Validation of an Augmented Lagrangian Algorithm
with a Gauss-Newton Hessian Approximation

Using a Set of Hard-Spheres Problems

Natasa Kreji¢ * José Mario Martinez Margarida Mello T
Elvio A. Pilotta '

January 9, 2001

Abstract

An Augmented Lagrangian algorithm that uses Gauss-Newton approximations
of the Hessian at each inner iteration is introduced and tested using a family of
Hard-Spheres problems. The Gauss-Newton model convexifies the quadratic ap-
proximations of the Augmented Lagrangian function thus increasing the efficiency

of the iterative quadratic solver. The resulting method is considerably more ef-

*Institute of Mathematics, University of Novi Sad, Trg Dositeja Obradovi¢a 4, 21000 Novi Sad,
Yugoslavia, E-mail: natasa@unsim.im.ns.ac.yu. This author was supported by FAPESP (Grant

96/8163-9).
"Department of Applied Mathematics, IMECC-UNICAMP, University of Campinas, CP

6065, 13081-970 Campinas SP, Brazil. These authors were supported by PRONEX, FAPESP
(Grant 90-3724-6), CNPq and FAEP-UNICAMP. E-mail: martinez@ime.unicamp.br, mar-

garid@ime.unicamp.br, pilotta@ime.unicamp.br

ficient that the corresponding algorithm that uses true Hessians. A comparative

study using the well-known package LANCELOT is presented.

1 Introduction

In recent years we have been involved with the development of algorithms based
on sequential quadratic programming [11] and inexact restoration [16, 18] for mini-
mization problems with nonlinear equality constraints and bounded variables.

The validation of these algorithms require their comparison with well established
computer methods for the same type of problems, which include methods of the same
family (as other SQP methods in the first case and GRG like methods in the second)
as well as methods that adopt a completely different point of view, as is the case
of Penalty and Augmented Lagrangian algorithms. The most consolidated practical
Augmented Lagrangian method currently available is the one implemented in the
package LANCELOT, described in [4]. This was the method used, for example, in
[11], to test the reliability of a new large-scale sequential quadratic programming
algorithm.

In the course of the above mentioned experimental studies we felt the necessity
of intervening in the Augmented Lagrangian code in a more active way than the
one permitted to users of LANCELOT. As a result of this practical necessity, we
became involved with the development of a different Augmented Lagrangian code,
which preserves most of the principles of the LANCELOT philosophy, but also has
some important differences.

Following the lines of [4], a modern Augmented Lagrangian method is essentially

composed by three nested algorithms:

e The external algorithm updates the Lagrange multipliers and the penalty pa-
rameters, decides stopping criteria for the internal algorithm and the rules for

declaring convergence or failure of the overall procedure.

e An internal algorithm minimizes the augmented Lagrangian function with
bounds on the variables. Trust region methods, where the subproblem consists
on the minimization of a quadratic model on the intersection of two boxes, the
one that defines the problem and the trust-region box, are used both in [4]

and in our implementation.

e A third algorithm deals with the resolution of the quadratic subproblem. While
LANCELOT restricts its search to the face determined by an approximate

Cauchy point, our code explores the domain of the subproblem as a whole.

The second item, specifically where it deals with the formulation of the quadratic
subproblem, is the one in which we felt more strongly the desire to intervene. On
one hand, we tried many alternative sparse quasi-Newton schemes (without success,
up to now). On the other hand, we used a surprisingly effective simplification
of the true Hessian of the Lagrangian, called, in this paper, “the Gauss-Newton
Hessian approximation” by analogy with the Gauss-Newton method for nonlinear
least-squares, which can be interpreted as the result of excluding from the Hessian
of a sum of squares those terms involving Hessian of individual components.

In order to validate our augmented Lagrangian implementation we selected a
family of problems in which we have particular interest, known as the family of
Hard-Spheres problems.

The Hard-Spheres Problem belongs to a family of sphere packing problems, a

class of challenging problems dating from the beginning of the seventeenth century.

In the tradition of famous problems in mathematics, the statements of these prob-
lems are elusively simple, and have withstood the attacks of many worthy math-
ematicians (e.g. Newton, Hilbert, Gregory), while most of its instances remain
open problems. Furthermore, it is related to practical problems in chemistry, biol-
ogy and physics, see, for instance, the list of examples in [19], concerning mainly
three-dimensional problems, or peruse the 1550-item-long bibliography in [5]. The
Hard-Spheres Problem is to maximize the minimum pairwise distance between p
points on a sphere in R". This problem may be reduced to a nonlinear optimization
problem that turns out, as might be expected from the mentioned history, to be a
particularly hard, nonconvex problem, with a potentially large number of (nonopti-
mal) points satisfying KKT conditions. We have thus a class of problems indexed by
the parameters n and p, that provides a suitable set of test problems for evaluating
Nonlinear Programming codes.

Very convenient is the fact that the Hard-Spheres Problem may be regarded
as the feasibility problem associated with another famous problem in the area, the
Kissing Number Problem, which seeks to determine the maximum number K, of
nonoverlapping spheres of given radius in R” that can simultaneously touch (kiss)
a central sphere of same radius. Thus, if the distance obtained in the solution of
the Hard-Spheres Problem, for given n and p, is greater than or equal to the radius
of the sphere on which the points lie, one may conclude that I,, > p. We use the
known solution of the three-dimensional Kissing Number Problem to calibrate our
code, described below, and choose for testing the code values of n, p that might
bring forth new knowledge about the problem, or strengthen existing conjectures
about the true (but, alas, not rigorously established) value of I, from the following

table of known values/bounds of /C,, given in [5]:

S
g
S

S N

12
24-25
40-46
72-82

126-140
240
306-380
900-595
082-915
840-1416

© 00 1 O Tt = W N =

e
N = O

Table 1: Known values/bounds of IC,,.

This paper is organized as follows. In Section 2 we formulate the Hard-Spheres
Problem as a nonlinear programming problem and we relate the main characteristics
of ALBOX, our Augmented Lagrangian Algorithm. In Section 3 we explain how the
main algorithmic parameters of ALBOX were chosen. (Here we follow a previous
study in [15].) In Section 4 we introduce the Gauss-Newton Hessian approximation
and discuss the effect of its use in comparison with the use of true Hessians of
the Lagrangians. In Section 5 we describe the parameters used with LANCELOT.
The numerical experiments, obtained by running ALBOX and LANCELOT for a
large number of Hard-Spheres problems, are presented in Section 6. Finally, some

conclusions are drawn in Section 7.

2 ALBOX

The straightforward formulation of the Hard-Spheres Problem leads to the following
maxmin problem, where r is the radius of the sphere, centered on the origin, on which

the points lie:
max mingz; |ly' =] O
st. |l =2r, k=1,...,p.
The vectors y* belong to R™ and || - || is the Euclidean norm. Since the answer to
the problem is invariant under the choice of positive r, we let r = 1/2. Furthermore,
using the definition of (-,-), the standard inner product in R", and the constraints,
it is easy to see that (1) is equivalent to
min max;z; (¥, y’)

(2)

st. |l =2r, k=1,...,p.

Applying the classical trick for transforming minimax problems into constrained

minimization problems, we reduce (2) to the nonlinear program

s.t. z > (L), Vi, (3)
Iy | = 1, k=1,...,p.

Adding slack variables to the first set of constraints and squaring the second set

of equations in order to avoid nonsmoothness in the first derivatives, we obtain

min 2z
st. 2 — WLy — wy = 0, Vi#y,)
1" 1? = 1L k=1,....p,
w > 0.

which is of the general form

min f(x)
s.t. h(z) = 0 (5)
(< x<u.

at each Outer Iteration, where
L(z, A, p) = f(z) + Z Aihi(x) + Z pilii (x) (7)

is the augmented Lagrangian function associated with (5), A is the current approx-
imation to the Lagrange multipliers and p (> 0) is the current vector of penalty
parameters. These are updated at the end of the Outer Iteration.

Subproblem (6) is solved using BOX, the box-constrained solver described in [10].
This iterative method minimizes a quadratic approximation to the objective function
on the intersection of the original feasible set, the box ¢ < x < w, and the trust
region (also a box), at each iteration. If the original objective function is sufficiently
reduced at the approximate minimizer of the quadratic, the corresponding trial point
is accepted as the new iterate. Otherwise, the trust region is reduced. The main
algorithmic difference between BOX and the method used in [2] is that in BOX the
quadratic is explored on the whole intersection of the original box and the trust
region whereas in [2] only the face determined by an “approximate Cauchy point”
is examined.

ALBOX is a Double Precision FORTRAN 77 code that aims to cope with large-

scale problems. For this reason, factorization of matrices is not used at all. The

7

quadratic solver used to solve the subproblems of the box-constraint algorithm,
QUACAN, visits the different faces of its domain using conjugate gradients on the
interior of each face and “chopped gradients” as search directions to leave the faces.
We refer the reader to [1], [9] and [10], for details on the actual implementation of
QUACAN. In most iterations of this quadratic solver, a matrix-vector product of
the Hessian approximation and a vector is computed. Occasionally, an additional
matrix-vector product may be neccessary.

The performance of ALBOX, and, in fact, of most sophisticated algorithms,
depends on the choice of many parameters. The most sensitive parameters were
adjusted using the Kissing Problem with n = 3 and p = 12 (Icosahedron Problem).
We discuss these choices in the next section. A similar analysis was carried out for

LANCELOT, and is described in section 5.

3 Choice of parameters for ALBOX

3.1 Penalty parameters and Lagrange multipliers

The vector p of penalty parameters associated with the equality constraints h(x) = 0
are updated after each Outer Iteration. We considered two possiblities: to update
each component according to the decrease of the corresponding component of h(x)
or using a global criterion based on h(z). The specific alternatives contemplated

were, assuming to be the initial point at some Outer Iteration and Z the final one:
L. increase p; only if |h(Z);| is not sufficiently smaller than |h(z),|;

2. increase p; only if ||h(Z)||s is not sufficiently smaller than ||h(z)||c-

Preliminary experiments revealed, perhaps surprisingly, that the “global strat-
egy” 2 is better than the first. In fact, when p; is not updated, but the other
components of p are, the feasibility level |h(Z);| tends to deteriorate at the next
iteration and, consequentely, a large number of Outer Iterations becomes necessary.
In other words, it seems that a strategy based on 1 encourages a zigzagging be-
havior, with successive iterates alternatingly satisfying one constraint or another.
Thus, although the original formulation allows for one penalty parameter for each
equality constraint, in practice it is as if we worked with one parameter for all of
them, since they are all initialized at the same value (tests indicate that 10 is an
adequate initial value) and are all updated according to the same rule (once again
based on tests, they are increased by a factor of 10 when sufficient improvement of
feasibility is not detected). Here we considered that “a sufficiently smaller than b”
means that a < 0.010.

It must be pointed out that the behavior of penalty parameters is not inde-
pendent of the strategy for updating the Lagrange multipliers. With algorithmic
simplicity in mind, we adopted a “first order formula”. Letting A be the Lagrange
multiplier at the start of a new Outer Iteration and A, p be the Lagrange multipliers

and penalty parameters at the previous iteration, we set
Ai = i+ pih(%);

for all i = 1,...,m. Initially, A = 0.

3.2 Stopping criteria for box-constraint solver

Each Outer Iteration ends when one of the several stopping criteria for the algorithm

that solves the augmented Lagrangian box-constrained minimization problem (6) is

reached. There is the usual maximum number of iterations safeguard, which is set
at 100 for QUACAN calls.
Other than that, we consider that the box-constraint algorithm BOX converges

when

lgp(z)[l2 <,

where gp(x) is the “continuous projected gradient” of the objective function of (6)
at the point x. This vector is defined as the difference between the projection of
x — VL(z, A, p) on the box and the point . The tolerance ¢ may change at each
Outer Iteration. We tested two strategies for £: one that defines ¢ dynamically
depending on the degree of feasibility of the current iterate and another that fixes ¢
at 107°. Althought not conclusive, results for the Icosahedron Problem were better
when the constant ¢ strategy was used. This was, therefore, the strategy adopted
for further tests. Incidentally, the opposite was adopted in [8], where a similar
Augmented Lagrangian Algorithm was used to solve linearly constrained problems
derived from physical applications. Theoretical justifications for the inexact mini-
mization of subproblems in the augmented Lagrangian context can also be found in
[12, 13].

The box-constraint code admits other stopping criteria. For instance, execution
may stop if the progress during some number of consecutive iterations is not good
enough or if the the radius of the trust region becomes too small. Nevertheless, best

results were obtained inhibiting these alternative stopping criteria.

3.3 Parameters for the quadratic solver

QUACAN is the code called to minimize quadratic functions (augmented Lagrangians

in this case) subject to box constraints. Its efficiency, or lack thereof, plays a crucial

10

role in the overall behavior of the Augmented Lagrangian Algorithm. Its parameters
must therefore be carefully chosen.

Firstly we examine the convergence criterion. If the projected gradient of the
quadratic is null, the corresponding point is stationary. Accordingly, convergence is
considered achieved when the norm of this projected gradient is less than a fraction
of the corresponding norm at the initial point. In this case, we use “non-continuous

projected gradients,”

in which the projections are not computed on the feasible box
but on the active constraints. Fractions 1/10, 1/100 and 1/100000 were tested on
the Icosahedron Problem, and the first choice provided the best behavior, being the
one employed subsequently.

The maximum number of iterations allowed is also an important parameter, since
otherwise we may invest too much effort solving problems only distantly related to
the original one. We found that the number of variables of the problem, np+ (’27) +1,
is a suitable delimiter in this case. Other non-convergence stopping criteria were
inhibited.

The radius of the trust region determines the size of the auxiliary box used in
QUACAN. The nonlinear programming algorithm is sensitive to the choice of d, the
first trust region radius. After testing different values, we selected 6 = 10 as an
appropriate choice.

Another important parameter is n € (0,1), the parameter that determines
whether the next iterate must belong to the same face as the current one, or not.
Roughly speaking, if n is small, the algorithm tends to leave the current face as
soon as a mild decrease of the quadratic is detected. On the other hand, if n ~ 1,
the algorithm only abandons the current face when the current point is close to a

stationary point of the quadratic on that face. A rather surprising result was that,

11

for the Icosahedron Problem, the conservative value n = .95 was better than smaller
values.

Finally, when the quadratic solver hits the boundary of its feasible region, an
extrapolation step may be tried, depending on the value of the extrapolation pa-
rameter v > 1. If v is large, new points will be tried at which the number of active
bounds may be considerably increased. No extrapolation is tried when v = 1. Tests

indicated that v = 10 is a convenient choice for the Hard-Spheres Problem.

4 Approximate Hessian

The nonlinear optimization problem (4) obtained in section 2 is the version of the
Hard-Spheres Problem that was chosen for our tests. It was pointed out that (4) is

of the general form

min f(z)
s.t. h(z) = 0
<z <u

whose associated augmented Lagrangian is
p
L(w, A, p) = [(@) + (A b(@)) + S ()5

Thus
VL(z,\ p)=Vf(z)+ i AiVhi(z) + ph'(z)T h(x)

and
m

V2L(z,)\, p) = V2f(z) + +ph ()" () + Z[Al + phi(2)]V?hi().

Although VZL(z,), p) tends to be positive definite when p is large, A is close to

the correct Lagrange multipliers and x is close to a solution, this is not the case

12

at the early stages of augmented Lagrangian calculations. On the other hand, the
simplified matrix obtained by neglecting the term involving second order derivatives

of the constraint functions
B(z,p) = V2 f(x) + +ph'(z)" W (x)

is always positive semidefinite in our case, independently of p and x. Of course, this
is always the case when f is a convex function.

Another insight into B(z, p) is provided by examining the problem

min f(x)
s.t. Y@ — 2) + h(z) =0 (8)

W(z
(<z<u

where z is the current point being used in a BOX iteration. Problem (8) is obtained
by replacing the original h(z) = 0 constraints with its first order (linear) approx-
imation. But B(z,p) happens to be the Hessian of the augmented Lagrangian
associated with (8) at z! Furthermore, both the augmented Lagrangian associated
with (8) and its gradient evaluated at z coincide with their counterparts associated
with the original problem (4), evaluated at z.

The matrix vector products VZL(z, A, p)v and B(z,p)v seem cumbersome to
compute at a first glance. But taking advantadge of their structure enables the
computation to be done in O(np) time.

In principle, using the true Hessian of the Lagrangian should the best possi-
ble choice, since it represents better the structure of the true problem. However,
available algorithms for minimizing quadratics in convex sets are much more effi-
cient when the quadratic is convex than otherwise. QUACAN is not an exception

to this rule. Therefore, in the interest of improving the overall performance of the

13

augmented Lagrangian algorithm, we decided to use B(x, p) as Hessian Lagrangian
approximation.

The results were indeed impressive. Table 2 lists the average statistics obtained
for four of the eighteen test sets, where each (n,p) pair was run for fifty random
starting points. The average number of Outer iterations, BOX iterations, Function
evaluations, Matrix Vector Products, CPU time in seconds and minimum distance
are given for the runs using the exact Hessian (first row of each set) and the ones
using the approximate Hessian (second row). The minimum distances obtained
were very close and on some instances the minimum distance obtained using the
approximate Hessian was smaller than the one obtained using the exact Hessian.
While the number of Outer iterations does not differ very much from one choice to
the other, the number of BOX iterations and, consequently, the number of Matrix
Vector Products sensibly decreases. The overall result is a marked decrease in CPU
time. In Figure 1 we plot the average CPU times, for all eighteen tests, using
the exact Hessian versus times using the approximate Hessian. Also shown is the
line that gives the best fit of the data by a linear (not affine) function, namely
y = 0.374138 x, that is, the approximate Hessian option implies in a decrease of

almost two thirds in CPU times.

5 Choice of parameters for LANCELOT

LANCELOT allows for the choice of exact or approximate first and second order
derivatives. However, LANCELOT’s manual [3] (p.111) “strongly recommends the
use of exact second derivatives whenever they are available”, and, on the other hand,

there is no provision for an user supplied Hessian approximation. In fact we ran a

14

Problem size Outer | Box |Funct. CPU Min

n| . . MVP . .

p| | var constr.| it. it. eval. time dist.

[3] N R 4.86| 37.06] 52.14| 1564.36| 0.765[1.086487225412
| 10] 4.64| 34.74| 45.52| 1194.70| 0.476(1.083236334520
[4] 290| 9253 4.60| 91.10| 123.90| 16079.36| 33.440/0.997314349536
| 22| 4.34| 78.02| 97.40| 11222.14| 20.032|0.997809583865
[5] 52| 703 5.00] 274.10] 358.54|142683.34/963.537|0.998632681285
| 37 4.56| 160.02| 193.14| 67020.22|373.141|0.998675348042

Table 2: Running ALBOX with exact (first row) and approximate Hessian (second

row).

1000 +
800
600 1
400 1

200

CPU times using
approx. Hessian

y =0.374138 x

CPU times using
exact Hessian

200

1000

1500

2000

2500 3000

Figure 1: CPU times using exact Hessian (z-axis) versus using approximate Hessian

(y-axis).

15

few tests with the default approximation (SR1) but the results were worse than
those obtained using exact second derivatives, and thus this was the option adopted
for all further tests. In the light of the experiments described in the previous section,
this provides corroborating evidence to the effect that general purpose, consolidated
packages, designed to provide a good performance with little interference from the
user, may be more convenient to use than open ended, low-level interface codes,
such as ALBOX; but, for the user willing to “get his hands dirty” the latter rawer
code might not only prove competitive, it may actually outperform the former code,
with its more polished though restrictive finish.

We also experimented with several different options for solving the linear equa-
tion solver, namely, without preconditioner, with diagonal preconditioner and with
a band matrix preconditioner. The best results were obtained with the first option
(no preconditioner). Another choice that slowed the algorithm, without noticeable
improve the quality of solution, was requiring that the exact Cauchy point be com-
puted. We settled to use the inexact Cauchy point option. The maximum number of
iterations allowed is 1000. Finally, the gradient and constraints tolerances were the
same chosen for ALBOX, namely 1078, The FORTRAN compiler option adopted
for LANCELOT and ALBOX was “-O”.

6 Numerical experiments

Tests were run on a Sun SparcStation 20, with the following main characteristics:
128Mbytes of RAM, 70MHz, 204.7 mips, 44.4 Mflops. Results for the fifty runs for
each (n, p) pair are summarized in the following tables. Table 3 summarizes the

statistics that are “machine independent,” typically involving number of iterations,

16

number of function evaluations, with the exception of the optimal distances found.
Quotes are needed because this is not completely accurate, since these numbers will
in fact depend on machine precision, compiler manufacturer, and the like. Never-
theless, they certainly provide more independent grounds for comparison than CPU
times, presented in Table 4, along with optimal distances.

Table 3 presents the mininum, maximum and average amounts of Outer and BOX
iterations, function evaluations, Quacan iterations and matrix-vector-products/con-
jugate-gradient iterations (for Box and LANCELOT, respectively). First row of
each set corresponds to ALBOX and second to LANCELOT. Unfortunately the
only statistics available for both is the number of function evaluations. We paired
the number of matrix-vector-products (MVP) output by ALBOX with the number of
conjugate-gradient iterations (CGI) produced by LANCELOT, since each conjugate-
gradient iteration involves a matrix-vector-product.

Although the algorithms behave very differently timewise, as we will shortly see,
this is not a direct consequence of the number of function evaluations each performs.
The best least-squares fit by a first degree polynomial gives y = 5.74631+0.855356 x,
where y is the number of function evaluations of ALBOX and x is the corresponding
amount for LANCELOT, whereas a similar fit involving CPU times will give a
coefficient of less than a third. On Figure 2 we plot the function evaluation pairs
for all eighteen instances along with the best fit obtained.

Further still from providing an explanation for the higher efficiency of AL-
BOX is the comparison of MVP versus CGI. In this case the best fit gives y =
—1320.36 + 1.10655x, where y is the number of MVP and z is the number of CGI.
This suggests that, although both iterations involve a matrix-vector-product, a CGI

is substantially costlier, timewise, than the MVP performed in ALBOX. A main

17

Table 3: Put first pge of Table 3 here

Table 3: Put second $age of Table 4 here

4 FEV .
ALBOX
2501

y = 5.74631 + 0.855356 x

2007

150+

1007

501

FEV
LANCELOT

50 100 150 200 250 300

Figure 2: Number of function evaluations of LANCELOT versus ALBOX.

20

factor for this is that the matrix-vector-product in LANCELOT’s conjugate gradi-
ent iteration deals with the true Hessian, whereas the one in ALBOX involves the
approximate (and simpler) Hessian. Figure 3 contains the line corresponding to the
best linear fit and the position of the (CGI, MVP) pairs.

Next we have Table 4, that presents similar statistics involving the optimal dis-
tances encountered and the CPU times, in seconds. The first (resp., second) row for

each (n,p) pair gives the numbers obtained by ALBOX (resp., LANCELOT).

21

12000047, MY

100000+

80000 y = —1320.36 + 1.10655

60000+

40000

20000+

CGI
LANCELOT

20000 40000 60000 80000 100000

Figure 3: Number of CGIs of LANCELOT versus number of MVPs of ALBOX.

22

Table 4: Pu®3lable 4 here

The information contained in Table 4 is depicted graphically below. The in-
tervals (min., max) of distances/CPU times are represented by vertical segments,
the averages are indicated with a diamond symbol for ALBOX and a bullet for
LANCELOT. Graphs on the left refer to distances whereas graphs on the right refer
to CPU times.

min. , CPU
dist. time
1.1+ TT 12.75+
o 10.23
1__
771+ 'y
f f1 5.19 1
O+ TT
2.67+ | l ++ ({}
} } } } } } .15 ‘b } } } }
3131313 3]| 3 {"} 313133133 {n]
101112131415 p 101112131415 p

Figure 4: ALBOX (¢) and LANCELOT (e) results for n = 3.

The graphs in Figures 4-6 evidence the qualitative relative behavior of both
codes. Notice that the diamonds and bullets are always close together in the graphs
on the left, indicating that the quality of the optimal solutions obtained by both
codes is similar. On the other hand, the bullets rise faster than the diamonds on
the graphs on the right, which means that the CPU times for LANCELOT tend
to be higher than those for ALBOX. The linear fit of ALBOX CPU times versus
LANCELOT CPU times, y = 0.31054 x—the coefficient is less than one third—,
ploted in Figure 7 confirms this.

24

min. , CPU

dist. time
1.14 565.95 1
455.07 4
1__
LR by 344.191
T o
f* 933.31 1
91 |
122.434 * 4} <L
; ; ; ; ; : 11.55 o & 4> 4> : '

CLEREEIE CRLERLIE

Figure 5: ALBOX (¢) and LANCELOT (e) results for n = 4.

min. , CPU
dist. time
1.17 4530 1
3656 1
1 i
27821

ol t f # ﬁ ﬁ H 1908+ |t It

FEEEEIE S REEEEIE

Figure 6: ALBOX (¢) and LANCELOT (e) results for n = 5.

160

25

CPU times

1000 ALBOX .
800+ .
. 7 — 0.31054 2
600+
4004 . .
2004
CPU times
° LANCELOT
500 1000 1500 2000 2500

Figure 7: CPU times of LANCELOT versus those of ALBOX.

Finally, it should be noted that CPU times increase sharply as a function of
problem size (represented, for instance, by the number of constraints). We tried
several fits (linear, quadratic, exponential) and, though none seemed to provide a

very good model for the data, the quadratic fit was the best one.

7 Conclusions

The main aspects of the Augmented Lagrangian methodology for solving large-scale
nonlinear programming problems have been consolidated after the works of Conn,
Gould and Toint which gave origin to the LANCELOT package. This algorithmic
framework has been very useful in the last ten years for solving practical problems
and for comparison purposes with innovative nonlinear programming methods. Very
likely, this tendency will be maintained in the near future.

The present research was born as a result of our need to have more freedom

26

in the formulation and resolution of the quadratic subproblems that arise in the
LANCELOT-like approach to the Augmented Lagrangian philosophy. On one hand,
we decided to exploit more deeply the whole trust region by means of the use of a
box-constraint quadratic solver. On the other hand, perhaps more importantly, we
tested a Gauss-Newton convex simplification of the quadratic model which turned
out to be much more efficient than the straight Newton-like version of this model.
Behind this gain of efficiency is the fact that the quadratic solver, though able to
deal with nonconvex models, is far more efficient when the underlying quadratic has
a positive semidefinite Hessian. It is usual, in Numerical Analysis, that a decision on
the implementation of a high level algorithm depends on the current technology for
solving low-level subproblems. It must only be warned that such a decision could
change if new more efficient algorithms for solving the subproblems (nonconvex
quadratic programming in our case) are found.

Our main objective is to use ALBOX, not only for solving real-life problems,
but also for testing alternative nonlinear programming methods against it. We feel
that having a deep knowledge of the implementation details of the code will enable
us to be much more exacting when testing new codes, since it will be possible to
fine tune the standard against which the new code is tested. The present study,
apart from calling the reader’s attention to convex simplified Gauss-Newton like
subproblems, had the objective of validating our code, by means of its comparison
with LANCELOT, using a set of problems that have an independent interest. The
result of this comparison seems to indicate that ALBOX can be used as a competitive

tool for nonlinear programming calculations.

27

References

1]

3]

R.H. Bielschowsky, A. Friedlander, F.M. Gomes, J.M. Martinez and M. Ray-
dan. An adaptative algorithm for bound constrained quadratic minimization.

Technical report, Institute of Mathematics, State University of Campinas, 1995.

A.R. Conn, N.ILM. Gould and Ph.L. Toint. A globally convergent augmented
Lagrangian algorithm for optimization with general constraints and simple

bounds. SIAM Journal on Numerical Analysis, 28:545-572, 1991.

A.R. Conn, N.LM. Gould and Ph.L. Toint. LANCELOT, a Fortran Package
for Large-Scale Nonlinear Optimization (Release A). Springer-Verlag, Berlin,
1992.

A. R. Conn, N. I. M. Gould and Ph. L. Toint. Global convergence of a class
of trust region algorithms for optimization with simple bounds. SIAM Journal
on Numerical Analysis 25:433-460, 1988. See also SIAM Journal on Numerical
Analysis 26:764-767, 1989.

J.H. Conway and N.J.C. Sloane. Sphere Packings, Lattices and Groups.
Springer-Verlag, New York, 1988.

K. Devlin. Mathematics: The Science of Patterns. Scientific American Library,

New York, 1994.

M.A. Diniz-Ehrhardt, M.A. Gomes-Ruggiero and S.A. Santos. Comparing the
numerical performance of two trust-region algorithms for large-scale bound-

constrained minimization. In R.J.B. Sampaio and J.Y. Yuan, editors, Interna-

28

8]

[10]

[11]

[12]

[13]

[14]

tional Workshop of Numerical Algebra and Optimization, pages 23-24. Depart-

ment of Mathematics, Universidade Federal do Parand, Brazil, 1997.

Z. Dostal, A. Friedlander and S.A. Santos. Augmented Lagrangians with adap-
tative precision control for quadratic programming with equality constraints.

To appear in Computational Optimization and Applications.

A. Friedlander and J.M. Martinez. On the maximization of a concave quadratic

function with box constraints. SIAM Journal on Optimization, 4:177-192, 1994.

A. Friedlander, J.M. Martinez and S.A. Santos. A new trust-region algorithm
for bound constrained minimization. Applied Mathematics and Optimization,

30:235-266, 1994.

F. M. Gomes, M. C. Maciel and J.M. Martinez. Nonlinear programming al-
gorithms using trust regions and augmented Lagrangians with nonmonotone

penalty parameters. To appear in Mathematical Programming.

W. W. Hager. Analysis and implementation of a dual algorithm for constraint
optimization. Journal of Optimization Theory and Applications 79:427-462,
1993.

W. W. Hager. Dual techniques for constraint optimization. Journal of Opti-

mazation Theory and Applications 55:37-71, 1987.

N. Maculan, P. Michelon and J. MacGregor Smith. Bounds on the kissing
numbers in R": mathematical programming formulations. Technical report,

COPPE, University of Rio de Janeiro, Brazil, 1996.

29

[15]

[16]

[17]

[18]

[19]

J.M. Martinez. Augmented Lagrangians and the resolution of packing problems.
Technical Report 08/97, Institute of Mathematics, University of Campinas,

Brazil.

J.M. Martinez. A Two-Phase Model Algorithm with global convergence for
Nonlinear Programming. to appear in Journal of Optimization Theory and

Applications, Vol. 96, Feb. 1998.

S.G. Nash. Preconditioning of truncated-newton methods. SIAM Journal on
Scientific and Statistical Computing, 6:599-616, 1985.

E. A. Pilotta. Linearly constrained spectral gradient methods and inexact
restoration subproblems for nonlinear programming. Ph.D. Thesis, in prepara-

tion.

E.B. Saff and A.B.J. Kuijlaars. Distributing many points on a sphere. Mathe-
matical Intelligencer, 19:5-11, 1997.

30

