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Abstract

A bounded-level-set result for a reformulation of the bounded non-
linear complementarity problem proposed recently by Facchinei, Fis-
cher and Kanzow is proved. An application of this result to the (un-
bounded) nonlinear complementarity problem is suggested.
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1 Main results

The Bounded Nonlinear Complementarity Problem (BNCP) is the Varia-
tional Inequality Problem associated to the compact box

Q={zeR"|(<z<r} (1)

Therefore, given F' : IR" — IR", F € C'(IR") the BNCP consists on finding
x € (2 such that

(F(z) — F(z),z—x) >0 forall ze. (2)

The Nonlinear Complementarity Problem (NCP) is the problem (2) when
Q={reR" | >0}

Facchinei, Fischer and Kanzow [1] proposed a reformulation of the BNCP
as the following optimization problem:

Minimize ||F(z) —u+v|* + Y o(us, x — 6)* + Y o(vi,ri — x:)°,  (3)

i=1 =1

where || - || is the Euclidian norm and ¢ is the Fischer-Burmeister function
pla,b) =va2+b>—a—0b foral a,belR.

From now on we call f(z,u,v) the objective function of (3). It is easy
to see that f(z*,u* v*) = 0 if, and only if, z* is a solution of the BNCP.
In [1] it was proved that if (z*, u*,v*) is a stationary point of f and F'(z*)
is a Py-matrix it necessarily holds that f(z*,u*,v*) = 0. The first result of
this note will be to prove that, below a critical value, the level sets of f are
bounded.

Theorem 1. Assume that —oo < {; < r; < oo foralli=1,...,n and
a<(ri—0)/V2 foral i=1,... n.

Then the set S = {(z,u,v) € R*" | f(z,u,v) < a?} is bounded.

Proof. Let (x,u,v) be such that f(z,u,v) < a® Suppose that z; — {; < —a.

Then
a < \/u%+a2+a—ui< \/Ulz+(1'i_€i)2_(xi_€i)_ui
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= @(u;, x; — ;).
This implies that f(z,u,v) > o?.

have that

Therefore, if (z,u,v) € S we necessarily

>l —a foral i=1,... n. (4)

The same reasoning allows us to prove that

u; > —a, (5)
T, <1 —aQ, (6)
and
v > —« (7)
foralli=1,...,n

Suppose now that S is unbounded. Therefore S contains an unbounded
sequence (z¥,uF v¥). By (4-7) this implies that there exists i € {1,...,n}
such that u¥ — oo or there exists i € {1,...,n} such that v¥ — co. Consider
the first case. We have that

o’ 2 f(z,u,v) 2 ([F(a")]; — ui +v7)*.

So,
a > |[F(@")]i = ui +vf| 2 [uf] = [of| = |[F(")];].

Since |[F(z")];| is bounded, this implies that v¥ — oo. Analogously, if we
assume v¥ — 0o we necessarily obtain that u¥ — oo too. So, we can assume
that there exists i € {1,...,n} such that both u¥ — co and v¥ — co. Taking
an appropriate subsequence, assume, without loss of generality, that {2%} is
convergent, say, ¥ — x%. Therefore,

lim +/(u¥)? + (zF — 4;)% —

k—o0

[ (ub)2 + (2 — £)2 — ub][y/ ()2 + (2 — £)% + ul]
V(Wh)? + (2 — £)2 + uf]

)2 (af — )2 — (ub)?

E00 [ ()2 + (2 — )2 + uf]

U

—~
s
S o/

So,

lim /(uf)? + (@f — €)? — (af =€) — uf = {; — a]. (8)

k—00



Analogously,

Jim \/(0F)2 (i — ab)2 — (i — ) — o =} s )
—00

But
o2 > f(xk,uk,vk)
> o(uf,zy — 6)° + @(vf, ri — f)”
= [/ (h)2 + (ab — )2 — (aF — ) —ub 24 [/ (0F)2 + (ry — ab)2— (ri—af) —l]2.
Therefore, by (8-9),

CYZ Z (JI: - 61)2 + (.’E: - Ti)Z. (10)
But the minimum value of the right hand side of (10) is (r; — ¢;)?/2. So, by
the definition of «;, we arrived to a contradiction. O
Counterexample

In this counterexample, we show that the previous result is sharp. That
is to say, the level set defined by f(z,u,v) < % can be unbounded, where

B= min {(r; — £;)/V2,i=1,...,n}.
Define F(z) =cx (¢ > 0)and Q ={z € R |0 <z < 1}. So,
flz,u,v) = (ex —u+0v)* + p(u,z)* + p(v, 1 — z)°.
The sequence {y* = (1/2,k,k),k=0,1,2,...} is unbounded. However,

F¥) = (/2 =k +k)* + 2¢(k, 1/2)*

=?/4+2(\J1/4+ k2 —1/2 — k) <e*/4+1/2 =&*/4 + B2

2 Application to the NCP

The Fischer-Burmeister function has been applied by many authors to the
nonlinear complementarity problem NCP by means of the reformulation

Minimize i o(x;, [F(2)]):)?. (11)

=1
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See the references of [1]. If z* is a stationary point of (11) and F'(z*) is
a Py-matrix, it can be ensured that z* is a solution of the NCP. If F' is
a uniform P—function it can also be proved that the objective function of
(11) has bounded level sets, but this property could not hold under weaker
assumptions.

In fact, consider the NCP defined by F(z) = 1 — e~*. This function is
strictly monotone and 0 is a solution. However the level sets of the function
(11) are not bounded. In fact, for all > 0,

ol P@)? = (2 T (e~ @+ 1-e) =

( —2z(1 —e™?) )2 _
\/372 +(1l—e*)2+(x+1—-e?)
4(1 —e )2

( 1+(1—%)2+(1+1—%)>

So, it is natural to ask whether the bounded-level-set result proved in the
previous section can help to establish bounded-level-set reformulations of the
NCP using the Fischer- Burmeister function.

Let us define L = (L, ..., L) € IR" and consider the box

<1

2 =

Obviously, the NCP is naturally connected with the BNCP defined by F
and €2;,. In the Facchinei-Fischer-Kanzow reformulation, the corresponding
objective function is

fl@,u,v) =[IF(z) —u+ol* + Enj plui @) + 3 (v L— )" (12)

Clearly,
£(0,0,0) = [[F(0)|.

Therefore, if we take L > ||F(0)]|?/2, Theorem 1 guarantees that

{r e R" | f(z,u,v) < f(0,0,0)} 1is bounded .



This implies that standard unconstrained minimization algorithms, which
usually generate sequences satisfying f(zF1 uFtt oFtl) < f(zk ub vF) for
all k will generate bounded sequences, if (z° u® v°) = (0,0,0). As a conse-
quence, algorithms of that class will find stationary points, which, under the
assumptions of [1], will be solutions of the BNCP defined by F' and ;. So,
in order to solve the NCP we only need to guarantee that solutions of this
BNCP are solutions of the NCP. An answer to this question is given in the
following theorem:.

Theorem 2. Assume that there exists a solution of the NCP that belongs to
Qp and that, for all x,y € IR",

([F(z)]; = [F(y)]i) (@i —y;) <0 forall i=1,...,n
implies that

([F(z)]; = [F(y)]i)(xi—y;) =0  forall i=1,...,n.

Then, every stationary point of f (defined by (12)) is a solution of the NCP.

Proof. Let x* be a stationary point of f. The condition imposed to F'in the
hypothesis implies that

wax {(F(x) — Fi(y) (i — )} > 0.
Therefore, by Theorem 5.8 of [2], F' is a is Py-function and F'(z) is a Py-
matrix for all z € IR".

In particular, F'(z*) is a Py—matrix. So, by [1], * is a solution of the
BNCP defined by €27,. That is:

[F(z")]; >0 if x] =0, (13)
[F(z")]);=01if 0 <z] <L (14)

and
[F(z*)]; <0 if 2} = L. (15)

Assume that T is a solution of the NCP. This implies that

[F(7)); >0 if 7, =0 and [F(z)]; =0 if 7; > 0. (16)



By (13)—(15) and (16) we have that

([F (@) — [F(@)]) (27 —2:) <0 (17)
foralle=1,...,n.
Let us define

T={ie{l,...,n}|[F(a")); <0,2f = L}. (18)

Assume, by contradiction, that Z # (). Then there exists j € {1,...,n} tal
que [F(z*)]; < 0 and zj = L. Therefore,

0> [F(2")]joj = [F(2")]joy — [F(27)z; — [F(2)];25 + [F(2)];7;

= ([F(e")]; = [F(@)];) (2] — Z;)- (19)

But (17) and (19) contradict the hypothesis of the theorem.
Therefore, Z = (). Since z* is a solution of the BNCP, this implies that
x* is a solution of the NCP, as we wanted to prove. O

Remarks. In the linear case (F(z) = Mx + q) the hypothesis of The-
orem 2 means that the matrix M is column-sufficient. If F' is monotone
((F(x) — F(y),x —y) > 0 forall z,y € IR") or, even, if F' is a P-function
(maxi<j<p{(Fi(z) — Fi(y))(x; — y;)} > 0) this hypothesis holds, but the re-
ciprocal is not true. For example, the matrix

0 -3
M =
is column-sufficient, but not positive semidefinite, therefore F' is not mono-
tone. Moreover, M is not a P-matrix either, so F' is not a P-function.

Finally, let us show that the hypothesis of this theorem is sharp and
cannot be relaxed to, say, Py-function. In fact, consider the following matrix

= 5] e o)

This is a Py-matrix, but F(x) = Mx + ¢ does not verify the hypothesis of
Theorem 2, since M is not column-sufficient. Obviously, (0,0) is a solution
of the NCP. However, taking L = 2, we have that all the points of the form
(t,2) for t € [2,2], are solutions of the BNCP defined by F(z) = Mz + q,
¢ =0, = L. So, these points are stationary points of the associated opti-
mization problem but, clearly, they are not solutions of the NCP.



3 Conclusions

When, for some nonlinear programming reformulation of a complementarity
or variational inequality problem, it is known that every stationary point is
a solution, it can be conjectured that standard minimization algorithms will
be effective for finding a solution, since these algorithms generally find, in
the limit, stationary points. However, at least from the theoretical point of
view, the effectiveness of the minimization approach is not proved unless,
eventually, a bounded level set can be reached. Otherwise there could be no
convergent subsequence at all. In this paper we proved that a reformulation of
nonlinear complementarity problems satisfies the desired requirements under
weaker conditions than the ones established before.
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