On Invariant Subspaces of Linear Operators

Ricardo N. Cruz*

We prove that a linear operator $T: V \rightarrow V, V$ a finite dimensional vector space over \mathbb{R}, has an invariant subspace of dimension 1 or 2 , by using complex equations. The spectral theorem for self-adjoint operators follows in the easiest way known to us. The result is useful in the study of orthogonal operators as well.

1. Introduction.

Let $T: V \rightarrow V$ be a linear operator, V a finite dimensional vector space over \mathbb{R}. We will prove the existence of a T-invariant subspace W of V of dimension one or two. Now, given an inner product \langle,$\rangle over V$, then W^{\perp} (the orthogonal complement) is T-invariant if T is self-adjoint or orthogonal with respect to \langle,$\rangle (the proofs$ in the literature are basically the same ([BW], [Li])). As self-adjoint or orthogonal operators are easily described in dimensions one or two ([BW], [Li]) the study of T reduces to the study of $\left.T\right|_{W^{\perp}}: W^{\perp} \rightarrow W^{\perp}$. As $\operatorname{dim} W^{\perp}<\operatorname{dim} V$, iterating this procedure produces the spectral theorem for self-adjoint operators and a characterization of orthogonal operators (finite dimension).

2. Invariant Subspaces.

2.1 Lemma. Let $T: V \rightarrow V$ be a linear operator, V a vector space with $\mathrm{n}=\operatorname{dim} V<\infty$. There is a T-invariant subspace $W \subset V$ with $\operatorname{dim} W=1$ or 2 .
Proof. Let $\alpha=\left(v_{1}, \ldots, v_{n}\right)$ be an ordered basis of V. Let A be the matrix of T with respect to α. Let $\lambda=\mu+i \nu \in \mathbb{C}$ be a root of the equation

$$
\operatorname{det}(A-\lambda I)=0
$$

[^0]where I is the $n \times n$ identity matrix and det () means determinant. The existence of $\lambda=\mu+i \nu$ is guaranteed by the fundamental theorem of Algebra. Now, solve the equation
$$
(A-(\mu+i \nu) I) Z=0
$$
Z a complex column vector with n coordinates, by performing elementary row operations ([AR], [BCRW]). This process will produce a matriz E in row-echelon form such that the above equation is equivalent to
$$
E Z=0
$$

As $\operatorname{det}(A-(\mu+i \nu) I)=0$, $\operatorname{det} E=0$ as well. Therefore, $E \neq I$ and so there is a solution $Z \neq 0$. Thus, there are real column vectors not both zero

$$
X=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), Y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

such that $Z=X+i Y$. It follows that

$$
A(X+i Y)=(\mu+i \nu)(X+i Y)
$$

Taking real and imaginary parts gives

$$
A X, A Y \in \operatorname{Span}[X, Y]
$$

where Span $[X, Y]$ is the subspace spanned by X, Y in the space of $n \times 1$ matrices. Next, let $u, v \in V$ be vectors such that its coordinates with respect to α are given by X, Y respectively. Set $W=\operatorname{Span}[u, v]$. Then W is T-invariant. Clearly, dim $W=1$ or 2 .

3. Concluding Remark.

In [Li], the above lemma is proved by first obtaining a polynomial $p(x)$ over \mathbb{R} such that $p(T)=0$, then factoring $p(x)$ over \mathbb{R}, then concluding that a linear
or quadratic factor of $p(T)$ must be non-invertible. Now, use the kernel and image theorem.

We believe that our proof is less abstract than the proof outlined above.

IMECC/UNICAMP
Campinas SP, Brazil
CEP 13083-970

References

[AR] H. Anton \& C. Rorres: Elementary Linear Algebra, $7^{\text {th }}$ ed., Wiley, 1994.
[BCRW] J. Boldrini, S. Costa, V. Ribeiro \& H. Wetzler: Álgebra Linear, 3 rd ed, Harper \& Row do Brasil, 1984.
[BW] T. Banchoff \& J. Wermer: Linear Algebra Through Geometry, 2nd ed., Springer-Verlag, 1992.
[Li] E. Lima Álgebra Linear, 2nd ed., Coleção Matemática Universitária, IMPA, 1996.

[^0]: * partially supported by FAPESP/BRAZIL grant 1996/6167-7

