On Invariant Subspaces of Linear Operators

Ricardo N. Cruz*

We prove that a linear operator $T: V \to V, V$ a finite dimensional vector space over $I\!\!R$, has an invariant subspace of dimension 1 or 2, by using complex equations. The spectral theorem for self-adjoint operators follows in the easiest way known to us. The result is useful in the study of orthogonal operators as well.

1. Introduction.

Let $T: V \to V$ be a linear operator, V a finite dimensional vector space over \mathbb{R} . We will prove the existence of a T-invariant subspace W of V of dimension one or two. Now, given an inner product \langle, \rangle over V, then W^{\perp} (the orthogonal complement) is T-invariant if T is self-adjoint or orthogonal with respect to \langle, \rangle (the proofs in the literature are basically the same ([BW], [Li])). As self-adjoint or orthogonal operators are easily described in dimensions one or two ([BW], [Li]) the study of T reduces to the study of $T|_{W^{\perp}}: W^{\perp} \to W^{\perp}$. As dim $W^{\perp} < \dim V$, iterating this procedure produces the spectral theorem for self-adjoint operators and a characterization of orthogonal operators (finite dimension).

2. Invariant Subspaces.

2.1 Lemma. Let $T: V \to V$ be a linear operator, V a vector space with $n=\dim V < \infty$. There is a *T*-invariant subspace $W \subset V$ with dim W = 1 or 2. **Proof.** Let $\alpha = (v_1, ..., v_n)$ be an ordered basis of V. Let A be the matrix of T with respect to α . Let $\lambda = \mu + i\nu \in \mathbb{C}$ be a root of the equation

 $\det(A - \lambda I) = 0,$

^{*} partially supported by FAPESP/BRAZIL grant 1996/6167-7

where I is the $n \times n$ identity matrix and det () means determinant. The existence of $\lambda = \mu + i\nu$ is guaranteed by the fundamental theorem of Algebra. Now, solve the equation

$$(A - (\mu + i\nu)I)Z = 0,$$

Z a complex column vector with n coordinates, by performing elementary row operations ([AR], [BCRW]). This process will produce a matrix E in row-echelon form such that the above equation is equivalent to

$$EZ = 0.$$

As det $(A - (\mu + i\nu)I) = 0$, det E = 0 as well. Therefore, $E \neq I$ and so there is a solution $Z \neq 0$. Thus, there are real column vectors not both zero

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} , Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

such that Z = X + iY. It follows that

$$A(X + iY) = (\mu + i\nu)(X + iY).$$

Taking real and imaginary parts gives

$$AX, AY \in \operatorname{Span}[X, Y],$$

where Span [X, Y] is the subspace spanned by X, Y in the space of $n \times 1$ matrices. Next, let $u, v \in V$ be vectors such that its coordinates with respect to α are given by X, Y respectively. Set W = Span [u, v]. Then W is T-invariant. Clearly, dim W = 1 or 2.

3. Concluding Remark.

In [Li], the above lemma is proved by first obtaining a polynomial p(x) over \mathbb{R} such that p(T) = 0, then factoring p(x) over \mathbb{R} , then concluding that a linear

or quadratic factor of p(T) must be non-invertible. Now, use the kernel and image theorem.

We believe that our proof is less abstract than the proof outlined above.

IMECC/UNICAMP Campinas SP, Brazil CEP 13083-970

References

- [AR] H. Anton & C. Rorres: Elementary Linear Algebra, 7th ed., Wiley, 1994.
- [BCRW] J. Boldrini, S. Costa, V. Ribeiro & H. Wetzler: Álgebra Linear, 3rd ed, Harper & Row do Brasil, 1984.
- [BW] T. Banchoff & J. Wermer: Linear Algebra Through Geometry, 2nd ed., Springer-Verlag, 1992.
- [Li] E. Lima Álgebra Linear, 2nd ed., Coleção Matemática Universitária, IMPA, 1996.