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Abstra
t

A bounded-level-set result for a reformulation of the bounded non-

linear 
omplementarity problem proposed re
ently by Fa

hinei, Fis-


her and Kanzow is proved. An appli
ation of this result to the (un-

bounded) nonlinear 
omplementarity problem is suggested.
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1 Main results

The Bounded Nonlinear Complementarity Problem (BNCP) is the Varia-

tional Inequality Problem asso
iated to the 
ompa
t box


 = fx 2 IR

n

j ` � x � rg: (1)

Therefore, given F : IR

n

! IR

n

, F 2 C

1

(IR

n

) the BNCP 
onsists on �nding

x 2 
 su
h that

hF (z)� F (x); z � xi � 0 for all z 2 
: (2)

The Nonlinear Complementarity Problem (NCP) is the problem (2) when


 = fx 2 IR

n

j x � 0g.

Fa

hinei, Fis
her and Kanzow [1℄ proposed a reformulation of the BNCP

as the following optimization problem:

Minimize kF (x)� u+ vk

2

+

n

X

i=1

'(u

i

; x

i

� `

i

)

2

+

n

X

i=1

'(v

i

; r

i

� x

i

)

2

; (3)

where k � k is the Eu
lidian norm and ' is the Fis
her-Burmeister fun
tion

'(a; b) =

p

a

2

+ b

2

� a� b for all a; b 2 IR:

From now on we 
all f(x; u; v) the obje
tive fun
tion of (3). It is easy

to see that f(x

�

; u

�

; v

�

) = 0 if, and only if, x

�

is a solution of the BNCP.

In [1℄ it was proved that if (x

�

; u

�

; v

�

) is a stationary point of f and F

0

(x

�

)

is a P

0

-matrix it ne
essarily holds that f(x

�

; u

�

; v

�

) = 0. The �rst result of

this note will be to prove that, below a 
riti
al value, the level sets of f are

bounded.

Theorem 1. Assume that �1 < `

i

< r

i

<1 for all i = 1; : : : ; n and

� < (r

i

� `

i

)=

p

2 for all i = 1; : : : ; n:

Then the set S � f(x; u; v) 2 IR

3n

j f(x; u; v) � �

2

g is bounded.

Proof. Let (x; u; v) be su
h that f(x; u; v) � �

2

. Suppose that x

i

� `

i

< ��.

Then

� �

q

u

2

i

+ �

2

+ �� u

i

<

q

u

2

i

+ (x

i

� `

i

)

2

� (x

i

� `

i

)� u

i

2



= '(u

i

; x

i

� `

i

):

This implies that f(x; u; v) > �

2

. Therefore, if (x; u; v) 2 S we ne
essarily

have that

x

i

� `

i

� � for all i = 1; : : : ; n: (4)

The same reasoning allows us to prove that

u

i

� ��; (5)

x

i

� r

i

� �; (6)

and

v

i

� �� (7)

for all i = 1; : : : ; n.

Suppose now that S is unbounded. Therefore S 
ontains an unbounded

sequen
e (x

k

; u

k

; v

k

). By (4-7) this implies that there exists i 2 f1; : : : ; ng

su
h that u

k

i

!1 or there exists i 2 f1; : : : ; ng su
h that v

k

i

!1. Consider

the �rst 
ase. We have that

�

2

� f(x; u; v) � ([F (x

k

)℄

i

� u

k

i

+ v

k

i

)

2

:

So,

� � j[F (x

k

)℄

i

� u

k

i

+ v

k

i

j � ju

k

i

j � jv

k

i

j � j[F (x

k

)℄

i

j:

Sin
e j[F (x

k

)℄

i

j is bounded, this implies that v

k

i

! 1. Analogously, if we

assume v

k

i

!1 we ne
essarily obtain that u

k

i

!1 too. So, we 
an assume

that there exists i 2 f1; : : : ; ng su
h that both u

k

i

!1 and v

k

i

!1. Taking

an appropriate subsequen
e, assume, without loss of generality, that fx

k

i

g is


onvergent, say, x

k

i

! x

�

i

. Therefore,

lim

k!1

q

(u

k

i

)

2

+ (x

k

i

� `

i

)

2

� u

k

i

= lim

k!1

[

q

(u

k

i

)

2

+ (x

k

i

� `

i

)

2

� u

k

i

℄[

q

(u

k

i

)

2

+ (x

k

i

� `

i

)

2

+ u

k

i

℄

[

q

(u

k

i

)

2

+ (x

k

i

� `

i

)

2

+ u

k

i

℄

= lim

k!1

(u

k

i

)

2

+ (x

k

i

� `

i

)

2

� (u

k

i

)

2

[

q

(u

k

i

)

2

+ (x

k

i

� `

i

)

2

+ u

k

i

℄

= 0:

So,

lim

k!1

q

(u

k

i

)

2

+ (x

k

i

� `

i

)

2

� (x

k

i

� `

i

)� u

k

i

= `

i

� x

�

i

: (8)
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Analogously,

lim

k!1

q

(v

k

i

)

2

+ (r

i

� x

k

i

)

2

� (r

i

� x

k

i

)� v

k

i

= x

�

i

� r

i

: (9)

But

�

2

� f(x

k

; u

k

; v

k

)

� '(u

k

i

; x

k

i

� `

i

)

2

+ '(v

k

i

; r

i

� x

k

i

)

2

= [

q

(u

k

i

)

2

+ (x

k

i

� `

i

)

2

�(x

k

i

�`

i

)�u

k

i

℄

2

+[

q

(v

k

i

)

2

+ (r

i

� x

k

i

)

2

�(r

i

�x

k

i

)�v

k

i

℄

2

:

Therefore, by (8-9),

�

2

� (x

�

i

� `

i

)

2

+ (x

�

i

� r

i

)

2

: (10)

But the minimum value of the right hand side of (10) is (r

i

� `

i

)

2

=2. So, by

the de�nition of �, we arrived to a 
ontradi
tion. 2

Counterexample

In this 
ounterexample, we show that the previous result is sharp. That

is to say, the level set de�ned by f(x; u; v) � �

2


an be unbounded, where

� = min f(r

i

� `

i

)=

p

2; i = 1; : : : ; ng:

De�ne F (x) = "x (" � 0) and 
 = fx 2 IR j 0 � x � 1g. So,

f(x; u; v) = ("x� u+ v)

2

+ '(u; x)

2

+ '(v; 1� x)

2

:

The sequen
e fy

k

� (1=2; k; k); k = 0; 1; 2; : : :g is unbounded. However,

f(y

k

) = ("=2� k + k)

2

+ 2'(k; 1=2)

2

= "

2

=4 + 2(

q

1=4 + k

2

� 1=2� k)

2

� "

2

=4 + 1=2 = "

2

=4 + �

2

:

2 Appli
ation to the NCP

The Fis
her-Burmeister fun
tion has been applied by many authors to the

nonlinear 
omplementarity problem NCP by means of the reformulation

Minimize

m

X

i=1

'(x

i

; [F (x)℄

i

)

2

: (11)
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See the referen
es of [1℄. If x

�

is a stationary point of (11) and F

0

(x

�

) is

a P

0

-matrix, it 
an be ensured that x

�

is a solution of the NCP. If F is

a uniform P�fun
tion it 
an also be proved that the obje
tive fun
tion of

(11) has bounded level sets, but this property 
ould not hold under weaker

assumptions.

In fa
t, 
onsider the NCP de�ned by F (x) = 1 � e

�x

. This fun
tion is

stri
tly monotone and 0 is a solution. However the level sets of the fun
tion

(11) are not bounded. In fa
t, for all x > 0,

'(x; F (x))

2

=

�

q

x

2

+ (1� e

�x

)

2

� (x+ 1� e

�x

)

�

2

=

0

�

�2x(1� e

�x

)

q

x

2

+ (1� e

�x

)

2

+ (x + 1� e

�x

)

1

A

2

=

4(1� e

�x

)

2

 

r

1 +

�

1�e

�x

x

�

2

+ (1 +

1�e

�x

x

)

!

2

� 1:

So, it is natural to ask whether the bounded-level-set result proved in the

previous se
tion 
an help to establish bounded-level-set reformulations of the

NCP using the Fis
her- Burmeister fun
tion.

Let us de�ne L = (L; : : : ; L) 2 IR

n

and 
onsider the box




L

= fx 2 IR

n

j 0 � x � Lg:

Obviously, the NCP is naturally 
onne
ted with the BNCP de�ned by F

and 


L

. In the Fa

hinei-Fis
her-Kanzow reformulation, the 
orresponding

obje
tive fun
tion is

f(x; u; v) = kF (x)� u+ vk

2

+

n

X

i=1

'(u

i

; x

i

)

2

+

n

X

i=1

'(v

i

; L� x

i

)

2

: (12)

Clearly,

f(0; 0; 0) = kF (0)k

2

:

Therefore, if we take L > kF (0)k

2

=2, Theorem 1 guarantees that

fx 2 IR

n

j f(x; u; v) � f(0; 0; 0)g is bounded :
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This implies that standard un
onstrained minimization algorithms, whi
h

usually generate sequen
es satisfying f(x

k+1

; u

k+1

; v

k+1

) � f(x

k

; u

k

; v

k

) for

all k will generate bounded sequen
es, if (x

0

; u

0

; v

0

) = (0; 0; 0). As a 
onse-

quen
e, algorithms of that 
lass will �nd stationary points, whi
h, under the

assumptions of [1℄, will be solutions of the BNCP de�ned by F and 


L

. So,

in order to solve the NCP we only need to guarantee that solutions of this

BNCP are solutions of the NCP. An answer to this question is given in the

following theorem.

Theorem 2. Assume that there exists a solution of the NCP that belongs to




L

and that, for all x; y 2 IR

n

,

([F (x)℄

i

� [F (y)℄

i

)(x

i

� y

i

) � 0 for all i = 1; : : : ; n

implies that

([F (x)℄

i

� [F (y)℄

i

)(x

i

� y

i

) = 0 for all i = 1; : : : ; n:

Then, every stationary point of f (de�ned by (12)) is a solution of the NCP.

Proof. Let x

�

be a stationary point of f . The 
ondition imposed to F in the

hypothesis implies that

max

1�i�n

f(F

i

(x)� F

i

(y))(x

i

� y

i

)g � 0:

Therefore, by Theorem 5.8 of [2℄, F is a is P

0

-fun
tion and F

0

(x) is a P

0

-

matrix for all x 2 IR

n

.

In parti
ular, F

0

(x

�

) is a P

0

�matrix. So, by [1℄, x

�

is a solution of the

BNCP de�ned by 


L

. That is:

[F (x

�

)℄

i

� 0 if x

�

i

= 0; (13)

[F (x

�

)℄

i

= 0 if 0 < x

�

i

< L (14)

and

[F (x

�

)℄

i

� 0 if x

�

i

= L: (15)

Assume that �x is a solution of the NCP. This implies that

[F (�x)℄

i

� 0 if �x

i

= 0 and [F (�x)℄

i

= 0 if �x

i

> 0: (16)
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By (13){(15) and (16) we have that

([F (x

�

)℄

i

� [F (�x)℄

i

)(x

�

i

� �x

i

) � 0 (17)

for all i = 1; : : : ; n.

Let us de�ne

I = fi 2 f1; : : : ; ng j [F (x

�

)℄

i

< 0; x

�

i

= Lg: (18)

Assume, by 
ontradi
tion, that I 6= ;. Then there exists j 2 f1; : : : ; ng tal

que [F (x

�

)℄

j

< 0 and x

�

j

= L. Therefore,

0 > [F (x

�

)℄

j

x

�

j

� [F (x

�

)℄

j

x

�

j

� [F (x

�

)℄

j

�x

j

� [F (�x)℄

j

x

�

j

+ [F (�x)℄

j

�x

j

= ([F (x

�

)℄

j

� [F (�x)℄

j

)(x

�

j

� �x

j

): (19)

But (17) and (19) 
ontradi
t the hypothesis of the theorem.

Therefore, I = ;. Sin
e x

�

is a solution of the BNCP, this implies that

x

�

is a solution of the NCP, as we wanted to prove. 2

Remarks. In the linear 
ase (F (x) = Mx + q) the hypothesis of The-

orem 2 means that the matrix M is 
olumn-suÆ
ient. If F is monotone

(hF (x)� F (y); x� yi � 0 for all x; y 2 IR

n

) or, even, if F is a P -fun
tion

(max

1�i�n

f(F

i

(x) � F

i

(y))(x

i

� y

i

)g > 0) this hypothesis holds, but the re-


ipro
al is not true. For example, the matrix

M =

"

0 �3

0 1

#

is 
olumn-suÆ
ient, but not positive semide�nite, therefore F is not mono-

tone. Moreover, M is not a P -matrix either, so F is not a P -fun
tion.

Finally, let us show that the hypothesis of this theorem is sharp and


annot be relaxed to, say, P

0

-fun
tion. In fa
t, 
onsider the following matrix

M =

"

0 0

�3 1

#

; q =

"

0

0

#

This is a P

0

-matrix, but F (x) � Mx + q does not verify the hypothesis of

Theorem 2, sin
e M is not 
olumn-suÆ
ient. Obviously, (0; 0) is a solution

of the NCP. However, taking L = 2, we have that all the points of the form

(t; 2) for t 2 [

2

3

; 2℄, are solutions of the BNCP de�ned by F (x) = Mx + q,

` = 0; r = L. So, these points are stationary points of the asso
iated opti-

mization problem but, 
learly, they are not solutions of the NCP.
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3 Con
lusions

When, for some nonlinear programming reformulation of a 
omplementarity

or variational inequality problem, it is known that every stationary point is

a solution, it 
an be 
onje
tured that standard minimization algorithms will

be e�e
tive for �nding a solution, sin
e these algorithms generally �nd, in

the limit, stationary points. However, at least from the theoreti
al point of

view, the e�e
tiveness of the minimization approa
h is not proved unless,

eventually, a bounded level set 
an be rea
hed. Otherwise there 
ould be no


onvergent subsequen
e at all. In this paper we proved that a reformulation of

nonlinear 
omplementarity problems satis�es the desired requirements under

weaker 
onditions than the ones established before.
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