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Abstrat

An Augmented Lagrangian algorithm that uses Gauss-Newton approximations

of the Hessian at eah inner iteration is introdued and tested using a family of

Hard-Spheres problems. The Gauss-Newton model onvexi�es the quadrati ap-

proximations of the Augmented Lagrangian funtion thus inreasing the eÆieny

of the iterative quadrati solver. The resulting method is onsiderably more ef-
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�ient that the orresponding algorithm that uses true Hessians. A omparative

study using the well-known pakage LANCELOT is presented.

1 Introdution

In reent years we have been involved with the development of algorithms based

on sequential quadrati programming [11℄ and inexat restoration [16, 18℄ for mini-

mization problems with nonlinear equality onstraints and bounded variables.

The validation of these algorithms require their omparison with well established

omputer methods for the same type of problems, whih inlude methods of the same

family (as other SQP methods in the �rst ase and GRG like methods in the seond)

as well as methods that adopt a ompletely di�erent point of view, as is the ase

of Penalty and Augmented Lagrangian algorithms. The most onsolidated pratial

Augmented Lagrangian method urrently available is the one implemented in the

pakage LANCELOT, desribed in [4℄. This was the method used, for example, in

[11℄, to test the reliability of a new large-sale sequential quadrati programming

algorithm.

In the ourse of the above mentioned experimental studies we felt the neessity

of intervening in the Augmented Lagrangian ode in a more ative way than the

one permitted to users of LANCELOT. As a result of this pratial neessity, we

beame involved with the development of a di�erent Augmented Lagrangian ode,

whih preserves most of the priniples of the LANCELOT philosophy, but also has

some important di�erenes.

Following the lines of [4℄, a modern Augmented Lagrangian method is essentially

omposed by three nested algorithms:
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� The external algorithm updates the Lagrange multipliers and the penalty pa-

rameters, deides stopping riteria for the internal algorithm and the rules for

delaring onvergene or failure of the overall proedure.

� An internal algorithm minimizes the augmented Lagrangian funtion with

bounds on the variables. Trust region methods, where the subproblem onsists

on the minimization of a quadrati model on the intersetion of two boxes, the

one that de�nes the problem and the trust-region box, are used both in [4℄

and in our implementation.

� A third algorithm deals with the resolution of the quadrati subproblem. While

LANCELOT restrits its searh to the fae determined by an approximate

Cauhy point, our ode explores the domain of the subproblem as a whole.

The seond item, spei�ally where it deals with the formulation of the quadrati

subproblem, is the one in whih we felt more strongly the desire to intervene. On

one hand, we tried many alternative sparse quasi-Newton shemes (without suess,

up to now). On the other hand, we used a surprisingly e�etive simpli�ation

of the true Hessian of the Lagrangian, alled, in this paper, \the Gauss-Newton

Hessian approximation" by analogy with the Gauss-Newton method for nonlinear

least-squares, whih an be interpreted as the result of exluding from the Hessian

of a sum of squares those terms involving Hessian of individual omponents.

In order to validate our augmented Lagrangian implementation we seleted a

family of problems in whih we have partiular interest, known as the family of

Hard-Spheres problems.

The Hard-Spheres Problem belongs to a family of sphere paking problems, a

lass of hallenging problems dating from the beginning of the seventeenth entury.
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In the tradition of famous problems in mathematis, the statements of these prob-

lems are elusively simple, and have withstood the attaks of many worthy math-

ematiians (e.g. Newton, Hilbert, Gregory), while most of its instanes remain

open problems. Furthermore, it is related to pratial problems in hemistry, biol-

ogy and physis, see, for instane, the list of examples in [19℄, onerning mainly

three-dimensional problems, or peruse the 1550-item-long bibliography in [5℄. The

Hard-Spheres Problem is to maximize the minimum pairwise distane between p

points on a sphere in R

n

. This problem may be redued to a nonlinear optimization

problem that turns out, as might be expeted from the mentioned history, to be a

partiularly hard, nononvex problem, with a potentially large number of (nonopti-

mal) points satisfying KKT onditions. We have thus a lass of problems indexed by

the parameters n and p, that provides a suitable set of test problems for evaluating

Nonlinear Programming odes.

Very onvenient is the fat that the Hard-Spheres Problem may be regarded

as the feasibility problem assoiated with another famous problem in the area, the

Kissing Number Problem, whih seeks to determine the maximum number K

n

of

nonoverlapping spheres of given radius in R

n

that an simultaneously touh (kiss)

a entral sphere of same radius. Thus, if the distane obtained in the solution of

the Hard-Spheres Problem, for given n and p, is greater than or equal to the radius

of the sphere on whih the points lie, one may onlude that K

n

� p. We use the

known solution of the three-dimensional Kissing Number Problem to alibrate our

ode, desribed below, and hoose for testing the ode values of n; p that might

bring forth new knowledge about the problem, or strengthen existing onjetures

about the true (but, alas, not rigorously established) value of K

n

, from the following

table of known values/bounds of K

n

given in [5℄:
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n K

n

1 2

2 6

3 12

4 24{25

5 40{46

6 72{82

7 126{140

8 240

9 306{380

10 500{595

11 582{915

12 840{1416

Table 1: Known values/bounds of K

n

.

This paper is organized as follows. In Setion 2 we formulate the Hard-Spheres

Problem as a nonlinear programming problem and we relate the main harateristis

of ALBOX, our Augmented Lagrangian Algorithm. In Setion 3 we explain how the

main algorithmi parameters of ALBOX were hosen. (Here we follow a previous

study in [15℄.) In Setion 4 we introdue the Gauss-Newton Hessian approximation

and disuss the e�et of its use in omparison with the use of true Hessians of

the Lagrangians. In Setion 5 we desribe the parameters used with LANCELOT.

The numerial experiments, obtained by running ALBOX and LANCELOT for a

large number of Hard-Spheres problems, are presented in Setion 6. Finally, some

onlusions are drawn in Setion 7.
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2 ALBOX

The straightforward formulation of the Hard-Spheres Problem leads to the following

maxmin problem, where r is the radius of the sphere, entered on the origin, on whih

the points lie:

max min

i 6=j

ky

i

� y

j

k

s.t. ky

k

k = 2r; k = 1; : : : ; p:

(1)

The vetors y

k

belong to R

n

and k � k is the Eulidean norm. Sine the answer to

the problem is invariant under the hoie of positive r, we let r = 1=2. Furthermore,

using the de�nition of h�; �i, the standard inner produt in R

n

, and the onstraints,

it is easy to see that (1) is equivalent to

min max

i 6=j

hy

i

; y

j

i

s.t. ky

k

k = 2r; k = 1; : : : ; p:

(2)

Applying the lassial trik for transforming minimax problems into onstrained

minimization problems, we redue (2) to the nonlinear program

min z

s.t. z � hy

i

; y

j

i; 8 i 6= j;

ky

k

k = 1; k = 1; : : : ; p:

(3)

Adding slak variables to the �rst set of onstraints and squaring the seond set

of equations in order to avoid nonsmoothness in the �rst derivatives, we obtain

min z

s.t. z � hy

i

; y

j

i � w

ij

= 0; 8 i 6= j;

ky

k

k

2

= 1; k = 1; : : : ; p;

w � 0:

(4)
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whih is of the general form

min f(x)

s.t. h(x) = 0

` � x � u:

(5)

ALBOX, the augmented Lagrangian ode developed, approximately solves

min L(x; �; �)

s.t. ` � x � u;

(6)

at eah Outer Iteration, where

L(x; �; �) = f(x) +

X

i

�

i

h

i

(x) +

X

i

�

i

h

2

i

(x) (7)

is the augmented Lagrangian funtion assoiated with (5), � is the urrent approx-

imation to the Lagrange multipliers and � (� 0) is the urrent vetor of penalty

parameters. These are updated at the end of the Outer Iteration.

Subproblem (6) is solved using BOX, the box-onstrained solver desribed in [10℄.

This iterative method minimizes a quadrati approximation to the objetive funtion

on the intersetion of the original feasible set, the box ` � x � u, and the trust

region (also a box), at eah iteration. If the original objetive funtion is suÆiently

redued at the approximate minimizer of the quadrati, the orresponding trial point

is aepted as the new iterate. Otherwise, the trust region is redued. The main

algorithmi di�erene between BOX and the method used in [2℄ is that in BOX the

quadrati is explored on the whole intersetion of the original box and the trust

region whereas in [2℄ only the fae determined by an \approximate Cauhy point"

is examined.

ALBOX is a Double Preision FORTRAN 77 ode that aims to ope with large-

sale problems. For this reason, fatorization of matries is not used at all. The
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quadrati solver used to solve the subproblems of the box-onstraint algorithm,

QUACAN, visits the di�erent faes of its domain using onjugate gradients on the

interior of eah fae and \hopped gradients" as searh diretions to leave the faes.

We refer the reader to [1℄, [9℄ and [10℄, for details on the atual implementation of

QUACAN. In most iterations of this quadrati solver, a matrix-vetor produt of

the Hessian approximation and a vetor is omputed. Oasionally, an additional

matrix-vetor produt may be neessary.

The performane of ALBOX, and, in fat, of most sophistiated algorithms,

depends on the hoie of many parameters. The most sensitive parameters were

adjusted using the Kissing Problem with n = 3 and p = 12 (Iosahedron Problem).

We disuss these hoies in the next setion. A similar analysis was arried out for

LANCELOT, and is desribed in setion 5.

3 Choie of parameters for ALBOX

3.1 Penalty parameters and Lagrange multipliers

The vetor � of penalty parameters assoiated with the equality onstraints h(x) = 0

are updated after eah Outer Iteration. We onsidered two possiblities: to update

eah omponent aording to the derease of the orresponding omponent of h(x)

or using a global riterion based on h(x). The spei� alternatives ontemplated

were, assuming x to be the initial point at some Outer Iteration and �x the �nal one:

1. inrease �

i

only if jh(�x)

i

j is not suÆiently smaller than jh(x)

i

j;

2. inrease �

i

only if kh(�x)k

1

is not suÆiently smaller than kh(x)k

1

.
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Preliminary experiments revealed, perhaps surprisingly, that the \global strat-

egy" 2 is better than the �rst. In fat, when �

i

is not updated, but the other

omponents of � are, the feasibility level jh(�x)

i

j tends to deteriorate at the next

iteration and, onsequentely, a large number of Outer Iterations beomes neessary.

In other words, it seems that a strategy based on 1 enourages a zigzagging be-

havior, with suessive iterates alternatingly satisfying one onstraint or another.

Thus, although the original formulation allows for one penalty parameter for eah

equality onstraint, in pratie it is as if we worked with one parameter for all of

them, sine they are all initialized at the same value (tests indiate that 10 is an

adequate initial value) and are all updated aording to the same rule (one again

based on tests, they are inreased by a fator of 10 when suÆient improvement of

feasibility is not deteted). Here we onsidered that \a suÆiently smaller than b"

means that a � 0:01b.

It must be pointed out that the behavior of penalty parameters is not inde-

pendent of the strategy for updating the Lagrange multipliers. With algorithmi

simpliity in mind, we adopted a \�rst order formula". Letting

�

� be the Lagrange

multiplier at the start of a new Outer Iteration and �, � be the Lagrange multipliers

and penalty parameters at the previous iteration, we set

�

�

i

= �

i

+ �

i

h(�x)

i

for all i = 1; : : : ; m. Initially, � = 0.

3.2 Stopping riteria for box-onstraint solver

Eah Outer Iteration ends when one of the several stopping riteria for the algorithm

that solves the augmented Lagrangian box-onstrained minimization problem (6) is
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reahed. There is the usual maximum number of iterations safeguard, whih is set

at 100 for QUACAN alls.

Other than that, we onsider that the box-onstraint algorithm BOX onverges

when

kg

P

(x)k

2

� ";

where g

P

(x) is the \ontinuous projeted gradient" of the objetive funtion of (6)

at the point x. This vetor is de�ned as the di�erene between the projetion of

x � rL(x; �; �) on the box and the point x. The tolerane " may hange at eah

Outer Iteration. We tested two strategies for ": one that de�nes " dynamially

depending on the degree of feasibility of the urrent iterate and another that �xes "

at 10

�5

. Althought not onlusive, results for the Iosahedron Problem were better

when the onstant " strategy was used. This was, therefore, the strategy adopted

for further tests. Inidentally, the opposite was adopted in [8℄, where a similar

Augmented Lagrangian Algorithm was used to solve linearly onstrained problems

derived from physial appliations. Theoretial justi�ations for the inexat mini-

mization of subproblems in the augmented Lagrangian ontext an also be found in

[12, 13℄.

The box-onstraint ode admits other stopping riteria. For instane, exeution

may stop if the progress during some number of onseutive iterations is not good

enough or if the the radius of the trust region beomes too small. Nevertheless, best

results were obtained inhibiting these alternative stopping riteria.

3.3 Parameters for the quadrati solver

QUACAN is the ode alled to minimize quadrati funtions (augmented Lagrangians

in this ase) subjet to box onstraints. Its eÆieny, or lak thereof, plays a ruial
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role in the overall behavior of the Augmented Lagrangian Algorithm. Its parameters

must therefore be arefully hosen.

Firstly we examine the onvergene riterion. If the projeted gradient of the

quadrati is null, the orresponding point is stationary. Aordingly, onvergene is

onsidered ahieved when the norm of this projeted gradient is less than a fration

of the orresponding norm at the initial point. In this ase, we use \non-ontinuous

projeted gradients," in whih the projetions are not omputed on the feasible box

but on the ative onstraints. Frations 1/10, 1/100 and 1/100000 were tested on

the Iosahedron Problem, and the �rst hoie provided the best behavior, being the

one employed subsequently.

The maximum number of iterations allowed is also an important parameter, sine

otherwise we may invest too muh e�ort solving problems only distantly related to

the original one. We found that the number of variables of the problem, np+

�

p

2

�

+1,

is a suitable delimiter in this ase. Other non-onvergene stopping riteria were

inhibited.

The radius of the trust region determines the size of the auxiliary box used in

QUACAN. The nonlinear programming algorithm is sensitive to the hoie of Æ, the

�rst trust region radius. After testing di�erent values, we seleted Æ = 10 as an

appropriate hoie.

Another important parameter is � 2 (0; 1), the parameter that determines

whether the next iterate must belong to the same fae as the urrent one, or not.

Roughly speaking, if � is small, the algorithm tends to leave the urrent fae as

soon as a mild derease of the quadrati is deteted. On the other hand, if � � 1,

the algorithm only abandons the urrent fae when the urrent point is lose to a

stationary point of the quadrati on that fae. A rather surprising result was that,
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for the Iosahedron Problem, the onservative value � = :95 was better than smaller

values.

Finally, when the quadrati solver hits the boundary of its feasible region, an

extrapolation step may be tried, depending on the value of the extrapolation pa-

rameter  � 1. If  is large, new points will be tried at whih the number of ative

bounds may be onsiderably inreased. No extrapolation is tried when  = 1. Tests

indiated that  = 10 is a onvenient hoie for the Hard-Spheres Problem.

4 Approximate Hessian

The nonlinear optimization problem (4) obtained in setion 2 is the version of the

Hard-Spheres Problem that was hosen for our tests. It was pointed out that (4) is

of the general form

min f(x)

s.t. h(x) = 0

` � x � u:

whose assoiated augmented Lagrangian is

L(x; �; �) = f(x) + h�; h(x)i+

�

2

kh(x)k

2

2

:

Thus

rL(x; �; �) = rf(x) +

m

X

i=1

�

i

rh

i

(x) + �h

0

(x)

T

h(x)

and

r

2

L(x; �; �) = r

2

f(x) + +�h

0

(x)

T

h

0

(x) +

m

X

i=1

[�

i

+ �h

i

(x)℄r

2

h

i

(x):

Although r

2

L(x; �; �) tends to be positive de�nite when � is large, � is lose to

the orret Lagrange multipliers and x is lose to a solution, this is not the ase
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at the early stages of augmented Lagrangian alulations. On the other hand, the

simpli�ed matrix obtained by negleting the term involving seond order derivatives

of the onstraint funtions

B(x; �) = r

2

f(x) + +�h

0

(x)

T

h

0

(x)

is always positive semide�nite in our ase, independently of � and x. Of ourse, this

is always the ase when f is a onvex funtion.

Another insight into B(x; �) is provided by examining the problem

min f(x)

s.t. h

0

(z)(x� z) + h(z) = 0

` � x � u;

(8)

where z is the urrent point being used in a BOX iteration. Problem (8) is obtained

by replaing the original h(x) = 0 onstraints with its �rst order (linear) approx-

imation. But B(z; �) happens to be the Hessian of the augmented Lagrangian

assoiated with (8) at z! Furthermore, both the augmented Lagrangian assoiated

with (8) and its gradient evaluated at z oinide with their ounterparts assoiated

with the original problem (4), evaluated at z.

The matrix vetor produts r

2

L(x; �; �)v and B(x; �)v seem umbersome to

ompute at a �rst glane. But taking advantadge of their struture enables the

omputation to be done in O(np) time.

In priniple, using the true Hessian of the Lagrangian should the best possi-

ble hoie, sine it represents better the struture of the true problem. However,

available algorithms for minimizing quadratis in onvex sets are muh more eÆ-

ient when the quadrati is onvex than otherwise. QUACAN is not an exeption

to this rule. Therefore, in the interest of improving the overall performane of the
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augmented Lagrangian algorithm, we deided to use B(x; �) as Hessian Lagrangian

approximation.

The results were indeed impressive. Table 2 lists the average statistis obtained

for four of the eighteen test sets, where eah (n; p) pair was run for �fty random

starting points. The average number of Outer iterations, BOX iterations, Funtion

evaluations, Matrix Vetor Produts, CPU time in seonds and minimum distane

are given for the runs using the exat Hessian (�rst row of eah set) and the ones

using the approximate Hessian (seond row). The minimum distanes obtained

were very lose and on some instanes the minimum distane obtained using the

approximate Hessian was smaller than the one obtained using the exat Hessian.

While the number of Outer iterations does not di�er very muh from one hoie to

the other, the number of BOX iterations and, onsequently, the number of Matrix

Vetor Produts sensibly dereases. The overall result is a marked derease in CPU

time. In Figure 1 we plot the average CPU times, for all eighteen tests, using

the exat Hessian versus times using the approximate Hessian. Also shown is the

line that gives the best �t of the data by a linear (not aÆne) funtion, namely

y = 0:374138 x, that is, the approximate Hessian option implies in a derease of

almost two thirds in CPU times.

5 Choie of parameters for LANCELOT

LANCELOT allows for the hoie of exat or approximate �rst and seond order

derivatives. However, LANCELOT's manual [3℄ (p.111) \strongly reommends the

use of exat seond derivatives whenever they are available", and, on the other hand,

there is no provision for an user supplied Hessian approximation. In fat we ran a
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Problem size Outer Box Funt.

MVP

CPU Min

�

n

p

�

var. onstr. it. it. eval. time dist.

"

3

10

#

76 55

4.86 37.06 52.14 1564.36 0.765 1.086487225412

4.64 34.74 45.52 1194.70 0.476 1.083236334520

"

4

22

#

320 253

4.60 91.10 123.90 16079.36 33.440 0.997314349536

4.34 78.02 97.40 11222.14 20.032 0.997809583865

"

5

37

#

852 703

5.00 274.10 358.54 142683.34 963.537 0.998632681285

4.56 160.02 193.14 67020.22 373.141 0.998675348042

Table 2: Running ALBOX with exat (�rst row) and approximate Hessian (seond

row).

-

6

CPU times using

exat Hessian

CPU times using

approx. Hessian y = 0:374138 x
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Figure 1: CPU times using exat Hessian (x-axis) versus using approximate Hessian

(y-axis).
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few tests with the default approximation (SR1) but the results were worse than

those obtained using exat seond derivatives, and thus this was the option adopted

for all further tests. In the light of the experiments desribed in the previous setion,

this provides orroborating evidene to the e�et that general purpose, onsolidated

pakages, designed to provide a good performane with little interferene from the

user, may be more onvenient to use than open ended, low-level interfae odes,

suh as ALBOX; but, for the user willing to \get his hands dirty" the latter rawer

ode might not only prove ompetitive, it may atually outperform the former ode,

with its more polished though restritive �nish.

We also experimented with several di�erent options for solving the linear equa-

tion solver, namely, without preonditioner, with diagonal preonditioner and with

a band matrix preonditioner. The best results were obtained with the �rst option

(no preonditioner). Another hoie that slowed the algorithm, without notieable

improve the quality of solution, was requiring that the exat Cauhy point be om-

puted. We settled to use the inexat Cauhy point option. The maximum number of

iterations allowed is 1000. Finally, the gradient and onstraints toleranes were the

same hosen for ALBOX, namely 10

�8

. The FORTRAN ompiler option adopted

for LANCELOT and ALBOX was \-O".

6 Numerial experiments

Tests were run on a Sun SparStation 20, with the following main harateristis:

128Mbytes of RAM, 70MHz, 204.7 mips, 44.4 Mops. Results for the �fty runs for

eah (n; p) pair are summarized in the following tables. Table 3 summarizes the

statistis that are \mahine independent," typially involving number of iterations,

16



number of funtion evaluations, with the exeption of the optimal distanes found.

Quotes are needed beause this is not ompletely aurate, sine these numbers will

in fat depend on mahine preision, ompiler manufaturer, and the like. Never-

theless, they ertainly provide more independent grounds for omparison than CPU

times, presented in Table 4, along with optimal distanes.

Table 3 presents the mininum, maximum and average amounts of Outer and BOX

iterations, funtion evaluations, Quaan iterations and matrix-vetor-produts/on-

jugate-gradient iterations (for Box and LANCELOT, respetively). First row of

eah set orresponds to ALBOX and seond to LANCELOT. Unfortunately the

only statistis available for both is the number of funtion evaluations. We paired

the number of matrix-vetor-produts (MVP) output by ALBOX with the number of

onjugate-gradient iterations (CGI) produed by LANCELOT, sine eah onjugate-

gradient iteration involves a matrix-vetor-produt.

Although the algorithms behave very di�erently timewise, as we will shortly see,

this is not a diret onsequene of the number of funtion evaluations eah performs.

The best least-squares �t by a �rst degree polynomial gives y = 5:74631+0:855356 x,

where y is the number of funtion evaluations of ALBOX and x is the orresponding

amount for LANCELOT, whereas a similar �t involving CPU times will give a

oeÆient of less than a third. On Figure 2 we plot the funtion evaluation pairs

for all eighteen instanes along with the best �t obtained.

Further still from providing an explanation for the higher eÆieny of AL-

BOX is the omparison of MVP versus CGI. In this ase the best �t gives y =

�1320:36 + 1:10655x, where y is the number of MVP and x is the number of CGI.

This suggests that, although both iterations involve a matrix-vetor-produt, a CGI

is substantially ostlier, timewise, than the MVP performed in ALBOX. A main

17



Table 3: Put �rst page of Table 3 here
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Table 3: Put seond page of Table 4 here
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Figure 2: Number of funtion evaluations of LANCELOT versus ALBOX.
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fator for this is that the matrix-vetor-produt in LANCELOT's onjugate gradi-

ent iteration deals with the true Hessian, whereas the one in ALBOX involves the

approximate (and simpler) Hessian. Figure 3 ontains the line orresponding to the

best linear �t and the position of the (CGI, MVP) pairs.

Next we have Table 4, that presents similar statistis involving the optimal dis-

tanes enountered and the CPU times, in seonds. The �rst (resp., seond) row for

eah (n; p) pair gives the numbers obtained by ALBOX (resp., LANCELOT).

21
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Figure 3: Number of CGIs of LANCELOT versus number of MVPs of ALBOX.
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Table 4: Put Table 4 here
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The information ontained in Table 4 is depited graphially below. The in-

tervals (min., max) of distanes/CPU times are represented by vertial segments,

the averages are indiated with a diamond symbol for ALBOX and a bullet for

LANCELOT. Graphs on the left refer to distanes whereas graphs on the right refer

to CPU times.
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Figure 4: ALBOX (�) and LANCELOT (�) results for n = 3.

The graphs in Figures 4{6 evidene the qualitative relative behavior of both

odes. Notie that the diamonds and bullets are always lose together in the graphs

on the left, indiating that the quality of the optimal solutions obtained by both

odes is similar. On the other hand, the bullets rise faster than the diamonds on

the graphs on the right, whih means that the CPU times for LANCELOT tend

to be higher than those for ALBOX. The linear �t of ALBOX CPU times versus

LANCELOT CPU times, y = 0:31054 x|the oeÆient is less than one third|,

ploted in Figure 7 on�rms this.
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Figure 5: ALBOX (�) and LANCELOT (�) results for n = 4.
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Figure 6: ALBOX (�) and LANCELOT (�) results for n = 5.
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Figure 7: CPU times of LANCELOT versus those of ALBOX.

Finally, it should be noted that CPU times inrease sharply as a funtion of

problem size (represented, for instane, by the number of onstraints). We tried

several �ts (linear, quadrati, exponential) and, though none seemed to provide a

very good model for the data, the quadrati �t was the best one.

7 Conlusions

The main aspets of the Augmented Lagrangian methodology for solving large-sale

nonlinear programming problems have been onsolidated after the works of Conn,

Gould and Toint whih gave origin to the LANCELOT pakage. This algorithmi

framework has been very useful in the last ten years for solving pratial problems

and for omparison purposes with innovative nonlinear programming methods. Very

likely, this tendeny will be maintained in the near future.

The present researh was born as a result of our need to have more freedom
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in the formulation and resolution of the quadrati subproblems that arise in the

LANCELOT-like approah to the Augmented Lagrangian philosophy. On one hand,

we deided to exploit more deeply the whole trust region by means of the use of a

box-onstraint quadrati solver. On the other hand, perhaps more importantly, we

tested a Gauss-Newton onvex simpli�ation of the quadrati model whih turned

out to be muh more eÆient than the straight Newton-like version of this model.

Behind this gain of eÆieny is the fat that the quadrati solver, though able to

deal with nononvex models, is far more eÆient when the underlying quadrati has

a positive semide�nite Hessian. It is usual, in Numerial Analysis, that a deision on

the implementation of a high level algorithm depends on the urrent tehnology for

solving low-level subproblems. It must only be warned that suh a deision ould

hange if new more eÆient algorithms for solving the subproblems (nononvex

quadrati programming in our ase) are found.

Our main objetive is to use ALBOX, not only for solving real-life problems,

but also for testing alternative nonlinear programming methods against it. We feel

that having a deep knowledge of the implementation details of the ode will enable

us to be muh more exating when testing new odes, sine it will be possible to

�ne tune the standard against whih the new ode is tested. The present study,

apart from alling the reader's attention to onvex simpli�ed Gauss-Newton like

subproblems, had the objetive of validating our ode, by means of its omparison

with LANCELOT, using a set of problems that have an independent interest. The

result of this omparison seems to indiate that ALBOX an be used as a ompetitive

tool for nonlinear programming alulations.
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