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Abstract

Kirchho�-type, isochrone-stack demigration is the natural asymptotic inverse to clas-

sical Kirchho� or di�raction-stack migration. Both stacking operations can be performed

in true amplitude by an appropriate selection of weight functions. As Kirchho� migration

is usually understood as the inverse process to Kirchho� modeling, the natural question

arises whether Kirchho� demigration is identical to seismic forward modeling. The answer

is that it is not, but these processes are closely enough related to enable the use of demi-

gration for modeling purposes. All that has to be done is to implicitly construct a depth

section as if obtained from a previous true-amplitude Kirchho� migration.

Introduction

To transform a given time section into a depth-migrated section in which the migrated

seismic pulses along the re
ectors are free from geometrical-spreading losses, one may employ

true-amplitude Kirchho�-type (or di�raction-stack) depth migration (see, e.g., Bleistein, 1987;

Schleicher et al., 1993; Sun and Gajewski, 1997). Neglecting all other factors that a�ect seismic

amplitudes (Sheri�, 1975) and ignoring multiple arrivals, the true-amplitude, depth-migration

output at each point of a re
ector is a measure of the re
ection coe�cient. This coe�cient

pertains to the primary-re
ection ray joining the source to the receiver position in the given

measurement con�guration. The considered point on the re
ector is the specular re
ection

point of this ray.

The Kirchho� migration integral is often understood, in an asymptotic sense, as the inverse

operation to the classical Kirchho� integral. In the same way as the Kirchho� integral can be

used to propagate a given incident wave�eld from the re
ector location to the receiver point,

the Kirchho� migration integral serves to reconstruct the Huygens' secondary sources along

the re
ector in position and strength from the measured wave�eld at several receiver positions

along the seismic line.

1



Most recently, a new process has been introduced in seismic re
ection imaging being

called seismic demigration. It has been discussed in more detail by Hubral et al. (1996) and

mathematically described by Tygel et al. (1996). It has been designed as the inverse process to

seismic migration and is, thus, easily confused with seismic forward modeling. In this paper,

we want to clarify in a simple way the similarities and di�erences of modeling and demigration.

All three processes cannot be completely understood without talking about \true amplitudes,"

i.e., the correct treatment of geometrical-spreading e�ects. We will see that there exists a close

relationship between seismic modeling and demigration, which needs to be understood and

which we shortly want to elaborate.

For this purpose, we start by investigating in more detail the new process of seismic

demigration. Technically, it is given by a stack to be performed on a depth-migrated section:

In the same way as the Kirchho� migrated section is constructed by stacking the original

seismic data along certain model-based stacking surfaces (or lines in 2D) without the need to

determine the location of the re
ection traveltime surfaces in the seismic section, its inverse

can be realized by a similar stack along related surfaces without knowing the location of the

re
ectors in the migrated section. The stacking surfaces are simply the isochrones, i.e, the

surfaces of equal re
ection traveltime between a given source and the corresponding receiver.

These are also constructed on the given macrovelocity model without knowing the location of

the re
ectors in the migrated section.

The fact that the Kirchho� migration integral seems to have two inverse integrals leads to

the obvious question posed in the title of this paper: Are the two operations represented by

these integrals identical? The answer is that, although closely related, the two processes are

not identical. Let us elaborate on this in more detail in the next section.

Modeling versus demigration

In this section, we will brie
y discuss the terms \forward modeling" and \demigration" so

as to clarify their meaning. We will, then, immediately recognize the similarities and di�erences

between the concepts.

Modeling

Modeling, as we understand it, means the analytical or numerical simulation of a physical

process given all the equations and parameters for its complete description. In our case, the

physical process to be simulated is seismic wave propagation. It is described, e.g., by the

elastic or acoustic wave equation. The parameters that govern this process are the velocity

and density distributions within the medium, the source and receiver locations, the source

wavelet, as well as the appropriate boundary and initial conditions. Seismic forward modeling

is, then, realized by an implementation of a solution to the appropriate wave equation or of

a suitable approximation. In this way, one obtains a synthetic equivalent of the seismic data

that would have been recorded if the very same experiment had been actually carried out in

the �eld. For a layered model, we need, in particular, the location of the all transmitting and

re
ecting interfaces.
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For reasons of comparison, we choose the well-known Kirchho� integral to represent a

seismic forward modeling scheme. It can be written as (Frazer and Sen, 1985; Tygel et al.,

1994a)

K(�; t) =

1

2�

ZZ

�

R

dS W (�; P

R

) R(P

R

) @

t

F [t� �(�; P

R

)] ; (1)

where K(�; t) denotes the modeled synthetic seismogram and z = �

R

(x) is the re
ector along

which we have to integrate. Here, � denotes the so-called con�guration parameter (Bleistein,

1987; Schleicher et al., 1993) which locates the source-receiver pair, and x is the horizontal

coordinate of the depth points. Note that � and x are two-dimensional vectors or simply scalars
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is the sum of traveltimes along the two paths of propagation SP

R

and GP

R

, where S(�) and

G(�) are �xed and P

R

varies along the re
ector. We remind that for layered media, an integral

of the type of equation (1) has to be solved along each interface.

Demigration

Demigration, on the other hand, uses a conceptually di�erent approach. The aim of demi-

gration is to reconstruct a seismic time section from a corresponding depth migrated section.

In other words, demigration aims to invert the process of migration. Of course, as migration

is aimed at inverting the wave propagation e�ects, it is related in a strong way to the wave

equation. Observe, however, that migration algorithms are based on a wave equation that does

not use the true velocity distribution in the Earth, but an approximate macrovelocity model

that may be much simpler. Correspondingly, demigration, as the inverse process to migration,

also uses, instead of the true, but generally unknown velocity distribution, the same macrov-

elocity model as used in migration. As opposed to direct forward modeling, we do not have

to precisely know all the true model parameters to actually perform the demigration process.

Neither the true velocity distribution in the earth, nor the source wavelet nor, above all, the

position of the re
ecting interfaces have to be known in order to apply a demigration. All that

is needed, apart from the seismic image section to be demigrated, is the macrovelocity model

that has been used for the migration process which produced the migrated section.

From corresponding arguments as for Kirchho� migration, a structurally equivalent in-

tegral can be set up for its inverse operation called demigration (Hubral et al., 1996; Tygel

et al., 1996). The idea is to stack along a certain surface in the depth-migrated data vol-

ume in such a way that any migrated event that possibly pertains to a certain, �xed data
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point N = (�; t) in the unmigrated section is summed up. This process is represented by the

Kirchho� demigration integral
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where D(�; t) denotes the demigrated data and M(x; z) represents the depth-migrated section

as obtained from a previous true-amplitude migration, although not necessarily of Kirchho�-

type. Moreover, W

D

(x; �; t) is again a true-amplitude weight function to treat amplitudes

correctly. Like the one in Kirchho� forward modeling, also this weight function consists of

an obliquity factor and the Green's function amplitudes along the two ray branches from the

source and the receiver to the depth point under consideration. Also, E is the spatial aperture

of demigration. The stacking surface, z = �(x; �; t), is implicitly given by

t = �(�; x; z = �(x; �; t)) = T (S(�); P ) + T (G(�); P ) ; (4)

i.e., again by the very same sum of traveltimes (2) as used in Kirchho� forward modeling

(1). As in Kirchho� modeling, S(�) and G(�) are the points of the �xed source-receiver pair.

Other than in that case, however, P = (x; z) does not vary along the re
ector z = �

R

(x)

but along the surface z = �(x; �; t) de�ned by equation (4) under the condition that t is a

given, �xed constant. In other words, z = �(x; �; t) describes the surface of equal re
ection

time or isochrone pertaining to the �xed source-receiver pair S and G and a given time t. This

isochrone plays the same role in Kirchho� demigration (3) as the di�raction-time surface does

in Kirchho� migration. In both cases, the stacks sum up all contributions that come from the

Fresnel zones surrounding the specular re
ection points.

Let us now assume that the depth-migrated section M(x; z) consists of the image of one

target re
ector. As shown in Tygel et al. (1994b), this image can be represented in the form

M(x; z) = R(P ) F [S(x)(z � �

R

(x))] (5)

where R(P ) is the re
ection coe�cient of the specular re
ection at P , F [t] is the source

pulse, and S(x) is the stretch the pulse su�ers in a previous migration process. As we will see

below, this stretch factor will play an important role when demigration is used as a modeling

algorithm. Using equation (5), the above demigration integral (3) can be written as
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Note the obvious similarities and di�erences between this form of the Kirchho� demigration

integral and the above Kirchho� modeling integral (1).

Like Kirchho� migration, also Kirchho� demigration does not depend on the number and

location of primary re
ections or re
ector images. The demigrated section will thus be a

superposition of all demigrated re
ector images (i.e., primary re
ection events) in the same

way as the �nal image after a Kirchho� migration is the superposition of all migrated images

of all re
ectors.
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Comparison

The comparison of the above two expressions (1) and (3) shows that they are very similar.

Apart from the di�erent stacking surfaces, we observe, however, two additional conceptual

di�erences between the two integrals. First, there is a slight di�erence between the two weight

functions. The obliquity factor of the Kirchho� modeling integral is computed with respect

to the re
ector normal and the one of the Kirchho� demigration integral with respect to the

isochrone normal. This is not a major di�erence as at the stationary point of both integrals,

i.e., at the specular re
ection point on the re
ector, both obliquity factors are identical.

However, there is another, more basic di�erence. This is the stretch factor S(x) that appears

in the argument of the source pulse in the demigration integral, but does not appear at the

corresponding position in the modeling integral. It was shown by Tygel et al. (1995) that the

pulse stretch caused by demigration is the inverse to that introduced by migration. In other

words, Kirchho� demigration needs this stretch factor to \unstretch" the seismic signal by the

same factor S(x) by which Kirchho� migration stretches it. Hence, after Kirchho� migration

and demigration, no overall stretch factor remains in the resulting reconstructed data. On the

other hand, Kirchho� forward modeling need not incorporate a stretch factor because it is

not an inverse to a migration process but an independent (approximate) solution of the wave

equation.

Asymptotic inverses

For a certain given laterally inhomogeneous velocity model, we may construct synthetic seis-

mic primary-re
ection data using Kirchho� forward modeling as described by integral (1).

If we apply Kirchho� migration to these synthetic data using the true velocity model, then

the migration result will correctly image all model re
ectors together with their correspond-

ing re
ection coe�cients. Ideally, we would like to have Kirchho� migration reconstruct the

original model, i.e., we would like migration to be an (asymptotic) inverse to forward mod-

eling. However, this is not the case. To actually reconstruct the physical model, we need to

add another process, usually called inversion, to identify the re
ector locations and extract

the model parameters from the migrated section. We may then say that only the combined

process of migration/inversion is a complete (asymptotic) inverse to modeling.

On the other hand, we may apply Kirchho� migration to some given �eld data, and then

Kirchho� demigration to the resulting migrated section, using the same macrovelocity model

in both operations. Then, the demigration result can be expected to closely reconstruct the

primary re
ections of the original �eld data, Thus, Kirchho� demigration can be conceived as

an (asymptotic) inverse to Kirchho� migration.

From the above observations and speaking in an asymptotic sense, we conclude that Kirch-

ho� modeling and demigration are two processes that are closely related but not identical.

Whereas Kirchho� demigration is the inverse process to Kirchho� migration, Kirchho� mod-

eling is the inverse operation to Kirchho� migration/inversion. Nevertheless, the Kirchho�

demigration integral (3) can be employed for modeling purposes. In order to use Kirchho�
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demigration in a process equivalent to Kirchho� modeling, we obviously have to add another

process, which has to be a kind of \inverse operation to seismic inversion." How this can be

done is investigated in detail in the next section.

Modeling by demigration

After we have answered the question in the title of this paper, let us brie
y address another

inherent question: Can we make use of the demigration procedure for modeling purposes?

The answer is: Yes, we can. For a given subsurface model, we have to appropriately simulate

a corresponding depth-migrated section as if obtained from a previously applied Kirchho�

migration. In other words, given the source and receiver positions, the re
ector location within

the velocity model, as well as the source signal to be employed, we have to construct an

arti�cial migrated section. This is done by placing the correctly ampli�ed and stretched source

pulse into a seismic image along the re
ector. Application of demigration to such an arti�cial

migrated section leads to a \demigrated" section that is, in the high-frequency approximation,

completely equivalent to the result of the Kirchho� modeling integral.

For technical reasons, we have to distinguish between modeling for zero or �nite o�sets.

For zero-o�set modeling, the above-explained idea of modeling by demigration can be directly

applied. All necessary quantities to construct the migrated image for each re
ector are physical

parameters directly available from the a-priori speci�ed Earth model.

For nonzero o�sets, the stretch factor as well as the re
ection coe�cient at the specular

re
ection point depend on the re
ection angle of the specular re
ected ray between S(�) and

G(�). This means, of course, that for each di�erent source-receiver pair in the considered

measurement con�guration, a di�erently scaled and stretched wavelet is to be used because

the re
ection angle di�ers. Although this angle is not available without previously determining

the re
ection ray between S(�) and G(�), it can be obtained during the demigration process

using the already computed Green's functions. In this way, the amplitude and stretch factors

are correctly determined, although the arti�cial migrated section is actually never explicitly

constructed. Its construction is realized implicitly by the use of the location and form of the

true-amplitude target re
ector image and the source wavelet during the stack at each point

on the isochrone (for details, see Santos et al., 1998).

Numerical example

To demonstrate that seismic demigration is indeed di�erent from seismic forward modeling,

but still can be used for modeling purposes, we have performed the following numerical exam-

ple. We consider a single seismic common-shot experiment performed over the model depicted

in Figure 1. This is a simple model in which a single trough-shaped re
ector separates two

homogeneous acoustic media. The velocity above the re
ector is 2.5 km/s and below 2.8 km/s.

The source is at a position with coordinate x = �700 m and the receivers cover an o�set range

from 0 m to 3000 m. The source pulse is a Ricker wavelet with an approximate duration of
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Figure 1: Model and ray family for the numerical common-shot experiment.

128 ms, i.e., a dominant frequency of about 16 Hz. Moreover, the model is assumed to be

symmetric with respect to the out-of-plane y-direction. All sources and receivers lie in the

plane y = 0, such that the wave propagation remains in-plane. In other words, we assume a

2.5-D situation. The advantage of 2.5-D forward modeling is that actual 3-D wave propaga-

tion e�ects can be modeled using fast and simple 2-D in-plane computations only. Although

simple, this trough model is interesting because the wave propagation involves a caustic re-

gion which can be problematic for many modeling schemes. The size of the caustic region can

be estimated from the ray family pertaining to the chosen acquisition geometry that is also

shown in Figure 1.

The corresponding synthetic seismogram sections as obtained by di�erent modeling

schemes are depicted in Figure 2. Figure 2a shows the synthetic seismograms as obtained

from conventional zero-order ray theory. We observe, as usual, good modeling results for the

specularly re
ected events in any part of the model except of the region close to the caustic. As

expected, the amplitudes of the wave�eld in the caustic are overestimated and the di�ractions

at the tails of the bow-tie structure are not modeled. In Figure 2b, we see the corresponding

seismograms as obtained from Kirchho� forward modeling using the above integral (1). The

synthetic seismograms are quite similar to those of ray theory where the latter is expected

to provide good results. Note, however, the signi�cantly lower amplitudes in the post-critical

region. Additionally, the Kirchho� seismograms provide a good approximation of the wave�eld

in the caustic region and even a good �rst-order estimate of the di�raction tails.

We next consider the application of modeling by demigration, which requires the con-

struction of an arti�cial migrated section to replace the given model. If this arti�cial migrated
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Figure 2a: Synthetic seismograms as obtained by zero-order ray theory.

section is constructed by simply attaching an unstretched seismic pulse along the re
ector

(as could be done for Kirchho� forward modeling), then, the application of the demigration

operator leads to the seismogram of Figure 2c. Note the severe discrepancies of the wavelet's

shape for farther o�sets in comparison to the correct synthetic data of Figure 2b. However, the

seismogram section of Figure 2c should be identical to that of Figure 2b if demigration were

equivalent to modeling, because here, the same input was used, namely (i) the specular plane-

wave re
ection coe�cient of the incident �eld, (ii) the source wavelet, and (iii) the traveltime

in the overburden. We observe that, in order to use demigration for modeling purposes, one

must not neglect the stretch. Thus, indeed, seismic demigration is not equivalent to forward

modeling.

Let us now construct the arti�cial migrated section by attaching to the re
ector a correctly

varying stretched pulse as prescribed by the theory of demigration. Then, the application of

the demigration operator results in the synthetic seismogram section depicted in Figure 2d.

Note that the latter one is practically identical to the result of Kirchho� forward modeling in

Figure 2b. Even the tail di�ractions from the caustic bow-tie structure are modeled with the

same accuracy. However, in the post-critical region, the amplitudes in Figure 2d follow more

closely those in the ray-synthetic seismograms (Figure 2a).

Figure 3 shows the input depth sections for Kirchho� modeling and for modeling by

demigration. In Figure 3a, we see the seismic source pulse, scaled with the plane-wave re
ection

coe�cient, but without stretch, attached to the re
ector. Note the high amplitudes in the

region of post-critical re
ections. This is the e�ective input to the Kirchho� forward modeling

integral (1). Kirchho� modeling is then realized by integrating along the re
ector (indicated by
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Figure 2b: Synthetic seismograms as obtained by Kirchho� forward modeling.

a solid line) in order to construct the synthetic seismograms of Figure 2b. If we use demigration

on this depth section, we get the synthetic seismograms of Figure 2c which do not exhibit

correctly modeled seismic re
ection events. It is, in fact, the arti�cial migrated section shown

in Figure 3b that is the correct input depth section for modeling by demigration. Observe

the wavelet with varying stretch attached to the re
ector. Only using this arti�cial migrated

section, demigration can be used for modeling purposes. The synthetic re
ection seismograms

are then obtained by stacking along isochrones like the three indicated ones for a receiver at

an o�set of 2000 m.

Note that it is a section like the one of Figure 3b that would be obtained by a common-

shot true-amplitude Kirchho� depth migration applied to the synthetic data of Figure 2b.

The behavior of the pulse stretch is as described by Tygel et al. (1994b). Let us stress once

more that this arti�cial migrated section is never actually constructed in the modeling-by-

demigration process. It is shown here for didactical reasons only and has been computed

independently.

Modeling or demigration

Although the two integrals describing Kirchho� forward modeling and Kirchho� demigration

both appear to be inverses to Kirchho� migration in an asymptotic sense, we have seen that

they do not exactly coincide. Their relationship was recently investigated by Jaramillo and

Bleistein (1997). By using high-frequency asymptotic arguments, they have shown that the
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Figure 2c: Synthetic seismograms as obtained by direct demigration applied to the depth

section in Figure 3a.

Kirchho� modeling integral can be actually transformed into the Kirchho� demigration in-

tegral. To the leading order, one may, thus, interpret the demigration integral as a nothing

else but a \reorganized Kirchho� modeling integral." However, apart from the practical real-

ization, also the physical interpretation of this new integral is di�erent. Unlike the Huygens'

secondary source contributions in the Kirchho� integral, it is now the individual Fresnel zone

contributions to each primary re
ection that are summed up by the integration (Schleicher et

al., 1997).

What are, then, the advantages of implementing a seismic modeling scheme using the

Kirchho� demigration integral instead of the conventional Kirchho� modeling integral? Well,

in fact, there exist several reasons:

� The actual process of true-amplitude Kirchho� demigration is, structurely, very similar

to true-amplitude Kirchho� migration. Therefore, existing migration programs (which

are nowadays, of course, highly developed and very e�ective) can be readily modi�ed to

include demigration. The latter, as we have seen above, can then also be used for seismic

forward modeling.

� Demigration is a process that becomes more and more important in the seismic process-

ing sequence. Its main objective is to verify and improve the macrovelocity model. Thus,

seismic modeling can be done with a software that is also useful for re
ection-imaging

purposes and thus already available. There is no need for an additional independent

seismic forward modeling program.
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Figure 2d: Synthetic seismograms as obtained by correct modeling by demigration applied to

the depth section in Figure 3b.

� For an identical macrovelocity model, migration, demigration, and modeling by demi-

gration need the same Green's functions. This implies that, once any one of the three

processes has been applied to some data for a given macrovelocity model, the remaining

two will become signi�cantly less expensive.

� Modeling by demigration turns out to be particularly advantageous when the e�ects of

small reservoir changes are to be modeled, as is the case in 4-D or time-lapse imaging. As

only the re
ector properties change, but not the overburden macrovelocity model, the

same Green's functions can be used several times, thus making modeling by demigration

less expensive than other schemes that have to start all over again.

� As demigration is a stacking process, it \smoothes" the simulated re
ection responses (in

contrary to, e.g., standard ray theory that computes arrival times and amplitudes along

specular rays only and thus produces sharp shadow boundaries). Thus, there is no need

for constructing smooth re
ectors (e.g., by applying splines) or explicit two-point ray

tracing. Modeling by demigration can be directly applied to the conventionally picked

re
ectors that are usually a sequence of planar re
ector elements. This will not cause

any damage to the simulated re
ection response.

� Whereas Kirchho� modeling needs an integration along the re
ector and, thus, has to be

applied to each re
ector independently, demigration uses as its input a depth-migrated

section. Therefore, it needs just to be applied only once to model primary re
ections for

a whole set of di�erent subsurface re
ectors.
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Figure 3a: Input section for Kirchho� forward modeling. The unstretched source wavelet is

attached to the re
ector.

� Due to the limited extent of an isochrone, the stacking aperture of modeling by demi-

gration will, in general, be smaller than that of Kirchho� forward modeling.

� Because the demigration integral sums only contributions from the actual Fresnel zone

surrounding each specular re
ection point, the stacking aperture can be even further

reduced.

It should be kept in mind, however, that Kirchho� demigration is a process as expensive as

Kirchho� migration. It may, thus, be disadvantageous in comparison to other seismic mod-

eling schemes when applied only once for a given velocity model or for a few re
ectors only.

Moreover, modeling by demigration can, at the present stage, provide primary re
ections only.

The description of multiples by this process has not been investigated yet.

Conclusions

In this paper, we have discussed the properties of a new seismic imaging process called

demigration. Kirchho� demigration is based on the same assumptions as Kirchho� migration.

It is realized in a completely analogous way by a weighted stack of migrated data along

constant-re
ection-time surfaces. This process has been introduced in the seismic literature

as the most natural inverse process to migration (Hubral et al., 1996; Tygel et al., 1996).

We have shown that although closely related, seismic demigration is not identical to seismic

forward modeling.
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Figure 3b: Input section for modeling by demigration. The correctly stretched source wavelet

is attached to the re
ector.

With this in mind, we have to revise the widespread and commonly accepted belief that

\seismic migration is the inverse process to seismic forward modeling." We have seen that it

is not forward modeling but seismic demigration that deserves to be called the \inverse of

seismic migration." The true inverse to forward modeling is, in turn, the process of migra-

tion/inversion.

Although not identical to modeling, seismic demigration can be very conveniently used

for this purpose. For a given subsurface model, the modeling process consists, in principle, of

two steps, namely (i) transforming the model into a �ctitious, true-amplitude depth-migrated

section and of (ii) applying to this arti�cially generated migrated section a true-amplitude

demigration. In the actual implementation, the construction of the arti�cial migrated section

is done implicitly thus combining the two steps. In this way, the new modeling technique

called \modeling by demigration" is, in fact, a one-step process.

Because the stacking procedure employed in modeling by demigration is independent of the

re
ector shape, the new method will provide good-quality synthetic primary-re
ection data

even for nonsmooth re
ectors. Also, because of its structure in the use of the macrovelocity

model, modeling by demigration seems to be particularly appropriate for 4-D or time-lapse

applications. First tests for simple Earth models con�rm these observations (Santos et al.,

1997).
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