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Abstra
t

An Augmented Lagrangian algorithm that uses Gauss-Newton approximations

of the Hessian at ea
h inner iteration is introdu
ed and tested using a family of

Hard-Spheres problems. The Gauss-Newton model 
onvexi�es the quadrati
 ap-

proximations of the Augmented Lagrangian fun
tion thus in
reasing the eÆ
ien
y

of the iterative quadrati
 solver. The resulting method is 
onsiderably more ef-
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�
ient that the 
orresponding algorithm that uses true Hessians. A 
omparative

study using the well-known pa
kage LANCELOT is presented.

1 Introdu
tion

In re
ent years we have been involved with the development of algorithms based

on sequential quadrati
 programming [11℄ and inexa
t restoration [16, 18℄ for mini-

mization problems with nonlinear equality 
onstraints and bounded variables.

The validation of these algorithms require their 
omparison with well established


omputer methods for the same type of problems, whi
h in
lude methods of the same

family (as other SQP methods in the �rst 
ase and GRG like methods in the se
ond)

as well as methods that adopt a 
ompletely di�erent point of view, as is the 
ase

of Penalty and Augmented Lagrangian algorithms. The most 
onsolidated pra
ti
al

Augmented Lagrangian method 
urrently available is the one implemented in the

pa
kage LANCELOT, des
ribed in [4℄. This was the method used, for example, in

[11℄, to test the reliability of a new large-s
ale sequential quadrati
 programming

algorithm.

In the 
ourse of the above mentioned experimental studies we felt the ne
essity

of intervening in the Augmented Lagrangian 
ode in a more a
tive way than the

one permitted to users of LANCELOT. As a result of this pra
ti
al ne
essity, we

be
ame involved with the development of a di�erent Augmented Lagrangian 
ode,

whi
h preserves most of the prin
iples of the LANCELOT philosophy, but also has

some important di�eren
es.

Following the lines of [4℄, a modern Augmented Lagrangian method is essentially


omposed by three nested algorithms:
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� The external algorithm updates the Lagrange multipliers and the penalty pa-

rameters, de
ides stopping 
riteria for the internal algorithm and the rules for

de
laring 
onvergen
e or failure of the overall pro
edure.

� An internal algorithm minimizes the augmented Lagrangian fun
tion with

bounds on the variables. Trust region methods, where the subproblem 
onsists

on the minimization of a quadrati
 model on the interse
tion of two boxes, the

one that de�nes the problem and the trust-region box, are used both in [4℄

and in our implementation.

� A third algorithm deals with the resolution of the quadrati
 subproblem. While

LANCELOT restri
ts its sear
h to the fa
e determined by an approximate

Cau
hy point, our 
ode explores the domain of the subproblem as a whole.

The se
ond item, spe
i�
ally where it deals with the formulation of the quadrati


subproblem, is the one in whi
h we felt more strongly the desire to intervene. On

one hand, we tried many alternative sparse quasi-Newton s
hemes (without su

ess,

up to now). On the other hand, we used a surprisingly e�e
tive simpli�
ation

of the true Hessian of the Lagrangian, 
alled, in this paper, \the Gauss-Newton

Hessian approximation" by analogy with the Gauss-Newton method for nonlinear

least-squares, whi
h 
an be interpreted as the result of ex
luding from the Hessian

of a sum of squares those terms involving Hessian of individual 
omponents.

In order to validate our augmented Lagrangian implementation we sele
ted a

family of problems in whi
h we have parti
ular interest, known as the family of

Hard-Spheres problems.

The Hard-Spheres Problem belongs to a family of sphere pa
king problems, a


lass of 
hallenging problems dating from the beginning of the seventeenth 
entury.
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In the tradition of famous problems in mathemati
s, the statements of these prob-

lems are elusively simple, and have withstood the atta
ks of many worthy math-

emati
ians (e.g. Newton, Hilbert, Gregory), while most of its instan
es remain

open problems. Furthermore, it is related to pra
ti
al problems in 
hemistry, biol-

ogy and physi
s, see, for instan
e, the list of examples in [19℄, 
on
erning mainly

three-dimensional problems, or peruse the 1550-item-long bibliography in [5℄. The

Hard-Spheres Problem is to maximize the minimum pairwise distan
e between p

points on a sphere in R

n

. This problem may be redu
ed to a nonlinear optimization

problem that turns out, as might be expe
ted from the mentioned history, to be a

parti
ularly hard, non
onvex problem, with a potentially large number of (nonopti-

mal) points satisfying KKT 
onditions. We have thus a 
lass of problems indexed by

the parameters n and p, that provides a suitable set of test problems for evaluating

Nonlinear Programming 
odes.

Very 
onvenient is the fa
t that the Hard-Spheres Problem may be regarded

as the feasibility problem asso
iated with another famous problem in the area, the

Kissing Number Problem, whi
h seeks to determine the maximum number K

n

of

nonoverlapping spheres of given radius in R

n

that 
an simultaneously tou
h (kiss)

a 
entral sphere of same radius. Thus, if the distan
e obtained in the solution of

the Hard-Spheres Problem, for given n and p, is greater than or equal to the radius

of the sphere on whi
h the points lie, one may 
on
lude that K

n

� p. We use the

known solution of the three-dimensional Kissing Number Problem to 
alibrate our


ode, des
ribed below, and 
hoose for testing the 
ode values of n; p that might

bring forth new knowledge about the problem, or strengthen existing 
onje
tures

about the true (but, alas, not rigorously established) value of K

n

, from the following

table of known values/bounds of K

n

given in [5℄:
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n K

n

1 2

2 6

3 12

4 24{25

5 40{46

6 72{82

7 126{140

8 240

9 306{380

10 500{595

11 582{915

12 840{1416

Table 1: Known values/bounds of K

n

.

This paper is organized as follows. In Se
tion 2 we formulate the Hard-Spheres

Problem as a nonlinear programming problem and we relate the main 
hara
teristi
s

of ALBOX, our Augmented Lagrangian Algorithm. In Se
tion 3 we explain how the

main algorithmi
 parameters of ALBOX were 
hosen. (Here we follow a previous

study in [15℄.) In Se
tion 4 we introdu
e the Gauss-Newton Hessian approximation

and dis
uss the e�e
t of its use in 
omparison with the use of true Hessians of

the Lagrangians. In Se
tion 5 we des
ribe the parameters used with LANCELOT.

The numeri
al experiments, obtained by running ALBOX and LANCELOT for a

large number of Hard-Spheres problems, are presented in Se
tion 6. Finally, some


on
lusions are drawn in Se
tion 7.
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2 ALBOX

The straightforward formulation of the Hard-Spheres Problem leads to the following

maxmin problem, where r is the radius of the sphere, 
entered on the origin, on whi
h

the points lie:

max min

i 6=j

ky

i

� y

j

k

s.t. ky

k

k = 2r; k = 1; : : : ; p:

(1)

The ve
tors y

k

belong to R

n

and k � k is the Eu
lidean norm. Sin
e the answer to

the problem is invariant under the 
hoi
e of positive r, we let r = 1=2. Furthermore,

using the de�nition of h�; �i, the standard inner produ
t in R

n

, and the 
onstraints,

it is easy to see that (1) is equivalent to

min max

i 6=j

hy

i

; y

j

i

s.t. ky

k

k = 2r; k = 1; : : : ; p:

(2)

Applying the 
lassi
al tri
k for transforming minimax problems into 
onstrained

minimization problems, we redu
e (2) to the nonlinear program

min z

s.t. z � hy

i

; y

j

i; 8 i 6= j;

ky

k

k = 1; k = 1; : : : ; p:

(3)

Adding sla
k variables to the �rst set of 
onstraints and squaring the se
ond set

of equations in order to avoid nonsmoothness in the �rst derivatives, we obtain

min z

s.t. z � hy

i

; y

j

i � w

ij

= 0; 8 i 6= j;

ky

k

k

2

= 1; k = 1; : : : ; p;

w � 0:

(4)
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whi
h is of the general form

min f(x)

s.t. h(x) = 0

` � x � u:

(5)

ALBOX, the augmented Lagrangian 
ode developed, approximately solves

min L(x; �; �)

s.t. ` � x � u;

(6)

at ea
h Outer Iteration, where

L(x; �; �) = f(x) +

X

i

�

i

h

i

(x) +

X

i

�

i

h

2

i

(x) (7)

is the augmented Lagrangian fun
tion asso
iated with (5), � is the 
urrent approx-

imation to the Lagrange multipliers and � (� 0) is the 
urrent ve
tor of penalty

parameters. These are updated at the end of the Outer Iteration.

Subproblem (6) is solved using BOX, the box-
onstrained solver des
ribed in [10℄.

This iterative method minimizes a quadrati
 approximation to the obje
tive fun
tion

on the interse
tion of the original feasible set, the box ` � x � u, and the trust

region (also a box), at ea
h iteration. If the original obje
tive fun
tion is suÆ
iently

redu
ed at the approximate minimizer of the quadrati
, the 
orresponding trial point

is a

epted as the new iterate. Otherwise, the trust region is redu
ed. The main

algorithmi
 di�eren
e between BOX and the method used in [2℄ is that in BOX the

quadrati
 is explored on the whole interse
tion of the original box and the trust

region whereas in [2℄ only the fa
e determined by an \approximate Cau
hy point"

is examined.

ALBOX is a Double Pre
ision FORTRAN 77 
ode that aims to 
ope with large-

s
ale problems. For this reason, fa
torization of matri
es is not used at all. The
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quadrati
 solver used to solve the subproblems of the box-
onstraint algorithm,

QUACAN, visits the di�erent fa
es of its domain using 
onjugate gradients on the

interior of ea
h fa
e and \
hopped gradients" as sear
h dire
tions to leave the fa
es.

We refer the reader to [1℄, [9℄ and [10℄, for details on the a
tual implementation of

QUACAN. In most iterations of this quadrati
 solver, a matrix-ve
tor produ
t of

the Hessian approximation and a ve
tor is 
omputed. O

asionally, an additional

matrix-ve
tor produ
t may be ne

essary.

The performan
e of ALBOX, and, in fa
t, of most sophisti
ated algorithms,

depends on the 
hoi
e of many parameters. The most sensitive parameters were

adjusted using the Kissing Problem with n = 3 and p = 12 (I
osahedron Problem).

We dis
uss these 
hoi
es in the next se
tion. A similar analysis was 
arried out for

LANCELOT, and is des
ribed in se
tion 5.

3 Choi
e of parameters for ALBOX

3.1 Penalty parameters and Lagrange multipliers

The ve
tor � of penalty parameters asso
iated with the equality 
onstraints h(x) = 0

are updated after ea
h Outer Iteration. We 
onsidered two possiblities: to update

ea
h 
omponent a

ording to the de
rease of the 
orresponding 
omponent of h(x)

or using a global 
riterion based on h(x). The spe
i�
 alternatives 
ontemplated

were, assuming x to be the initial point at some Outer Iteration and �x the �nal one:

1. in
rease �

i

only if jh(�x)

i

j is not suÆ
iently smaller than jh(x)

i

j;

2. in
rease �

i

only if kh(�x)k

1

is not suÆ
iently smaller than kh(x)k

1

.
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Preliminary experiments revealed, perhaps surprisingly, that the \global strat-

egy" 2 is better than the �rst. In fa
t, when �

i

is not updated, but the other


omponents of � are, the feasibility level jh(�x)

i

j tends to deteriorate at the next

iteration and, 
onsequentely, a large number of Outer Iterations be
omes ne
essary.

In other words, it seems that a strategy based on 1 en
ourages a zigzagging be-

havior, with su

essive iterates alternatingly satisfying one 
onstraint or another.

Thus, although the original formulation allows for one penalty parameter for ea
h

equality 
onstraint, in pra
ti
e it is as if we worked with one parameter for all of

them, sin
e they are all initialized at the same value (tests indi
ate that 10 is an

adequate initial value) and are all updated a

ording to the same rule (on
e again

based on tests, they are in
reased by a fa
tor of 10 when suÆ
ient improvement of

feasibility is not dete
ted). Here we 
onsidered that \a suÆ
iently smaller than b"

means that a � 0:01b.

It must be pointed out that the behavior of penalty parameters is not inde-

pendent of the strategy for updating the Lagrange multipliers. With algorithmi


simpli
ity in mind, we adopted a \�rst order formula". Letting

�

� be the Lagrange

multiplier at the start of a new Outer Iteration and �, � be the Lagrange multipliers

and penalty parameters at the previous iteration, we set

�

�

i

= �

i

+ �

i

h(�x)

i

for all i = 1; : : : ; m. Initially, � = 0.

3.2 Stopping 
riteria for box-
onstraint solver

Ea
h Outer Iteration ends when one of the several stopping 
riteria for the algorithm

that solves the augmented Lagrangian box-
onstrained minimization problem (6) is
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rea
hed. There is the usual maximum number of iterations safeguard, whi
h is set

at 100 for QUACAN 
alls.

Other than that, we 
onsider that the box-
onstraint algorithm BOX 
onverges

when

kg

P

(x)k

2

� ";

where g

P

(x) is the \
ontinuous proje
ted gradient" of the obje
tive fun
tion of (6)

at the point x. This ve
tor is de�ned as the di�eren
e between the proje
tion of

x � rL(x; �; �) on the box and the point x. The toleran
e " may 
hange at ea
h

Outer Iteration. We tested two strategies for ": one that de�nes " dynami
ally

depending on the degree of feasibility of the 
urrent iterate and another that �xes "

at 10

�5

. Althought not 
on
lusive, results for the I
osahedron Problem were better

when the 
onstant " strategy was used. This was, therefore, the strategy adopted

for further tests. In
identally, the opposite was adopted in [8℄, where a similar

Augmented Lagrangian Algorithm was used to solve linearly 
onstrained problems

derived from physi
al appli
ations. Theoreti
al justi�
ations for the inexa
t mini-

mization of subproblems in the augmented Lagrangian 
ontext 
an also be found in

[12, 13℄.

The box-
onstraint 
ode admits other stopping 
riteria. For instan
e, exe
ution

may stop if the progress during some number of 
onse
utive iterations is not good

enough or if the the radius of the trust region be
omes too small. Nevertheless, best

results were obtained inhibiting these alternative stopping 
riteria.

3.3 Parameters for the quadrati
 solver

QUACAN is the 
ode 
alled to minimize quadrati
 fun
tions (augmented Lagrangians

in this 
ase) subje
t to box 
onstraints. Its eÆ
ien
y, or la
k thereof, plays a 
ru
ial
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role in the overall behavior of the Augmented Lagrangian Algorithm. Its parameters

must therefore be 
arefully 
hosen.

Firstly we examine the 
onvergen
e 
riterion. If the proje
ted gradient of the

quadrati
 is null, the 
orresponding point is stationary. A

ordingly, 
onvergen
e is


onsidered a
hieved when the norm of this proje
ted gradient is less than a fra
tion

of the 
orresponding norm at the initial point. In this 
ase, we use \non-
ontinuous

proje
ted gradients," in whi
h the proje
tions are not 
omputed on the feasible box

but on the a
tive 
onstraints. Fra
tions 1/10, 1/100 and 1/100000 were tested on

the I
osahedron Problem, and the �rst 
hoi
e provided the best behavior, being the

one employed subsequently.

The maximum number of iterations allowed is also an important parameter, sin
e

otherwise we may invest too mu
h e�ort solving problems only distantly related to

the original one. We found that the number of variables of the problem, np+

�

p

2

�

+1,

is a suitable delimiter in this 
ase. Other non-
onvergen
e stopping 
riteria were

inhibited.

The radius of the trust region determines the size of the auxiliary box used in

QUACAN. The nonlinear programming algorithm is sensitive to the 
hoi
e of Æ, the

�rst trust region radius. After testing di�erent values, we sele
ted Æ = 10 as an

appropriate 
hoi
e.

Another important parameter is � 2 (0; 1), the parameter that determines

whether the next iterate must belong to the same fa
e as the 
urrent one, or not.

Roughly speaking, if � is small, the algorithm tends to leave the 
urrent fa
e as

soon as a mild de
rease of the quadrati
 is dete
ted. On the other hand, if � � 1,

the algorithm only abandons the 
urrent fa
e when the 
urrent point is 
lose to a

stationary point of the quadrati
 on that fa
e. A rather surprising result was that,
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for the I
osahedron Problem, the 
onservative value � = :95 was better than smaller

values.

Finally, when the quadrati
 solver hits the boundary of its feasible region, an

extrapolation step may be tried, depending on the value of the extrapolation pa-

rameter 
 � 1. If 
 is large, new points will be tried at whi
h the number of a
tive

bounds may be 
onsiderably in
reased. No extrapolation is tried when 
 = 1. Tests

indi
ated that 
 = 10 is a 
onvenient 
hoi
e for the Hard-Spheres Problem.

4 Approximate Hessian

The nonlinear optimization problem (4) obtained in se
tion 2 is the version of the

Hard-Spheres Problem that was 
hosen for our tests. It was pointed out that (4) is

of the general form

min f(x)

s.t. h(x) = 0

` � x � u:

whose asso
iated augmented Lagrangian is

L(x; �; �) = f(x) + h�; h(x)i+

�

2

kh(x)k

2

2

:

Thus

rL(x; �; �) = rf(x) +

m

X

i=1

�

i

rh

i

(x) + �h

0

(x)

T

h(x)

and

r

2

L(x; �; �) = r

2

f(x) + +�h

0

(x)

T

h

0

(x) +

m

X

i=1

[�

i

+ �h

i

(x)℄r

2

h

i

(x):

Although r

2

L(x; �; �) tends to be positive de�nite when � is large, � is 
lose to

the 
orre
t Lagrange multipliers and x is 
lose to a solution, this is not the 
ase
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at the early stages of augmented Lagrangian 
al
ulations. On the other hand, the

simpli�ed matrix obtained by negle
ting the term involving se
ond order derivatives

of the 
onstraint fun
tions

B(x; �) = r

2

f(x) + +�h

0

(x)

T

h

0

(x)

is always positive semide�nite in our 
ase, independently of � and x. Of 
ourse, this

is always the 
ase when f is a 
onvex fun
tion.

Another insight into B(x; �) is provided by examining the problem

min f(x)

s.t. h

0

(z)(x� z) + h(z) = 0

` � x � u;

(8)

where z is the 
urrent point being used in a BOX iteration. Problem (8) is obtained

by repla
ing the original h(x) = 0 
onstraints with its �rst order (linear) approx-

imation. But B(z; �) happens to be the Hessian of the augmented Lagrangian

asso
iated with (8) at z! Furthermore, both the augmented Lagrangian asso
iated

with (8) and its gradient evaluated at z 
oin
ide with their 
ounterparts asso
iated

with the original problem (4), evaluated at z.

The matrix ve
tor produ
ts r

2

L(x; �; �)v and B(x; �)v seem 
umbersome to


ompute at a �rst glan
e. But taking advantadge of their stru
ture enables the


omputation to be done in O(np) time.

In prin
iple, using the true Hessian of the Lagrangian should the best possi-

ble 
hoi
e, sin
e it represents better the stru
ture of the true problem. However,

available algorithms for minimizing quadrati
s in 
onvex sets are mu
h more eÆ-


ient when the quadrati
 is 
onvex than otherwise. QUACAN is not an ex
eption

to this rule. Therefore, in the interest of improving the overall performan
e of the
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augmented Lagrangian algorithm, we de
ided to use B(x; �) as Hessian Lagrangian

approximation.

The results were indeed impressive. Table 2 lists the average statisti
s obtained

for four of the eighteen test sets, where ea
h (n; p) pair was run for �fty random

starting points. The average number of Outer iterations, BOX iterations, Fun
tion

evaluations, Matrix Ve
tor Produ
ts, CPU time in se
onds and minimum distan
e

are given for the runs using the exa
t Hessian (�rst row of ea
h set) and the ones

using the approximate Hessian (se
ond row). The minimum distan
es obtained

were very 
lose and on some instan
es the minimum distan
e obtained using the

approximate Hessian was smaller than the one obtained using the exa
t Hessian.

While the number of Outer iterations does not di�er very mu
h from one 
hoi
e to

the other, the number of BOX iterations and, 
onsequently, the number of Matrix

Ve
tor Produ
ts sensibly de
reases. The overall result is a marked de
rease in CPU

time. In Figure 1 we plot the average CPU times, for all eighteen tests, using

the exa
t Hessian versus times using the approximate Hessian. Also shown is the

line that gives the best �t of the data by a linear (not aÆne) fun
tion, namely

y = 0:374138 x, that is, the approximate Hessian option implies in a de
rease of

almost two thirds in CPU times.

5 Choi
e of parameters for LANCELOT

LANCELOT allows for the 
hoi
e of exa
t or approximate �rst and se
ond order

derivatives. However, LANCELOT's manual [3℄ (p.111) \strongly re
ommends the

use of exa
t se
ond derivatives whenever they are available", and, on the other hand,

there is no provision for an user supplied Hessian approximation. In fa
t we ran a
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Problem size Outer Box Fun
t.

MVP

CPU Min

�

n

p

�

var. 
onstr. it. it. eval. time dist.

"

3

10

#

76 55

4.86 37.06 52.14 1564.36 0.765 1.086487225412

4.64 34.74 45.52 1194.70 0.476 1.083236334520

"

4

22

#

320 253

4.60 91.10 123.90 16079.36 33.440 0.997314349536

4.34 78.02 97.40 11222.14 20.032 0.997809583865

"

5

37

#

852 703

5.00 274.10 358.54 142683.34 963.537 0.998632681285

4.56 160.02 193.14 67020.22 373.141 0.998675348042

Table 2: Running ALBOX with exa
t (�rst row) and approximate Hessian (se
ond

row).

-

6

CPU times using

exa
t Hessian

CPU times using

approx. Hessian y = 0:374138 x
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Figure 1: CPU times using exa
t Hessian (x-axis) versus using approximate Hessian

(y-axis).
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few tests with the default approximation (SR1) but the results were worse than

those obtained using exa
t se
ond derivatives, and thus this was the option adopted

for all further tests. In the light of the experiments des
ribed in the previous se
tion,

this provides 
orroborating eviden
e to the e�e
t that general purpose, 
onsolidated

pa
kages, designed to provide a good performan
e with little interferen
e from the

user, may be more 
onvenient to use than open ended, low-level interfa
e 
odes,

su
h as ALBOX; but, for the user willing to \get his hands dirty" the latter rawer


ode might not only prove 
ompetitive, it may a
tually outperform the former 
ode,

with its more polished though restri
tive �nish.

We also experimented with several di�erent options for solving the linear equa-

tion solver, namely, without pre
onditioner, with diagonal pre
onditioner and with

a band matrix pre
onditioner. The best results were obtained with the �rst option

(no pre
onditioner). Another 
hoi
e that slowed the algorithm, without noti
eable

improve the quality of solution, was requiring that the exa
t Cau
hy point be 
om-

puted. We settled to use the inexa
t Cau
hy point option. The maximum number of

iterations allowed is 1000. Finally, the gradient and 
onstraints toleran
es were the

same 
hosen for ALBOX, namely 10

�8

. The FORTRAN 
ompiler option adopted

for LANCELOT and ALBOX was \-O".

6 Numeri
al experiments

Tests were run on a Sun Spar
Station 20, with the following main 
hara
teristi
s:

128Mbytes of RAM, 70MHz, 204.7 mips, 44.4 M
ops. Results for the �fty runs for

ea
h (n; p) pair are summarized in the following tables. Table 3 summarizes the

statisti
s that are \ma
hine independent," typi
ally involving number of iterations,

16



number of fun
tion evaluations, with the ex
eption of the optimal distan
es found.

Quotes are needed be
ause this is not 
ompletely a

urate, sin
e these numbers will

in fa
t depend on ma
hine pre
ision, 
ompiler manufa
turer, and the like. Never-

theless, they 
ertainly provide more independent grounds for 
omparison than CPU

times, presented in Table 4, along with optimal distan
es.

Table 3 presents the mininum, maximum and average amounts of Outer and BOX

iterations, fun
tion evaluations, Qua
an iterations and matrix-ve
tor-produ
ts/
on-

jugate-gradient iterations (for Box and LANCELOT, respe
tively). First row of

ea
h set 
orresponds to ALBOX and se
ond to LANCELOT. Unfortunately the

only statisti
s available for both is the number of fun
tion evaluations. We paired

the number of matrix-ve
tor-produ
ts (MVP) output by ALBOX with the number of


onjugate-gradient iterations (CGI) produ
ed by LANCELOT, sin
e ea
h 
onjugate-

gradient iteration involves a matrix-ve
tor-produ
t.

Although the algorithms behave very di�erently timewise, as we will shortly see,

this is not a dire
t 
onsequen
e of the number of fun
tion evaluations ea
h performs.

The best least-squares �t by a �rst degree polynomial gives y = 5:74631+0:855356 x,

where y is the number of fun
tion evaluations of ALBOX and x is the 
orresponding

amount for LANCELOT, whereas a similar �t involving CPU times will give a


oeÆ
ient of less than a third. On Figure 2 we plot the fun
tion evaluation pairs

for all eighteen instan
es along with the best �t obtained.

Further still from providing an explanation for the higher eÆ
ien
y of AL-

BOX is the 
omparison of MVP versus CGI. In this 
ase the best �t gives y =

�1320:36 + 1:10655x, where y is the number of MVP and x is the number of CGI.

This suggests that, although both iterations involve a matrix-ve
tor-produ
t, a CGI

is substantially 
ostlier, timewise, than the MVP performed in ALBOX. A main

17



Table 3: Put �rst page of Table 3 here
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Table 3: Put se
ond page of Table 4 here
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Figure 2: Number of fun
tion evaluations of LANCELOT versus ALBOX.
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fa
tor for this is that the matrix-ve
tor-produ
t in LANCELOT's 
onjugate gradi-

ent iteration deals with the true Hessian, whereas the one in ALBOX involves the

approximate (and simpler) Hessian. Figure 3 
ontains the line 
orresponding to the

best linear �t and the position of the (CGI, MVP) pairs.

Next we have Table 4, that presents similar statisti
s involving the optimal dis-

tan
es en
ountered and the CPU times, in se
onds. The �rst (resp., se
ond) row for

ea
h (n; p) pair gives the numbers obtained by ALBOX (resp., LANCELOT).
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Figure 3: Number of CGIs of LANCELOT versus number of MVPs of ALBOX.
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Table 4: Put Table 4 here
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The information 
ontained in Table 4 is depi
ted graphi
ally below. The in-

tervals (min., max) of distan
es/CPU times are represented by verti
al segments,

the averages are indi
ated with a diamond symbol for ALBOX and a bullet for

LANCELOT. Graphs on the left refer to distan
es whereas graphs on the right refer

to CPU times.
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Figure 4: ALBOX (�) and LANCELOT (�) results for n = 3.

The graphs in Figures 4{6 eviden
e the qualitative relative behavior of both


odes. Noti
e that the diamonds and bullets are always 
lose together in the graphs

on the left, indi
ating that the quality of the optimal solutions obtained by both


odes is similar. On the other hand, the bullets rise faster than the diamonds on

the graphs on the right, whi
h means that the CPU times for LANCELOT tend

to be higher than those for ALBOX. The linear �t of ALBOX CPU times versus

LANCELOT CPU times, y = 0:31054 x|the 
oeÆ
ient is less than one third|,

ploted in Figure 7 
on�rms this.
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Figure 5: ALBOX (�) and LANCELOT (�) results for n = 4.
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Figure 6: ALBOX (�) and LANCELOT (�) results for n = 5.
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Figure 7: CPU times of LANCELOT versus those of ALBOX.

Finally, it should be noted that CPU times in
rease sharply as a fun
tion of

problem size (represented, for instan
e, by the number of 
onstraints). We tried

several �ts (linear, quadrati
, exponential) and, though none seemed to provide a

very good model for the data, the quadrati
 �t was the best one.

7 Con
lusions

The main aspe
ts of the Augmented Lagrangian methodology for solving large-s
ale

nonlinear programming problems have been 
onsolidated after the works of Conn,

Gould and Toint whi
h gave origin to the LANCELOT pa
kage. This algorithmi


framework has been very useful in the last ten years for solving pra
ti
al problems

and for 
omparison purposes with innovative nonlinear programming methods. Very

likely, this tenden
y will be maintained in the near future.

The present resear
h was born as a result of our need to have more freedom
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in the formulation and resolution of the quadrati
 subproblems that arise in the

LANCELOT-like approa
h to the Augmented Lagrangian philosophy. On one hand,

we de
ided to exploit more deeply the whole trust region by means of the use of a

box-
onstraint quadrati
 solver. On the other hand, perhaps more importantly, we

tested a Gauss-Newton 
onvex simpli�
ation of the quadrati
 model whi
h turned

out to be mu
h more eÆ
ient than the straight Newton-like version of this model.

Behind this gain of eÆ
ien
y is the fa
t that the quadrati
 solver, though able to

deal with non
onvex models, is far more eÆ
ient when the underlying quadrati
 has

a positive semide�nite Hessian. It is usual, in Numeri
al Analysis, that a de
ision on

the implementation of a high level algorithm depends on the 
urrent te
hnology for

solving low-level subproblems. It must only be warned that su
h a de
ision 
ould


hange if new more eÆ
ient algorithms for solving the subproblems (non
onvex

quadrati
 programming in our 
ase) are found.

Our main obje
tive is to use ALBOX, not only for solving real-life problems,

but also for testing alternative nonlinear programming methods against it. We feel

that having a deep knowledge of the implementation details of the 
ode will enable

us to be mu
h more exa
ting when testing new 
odes, sin
e it will be possible to

�ne tune the standard against whi
h the new 
ode is tested. The present study,

apart from 
alling the reader's attention to 
onvex simpli�ed Gauss-Newton like

subproblems, had the obje
tive of validating our 
ode, by means of its 
omparison

with LANCELOT, using a set of problems that have an independent interest. The

result of this 
omparison seems to indi
ate that ALBOX 
an be used as a 
ompetitive

tool for nonlinear programming 
al
ulations.
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