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80 Introduction

Let (M, g, Jyr) be a cosymplectic almost Hermitian manifold and (N, h, Jy) a

(1,2)-symplectic almost Hermitian manifold. A traditional approach for constructing
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harmonic maps between M and N is to find holomorphic maps among them because
in this case, holomorphic maps are rather special harmonic maps ([8] and [15]).
When the target manifolds are complex flag manifolds, an alternative
method is to study horizontal almost complex structures more generally, horizontal
f-structures, since the horizontal holomorphic maps are harmonic for all invariant
metrics [2]. For instance, Eells and Wood showed that linearly full harmonic maps
of S% into @'P" arises by homogeneous projection from a horizontally holomorphic
map into the manifold of full flag in @"™**. One of the authors established that these
maps (which he calls Eells-Wood maps) are harmonic for all the invariants metrics

[17].

U(N)
U(ny) x ... x U(ny)
where n; + ng + ... + ny = N. The results of Borel and Hirzebruch [4] show

that there are 2(2) U(N)-invariant almost complex structures on F. Among of

Let F = F(ny,...,ng; N) denote the complex flag manifold

them, the natural and remarkable ones are the canonical complex structure J; and
corresponding parabolic almost complex structure Jo [10] [13]. Denote by F' the
set {0=VoCViC..CV,=aV;dimV; = an,nj > 1}. We say that such F

7=1
has height £ — 1 (see [9] for more details).

The canonical complex structure J; on F' is the one induced by the inclu-
sion of F' into a product of Grassmannians is given by: (Vo C V; C ... C Vi) —
(Vi, Va, ooy V).

The corresponding parabolic almost complex structure is obtained by flipping
the orientation of J; on ker d7, where 7 is the homogeneous projection from F' to a

complex Grassamannian given by
(E17 . Ek) — @ Egi
i

and (Ey, ..., Ey) are the legs of the flag 0 =V, C V; C ... C V, = @ [4]. There
are many maps into F' which are holomorphic with respect to these almost complex

structures. For example, we can prove that every harmonic map S? — G,( @)



is covered by a Jy-holomorphic map into a suitable flag manifold [11], [6]. The
Gauss maps for totally geodesic immersions of Kahler manifolds to complex projec-
tive spaces are Ji-holomorphic maps into certain flag manifolds [13]. However, an
arbitrary almost complex structure J on F' in general, is not horizontal. (See §8 for
more details).

Notice that the height two flag manifolds admit a homogeneous metric which is
(1,2)-symplectic for J, (i.e., if Q is the corresponding Kéhler form, then dQ(? = 0)
[9], [7] and [14]. Hence in this special case we are able to obtain harmonic maps into
F(nq,n9,n3; N) from Jo-holomorphic maps via the use of the well known Theorem
of Lichnerowicz [15]. Hence our problem of producing harmonic maps into flag
manifolds is reduced to the question of finding a J,-(1,2)-symplectic metric for an
arbitrary height flag manifolds

All these left invariant metrics on F' have dimension (g) Among of then, a
natural one is the normal metric [13]. It is induced from the natural bi-invariant
metric on U(N) and it has the largest isometry group. But such a metric is not
well behaved from the point of view of complex geometry. We remark, except in
the case where the Lie algebra is equal to u(2), the normal metric is not Kéhler [17]
[14]. For the description of invariant Kéhler-Einstein metrics for see [1]. From [§],
we obtain that the normal metric on F(1,1,1;3) is (1,2)-symplectic. The general
case is unknown to us.

According to Burstall and Salamon [10] U(N)-invariant almost complex struc-
tures on F' of height £ —1 are 1-1 correspondence with directed graphs with k£ nodes
(or equivalently k-tournaments). In a similar way we can see that each left invariant
metric on F' corresponds to associate a strictly positive scalar to each edge in the
tournament (see [17] and [2]).

Using the k-tournament technique we, in this note, study Hermitian struc-
tures on flag manifolds and produce some new examples of harmonic maps into flag
manifolds. Our main results are:

1) Every symplectic or Hermitian (1,2)-symplectic complex flag manifold must



be a Kéhler one. (See Theorem 3.4 and Theorem 3.5).

2) Every integrable (resp. parabolic) invariant almost complex structure on
a flag manifold admits families of dimension n-1 (resp. n) of left invariant Kéhler
(resp. (1,2)-symplectic) metrics.

3) The normal metric is (1,2)-symplectic with respect to some invariant almost
complex structure into the flag manifold F' if and only if the height of F'is less than
3.

4) In constrast to 1) and 2) when the height of F' is at least 3, there are two
large classes of invariant almost complex structures on F' which don’t admit any left
invariant (1,2)-symplectic metric. In particular, any invariant almost complex struc-
ture in a height three flag manifold doesn’t admit a left invariant (1,2)-symplectic
if the almost complex structure is not integrable and parabolic.

61 introduces invariant Hermitian metrics and invariant almost complex struc-
tures on complex flag manifolds and in §2 we investigate the Kahler forms and their
exterior differentiations.

§3 establishes integrability conditions for almost complex structures, and gives
explicit formulas for the Kahler metrics.

§4 is devoted to describing parabolic invariant almost complex structures. We
construct n-dimensional (1,2)-symplectic metric for each of such structure.

In §5 we discuss almost complex structures that don’t admit any left-invariant
metric. A explicit description was given for Kédhler metrics and (1.2)-sympletic
metrics in the case of F(3) and F(4) in §6. In §7 we apply Gale’s inequality
in [12] to the geometry of the invariant metric arising from the Killing form.
Several necessary remarks will be presented in §8. Finally, as application, in §9,
we construct some new harmonic maps from surfaces or flag manifolds into flag

manifolds.
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§1 Invariant almost complex structures and Hermitian metrics on F(N)

Without loss of generality, we consider full complex flag manifolds F' =
F(1,1,..1;N) := F(N) (see §8).

We indicate with w the Maurer-Cartan form of U(N), that is dZ = w.Z, for a
unitary frame Z = (71, ..., Z,). At the identity of U(N), we have

dZ = w = (w;3) (1.1)
and at the Lie algebra level, we write

u* (n)@ = @(span{wﬁ} ©® span{ng})

— @(span{wiz} ® span{w;i})[§(Span{wﬁ} ® span{w;; })]
= (1) + .. +u)" e (@Dﬁ) (1.2)
where
Dy = span{Rewi;, Imwzj} (1.3)

Each real vector space D;; has two invariant almost complex structures, with its

(1,0)-type forms generated by w; and w;;

Hirzebruch [4] show that there are 2(%) U (N)-invariant almost complex structure .J

respectively. The results of Borel and

on F(N) determined by the choice of one of these two structures in each D;;. We
see that such a choice defines a tournament 7 (J) with players 7' = {1,2,..., N}.
Indeed the space of (1,0)-cotangent vector at the identity coset, can be identified
with

myp = Slp_gjn {wiz} (1.4)
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where
T(J) = {i— jii,j=1,...,n with i # j} (1.5)
The basic references are Moon [16] and Reid and Beineke [18].

Now we define all of left-invariant metrics on F(N) (see [2]), namely

dsi = Z )\ijwz; (24 WZJ- (16)
]
where
is a real symmetric matrix anel satisfies that
>0 if 1#7
A”{:0 it i (18)

For an alternative description, see for example [17]
(1.6)-(1.8) defines an Hermitian metric on F(N) for each invariant almost

complex structure J, because:
2
= Z AijJwiz (X) Jwy; (Y)
i
=2 AijeiV —Lwg(X)ei; (= vV =1)wy; (V)
0
=Y e ws © wi(X,Y) = dsi(X,Y) (1.9)
(]
for any vector fields X and Y where
1 1=
0 1=y

It is clear that € := (g4;) is anti-symmetric.
§2 Kahler forms and their exterior differentiations

Let > 5 be the permutation group of N elements with identity e. For each
T € Y, the Kéhler form €2, with respect to the U(N)-invariant almost Hermitian

6



structure corresponding tournament J(.J), (see (1.5)) and left-invariant Hermitian
metric ds3 (see (1.6)), is defined by

Q(X,Y) :==dsi (X, JY)
= Z Ar ()% 75 (X)) (V)
%)

=D MiyriEr@yr ) (—V=D)w 757 (X) w5, (V)
= —V=103_ + > )eriyr(i)Ar) W, oy (e (V)]

i<y i>j
=-v-1 ; 8T(i)T(j))\T(i)T(j) I:wT(l)m (X)wT(l)T(]) (Y) - wT(g)T_z)(X)wT(g)T(z) (Y)]
i<j

= V=13 &ir(i) M) [@r a7y (KD 9r@e () (V) — @i (Ve (X))

1<j

= =2V =1)_ er(iyr() Moy ()Wr(oyr iy A Wre(y (K5 V) (2.1)

— ()
1<
where ¢;; is defined in (1.10). the Kéhler form € is given by: It follows that

Q=-2v-1 Z P (i) ()W ()7 (G VAN W) (2.2)

£ 7(4)
1<g

for arbitrary 7 € >~ 5 and
Hij = EijN\ij (2.3)
satisfies that
pij + pji = 0 (2.4)
By differentiating (2.2) and using the Maurer-Cartan equations for U(N) one
deduces the following
ng = > /‘T(i)T(j)[(dwT(i)@ N Wr@r ) ~ Wriyr) N (dwﬁm‘))]

1<J

= 2 fti) [Ek: Wror® N e N () T Ek: Crtor ) N Prtiyrm) N CrirG)

1<J

= 2 i) (@raymm + 9r@ew) A Crirm N Crae) T Yrarm N @iy

1<J



+ 2 Y N e N YreG) — 22 et N P N e )
k#i,j k#i,j

= 2v-1 Z Hor(i)r(5) Z'[m(%(i)m N Wy iy N C"Wr(y’))

Hence we get

1
10 =02+ 20+ > ) - Im(w,omm A rgry A )

k<i<j i<k<j i<j<k

= 2 Iyt I mn i A wriyiey A Wrggean) + Brr) U@ )7 A @r e A Wrae)

1<j<k
(i) MW )75 N D) A Wre)]
= > Crliye(yrt) Yr(iyr(i)r(h) (2.6)
1<j<k
where
Cijk = Ihij — ik + Wik (2.7)
and
\Ijijk = Im(wg N Wik N ij) (28)

We denote by @77 the space of complex forms with degree (p,q) in F(N).

Then for any i, j, k we either have
\Ijijk € @3 D @3Y (29)

or
Ui € 2 @' (2.10)

83 Integrability of invariant almost complex structures

An almost complex structure is said to be integrable if it has no torsion. i.e

[JX,JY] = [X,Y]+ J[X,JY]+ J[JX,Y]



for arbitrary vector fields X and Y. Burstall and Salamon have shown:

Theorem 3.1. ([10]) The invariant almost complex strucutre .J is integrable if and
only if J(.J) is isomorphic to the canonical tournament.

Notice that the canonical N-tournament Jy is defined by setting:
i — jifand only if i < j (3.1)

The following theorem was proved by Moon [16, Theorem 9] and two tour-
naments J and J are isomorphic if there is a map ¢: {1,...., N} — {1,..., N} such
that: s = ¢t = f(s) = f(t) for an arbitrary s — ¢t in J

Theorem 3.2. An N-tournament is isomorphic to the canonical tournament if and
only if there are no circuits, i.e. closed paths iy — iy — ... = i — 14

We can associate to each tournament a directed digraph in which every node
(or vertice) represents a player, and each dominance relation is represented by an
oriented edge 7 «— j. We improve theorem 3.2 as follows:
Lemma 3.3. An N-tournament is isomorphic to the canonical tournament if and
only if it has no 3 cycles, i.e its associated digraph contains no configuration of the

type

Proof: It is sufficient to show that any N-tournament J with a circuit,
1L —> 0y — oo —> 0p — 17. (3.2)

has a 3-cycle.



For ¢ = 3, (3.2) is clearly true. Suppose for ¢ = (> 3) our conclusion is true.

We consider now the following (r 4 1)-cycle

I =l = o = 0y —> Uy — 1y (3.3)
Then either
i — iy (3.4)
or
ir — 7:1

When (3.3) holds we have a 3-cycle
1 —> by —> bpy1 —> 21
otherwise we have a r-cycle
11— 0y —> oo —> 0 —> 1

By using induction it includes a 3-cycle. So does (3.3). (See [16] for more
comments).
We are now in position of describing the equivalence condition for invariant

almost complex structures on complex flag manifolds F'(N) to be integrable.

Theorem 3.4. Let J be an invariant complex structure on F(N), and € the
Kéhler form with respect to any left-invariant metric. Then the (0,3) part of df2 is
zero. Therefore any Hermitian (1,2)-symplectic complex flag manifold is a K&hler

one.

Remark Recall that an almost Hermitian manifold is (1,2)-symplectic if the (1,2)
part of df2 is zero.
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Proof of Theorem 3.4. Suppose that, there exists a left-invariant metric dsi,
such that
(d)®3) £ (3.5)

According to (2.6), one gets ¥;;, € @200 for some (i, 7, k).
From (1.4) and (2.8) we have either

WG Wik, Wi € Mo (3.6)
or
Wi, Wi Wi € Mg (3.7)
When (3.6) is true we have
i—j—k—i (3.8)
otherwise
i—k—j—i (3.9)

Combine with theorem 3.1 and lemma 3.3 we get that J is non-integrable. QED

Conversely, we have the following:
Theorem 3.5. Let {2 be the Kahler form related to to the invariant almost
complex structure J and the left-invariant metric ds%. If the (0,3) part of dQ is

zero then J is integrable.

Proof. Suppose that J is non-integrable. We know from theorem 3.1 and lemma
3.3, there exists W, ), such that (2.9) is true. Furthermore, either (3.8) or (3.9) holds.
Together with (1.10) we have

€ij = —Cik = Ejk (3-10)
Combining (2.3) and (2.7) we get
Cijk # 0 (3.11)
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So we obtain that (dQ)"®) # 0 since {w;; A wy, A w,z} are linearly independent.
QED

Summarizing we have the following:

Theorem 3.6. Let J be an invariant almost complex structure on F(N). The
following conditions are equivalent:
(i) J is integrable;
(ii)
dQ2 =0 mod (d)"? (3.12)
for some left-invariant metric dS3. (iii) (3.12) is true related to any dS3.
Now we write out the explicit formulas for Kéhler metrics on F'(IN). Let J be

an invariant complex structure in F'(n). By theorem 3.1 there exists a permutation
7 € Y such that J(J) is given by:

i<jeT(t)—T1() (3.13)
Combining with (1.4) and (2.8) we have
Vetiryri) € OF @ O

for any 1 < j < k.
So for any ¢+ < j < k we have:

Urtiyr(iyrtey = Im{W, )75 A Wrien) A o) € O+ @

It follows that dsi is a Kéhler metric with respect to J if and only if
Criyryrey = 0 for any @ < j < k from (2.6). In fact, if we use (1.10), (2.3),
(2.7), and (3.12) for any i < j < k we have

Ariyr(G) — M@yre)  Arg)re) (3.14)

12



Put A (jyr(j+1) = a;. If ds is Kéhler, from (3.13), we have:

Ar(iyr(k) = Ar(iyr(it1) T Ar@irD)r(k) =
k-1
= Ar(iyr(i+1) F Ar(r1)r(i+1) T Ar(it2yr(k) = - = D Ar()r(j+1)
j=1
=a;+ ai 1+ ... +ap (3.15)
Conversely, (3.15) is the solution of C:()r(jyr) = 0 for any i < j < k because
)\T(i)T(j) + )\T(j)’l'(k‘) =0 +...+a 1+a;+...+a 1= )\T(’i)T(k) (3.16)

Thus we get the following:

Theorem 3.7. Let J be an invariant complex structure with associated tournament
7(1) = 7(j) © i < j. Then:
(i) If ds3 is a Kdhler metric with respect to J, then A = (\;;) satisfies (3.15);
(ii) Every dsi for which A = ()\;;) satisfies (3.15) is a Kéhler metric with
respect to J.

84 Parabolic invariant almost complex structures

Now define parabolic almost complex structures corresponding to integrable
ones, (See §0).

Definition 4.1. An invariant almost complex J on F/(NNV) is called parabolic if there

exists a permutation 7 such that J(J) is given by

(i) = 71(j) & i—j€2N
or (4.1)
j—ie2N —1
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Remark. For an equivalent description, see for example [6]. These almost com-
plex structures are examples of a large class of invariant almost complex structures
defined on generalized flag manifolds (i.e. homogeneous spaces G¥/P where P is
a parabolic subgroups of a complex semi-simple Lie group G%) which have been
studied by F.E. Burstall and J.H. Rawnsley (see [5], [7] and [10].).

The main goal of this section is to show that each parabolic almost complex
structure on F(N), there exists a family of dimension N of almost Hermitian
(1,2)-symplectic metrics and to write out that explicit formulas. More precisely we

have the following.

Theorem 4.2. Suppose that .J is a parabolic invariant almost complex structure on
F(N) with corresponding tournament given by (4.1). Then an almost left-invariant

metric ds3 is (1,2)-symplectic related to .J is and only if A satisfies that
( a; + Qjq2 + ... + Qg2 if k—1€2IN

a + agyo + ... +ay_1+ a1 +az+ ... + a;_2 ifi,NE2]ZV—1,I€€2]]V;
A+ Qgyo + ... +ay + a2+ a4 + ... + a9 1fN,I€€2ﬂV—1,ZE2]ZV

ap + agyo+ ... +any_—o2+ay_1+ay +az+ ... +a;_2 if N,
ke 2IN,ic 2N —1;

ap + Qgyo + ... +an_3t+ay + a2+ as+ ... + a;_2 1fZ,N€2]]V,kE2]ZV—1
(4.2)

where ay = an,a 1 = ay_1.

Proof. For any 1 < j < k
Uiy (e € @12+ @ (4.3)

if and only if one of the following is true:
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197 —i€ 2N k—j€2N —1;
20k —j€2IN,j—i€2IN —1;
329 5 —i,k—j €2IN.

for any ¢ < j < k. The corresponding CT(i)T(j)T(k) vanishes if and only if:

(1) Ariiyrie) = Arireti) + Ar (4.4)
(1) M) = )\ A (4.5)
(I11) Mi)r(k) = Mi)m’) + ATu)T(k) (4.6)

If follows that respectively ds% is an almost Hermitian (1,2)-symplectic with re-
spect to J if and only if (4.4)-(4.6) hold, where i < j < k satisfy 12 - 39 respectively.

Put ' '
7(j)7T(4+2) if ] =1,2,...,N—2

S

m if  j=Ne2lN-1
Assume that ds% is a (1,2)-symplectic metric with respect to J. Then:
a) If k —i € 2IN, we have from (4.6)

)

i( (

(1)7(

a; = )\T(I)T(N) if j=N-1€2IN -1 (4.7)
Ar(2)r(
Ar@2)r(
(

Ariyr(k) = Ar@yr(i+2) T Ap(i+2)o(k)

= Ar(iyr(i+2) T Ar@+2)ri+4) T Ar(i+a)r(k)

= Ar(iyr(i+2) T Ar(iv2)r(ivd) T o T Ar—2)r (k)

= a;j+ Giz9+ ... + ap 2. (4.8)

b) If i, N € 2IN — 1,k € 2IN, then

—
by
S

N2

)\T(].Ti —"_)\T].
)\( +)\ N1+)\ r(N—1)

Ar(iyr(k)

—
e
o

N3

—
-
i

=)

aq —|—CL3+...+CL1'_2+CLN_1 +ak+ak+2—|—...+aN_3 (49)

A
Sl
=
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¢c) If Nk € 2IN — 1 and i € 2IN

5.6
ArGiyr(e) =

5.5

—~
=

—~
N

—~

4.8)

4.9

—~
=

Ar@yr(v) T Ark)r(n)
Ar@)r(i) T Ar@)r(v) + Ar(i)r(v) (4.10)

Az + a4+ ...+ a;_2tay+ap+ agyo+ ... T an_2

d) When N,k € 2IN and i € 2IN — 1 we have:

—~
=

4.6
Ariiyre) =
5

—
~

4.8

—~
=

4.9

—~
~

Ar(iyr(v) T Ark)r(n)
Ar()r(@) + Ar)r(v) + Artryr(v)

a1+a3+...+ai,2+a]\r,1+ak+ak+2+...+a]\r,2 (4].].)

e) If i, N € 2IN and k € 2IN — 1

4.6
Ariyr(k) =
i)

—~
=

—~
=

—~

4.8)

4.9

—~
=

Ar(2)r() T Ar(@)r(h)
Ar@)r(i) T Ar@r(v=1) T Ark)r(v—1)

ag+a4+...—|—ai,2—i—aN—l-ak—l-aHg—l-...—i-aN,g (412)

So (4.2) holds. Conversely, assume A = ()\;;) satisfies (4.2). Then
19 Ifj—i€2IN,k—je€2IN -1

Ar(iyr(G) T Ar@iyr(k) = @i + Gigpo + oo + a5 2

(ap + akio + ...
ar + Qg2 + ...
ar + Qg2 + ...

\ Qi + Ak 42 + ...

ar + Qg2 + ...
ar + Qg2 + ...
ar + Qg2 + ...
\ Qi + Af42 + ...

= Ar(G)rk)

+ay 1 +a+az+...+a; 9 (i, N €2IN — 1)

+ay o+tay 1+a+az+...+a; 2 (i €2IN—-1,N € 2IN)
+ay+as+as+...+a; o (i€ 2IN,N € 2IN — 1)
+any_3+tay +ags+ a4+ ...+ a;_o (z,NE2]N)

+any_1+a;+a3+ ...+ a; o
+an-o+an-1+a+a3+...+a;2
+any +as+ag+ ... +a; o
+any_g+tay +as+ a4+ ...+ a;_o
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29)If j —i € 2IN — 1,k — j € 2IN, then

(ap + k42 + ... tay_otay_1t+a+a3+ ... +a;_2

(i, N € 2IN — 1)
A\ A\ - ar + Qg2+ ... +ay_2 +ay_1+ay +az+ ...+ a;_9
rOr) T Ay = (i€ 2N —1,N € 2IN)

ag + Qg2+ ... +ay +ax+as + ... +a;—9 (ZE2]ZV,N€2]]V—1)
ag + agro+ ... +an_s+ay +as+ag+ ...+ a;_o (i, N € 2IN)
+ aj + a2+ ...+ Qg2
( aj+aj+2+...+aN,1+a1+a3+...+ai,2
a; + Qjpo+ ... Fanyo2t+tay1+a+az3+...+a; 2
aj+aj+2+...+aN+a2+a4+...+ai,2
. a,j+Clj_|_2—|—...+CLN_3+U,N+U,2+CL4+...+CLi_2

= Ar(i)r ()

30)If j — i,k — j € 2IN
AMrGyr) + MGyt = (@i + aipo + oo+ aj_9) + (a5 + ajp0 + ...+ ap—2)

= ; + Giy2 + oo + Qg2 = (i)

Hence ds% is an almost Hermitian (1,2)-symplectic metric with respect to J.
85 Almost complex structures without left-invariant metrics

In section §3 and §4 we saw that each integrable (respectively parabolic)
almost complex structure admits a family of dimension N — 1 (respectively N)
of Kéhler (respectively (1,2)-symplectic) metrics. Since the Kéhler condiction
implies the (1,2)-symplectic one, a natural question is the following one: “Is there
a (1,2)-simplectic metric for any U(NV)-invariant almost complex structure on

F(N)?”. The answer is no!. In fact, we have:

Theorem 5.1. If J is a U(V)-invariant almost complex structure whose associated

digraph contains configurations of the following type:
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(1) (i)

Then J does not admit any left-invariant (1,2)-symplectic metric.

Proof: If the tournament J(J) contains (i) then we can mark this 4-subtournament

by

for some permutation 7 € Y. Suppose that ds% is (1,2)-simplectic related to J.

Because

Yrr@y Yr)rE) Yrr(a) Yr@)r3) Yrr) Yee)r@

are (1,0)-forms, so

18
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From (1.10), (5.1) is equivalent to

Aryr(2) + Ar)r3) — Ar@)rz) =0
—Ar()r(3) T Aryra) + Ar@)ra) =0 (5.2)
—Ar(2)r(3) = Ar@)r(a) T Ar)r(a) = 0

Ar(2)r(3) = Ar()r(@2) FAr(1)7(3) = Ar()r@) T A D)7 (@) FA@)r(4) = Ar()r(@) TA2)r(4) T AR @)7(3) T A2 (2)r(4)

which implies that
Ar(yr(2) T Ar)r(a) + Ar@)r(s) = 0.

So by using (1.8) we derive a contradiction. In a similar manner we can prove the
theorem for the type (ii). Q.E.D.

§6 Invariant almost complex structures on F(3) and F(4)

6.1. The full flag manifold F'(3)

F(3) carries 8 invariant almost complex structures [11]. From (2.6) we have

1
192 = Cryrepe) Yryre)re) (6.1)
Hence either
dQ € ¢°° + @*° (6.2)
or
dQ € ¢ + ¢** (6.3)

The equation (6.2) (resp. (6.3)) means that ds% is non-integrable (1,2)-
symplectic (resp. integrable) from theorems 3.4 and 3.5. It follows that:

Theorem 6.1. Among all almost complex structures of F'(3) 6 are integrable and
2 are parabolic. Each left invariant metric, in particular, the normal metric, is

(1,2)-symplectic but not sympletic for parabolic structures.
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The almost complex structures up to a sign and their left invariant metrics are

listed below:

Almost complex Kéahler metric (1,2)-symplectic
structure ¢ A non-symplectic metric A
0 11 0 A1 AL+ A
-1 01 Ay 0 Ao no
-1 -1 0 AL+ A A 0
0 1 1 0 A+ N
-1 0 -1 AL+ Ao 0 Ao 1o
-1 1 0 A1 Ao 0
0 -1 1 0 A1 A2
1 0 1 A1 0 AL+ Ao no
-1 -1 0 A2 AL+ A 0
0 1 -1 0 a b
-1 0 1 no a 0 ¢
1 -1 0 b ¢ 0

6.2 The full flag manifold F(4)

If we use Figure 1 below (which is taken from [18] we see all the isomorphism

classes of a 4-tournament (see [18, pg.87] for more details).

(1) (i) (i) (iv)
Figure 1

Clearly, (i) is canonical, (ii) and (iii) are listed in theorem 5.1 and (iv) is
parabolic. Together with theorem 3.4, 3.5, 4.2 and 5.1 we have
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Theorem 6.2

An almost complex structure on F'(4) is integrable (resp. parabolic if and
only if it admits a symplectic (resp. non-symplectic (1,2)-symplectic) left invariant
metric.

The integrable (resp parabolic) almost complex structures up to sign and the

corresponding left-invariant Kéhler (resp. non-symplectic (1,2)-symplectic) metrics

are listed below:

Case 1: Integrable structures
€
0 1 1 1 0 A1 AM+A2 A+ A+ A3
-1 0 1 1 A1 0 A2 A2 + A3
-1 -1 0 1 AL+ Ao A2 0 A3
-1 -1 -1 0 AMLF A2+ A3 A+ A3 A3 0
0 11 1 0 A M+ A3 A+ XA
-1 01 -1 A1 0 A2 + A3 A2
-1 -1 0 -1 AMFA+ A3 Ao+ A3 0 A3
-1 11 0 AL+ A A2 A3 0
0 11 1 0 AM+A2 A+ A+ A3 AL
-1 01 -1 AL+ A 0 A3 A2
-1 -1 0 -1 AL+ A+ A3 A3 0 A2 + A3
-1 11 0 A1 A2 A2 + A3 0
0 1 1 1 0 AL+ Ao A1 A+ A+ A3
-1 0 -1 1 AL+ Ay 0 A2 A3
-1 1 0 -1 AL A2 0 A2 + A3
-1 -1 1 0 AL+ A2+ A A3 A2 + A3 0
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e = (&) A= (A)

01 1 1 0 VIS VAN VS VRS W W
-1 0 -1 -1 AL+ Ao+ A3 0 Ao+ A3 A3
-1 1 0 1 A1 Ao+ A3 0 Ao
-1 1 -1 0 AL+ Ao A3 Ao 0

01 1 1 0 A+ A+ A3 AL+ Ao A2
-1 0 -1 -1 AL+ Ao+ A3 0 A3 Ao+ A3
11 0 -1 A+ Ao s 0 g
-1 1 1 0 A1 Ao+ A3 Ao 0

0 1 1 —1 0 Ao Ao+ A3 A1
1 01 -1 Ay 0 A3 A+ Ao
-1 -1 0 -1 A2+ A3 A3 0 AL+ Ao+ A3

1 11 0 A1 AL+ A2 A+ A+ A3 0

0 1 1 1 0 AL+ Ao A1 AL+ Ao+ A3
-1 0 -1 1 AL+ Ay 0 Ao A3
1 1 0 1 At s 0 Ao+ g
-1 -1 -1 0 AL+ A+ A3 A3 A2+ A3 0

01 1 -1 0 Ao+ A3 Ao A
10 -1 —1 Ao + Mg 0 ) VR VRIS VIS
11 0 -1 Ay s 0 A+ Do

11 1 0 A1 AL+ A+ A3 AL+ Ao 0

01 -1 1 0 Ao A1 Ay + A3
-1 0 -1 -1 Ao 0 AL+ Ao A3

11 0 1 ) VIR RNIG 0 A+ g + Ag
-1 1 -1 0 A2+ A3 A3 AL+ A+ A3 0

01 -1 -1 0 A3 AL+ Ao Ao
10 -1 —1 s 0 M4+ A5 Ao+ g

11 0 1 AL+ A2 AL+ A+ As 0 A1

11 -1 0 Ao Ay + A3 A1 0

01 -1 -1 0 A3 Ao AL+ Ao
-1 0 -1 -1 A3 0 Ao+ A3 AL+ A+ A3

11 0 -1 Ao Ao+ A3 0 A1

11 1 0 A+ A2 A4+ A+ A3 Ay 0
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Case 2: Parabolic almost complex structures

e = (i) A= (A)

0 1 -1 1 0 Mt N
1 0 1 -1 Mo4As 0 A

1 -1 0 1 A1 Ay 0
-1 1 -1 0 A3 Ao A+ A3

0 1 1 -1 0 A1 A+ A3
-1 0 1 1 A1 0 A3
-1 -1 0 1 AL+ A3 A3 0

1 -1 -1 0 A4 A2 + A3 A2

0 1 1 -1 0 A3 A2+ A3
1 0 1 -1 s 0 Ao
-1 -1 0 1 A2 + A3 Ao 0

1 1 -1 0 A1 A+ A3 A4

0 1 1 -1 0 M+
-1 0 -1 1 AL+ A3 0 A3
-1 1 0 1 A1 A3 0

1 -1 1 0 V] Ao Ao+ A3

0 1 1 -1 0 A2+ A3 A3
1 0 -1 1 MofAs 0 Ao
-1 1 0 -1 A3 Ao 0

1 -1 1 0 A N M+

0 1 -1 1 0 A1 Ay
1 0 1 1 A 0 Doty

1 -1 0 -1 A4 A2 + A3 0
-1 -1 1 0 AL+ A3 A3 Ao
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0 1 -1 1 0 M+XA; M \
-1 0 1 -1 M+A 0 Ao A3

1 -1 0 -1 M\ Ao 0 Ao+ Xy
1 1 1 0 A\ A3 d+Ay 0

0 1 -1 1 0 X3 A At s
1 0 -1 1 A3 0 M+XA A

1 1 0 -1 A M+A 0 A\
-1 -1 1 0 Ao+ A3 Ao A 0

0 1 -1 -1 0 P VERD VIS VD
-1 0 1 1 A\ 0 M M+

1 -1 0 1 Xo+As A 0 A3

1 -1 -1 0 DY VRN VD 0

0 1 -1 —1 0 s Ao Aot s
1 0 1 1 M\ 0 M+X A

1 -1 0 -1 X M+A; 0 A3

1 -1 1 0 X+As A A3 0

0 1 -1 -1 0 X2 M +A3 A
-1 0 1 -1 Ao 0 b VD VIS W

1 -1 0 1 M+A M 0 A\

1 1 -1 0 DY VIS D 0

0 1 -1 -1 0 o s M+ s
1 0 -1 1 Ao 0 d+Xs A

1 1 0 -1 A3 d+Ay 0 AL

1 -1 1 0 M+A M A\ 0

§7 Normal metric

Among all Hermitian metrics ds3 (see §1 (1.6)) a very natural one is namely:

)\ij =1- 5ij (71)

in (1.6), induced from the natural bi-invariant metric on U(NN). We call it the
normal metric [13], [17], [2]. It is well-known that the normal metric is not Kéhler
with respect to any complex structure on F'(NV).

On the other hand, when N = 3 the normal metric is (1,2)-symplectic with
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respect to a parabolic almost complex structure, see §6. In fact, we have

Theorem 7.1. The normal metric on F(NV) is not (1,2)-symplectic with respect to
any almost complex structure on F(N) if N > 3.
Proof: Put 7 equal to the identity in (2.6) then

1

i<j<k
Hence we have
dsi is (1,2) — symplectic < (d2)"* =0

7.2
(2.9) (2.10)

However from, (7.1), (2.7), (2.3) and (1.10) one gets

Cije =0 if U € @+ @' (7.3)

Cijk =¢€ij — ik +€ji # 0 (7.4)

So (7.3) is equivalent W;;; € @% + @3° for any i < j < k. From
the proof of theorem 3.4 it follows that the number of 3-cycles in the tourna-
ment J(J) = (g) However, this is impossible because if N > 3 from [12,
pg 7] and also from [14, pg.16] we know that the number of 3-cycles in J(J)

1 1
is less then or equal to ﬂ(]\f2 —N) if N is odd or ﬁ(]\f3 —4N) if Niseven. Q.E.D
88 Remarks

In §5, we saw that a sufficient condition for an almost complex structure on
F(N) not to admit a (1,2)-symplectic metric is: its corresponding digraph contains
4-subtournaments in theorem 5.1.

Combine with Theorem 3.7 and Theorem 4.2 we have

Proposition 8.1. Tournaments arising from integrable or parabolic almost complex

structures contains no configurations of type (i) and (ii) in theorem 5.1.
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From Fig.1 in §6.2 the converse of Proposition 8.1 is true if N = 4. Neverthe-

less, the following result shows that the converse is false in general.

Proposition 8.2. There is an almost complex structure .J in F(5) such that:
(a) J is neither integrable nor parabolic;
(b) J(J) contains no configuration as in Theorem 5.1;

(c) J has a 5-dimensional family of (1,2)-symplectic metrics.

Proof: Consider the almost complex structure J on F'(5) such that J(J) is defined
by

It is easy to see that the score vector (i.e., the number of games that each player
won) of J(J) is (1,1,2,3,3). On the other hand, integrable (resp. parabolic) almost
complex structures have score vector (0,1,2,3,4) (resp. (2,2,2,2,2)). Furthemore
isomorphic neither tournaments have the same score vector. So .J is neither parabolic
non parabolic.

There are five 4-subtournaments in 7 (.JJ). The number of 3-cycles in them is
0 or 2. However, the diagrams in theorem 5.1 have only one 3-cycle. So we have (b)
of Proposition 8.2. According to the definition of J and (7.2) we have

1 1,2 2,1
Z[(dQ) CH (dQ)7T] = CraaWigg + ChrasVigs +
+C134 V134 + Ci135W135 + CrasWias + Coas Wass + C345Vas

Together with (1.10), (2.3) and (2.7) we see that ds3 is (1,2)-symplectic if and
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only if (\;;) = A satisfy:

Aog = A2+ Aig = Aos + A5
Aos = A2 + A5
A3 = Aig + Aza = Ais + Aszs
A = A5 + A5
Azs = Azq + A5

It has the following solution:

0 AL A2+ A+ A5 Ao + A5 A2
A1 0 A3 AMFA+HA AL+ A
A2+ A+ A5 A3 0 A4 Mg+ A5
)\2 + )\5 )\1 + )\4 + )\5 )\4 0 )\5
A2 AL+ Ay Ay + A5 A5 0

We would like to mention that an arbitrary non-necessary - full complex flag
manifold F' = F(ny,...,ng; N) similar Hermitian structures that F'(k). For exam-
ple, we can consider F'(1,1,2;4). The family of left-invariant metrics on it can be

described in the following way:
ds} = A (wipwr, + wyrws;)
A2 (w3 + watws + wigwyy + waw)
A3 (wasws + Wiy, + wWagws + WipWs,)
Now we consider an invariant almost complex structure on F(1,1,2;4). We
define ¢; (i = 1,2, 3) by:

1 if w;z isa (1,0) — form

g1 =

-1 if w3 isa (0,1) — form

1 if w;z and wyg are (1,0) — forms
E9 =

—1 if w3 and w7 are (0,1) — forms

1 if wyy and wyy are (1,0) — forms
g3 =

—1 if wyy and wyg are (0,1) — forms
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Then each choice € = £1,¢9,3) determines an invariant almost complex structure

so the associated Kéhler form is given by:
0= =2V =1 (wg AN wrp) + pa(wiz A wiz +wig A wry) + pis(wag A wy + wyg A wyy)]

where
115 = €A

Hence it is easy to show that
1
792 = (= gz + ) Im(wig A wyz + wig A wgg) Awr) (8.1)

Notice that (8.1) is very similar to (6.1) where 7 is the identity permutation. Our
final remarks is:

1. The canonical complex structure .J; on F(ny,...,ng; N) (see §0) is not hori-
zontal if kK > 3

2. The parabolic almost complex structure .J, is not horizontal if £ > 4.

Proof. When k£ > 3, with respect to J; we have
E]_Eg C ml’o, E3E2 C mo’l

where (E1, ..., E}) denote the legs of the flag 0 =V, C V; C ... C V, = @V, and m!?°
(resp. m%') the space of (1.0) (resp. (0.1)) tangent vectors at the identity coset.

From elementary representation theory we have
[E\E3, EsEy] = E1Ey ¢ u(ny) + u(ngy) + u(ns)
Hence J; is not horizontal (see [2]). When k£ > 4, with respect to Jo, we have
[E\Ey, ELE3) = E1E3 ¢ u(ni) + u(ng) + u(ng) + u(ng).

It follows that Jy is not horizontal if k& > 4.
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89 Harmonic maps into flag manifolds

In this section, we construct new examples of harmonic maps into flag

manifolds by using the following.

Theorem 9.1. [15] Let ¢ : (M,g) — (N,h) be a £-holomorphic map between
almost Hermitian manifolds where M is cosymplectic and N is (1,2)-symplectic.
Then ¢ is harmonic.
Recall that M is cosymplectic if its Kéhler form is co-closed, and a (1,2)-symplectic
metric is cosymplectic.

The combination of theorem 9.1 with those in §3 and §4 will enable us to

produce new harmonic maps into flag manifolds.

Theorem 9.2. Let ¢ : S? — G,(@'V) be a harmonic map. Then there exists a flag
manifold F = F(ny,...,ng; N) and a harmonic map ¥ : S? — (F,ds%) such that
either ¢ or ¢ is given by m, o U where A = ()\;;) is given in (4.2) (take T=identity)
and k£ < 2r +1 is odd.

Proof: From Proposition (2.5), (2.6), Theorem (2.9) and Corollary (3.3) in [6],
there exists k(€ 2IN — 1) < 2r + 1,F = F(ny,...,ng; N) and a holomorphic
map ¥ : S? — (F,.J,) such that either ¢ or ¢ is given by m, o ¥, where J, the
canonical parabolic almost complex structure and 7, : F' — G,.( @) is a homo-
geneous Riemannian fibration with respect to the identity permutation e. Now

our conclusion can be obtained as an immediate consequence of Theorem 4.2 and 9.1.

Remark. It is clear that we can extend Theorem 9.2 to anynilconformal harmonic
map of order k£ from a connected Riemann surface (see [6] for details).
Now we are in the position of constructing new harmonic maps between flag

manifolds.
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Define a homogeneous fibration = :  F(ny,..,ng,N) —  F(np +

N, Nay oy N1, N) by:
7T(E1, vy Ek) = (E1 D Ek, Eg, vy Ek—l)
Then 7 is harmonic with respect to a (1,2)-symplectic metric of J,.
Proof: Combine and Proposition 4.2. in [6] Theorem 9.1 with one gets that

Proposition 9.3. Let £ € 2IN. Then 7 is harmonic with respect to all (1,2)-

symplectic metrics of J, given in §4.

Remark. Using Kéhler metrics on F'(ny, ..., ng; N) we can construct new harmonic
maps into certain flag manifolds. As an example of this fact, we consider a
totally geodesic holomorphic immersion from a Kihler manifold M™ to @'PY,
then its Grauss map from M™ to F(m,N — m,1; N + 1) is harmonic with re-

spect to a 2-dimensional family of canonical Kahler metrics (See, proposition in [13]).
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