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Abstrat
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1 Main results

The Bounded Nonlinear Complementarity Problem (BNCP) is the Varia-

tional Inequality Problem assoiated to the ompat box


 = fx 2 IR

n

j ` � x � rg: (1)

Therefore, given F : IR

n

! IR

n

, F 2 C

1

(IR

n

) the BNCP onsists on �nding

x 2 
 suh that

hF (z)� F (x); z � xi � 0 for all z 2 
: (2)

The Nonlinear Complementarity Problem (NCP) is the problem (2) when


 = fx 2 IR

n

j x � 0g.

Fahinei, Fisher and Kanzow [1℄ proposed a reformulation of the BNCP

as the following optimization problem:

Minimize kF (x)� u+ vk

2

+

n

X

i=1

'(u

i

; x

i

� `

i

)

2

+

n

X

i=1

'(v

i

; r

i

� x

i

)

2

; (3)

where k � k is the Eulidian norm and ' is the Fisher-Burmeister funtion

'(a; b) =

p

a

2

+ b

2

� a� b for all a; b 2 IR:

From now on we all f(x; u; v) the objetive funtion of (3). It is easy

to see that f(x

�

; u

�

; v

�

) = 0 if, and only if, x

�

is a solution of the BNCP.

In [1℄ it was proved that if (x

�

; u

�

; v

�

) is a stationary point of f and F

0

(x

�

)

is a P

0

-matrix it neessarily holds that f(x

�

; u

�

; v

�

) = 0. The �rst result of

this note will be to prove that, below a ritial value, the level sets of f are

bounded.

Theorem 1. Assume that �1 < `

i

< r

i

<1 for all i = 1; : : : ; n and

� < (r

i

� `

i

)=

p

2 for all i = 1; : : : ; n:

Then the set S � f(x; u; v) 2 IR

3n

j f(x; u; v) � �

2

g is bounded.

Proof. Let (x; u; v) be suh that f(x; u; v) � �

2

. Suppose that x

i

� `

i

< ��.

Then

� �

q

u

2

i

+ �

2

+ �� u

i

<

q

u

2

i

+ (x

i

� `

i

)

2

� (x

i

� `

i

)� u

i

2



= '(u

i

; x

i

� `

i

):

This implies that f(x; u; v) > �

2

. Therefore, if (x; u; v) 2 S we neessarily

have that

x

i

� `

i

� � for all i = 1; : : : ; n: (4)

The same reasoning allows us to prove that

u

i

� ��; (5)

x

i

� r

i

� �; (6)

and

v

i

� �� (7)

for all i = 1; : : : ; n.

Suppose now that S is unbounded. Therefore S ontains an unbounded

sequene (x

k

; u

k

; v

k

). By (4-7) this implies that there exists i 2 f1; : : : ; ng

suh that u

k

i

!1 or there exists i 2 f1; : : : ; ng suh that v

k

i

!1. Consider

the �rst ase. We have that

�

2

� f(x; u; v) � ([F (x

k

)℄

i

� u

k

i

+ v

k

i

)

2

:

So,

� � j[F (x

k

)℄

i

� u

k

i

+ v

k

i

j � ju

k

i

j � jv

k

i

j � j[F (x

k

)℄

i

j:

Sine j[F (x

k

)℄

i

j is bounded, this implies that v

k

i

! 1. Analogously, if we

assume v

k

i

!1 we neessarily obtain that u

k

i

!1 too. So, we an assume

that there exists i 2 f1; : : : ; ng suh that both u

k

i

!1 and v

k

i

!1. Taking

an appropriate subsequene, assume, without loss of generality, that fx

k

i

g is

onvergent, say, x

k

i

! x

�

i

. Therefore,

lim

k!1

q

(u

k

i

)

2

+ (x

k

i

� `

i

)

2

� u

k

i

= lim

k!1

[

q

(u

k

i

)

2

+ (x

k

i

� `

i

)

2

� u

k

i

℄[

q

(u

k

i

)

2

+ (x

k

i

� `

i

)

2

+ u

k

i

℄

[

q

(u

k

i

)

2

+ (x

k

i

� `

i

)

2

+ u

k

i

℄

= lim

k!1

(u

k

i

)

2

+ (x

k

i

� `

i

)

2

� (u

k

i

)

2

[

q

(u

k

i

)

2

+ (x

k

i

� `

i

)

2

+ u

k

i

℄

= 0:

So,

lim

k!1

q

(u

k

i

)

2

+ (x

k

i

� `

i

)

2

� (x

k

i

� `

i

)� u

k

i

= `

i

� x

�

i

: (8)
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Analogously,

lim

k!1

q

(v

k

i

)

2

+ (r

i

� x

k

i

)

2

� (r

i

� x

k

i

)� v

k

i

= x

�

i

� r

i

: (9)

But

�

2

� f(x

k

; u

k

; v

k

)

� '(u

k

i

; x

k

i

� `

i

)

2

+ '(v
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i

; r

i
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i

)

2
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q
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+ (x
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i

)

2

�(x

k

i

�`

i

)�u

k

i

℄

2

+[

q

(v

k

i

)

2

+ (r

i

� x

k

i

)

2

�(r

i

�x

k

i

)�v

k

i

℄

2

:

Therefore, by (8-9),

�

2

� (x

�

i

� `

i

)

2

+ (x

�

i

� r

i

)

2

: (10)

But the minimum value of the right hand side of (10) is (r

i

� `

i

)

2

=2. So, by

the de�nition of �, we arrived to a ontradition. 2

Counterexample

In this ounterexample, we show that the previous result is sharp. That

is to say, the level set de�ned by f(x; u; v) � �

2

an be unbounded, where

� = min f(r

i

� `

i

)=

p

2; i = 1; : : : ; ng:

De�ne F (x) = "x (" � 0) and 
 = fx 2 IR j 0 � x � 1g. So,

f(x; u; v) = ("x� u+ v)

2

+ '(u; x)

2

+ '(v; 1� x)

2

:

The sequene fy

k

� (1=2; k; k); k = 0; 1; 2; : : :g is unbounded. However,

f(y

k

) = ("=2� k + k)

2

+ 2'(k; 1=2)

2

= "

2

=4 + 2(

q

1=4 + k

2

� 1=2� k)

2

� "

2

=4 + 1=2 = "

2

=4 + �

2

:

2 Appliation to the NCP

The Fisher-Burmeister funtion has been applied by many authors to the

nonlinear omplementarity problem NCP by means of the reformulation

Minimize

m

X

i=1

'(x

i

; [F (x)℄

i

)

2

: (11)
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See the referenes of [1℄. If x

�

is a stationary point of (11) and F

0

(x

�

) is

a P

0

-matrix, it an be ensured that x

�

is a solution of the NCP. If F is

a uniform P�funtion it an also be proved that the objetive funtion of

(11) has bounded level sets, but this property ould not hold under weaker

assumptions.

In fat, onsider the NCP de�ned by F (x) = 1 � e

�x

. This funtion is

stritly monotone and 0 is a solution. However the level sets of the funtion

(11) are not bounded. In fat, for all x > 0,

'(x; F (x))

2

=

�

q

x

2

+ (1� e

�x

)

2

� (x+ 1� e

�x

)

�

2

=

0

�

�2x(1� e

�x

)

q

x

2

+ (1� e

�x

)

2

+ (x + 1� e

�x

)

1

A

2

=

4(1� e

�x

)

2

 

r

1 +

�

1�e

�x

x

�

2

+ (1 +

1�e

�x

x

)

!

2

� 1:

So, it is natural to ask whether the bounded-level-set result proved in the

previous setion an help to establish bounded-level-set reformulations of the

NCP using the Fisher- Burmeister funtion.

Let us de�ne L = (L; : : : ; L) 2 IR

n

and onsider the box




L

= fx 2 IR

n

j 0 � x � Lg:

Obviously, the NCP is naturally onneted with the BNCP de�ned by F

and 


L

. In the Fahinei-Fisher-Kanzow reformulation, the orresponding

objetive funtion is

f(x; u; v) = kF (x)� u+ vk

2

+

n

X

i=1

'(u

i

; x

i

)

2

+

n

X

i=1

'(v

i

; L� x

i

)

2

: (12)

Clearly,

f(0; 0; 0) = kF (0)k

2

:

Therefore, if we take L > kF (0)k

2

=2, Theorem 1 guarantees that

fx 2 IR

n

j f(x; u; v) � f(0; 0; 0)g is bounded :
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This implies that standard unonstrained minimization algorithms, whih

usually generate sequenes satisfying f(x

k+1

; u

k+1

; v

k+1

) � f(x

k

; u

k

; v

k

) for

all k will generate bounded sequenes, if (x

0

; u

0

; v

0

) = (0; 0; 0). As a onse-

quene, algorithms of that lass will �nd stationary points, whih, under the

assumptions of [1℄, will be solutions of the BNCP de�ned by F and 


L

. So,

in order to solve the NCP we only need to guarantee that solutions of this

BNCP are solutions of the NCP. An answer to this question is given in the

following theorem.

Theorem 2. Assume that there exists a solution of the NCP that belongs to




L

and that, for all x; y 2 IR

n

,

([F (x)℄

i

� [F (y)℄

i

)(x

i

� y

i

) � 0 for all i = 1; : : : ; n

implies that

([F (x)℄

i

� [F (y)℄

i

)(x

i

� y

i

) = 0 for all i = 1; : : : ; n:

Then, every stationary point of f (de�ned by (12)) is a solution of the NCP.

Proof. Let x

�

be a stationary point of f . The ondition imposed to F in the

hypothesis implies that

max

1�i�n

f(F

i

(x)� F

i

(y))(x

i

� y

i

)g � 0:

Therefore, by Theorem 5.8 of [2℄, F is a is P

0

-funtion and F

0

(x) is a P

0

-

matrix for all x 2 IR

n

.

In partiular, F

0

(x

�

) is a P

0

�matrix. So, by [1℄, x

�

is a solution of the

BNCP de�ned by 


L

. That is:

[F (x

�

)℄

i

� 0 if x

�

i

= 0; (13)

[F (x

�

)℄

i

= 0 if 0 < x

�

i

< L (14)

and

[F (x

�

)℄

i

� 0 if x

�

i

= L: (15)

Assume that �x is a solution of the NCP. This implies that

[F (�x)℄

i

� 0 if �x

i

= 0 and [F (�x)℄

i

= 0 if �x

i

> 0: (16)
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By (13){(15) and (16) we have that

([F (x

�

)℄

i

� [F (�x)℄

i

)(x

�

i

� �x

i

) � 0 (17)

for all i = 1; : : : ; n.

Let us de�ne

I = fi 2 f1; : : : ; ng j [F (x

�

)℄

i

< 0; x

�

i

= Lg: (18)

Assume, by ontradition, that I 6= ;. Then there exists j 2 f1; : : : ; ng tal

que [F (x

�

)℄

j

< 0 and x

�

j

= L. Therefore,

0 > [F (x

�

)℄

j

x

�

j

� [F (x

�

)℄

j

x

�

j

� [F (x

�

)℄

j

�x

j

� [F (�x)℄

j

x

�

j

+ [F (�x)℄

j

�x

j

= ([F (x

�

)℄

j

� [F (�x)℄

j

)(x

�

j

� �x

j

): (19)

But (17) and (19) ontradit the hypothesis of the theorem.

Therefore, I = ;. Sine x

�

is a solution of the BNCP, this implies that

x

�

is a solution of the NCP, as we wanted to prove. 2

Remarks. In the linear ase (F (x) = Mx + q) the hypothesis of The-

orem 2 means that the matrix M is olumn-suÆient. If F is monotone

(hF (x)� F (y); x� yi � 0 for all x; y 2 IR

n

) or, even, if F is a P -funtion

(max

1�i�n

f(F

i

(x) � F

i

(y))(x

i

� y

i

)g > 0) this hypothesis holds, but the re-

iproal is not true. For example, the matrix

M =

"

0 �3

0 1

#

is olumn-suÆient, but not positive semide�nite, therefore F is not mono-

tone. Moreover, M is not a P -matrix either, so F is not a P -funtion.

Finally, let us show that the hypothesis of this theorem is sharp and

annot be relaxed to, say, P

0

-funtion. In fat, onsider the following matrix

M =

"

0 0

�3 1

#

; q =

"

0

0

#

This is a P

0

-matrix, but F (x) � Mx + q does not verify the hypothesis of

Theorem 2, sine M is not olumn-suÆient. Obviously, (0; 0) is a solution

of the NCP. However, taking L = 2, we have that all the points of the form

(t; 2) for t 2 [

2

3

; 2℄, are solutions of the BNCP de�ned by F (x) = Mx + q,

` = 0; r = L. So, these points are stationary points of the assoiated opti-

mization problem but, learly, they are not solutions of the NCP.
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3 Conlusions

When, for some nonlinear programming reformulation of a omplementarity

or variational inequality problem, it is known that every stationary point is

a solution, it an be onjetured that standard minimization algorithms will

be e�etive for �nding a solution, sine these algorithms generally �nd, in

the limit, stationary points. However, at least from the theoretial point of

view, the e�etiveness of the minimization approah is not proved unless,

eventually, a bounded level set an be reahed. Otherwise there ould be no

onvergent subsequene at all. In this paper we proved that a reformulation of

nonlinear omplementarity problems satis�es the desired requirements under

weaker onditions than the ones established before.
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