� IC

2;1

(2.10)

x3 Integrability of invariant almost omplex strutures

An almost omplex struture is said to be integrable if it has no torsion. i.e

[JX; JY ℄ = [X; Y ℄ + J [X; JY ℄ + J [JX; Y ℄

8



for arbitrary vetor �elds X and Y . Burstall and Salamon have shown:

Theorem 3.1. ([10℄) The invariant almost omplex struutre J is integrable if and

only if J (J) is isomorphi to the anonial tournament.

Notie that the anonial N -tournament J

N

is de�ned by setting:

i! j if and only if i < j (3.1)

The following theorem was proved by Moon [16, Theorem 9℄ and two tour-

naments J and J are isomorphi if there is a map �: f1; :::; Ng ! f1; :::; Ng suh

that: s! t) f(s)! f(t) for an arbitrary s! t in J

Theorem 3.2. An N -tournament is isomorphi to the anonial tournament if and

only if there are no iruits, i.e. losed paths i

1

! i

2

! :::! i

k

! i

1

We an assoiate to eah tournament a direted digraph in whih every node

(or vertie) represents a player, and eah dominane relation is represented by an

oriented edge i � j. We improve theorem 3.2 as follows:

Lemma 3.3. An N -tournament is isomorphi to the anonial tournament if and

only if it has no 3 yles, i.e its assoiated digraph ontains no on�guration of the

type

Proof: It is suÆient to show that any N -tournament J with a iruit,

i

1

! i

2

! :::! i

`

! i

1

: (3.2)

has a 3-yle.
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For ` = 3, (3.2) is learly true. Suppose for ` = r(> 3) our onlusion is true.

We onsider now the following (r + 1)-yle

i

1

! i

2

! :::! i

r

! i

r+1

! i

1

(3.3)

Then either

i

1

! i

r

(3.4)

or

i

r

! i

1

When (3.3) holds we have a 3-yle

i

1

! i

r

! i

r+1

! i

1

otherwise we have a r-yle

i

1

! i

2

! :::! i

r

! i

1

By using indution it inludes a 3-yle. So does (3.3). (See [16℄ for more

omments).

We are now in position of desribing the equivalene ondition for invariant

almost omplex strutures on omplex ag manifolds F (N) to be integrable.

Theorem 3.4. Let J be an invariant omplex struture on F (N), and 
 the

K�ahler form with respet to any left-invariant metri. Then the (0,3) part of d
 is

zero. Therefore any Hermitian (1,2)-sympleti omplex ag manifold is a K�ahler

one.

Remark Reall that an almost Hermitian manifold is (1,2)-sympleti if the (1,2)

part of d
 is zero.
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Proof of Theorem 3.4. Suppose that, there exists a left-invariant metri ds

2

�

,

suh that

(d
)

(0;3)

6= 0 (3.5)

Aording to (2.6), one gets 	

ijk

2 IC

1;3

� IC

3;0

for some (i; j; k).

From (1.4) and (2.8) we have either

!

ij

; !

ik

; !

jk

2 m

1;0

(3.6)

or

!

ij

; !

ik

; !

jk

2 m

1;0

(3.7)

When (3.6) is true we have

i! j ! k ! i (3.8)

otherwise

i! k ! j ! i (3:9)

Combine with theorem 3.1 and lemma 3.3 we get that J is non-integrable. QED

Conversely, we have the following:

Theorem 3.5. Let 
 be the K�ahler form related to to the invariant almost

omplex struture J and the left-invariant metri ds

2

�

. If the (0,3) part of d
 is

zero then J is integrable.

Proof. Suppose that J is non-integrable. We know from theorem 3.1 and lemma

3.3, there exists 	

ijk

suh that (2.9) is true. Furthermore, either (3.8) or (3.9) holds.

Together with (1.10) we have

"

ij

= �"

ik

= "

jk

(3.10)

Combining (2.3) and (2.7) we get

C

ijk

6= 0 (3.11)

11



So we obtain that (d
)

(0;3)

6= 0 sine f!

ij

^ !

ik

^ !

jk

g are linearly independent.

QED

Summarizing we have the following:

Theorem 3.6. Let J be an invariant almost omplex struture on F (N). The

following onditions are equivalent:

(i) J is integrable;

(ii)

d
 � 0 mod (d
)

1;2

(3.12)

for some left-invariant metri dS

2

�

. (iii) (3.12) is true related to any dS

2

�

.

Now we write out the expliit formulas for K�ahler metris on F (N). Let J be

an invariant omplex struture in F (n). By theorem 3.1 there exists a permutation

� 2

P

N

suh that J (J) is given by:

i < j , �(i)! �(j) (3.13)

Combining with (1.4) and (2.8) we have

	

�(i)�(j)�(k)

2 IC

1;2

� IC

2;1

for any i < j < k.

So for any i < j < k we have:

	

�(i)�(j)�(k)

:= Im(!

�(i)�(j)

^ !

�(i)�(k)

^ !

�(j)�(k)

) 2 IC

1;2

+ IC

2;1

It follows that ds

2

�

is a K�ahler metri with respet to J if and only if

C

�(i)�(j)�(k)

= 0 for any i < j < k from (2.6). In fat, if we use (1.10), (2.3),

(2.7), and (3.12) for any i < j < k we have

�

�(i)�(j)

� �

�(i)�(k)

+ �

�(j)�(k)

(3.14)
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Put �

�(j)�(j+1)

= a

j

. If ds

2

�

is K�ahler, from (3.13), we have:

�

�(i)�(k)

= �

�(i)�(i+1)

+ �

�(i+1)�(k)

=

= �

�(i)�(i+1)

+ �

�(i+1)�(i+1)

+ �

�(i+2)�(k)

= ::: =

k�1

X

j=1

�

�(j)�(j+1)

= a

i

+ a

i+1

+ :::+ a

k�1

(3.15)

Conversely, (3.15) is the solution of C

�(i)�(j)�(k)

= 0 for any i < j < k beause

�

�(i)�(j)

+ �

�(j)�(k)

= a

i

+ ::: + a

j�1

+ a

j

+ :::+ a

k�1

= �

�(i)�(k)

(3.16)

Thus we get the following:

Theorem 3.7. Let J be an invariant omplex struture with assoiated tournament

�(i)! �(j), i < j. Then:

(i) If ds

2

�

is a K�ahler metri with respet to J , then � = (�

ij

) satis�es (3.15);

(ii) Every ds

2

�

for whih � = (�

ij

) satis�es (3.15) is a K�ahler metri with

respet to J .

x4 Paraboli invariant almost omplex strutures

Now de�ne paraboli almost omplex strutures orresponding to integrable

ones, (See x0).

De�nition 4.1. An invariant almost omplex J on F (N) is alled paraboli if there

exists a permutation � suh that J (J) is given by

�(i)! �(j) , i� j 2 2IN

or (4.1)

j � i 2 2IN � 1
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Remark. For an equivalent desription, see for example [6℄. These almost om-

plex strutures are examples of a large lass of invariant almost omplex strutures

de�ned on generalized ag manifolds (i.e. homogeneous spaes G

IC

=P where P is

a paraboli subgroups of a omplex semi-simple Lie group G

IC

) whih have been

studied by F.E. Burstall and J.H. Rawnsley (see [5℄, [7℄ and [10℄.).

The main goal of this setion is to show that eah paraboli almost omplex

struture on F (N), there exists a family of dimension N of almost Hermitian

(1,2)-sympleti metris and to write out that expliit formulas. More preisely we

have the following.

Theorem 4.2. Suppose that J is a paraboli invariant almost omplex struture on

F (N) with orresponding tournament given by (4.1). Then an almost left-invariant

metri ds

2

�

is (1,2)-sympleti related to J is and only if � satis�es that

�

�(i)�(k)

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

a

i

+ a

i+2

+ ::: + a

k�2

if k � i 2 2IN

a

k

+ a

k+2

+ ::: + a

N�1

+ a

1

+ a

3

+ ::: + a

i�2

if i; N 2 2IN � 1; k 2 2IN ;

a

k

+ a

k+2

+ ::: + a

N

+ a

2

+ a

4

+ :::+ a

i�2

if N; k 2 2IN � 1; i 2 2IN

a

k

+ a

k+2

+ ::: + a

N�2

+ a

N�1

+ a

1

+ a

3

+ :::+ a

i�2

if N;

k 2 2IN; i 2 2IN � 1;

a

k

+ a

k+2

+ ::: + a

N�3

+ a

N

+ a

2

+ a

4

+ :::+ a

i�2

if i; N 2 2IN; k 2 2IN � 1

(4.2)

where a

0

= a

N

; a

�1

= a

N�1

.

Proof. For any i < j < k

	

�(i)�(j)�(k)

2 IC

1;2

+ IC

2;1

(4.3)

if and only if one of the following is true:
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1

o

�

j � i 2 2IN; k � j 2 2IN � 1;

2

o

�

k � j 2 2IN; j � i 2 2IN � 1;

3

o

�

j � i; k � j 2 2IN .

for any i < j < k. The orresponding C

�(i)�(j)�(k)

vanishes if and only if:

(I) �

�(j)�(k)

= �

�(i)�(j)

+ �

�(i)�(k)

(4.4)

(II) �

�(i)�(j)

= �

�(i)�(k

+ �

�(j)�(k)

(4.5)

(III) �

�(i)�(k)

= �

�(i)�(j)

+ �

�(j)�(k)

(4.6)

If follows that respetively ds

2

�

is an almost Hermitian (1,2)-sympleti with re-

spet to J if and only if (4.4)-(4.6) hold, where i < j < k satisfy 1

o

�

- 3

o

�

respetively.

Put

a

j

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�

�(j)�(j+2)

if j = 1; 2; :::; N � 2

�

�(1)�(N�1)

if j = N � 1 2 2IN

�

�(1)�(N)

if j = N � 1 2 2IN � 1

�

�(2)�(N�1)

if j = N 2 2IN

�

�(2)�(N)

if j = N 2 2IN � 1

(4.7)

Assume that ds

2

�

is a (1,2)-sympleti metri with respet to J. Then:

a) If k � i 2 2IN , we have from (4.6)

�

�(i)�(k)

= �

�(i)�(i+2)

+ �

�(i+2)�(k)

= �

�(i)�(i+2)

+ �

�(i+2)�(i+4)

+ �

�(i+4)�(k)

= �

�(i)�(i+2)

+ �

�(i+2)�(i+4)

+ :::+ �

�(k�2)�(k)

= a

i

+ a

i+2

+ :::+ a

k�2

: (4.8)

b) If i; N 2 2IN � 1; k 2 2IN , then

�

�(i)�(k)

(4:4)

== �

�(1)�(i)

+ �

�(1)�(k)

(4:5)

== �

�(1)�(i)

+ �

�(1)�(N�1)

+ �

�(k)�(N�1)

(4:7)

==

(4:8)

a

1

+ a

3

+ :::+ a

i�2

+ a

N�1

+ a

k

+ a

k+2

+ :::+ a

N�3

(4.9)
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) If N; k 2 2IN � 1 and i 2 2IN

�

�(i)�(k)

(5:6)

== �

�(i)�(N)

+ �

�(k)�(N)

(5:5)

== �

�(2)�(i)

+ �

�(2)�(N)

+ �

�(k)�(N)

(4.10)

(4:8)

==

(4:9)

a

2

+ a

4

+ :::+ a

i�2

+ a

N

+ a

k

+ a

k+2

+ :::+ a

N�2

d) When N; k 2 2IN and i 2 2IN � 1 we have:

�

�(i)�(k)

(4:6)

== �

�(i)�(N)

+ �

�(k)�(N)

(4:5)

== �

�(1)�(i)

+ �

�(1)�(N)

+ �

�(k)�(N)

(4:8)

==

(4:9)

a

1

+ a

3

+ :::+ a

i�2

+ a

N�1

+ a

k

+ a

k+2

+ :::+ a

N�2

(4.11)

e) If i; N 2 2IN and k 2 2IN � 1

�

�(i)�(k)

(4:6)

== �

�(2)�(i)

+ �

�(2)�(k)

(4:5)

== �

�(2)�(i)

+ �

�(2)�(N�1)

+ �

�(k)�(N�1)

(4:8)

==

(4:9)

a

2

+ a

4

+ :::+ a

i�2

+ a

N

+ a

k

+ a

k+2

+ :::+ a

N�3

(4.12)

So (4.2) holds. Conversely, assume � = (�

ij

) satis�es (4.2). Then

1

o

�

) If j � i 2 2IN; k � j 2 2IN � 1

�

�(i)�(j)

+ �

�(i)�(k)

= a

i

+ a

i+2

+ ::: + a

j�2

+

8

>

>

>

<

>

>

>

:

a

k

+ a

k+2

+ :::+ a

N�1

+ a

1

+ a

3

+ ::: + a

i�2

(i; N 2 2IN � 1)

a

k

+ a

k+2

+ :::+ a

N�2

+ a

N�1

+ a

1

+ a

3

+ ::: + a

i�2

(i 2 2IN � 1; N 2 2IN)

a

k

+ a

k+2

+ :::+ a

N

+ a

2

+ a

4

+ ::: + a

i�2

(i 2 2IN;N 2 2IN � 1)

a

k

+ a

k+2

+ :::+ a

N�3

+ a

N

+ a

2

+ a

4

+ :::+ a

i�2

(i; N 2 2IN)

=

8

>

>

>

<

>

>

>

:

a

k

+ a

k+2

+ :::+ a

N�1

+ a

1

+ a

3

+ ::: + a

i�2

a

k

+ a

k+2

+ :::+ a

N�2

+ a

N�1

+ a

1

+ a

3

+ ::: + a

i�2

a

k

+ a

k+2

+ :::+ a

N

+ a

2

+ a

4

+ ::: + a

i�2

a

k

+ a

k+2

+ :::+ a

N�3

+ a

N

+ a

2

+ a

4

+ :::+ a

i�2

= �

�(j)�(k)
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2

o

�

) If j � i 2 2IN � 1; k � j 2 2IN , then

�

�(i)�(k)

+ �

�(j)�(k)

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

a

k

+ a

k+2

+ :::+ a

N�2

+ a

N�1

+ a

1

+ a

3

+ ::: + a

i�2

(i; N 2 2IN � 1)

a

k

+ a

k+2

+ :::+ a

N�2

+ a

N�1

+ a

1

+ a

3

+ ::: + a

i�2

(i 2 2IN � 1; N 2 2IN)

a

k

+ a

k+2

+ :::+ a

N

+ a

2

+ a

4

+ ::: + a

i�2

(i 2 2IN;N 2 2IN � 1)

a

k

+ a

k+2

+ :::+ a

N�3

+ a

N

+ a

2

+ a

4

+ ::: + a

i�2

(i; N 2 2IN)

+ a

j

+ a

j+2

+ ::: + a

k+2

=

8

>

>

>

<

>

>

>

:

a

j

+ a

j+2

+ :::+ a

N�1

+ a

1

+ a

3

+ ::: + a

i�2

a

j

+ a

j+2

+ :::+ a

N�2

+ a

N�1

+ a

1

+ a

3

+ ::: + a

i�2

a

j

+ a

j+2

+ :::+ a

N

+ a

2

+ a

4

+ ::: + a

i�2

a

j

+ a

j+2

+ :::+ a

N�3

+ a

N

+ a

2

+ a

4

+ :::+ a

i�2

= �

�(i)�(j)

3

o

�

) If j � i; k � j 2 2IN

�

�(i)�(j)

+ �

�(j)�(k)

= (a

i

+ a

i+2

+ :::+ a

j�2

) + (a

j

+ a

j+2

+ :::+ a

k�2

)

= a

i

+ a

i+2

+ :::+ a

k�2

= �

�(i)�(k)

Hene ds

2

�

is an almost Hermitian (1,2)-sympleti metri with respet to J .

x5 Almost omplex strutures without left-invariant metris

In setion x3 and x4 we saw that eah integrable (respetively paraboli)

almost omplex struture admits a family of dimension N � 1 (respetively N)

of K�ahler (respetively (1,2)-sympleti) metris. Sine the K�ahler ondition

implies the (1,2)-sympleti one, a natural question is the following one: \Is there

a (1,2)-simpleti metri for any U(N)-invariant almost omplex struture on

F (N)?". The answer is no!. In fat, we have:

Theorem 5.1. If J is a U(N)-invariant almost omplex struture whose assoiated

digraph ontains on�gurations of the following type:

17



(i) (ii)

Then J does not admit any left-invariant (1,2)-sympleti metri.

Proof: If the tournament J (J) ontains (i) then we an mark this 4-subtournament

by

for some permutation � 2

P

n

. Suppose that ds

2

�

is (1,2)-simpleti related to J .

Beause

!

�(1)�(2)

; !

�(1)�(3)

; !

�(1)�(4)

; !

�(2)�(3)

; !

�(2)�(4)

; !

�(3)�(4)

are (1,0)-forms, so

8

>

<

>

:

C

�(1)�(2)�(3)

= 0

C

�(1)�(3)�(4)

= 0

C

�(2)�(3)�(4)

= 0

(5.1)

18



From (1.10), (5.1) is equivalent to

8

>

<

>

:

�

�(1)�(2)

+ �

�(1)�(3)

� �

�(2)�(3)

= 0

��

�(1)�(3)

+ �

�(1)�(4)

+ �

�(3)�(4)

= 0

��

�(2)�(3)

� �

�(2)�(4)

+ �

�(3)�(4)

= 0

(5.2)

Hene

�

�(2)�(3)

= �

�(1)�(2)

+�

�(1)�(3)

= �

�(1)�(2)

+�

�(1)�(4)

+�

�(3)�(4)

= �

�(1)�(2)

+�

�(1)�(4)

+�

�(2)�(3)

+�

�(2)�(4)

whih implies that

�

�(1)�(2)

+ �

�(1)�(4)

+ �

�(2)�(3)

= 0:

So by using (1.8) we derive a ontradition. In a similar manner we an prove the

theorem for the type (ii). Q.E.D.

x6 Invariant almost omplex strutures on F (3) and F (4)

6.1. The full ag manifold F (3)

F (3) arries 8 invariant almost omplex strutures [11℄. From (2.6) we have

1

4

d
 = C

�(1)�(2)�(3)

	

�(1)�(2)�(3)

(6.1)

Hene either

d
 2 IC

0;3

+ IC

3;0

(6.2)

or

d
 2 IC

1;2

+ IC

2;1

(6.3)

The equation (6.2) (resp. (6.3)) means that ds

2

�

is non-integrable (1,2)-

sympleti (resp. integrable) from theorems 3.4 and 3.5. It follows that:

Theorem 6.1. Among all almost omplex strutures of F (3) 6 are integrable and

2 are paraboli. Eah left invariant metri, in partiular, the normal metri, is

(1,2)-sympleti but not sympleti for paraboli strutures.

19



The almost omplex strutures up to a sign and their left invariant metris are

listed below:

Almost omplex K�ahler metri (1,2)-sympleti

struture " � non-sympleti metri �

0

B

�

0 1 1

�1 0 1

�1 �1 0

1

C

A

0

B

�

0 �

1

�

1

+ �

2

�

1

0 �

2

�

1

+ �

2

�

2

0

1

C

A

no

0

B

�

0 1 1

�1 0 �1

�1 1 0

1

C

A

0

B

�

0 �

1

+ �

1

�

1

�

1

+ �

2

0 �

2

�

1

�

2

0

1

C

A

no

0

B

�

0 �1 1

1 0 1

�1 �1 0

1

C

A

0

B

�

0 �

1

�

2

�

1

0 �

1

+ �

2

�

2

�

1

+ �

2

0

1

C

A

no

0

B

�

0 1 �1

�1 0 1

1 �1 0

1

C

A

no

0

B

�

0 a b

a 0 

b  0

1

C

A

6.2 The full ag manifold F (4)

If we use Figure 1 below (whih is taken from [18℄ we see all the isomorphism

lasses of a 4-tournament (see [18, pg.87℄ for more details).

(i) (ii) (iii) (iv)

Figure 1

Clearly, (i) is anonial, (ii) and (iii) are listed in theorem 5.1 and (iv) is

paraboli. Together with theorem 3.4, 3.5, 4.2 and 5.1 we have
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Theorem 6.2

An almost omplex struture on F (4) is integrable (resp. paraboli if and

only if it admits a sympleti (resp. non-sympleti (1,2)-sympleti) left invariant

metri.

The integrable (resp paraboli) almost omplex strutures up to sign and the

orresponding left-invariant K�ahler (resp. non-sympleti (1,2)-sympleti) metris

are listed below:

Case 1: Integrable strutures

" �

0

B

B

B

�

0 1 1 1

�1 0 1 1

�1 �1 0 1

�1 �1 �1 0

1

C

C

C

A

0

B

B

B

�

0 �

1

�

1

+ �

2

�

1

+ �

2

+ �

3

�

1

0 �

2

�

2

+ �

3

�

1

+ �

2

�

2

0 �

3

�

1

+ �

2

+ �

3

�

2

+ �

3

�

3

0

1

C

C

C

A

0

B

B

B

�

0 1 1 1

�1 0 1 �1

�1 �1 0 �1

�1 1 1 0

1

C

C

C

A

0

B

B

B

�

0 �

1

�

1

+ �

2

+ �

3

�

1

+ �

2

�

1

0 �

2

+ �

3

�

2

�

1

+ �

2

+ �

3

�

2

+ �

3

0 �

3

�

1

+ �

2

�

2

�

3

0

1

C

C

C

A

0

B

B

B

�

0 1 1 1

�1 0 1 �1

�1 �1 0 �1

�1 1 1 0

1

C

C

C

A

0

B

B

B

�

0 �

1

+ �

2

�

1

+ �

2

+ �

3

�

1

�

1

+ �

2

0 �

3

�

2

�

1

+ �

2

+ �

3

�

3

0 �

2

+ �

3

�

1

�

2

�

2

+ �

3

0

1

C

C

C

A

0

B

B

B

�

0 1 1 1

�1 0 �1 1

�1 1 0 �1

�1 �1 1 0

1

C

C

C

A

0

B

B

B

�

0 �

1

+ �

2

�

1

�

1

+ �

2

+ �

3

�

1

+ �

2

0 �

2

�

3

�

1

�

2

0 �

2

+ �

3

�

1

+ �

2

+ �

3

�

3

�

2

+ �

3

0

1

C

C

C

A
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" = ("

ij

) � = (�

i

)

0

B

B

B

�

0 1 1 1

�1 0 �1 �1

�1 1 0 1

�1 1 �1 0

1

C

C

C

A

0

B

B

B

�

0 �

1

+ �

2

+ �

3

�

1

�

1

+ �

2

�

1

+ �

2

+ �

3

0 �

2

+ �

3

�

3

�

1

�

2

+ �

3

0 �

2

�

1

+ �

2

�

3

�

2

0

1

C

C

C

A

0

B

B

B

�

0 1 1 1

�1 0 �1 �1

�1 1 0 �1

�1 1 1 0

1

C

C

C

A

0

B

B

B

�

0 �

1

+ �

2

+ �

3

�

1

+ �

2

�

2

�

1

+ �

2

+ �

3

0 �

3

�

2

+ �

3

�

1

+ �

2

�

3

0 �

2

�

1

�

2

+ �

3

�

2

0

1

C

C

C

A

0

B

B

B

�

0 1 1 �1

�1 0 1 �1

�1 �1 0 �1

1 1 1 0

1

C

C

C

A

0

B

B

B

�

0 �

2

�

2

+ �

3

�

1

�

2

0 �

3

�

1

+ �

2

�

2

+ �

3

�

3

0 �

1

+ �
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�
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C

C

C

A
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B

B

�
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C

C
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A
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B

B

�
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�
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�
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�
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�
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�
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�
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�

3

�
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3

0

1

C

C

C

A

0

B

B

B

�
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1

C

C

C

A
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B

B

B

�
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+ �
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�

2

�

1

�
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+ �

3

0 �

3

�

1

+ �
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+ �

3

�
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�

3
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+ �
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�

1

�

1

+ �
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�

1

+ �

2

0
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C

C

C

A
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B

B

B

�
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�1 0 �1 �1

1 1 0 1

�1 1 �1 0

1

C

C

C

A

0

B

B

B

�

0 �

2

�

1

�

2

+ �

3

�

2

0 �

1

+ �

2

�

3

�

1

�

1

+ �

2

0 �

1

+ �

2

+ �

3

�

2

+ �

3

�

3

�

1

+ �

2

+ �

3

0

1

C

C

C

A

0

B

B

B

�

0 1 �1 �1

�1 0 �1 �1

1 1 0 1

1 1 �1 0

1

C

C

C

A

0

B

B

B

�

0 �

3

�

1

+ �

2

�

2

�

3

0 �

1

+ �

2

+ �

3

�

2

+ �

3

�

1

+ �

2

�

1

+ �

2

+ �

3

0 �

1

�

2

�

2

+ �

3

�

1

0

1

C

C

C

A

0

B

B

B

�

0 1 �1 �1

�1 0 �1 �1

1 1 0 �1

1 1 1 0

1

C

C

C

A

0

B

B

B

�

0 �

3

�

2

�

1

+ �

2

�

3

0 �

2

+ �

3

�

1

+ �

2

+ �

3

�

2

�

2

+ �

3

0 �

1

�

1

+ �

2

�

1

+ �

2

+ �

3

�

1

0

1

C

C

C

A
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Case 2: Paraboli almost omplex strutures

" = ("

ij

) � = (�

i

)

0

B

B

B

�

0 1 �1 1

�1 0 1 �1

1 �1 0 1

�1 1 �1 0

1

C

C

C

A

0

B

B

B

�

0 �

2

+ �

3

�

1

�

3

�

2

+ �

3

0 �

4

�

2

�

1

�

4

0 �

1

+ �

3

�

3

�

2

�

1

+ �

3

0

1

C

C

C

A

0

B

B

B

�

0 1 1 �1

�1 0 1 1

�1 �1 0 1

1 �1 �1 0

1

C

C

C

A

0

B

B

B

�

0 �

1

�

1

+ �

3

�

4

�

1

0 �

3

�

2

+ �

3

�

1

+ �

3

�

3

0 �

2

�

4

�

2

+ �

3

�

2

0

1

C

C

C

A

0

B

B

B

�

0 1 1 �1

�1 0 1 �1

�1 �1 0 1

1 1 �1 0

1

C

C

C

A

0

B

B

B

�

0 �

3

�

2

+ �

3

�

1

�

3

0 �

2

�

1

+ �

3

�

2

+ �

3

�

2

0 �

4

�

1

�

1

+ �

3

�

4

0

1

C

C

C

A

0

B

B

B

�

0 1 1 �1

�1 0 �1 1

�1 1 0 1
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1

C

C

C

A

0

B

B

B

�

0 �
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+ �

3

�

1

�

4

�

1

+ �

3
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3

�

2

�

1

�

3
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+ �

3

�

4

�

2

�

2

+ �

3

0

1

C

C

C

A
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B

B

B

�
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C

C

C

A
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B

B

B

�

0 �
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+ �

3

�

3

�

1

�
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+ �

3
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2

�

4

�

3

�

2
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+ �

3

�
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�

4

�

1

+ �

3

0

1

C

C

C

A

0

B

B

B

�
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1

C

C

C

A

0

B

B

B

�
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1

�

4

�
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+ �

3

�

1
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+ �

3

�

3

�

4

�
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3
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2

�
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3

�

3

�
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A
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x7 Normal metri

Among all Hermitian metris ds

2

�

(see x1 (1.6)) a very natural one is namely:

�

ij

= 1� Æ

ij

(7:1)

in (1.6), indued from the natural bi-invariant metri on U(N). We all it the

normal metri [13℄, [17℄, [2℄. It is well-known that the normal metri is not K�ahler

with respet to any omplex struture on F (N).

On the other hand, when N = 3 the normal metri is (1,2)-sympleti with
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respet to a paraboli almost omplex struture, see x6. In fat, we have

Theorem 7.1. The normal metri on F (N) is not (1,2)-sympleti with respet to

any almost omplex struture on F (N) if N > 3.

Proof: Put � equal to the identity in (2.6) then

1

4

d
 =

X

i<j<k

C

ijk

	

ijk

(7.2)

Hene we have

ds

2

�

is (1; 2)� sympleti , (d
)

1;2

= 0

(7:2)

()

(2:9) (2:10)

C

ijk

= 0 if 	

ijk

2 IC

1;2

+ IC

2;1

(7.3)

However from, (7.1), (2.7), (2.3) and (1.10) one gets

C

ijk

= "

ij

� "

ik

+ "

jk

6= 0 (7.4)

So (7.3) is equivalent 	

ijk

2 IC

0;3

+ IC

3;0

for any i < j < k. From

the proof of theorem 3.4 it follows that the number of 3-yles in the tourna-

ment J (J) =

�

N

3

�

. However, this is impossible beause if N > 3 from [12,

pg 7℄ and also from [14, pg.16℄ we know that the number of 3-yles in J (J)

is less then or equal to

1

24

(N

2

�N) if N is odd or

1

24

(N

3

�4N) if N is even. Q.E.D

x8 Remarks

In x5, we saw that a suÆient ondition for an almost omplex struture on

F (N) not to admit a (1,2)-sympleti metri is: its orresponding digraph ontains

4-subtournaments in theorem 5.1.

Combine with Theorem 3.7 and Theorem 4.2 we have

Proposition 8.1. Tournaments arising from integrable or paraboli almost omplex

strutures ontains no on�gurations of type (i) and (ii) in theorem 5.1.
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From Fig.1 in x6.2 the onverse of Proposition 8.1 is true if N = 4. Neverthe-

less, the following result shows that the onverse is false in general.

Proposition 8.2. There is an almost omplex struture J in F(5) suh that:

(a) J is neither integrable nor paraboli;

(b) J (J) ontains no on�guration as in Theorem 5.1;

() J has a 5-dimensional family of (1,2)-sympleti metris.

Proof: Consider the almost omplex struture J on F (5) suh that J (J) is de�ned

by

It is easy to see that the sore vetor (i.e., the number of games that eah player

won) of J (J) is (1,1,2,3,3). On the other hand, integrable (resp. paraboli) almost

omplex strutures have sore vetor (0,1,2,3,4) (resp. (2,2,2,2,2)). Furthemore

isomorphi neither tournaments have the same sore vetor. So J is neither paraboli

non paraboli.

There are �ve 4-subtournaments in J (J). The number of 3-yles in them is

0 or 2. However, the diagrams in theorem 5.1 have only one 3-yle. So we have (b)

of Proposition 8.2. Aording to the de�nition of J and (7.2) we have

1

4

[(d
)

1;2

+ (d
)

2;1

℄ = C

124

	

124

+ C

125

	

125

+

+C

134

	

134

+ C

135

	

135

+ C

145

	

145

+ C

245

	

245

+ C

345

	

345

Together with (1.10), (2.3) and (2.7) we see that ds

2

�

is (1,2)-sympleti if and
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only if (�

ij

) = � satisfy:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�

24

= �

12

+ �

14

= �

25

+ �

45

�

25

= �

12

+ �

15

�

13

= �

14

+ �

34

= �

15

+ �

35

�

14

= �

15

+ �

45

�

35

= �

34

+ �

45

It has the following solution:

0

B

B

B

B

B

B

�

0 �

1

�

2

+ �

4

+ �

5

�

2

+ �

5

�

2

�

1

0 �

3

�

1

+ �

4

+ �

5

�

1

+ �

2

�

2

+ �

4

+ �

5

�

3

0 �

4

�

4

+ �

5

�

2

+ �

5

�

1

+ �

4

+ �

5

�

4

0 �

5

�

2

�

1

+ �

2

�

4

+ �

5

�

5

0

1

C

C

C

C

C

C

A

We would like to mention that an arbitrary non-neessary - full omplex ag

manifold F = F (n

1

; :::; n

k

;N) similar Hermitian strutures that F (k). For exam-

ple, we an onsider F (1; 1; 2; 4). The family of left-invariant metris on it an be

desribed in the following way:

ds

2

�

= �

1

(!

12

!

12

+ !

21

!

21

)

+�

2

(!

13

!

13

+ !

31

!

31

+ !

14

!

14

+ !

41

!

41

)

+�

3

(!

23

!

23

+ !

32

!

32

+ !

24

!

24

+ !

42

!

42

)

Now we onsider an invariant almost omplex struture on F (1; 1; 2; 4). We

de�ne "

i

(i = 1; 2; 3) by:

"

1

=

8

>

<

>

:

1 if !

12

is a (1; 0)� form

�1 if !

12

is a (0; 1)� form

"

2

=

8

>

<

>

:

1 if !

13

and !

14

are (1; 0)� forms

�1 if !

13

and !

14

are (0; 1)� forms

"

3

=

8

>

<

>

:

1 if !

23

and !

24

are (1; 0)� forms

�1 if !

23

and !

24

are (0; 1)� forms
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Then eah hoie " = "

1

; "

2

; "

3

) determines an invariant almost omplex struture

so the assoiated K�ahler form is given by:


 = �2

p

�1[�

1

(!

12

^ !

12

) + �

2

(!

13

^ !

13

+ !

14

^ !

14

) + �

3

(!

23

^ !

23

+ !

24

^ !

24

)℄

where

�

j

= "

j

�

j

Hene it is easy to show that

1

4

d
 = (�

1

� �

2

+ �

3

)Im[(!

13

^ !

32

+ !

14

^ !

42

) ^ !

12

℄ (8.1)

Notie that (8.1) is very similar to (6.1) where � is the identity permutation. Our

�nal remarks is:

1. The anonial omplex struture J

1

on F (n

1

; :::; n

k

;N) (see x0) is not hori-

zontal if k � 3

2. The paraboli almost omplex struture J

2

is not horizontal if k � 4.

Proof. When k � 3, with respet to J

1

we have

E

1

E

3

� m

1;0

; E

3

E

2

� m

0;1

where (E

1

; :::; E

k

) denote the legs of the ag 0 = V

0

� V

1

� ::: � V

k

= IC

N

, and m

1;0

(resp. m

0;1

) the spae of (1.0) (resp. (0.1)) tangent vetors at the identity oset.

From elementary representation theory we have

[E

1

E

3

; E

3

E

2

℄ = E

1

E

2

6� u(n

1

) + u(n

2

) + u(n

3

)

Hene J

1

is not horizontal (see [2℄). When k � 4, with respet to J

2

, we have

[E

1

E

4

; E

4

E

3

℄ = E

1

E

3

6� u(n

1

) + u(n

2

) + u(n

3

) + u(n

4

):

It follows that J

2

is not horizontal if k � 4.
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x9 Harmoni maps into ag manifolds

In this setion, we onstrut new examples of harmoni maps into ag

manifolds by using the following.

Theorem 9.1. [15℄ Let � : (M; g) ! (N; h) be a �-holomorphi map between

almost Hermitian manifolds where M is osympleti and N is (1,2)-sympleti.

Then � is harmoni.

Reall that M is osympleti if its K�ahler form is o-losed, and a (1,2)-sympleti

metri is osympleti.

The ombination of theorem 9.1 with those in x3 and x4 will enable us to

produe new harmoni maps into ag manifolds.

Theorem 9.2. Let � : S

2

! G

r

( IC

N

) be a harmoni map. Then there exists a ag

manifold F = F (n

1

; :::; n

k

;N) and a harmoni map 	 : S

2

! (F; ds

2

�

) suh that

either � or �

?

is given by �

e

Æ	 where � = (�

ij

) is given in (4.2) (take �=identity)

and k � 2r + 1 is odd.

Proof: From Proposition (2.5), (2.6), Theorem (2.9) and Corollary (3.3) in [6℄,

there exists k(2 2IN � 1) � 2r + 1; F = F (n

1

; :::; n

k

;N) and a holomorphi

map 	 : S

2

! (F; J

2

) suh that either � or �

?

is given by �

e

Æ	, where J

2

the

anonial paraboli almost omplex struture and �

e

: F ! G

r

( IC

N

) is a homo-

geneous Riemannian �bration with respet to the identity permutation e. Now

our onlusion an be obtained as an immediate onsequene of Theorem 4.2 and 9.1.

Remark. It is lear that we an extend Theorem 9.2 to anynilonformal harmoni

map of order k from a onneted Riemann surfae (see [6℄ for details).

Now we are in the position of onstruting new harmoni maps between ag

manifolds.
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De�ne a homogeneous �bration � : F (n

1

; :::; n

k

; N) ! F (n

1

+

n

k

; n

2

; :::; n

k�1

; N) by:

�(E

1

; :::; E

k

) = (E

1

� E

k

; E

2

; :::; E

k�1

)

Then � is harmoni with respet to a (1,2)-sympleti metri of J

2

.

Proof: Combine and Proposition 4.2. in [6℄ Theorem 9.1 with one gets that

Proposition 9.3. Let k 2 2IN . Then � is harmoni with respet to all (1,2)-

sympleti metris of J

2

given in x4.

Remark. Using K�ahler metris on F (n

1

; :::; n

k

;N) we an onstrut new harmoni

maps into ertain ag manifolds. As an example of this fat, we onsider a

totally geodesi holomorphi immersion from a K�ahler manifold M

m

to ICP

N

,

then its Grauss map from M

m

to F (m;N � m; 1;N + 1) is harmoni with re-

spet to a 2-dimensional family of anonial K�ahler metris (See, proposition in [13℄).
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