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Abstract

The problem of estimating the thickness and the optical constants of thin
films using transmission data only is very challenging from the mathemati-
cal point of view, and has a technological and an economic importance. In
many cases it represents a very ill-conditioned inverse problem with many
local-nonglobal solutions. In a recent publication we proposed nonlinear
programming models for solving this problem. Well-known software for lin-
early constrained optimization was used with success for this purpose. In
this paper we introduce an unconstrained formulation of the nonlinear pro-
gramming model and we solve the estimation problem using a method based
on repeated calls to a recently introduced unconstrained minimization algo-
rithm. Numerical experiments on computer-generated films show that the

new procedure is reliable.



1 Introduction

For most modern applications of thin dielectric or semiconductor films, the
optical properties of interest cover a photon energy range around the fun-
damental absorption edge of the material. Moreover, as the applications
make use of multiple coherent reflections at the interfaces, the thickness
of the films is an important design and characterization parameter. Opti-
cal transmittance provides accurate and rapid information on the spectral
range where the material goes from complete opacity to some degree of
transparency [1,2]. As a consequence, the problem of retrieving the opti-
cal constants (n (A) = n(\) +ik(\)) and the thickness (d) of thin films, from
transmission data only, is of particular importance. Some useful approxi-
mate solutions have been found in cases where the transmittance displays an
interference pattern in a highly transparent spectral region [3,4]. Up to now,
however, the general solution of the problem has been elusive, because the
system of equations is highly underdetermined. Recently, we reported a new
method, based on a pointwise constrained optimization approach, which al-
lows to solve the general case [5,6]. The method defines a nonlinear program-
ming problem, the unknowns of which are the coefficients to be estimated,
with linear constraints that represent prior knowledge about the physical so-
lution. The retrieval of the correct thickness and optical constants of the films
does not rely on the existence of interference fringes. The new method was
successful in retrieving d and n (A) from very different transmission spectra
of computer made and real world films [5,6]. The main inconvenient of the
pointwise constrained optimization approach [5,6] is that is a rather complex
large-scale linearly constrained nonlinear programming problem whose solu-
tion can be obtained only by means of rather sophisticated and not always

available computer codes that can deal effectively with sparsity of the matrix



of constraints [7,8].

We consider then the problem of estimating the absorption coefficients,
the refractive index and the thickness of thin films, using transmission data
only. Given the wavelength A, the refractive index of the substrate s and the
unknowns d (thickness), n(A) (refractive index) and k(\) (attenuation coef-
ficient), the theoretical transmission is given by a well-known formula [2,4].
Having measurements of the transmission at (many) different wavelengths
we want to estimate the above mentioned unknowns. At a first glance, this
problem is highly underdetermined since, for each wavelength, the single

equation
Theoretical transmission = Measured transmission (1)

has three unknowns d,n(A), k() and only d is repeated for all values of A.
The driving idea in [5,6] was to incorporate prior knowledge on the functions
n(A), k(A) in order to decrease the degrees of freedom of (1) up to a point
that only physically meaningful estimated parameters are admitted.

The idea of assuming a closed formula for n and k£ depending of few co-
efficients has been already reported [3,4]. The methods originating from this
idea are efficient when the transmission curve exhibits a fringe pattern rep-
resenting rather large spectral zones were k() is almost null. In other cases,
the satisfaction of (1) is very rough or the curves n(\), k(A) are physically
unacceptable.

In [5,6], instead of imposing a functional form to n(\) and k(A), the
phenomenological constraints that restrict the variability of these functions

were stated explicitly so that the estimation problem took the form:

Minimize »_[Theoretical transmission (\) — Measured transmission ()]

A
subject to Physical Constraints.

(2)
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In this way, well behaved functions n(\) and k(\) can be obtained without
severe restrictions that may damage the quality of the fitting (1).

The main contribution of the present paper is to establish a method for
solving the estimation problem where (2) is replaced by an unconstrained
optimization problem. We solved this problem using a very simple algorithm
introduced recently by Raydan [9]. This method realizes a very effective
idea for potentially large-scale unconstrained minimization. It consists of
using only gradient directions with steplengths that ensure rapid convergence.
The reduction of (2) to an unconstrained minimization problem needed the
calculation of very complicate derivatives of functions, which could not be
possible without the use of automatic differentiation techniques. Here we

used the procedures for automatic differentiation described in [10].

2 Unconstrained formulation of the estima-
tion problem

The transmission 7" of a thin absorbing film deposited on a thick transparent

substrate (see [4]) is given by:

Ax
T:B—C:E+D372 )
where
A = 16s(n® + k*) (4)
B ={[(n+1)* + F][(n+ 1)(n + %) + k’] (5)

C=[n*—14+k*)(n*—s*+ k%) — 2k*(s* + 1)]2cos ¢
—k[2(n* — s* + k) + (s + 1)(n® — 1 + k?)]2singp (6)

D=[(n—-1)2*+kK][(n—-1)(n— s+ k? (7)



e =4mnd/\, x=-exp(—ad), «o=A4dnk/\. (8)
In formulae (4)—(8) the following notation is used:

(a) A is the wavelength;

(b) s = s(\) is the refractive index of the transparent substrate (assumed

to be known),
(¢) n=n(A) is the refractive index of the film;

(d) k& = k(A) is the attenuation coefficient of the film (« is the absorption

coefficient);
(e) dis the thickness of the film.

A set of experimental data (A;, 7™“*(\;)), Amin < N < Ait1 < Anags
fori=1,..., N, is given, and we want to estimate d, n(\) and k(). This
problem seems highly underdetermined. In fact, for known d and given A,

the following equation must hold:
T(\ s(N),d,n(N), k(X)) =T™(N). 9)

Equation (9) has two unknowns n()A) and k(\) and, therefore, in general, its
set of solutions is a curve in the two-dimensional (n(\), k()\)) space. There-
fore, the set of functions (n, k) that satisfy (9) for a given d is infinite and,
roughly speaking, is represented by a nonlinear manifold of dimension /N in
R?N.

However, physical constraints reduce drastically the range of variability
of the unknowns n(A), k(A). For example, in the neighborhood of the funda-

mental absorption edge (normal dispersion), these physical constraints are:
PC1: n(A\) > 1, k(A\) >0 forall A€ [Anin, Anaz);
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PC2: n(\) and k(M) are decreasing functions of A;
PC3: n()\) is convex;

PC4: There exists Ninfi € [Amin, Amaz] such that k(X) is convex if A > A,

and concave if X < A\,

Observe that, assuming PC2, PC1 is satisfied under the sole assumption
n(Amaz) > 1 and k(N\ez) > 0. The constraints PC2, PC3 and PC4 can be

written, respectively, as

n'(A) <0, K'(N) <0 forall A€ [Min, Anaz); (10)
n"(A) >0 for all A € [Mnin, Amazl; (11)
E"(A) <0 for A€ [Amin, Ainpi] and (12)

E"(A) >0 for A€ [Ninfis Amag]- (13)

Clearly, the constraints
n"(A) >0 for all X\ € [Mnin, Amaz] and n'(Apaz) <0

imply that
n'(A) <0 forall A€ [Muins Amaz]-

Moreover,

K'(A) >0 forall A€ Mg, Amaa] and & (Apag) < 0



imply that
E'(A) <0 forall Ae€ [Ninfis Amaz]-

Finally,
k”()\) <0 forall Me [)\mzna )\infl] and kl()\mm) <0

imply that
k,()\) <0 forall Me [)\mm; )\infl]-

Therefore, PC2 can be replaced by

n (Mmaz) <0, ' (Amae) <0, k' (Npin) < 0. (14)

Summing up, the assumptions PC1-PC4 will be satisfied if, and only if,

N Amaz) > 1, k(Amaz) > 0, (15)

W (Amaz) <0, ' (Apaz) <0, (16)
n"(A) >0 for all A € [Amin, Amaa), (17)
E"(A) >0 for all A € [Ninsi, Amac), (18)
E"(A) <0 for all A€ [Ain, Ningi], (19)
k' (Amin) < 0. (20)

So, the continuous least squares solution of the estimation problem is the

solution (d, n(A), k(\)) of

Amaz
Minimize / TN, s(A), d,n(\), k(A) — T™(\)[2dA (21)
Amin
subject to the constraints (15)—(20).
Our idea in this work is to eliminate, as far as possible, the constraints of

the problem, by means of a suitable change of variables. Roughly speaking,
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we are going to put the objective function (21) as depending on the second
derivatives of n(A) and k(\) plus functional values and first derivatives at
Amaz- Moreover, positivity will be guaranteed expressing the variables as

squares of auxiliary unknowns. In fact, we write

n(Amaz) = 1+ 1% k(Anaz) = 07, (22)
n,()\max) = _u?; k,()‘max) = —U%, (23)
n"(A) = w(N)? for all A € [in, Amaal: (24)
K"(A) = 2(\)? for all A € [Ainst Amaals (25)
F'(0) = —2(\)? for all A € [mins Ainsi] (26)

At this point, in order to avoid a rather pedantic continuous formulation
of the problem, we consider the real-life situation, in which data are given for

a set of N equally spaced points on the interval [Ain, Amaz|. S0, we define
h = ()‘max - )‘mm)/(N - 1)7

Consequently, the measured transmission at \; will be called 77"***. More-

over, we will use the notation n;, k;, w;, z; for the finite difference estimates
of n(\;), k(\;), w(\;) and z(\;):

w; 2 w(Xit1), zi = 2(Niy1),

for all i = 1,..., N. Discretization of the differential relations (22-26) gives:

ny =1+u’, oy =07 (27)
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ny 1 =ny+uih, ky 1=ky+vih, (28)

ng = wh® +2n;01 — nyye, i=1,...,N =2, (29)
ki = 220° + 2kiq — kigo if Nig1 > N, (30)
ki = —22h% + 2kiyy — kigo if N1 < A (31)

Finally, the objective function (21) is approximated by a sum of squares,
giving the optimization problem

N
Minimize Z[T()\i, s(\i), dymy k) — T )? (32)

i=1
subject to

ki > ko (33)

Since n; and k; depend on wu,uy,v, vy, w,z and A, p through (27-31),
problem (32) takes the form

Minimize  f(d, i1, w, w1, v, 01, W1, ..., WN_2, 21, .., ZN—-2)) (34)

subject to (33).

We expect that the constraint (33) will be inactive at a solution of (34-
33), so that we are going to consider the unconstrained problem (34). The
unknowns that appear in (34) have a different nature. The thickness d is a
dimensional variable (measured in nanometers in our real-life problems) that
can be determined using the observations T¢**(\;) for (say) A; > Avound,
where Apouna, an upper bound for A;,z, reflects our prior knowledge of the
problem. For this reason, our first step in the estimation procedure will be
to estimate d using data that correspond to A\; > Apoung- For accomplishing
this objective we solve the problem

Minimize f_(ua Uy, 0,01, W, Z) = Z [T()\Za s()\i)7 d: g, kl) _T’imeas]Q (35)

Ai ZAbound
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for different values of d and we take as estimated thickness the one that
gives the lowest functional value. In this case the constraint (33) is irrelevant
since it is automatically satisfied by the convexity of k and the fact that the
derivative of k and \,,;, are nonpositive. From now on we consider that d is
fixed, coming from the procedure above.
The second step consists of determining A, 7, together with the unknowns
u, u1,v,v1,w, 2. For this purpose observe that, given d and A;, the problem
N
Minimize Y [T(\;, s(\;), d, s, k;) — T;™*)? (36)
i=1
is (neglecting (33)) an unconstrained minimization problem whose variables
are u, uy, v, vy, w, z (2N variables). We solve this problem for several trial val-
ues of A\i,p; and we take as estimates of n and k the combination of variables
that gives the lowest value. For minimizing this function and for solving (35)
for different trial thickness, we use the unconstrained minimization solver

that will be described in the next section.

3 Description of the unconstrained minimiza-
tion algorithm

As we saw in the previous section, the unconstrained minimization problem

(35) and (36) have the form
Minimize  f(u, w1, v, 01, Wy, ..., WN_92,21,...,ZN_2)- (37)
In order to simplify the notation, in this section we will write

X = (U’JU’IJUJUIJwIJ vy, WN—2,21, .. 'JZN—Z)-

12



Partial derivatives of f are usually necessary in optimization algorithms,
since they provide the first-order information on the objective function that
allows computational algorithms to follow downhill trajectories. In this case,
derivatives are very hard to compute. For this reason it was necessary to use
an automatic differentiation procedure (reverse mode) for performing this
task. See [10] for details.

In principle, any unconstrained optimization algorithm can be used to
solve (37) (see [11-13]). Since the problem has, potentially, a large num-
ber of variables, our choice must be restricted to methods that are able to
cope with that situation. A recent paper by Raydan [9] induced us to use
the Spectral Gradient Method (SGM), an implementation of the Barzilai-
Borwein for quadratics introduced in [9]. In fact, Raydan showed, using a
well known set of classical test problems, that SGM outperforms conjugate
gradient algorithms (see [12,13]) for large scale unconstrained optimization.
Raydan’s spectral gradient method is extremely easy to implement, a fact
that contributed to support our decision, since it enables us to become inde-
pendent of black-box like imported software. Our description of SGM here
is, essentially, the one of Raydan with a small difference in the choice of the
step ay when b, < 0.

We denote g(x) = V f(x). The algorithm starts with xo € IR" and uses
an integer M > 0, a small parameter ¢ > 0, a sufficient decrease param-
eter v € (0,1) and safeguarding parameters 0 < o1,< 0y < 1. Initially,
o € [1/e,¢] is arbitrary. Given x* € IR", oy, € [1/¢,¢], Algorithm 3.1 de-

scribes how to obtain x;; and a1, and when to terminate the process.

Algorithm 3.1
Step 1. Detect whether the current point is stationary

13



If ||g(x*))|| = 0, terminate the generation of the sequence, declaring that
x* is stationary.
Step 2. Backtracking
Step 2.1 Set A + .
Step 2.2 Set x™ = x*F — \g(x¥).

Step 2.3 If

f(ixt) < manZmin{o,k,M}f(xj) +y(xT —x*, g(x")), (38)

then define x¥+1 = xk b = xF+1 _xk yk = g(xF*1) — g(x*) and go to Step 3.

If (38) does not hold, define
)\ne’w c [0'1)\,0'2)\], (39)

set A <— A\,ew and go to Step 2.2.
Step 3 Compute spectral steplenght
Compute by, = (s¥, y*).

If b, <0, set a1 = 1/, else, compute ay = —(s*, g(x*)) and
a1 = min {1/e, max {e,ax/bg}}.

In practice the computation of \,., uses one-dimensional quadratic in-

terpolation and it is safeguarded with (39).

4 Numerical results

In order to test the reliability of the new unconstrained optimization ap-
proach we used the computer-generated transmission of gedanken films de-
posited onto glass or crystalline silicon substrates. In the simulations the

refractive index of the glass sg,s5(\) is given by:

Sgtass(N) = /1 + 1/(0.76194 — 7940/A2),
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and the refractive index of the silicon substrate sg;(A\) was assumed to be

given by:
s5i(A) = 3.71382 — 8.6912310 °\ — 2.4712510 °A\* + 1.0467710 11 )\°,

In all the simulations, we assume that the wavelength and the thickness
are measured in nanometers. The transmission 7¢*()\) for each film was
first computed in the range A € [Amin, Amax] using a known thickness de
and a known refractive index ny.,.(A) and absorption coefficient ayye(A). In
order to consider realistic situations, including experimental inaccuracy, we
considered alternative computations of 7 ()\), were the true transmission
was rounded to four, three and two decimals. We also performed numerical
experiments using a different number of transmission points: 100, 50 and 25.
The description of these gedanken films and the corresponding numerical
results are given below.

Film A. This computer-generated film simulates an amorphous germanium
thin film deposited on a glass substrate with dy.,. = 118 nm. The com-
puted transmission 77 (\) [Apin = 600 nm, Apax = 2000 nm],the functions
Nirue(A) and ayrue(A) are shown as continuous lines in Fig. 1. Note that
Nirue(A) and ayrue(A) are represented as a function of photon energy.

Film B. This computer-generated film is identical to Film A except for
its thickness dye = 782 nm. The true values of T\, = 1000 nm,
Amax = 2000 nm], n(\), and «(A) are shown in Fig.2.

Film C. This computer-generated film simulates an amorphous germanium
thin film deposited on a crystalline silicon substrate with d;.,. = 147 nm,
Amin = 1250 nm and Ayax = 2500 nm. The computed transmission 77¢*5(\)
and the functions ny.4.(A) and oy () are shown as continuous lines in Fig.
3. Note that, again, ngye(A) and aye(N) are represented as a function of

photon energy.
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Film D. This is also a simulated film of amorphous germanium over a c¢-Si
substrate. A thickness d;,. = 640 nm has been assumed. The transmission
was computed in the [y, = 640 nm, Ay, = 1250 nm] interval. Figure 3
shows, as continuous lines the computed values.

Film E. Simulated film of hydrogenated amorphous silicon deposited onto
glass with dy.e = 624 nm, T [\, = 600 nm, Ay = 1600 nm). See also
Nirue ANA Qe in Fig. 5.

For our calculations we need initial estimates of £(A\) and n()). As initial
estimate of k(\) we used a piecewise linear function the values of which are
0.1 at the smallest wavelength of the spectrum, 0.01 at Ay, +0.2(Anaz — Amin)
and 107! at \,,4,. The initial estimate of n(\) is a linear function varying
between 5 (Apin) and 3 (Apax) with step 1 (these values were chosen because
of the previous knowledge of the simulated materials). As we exclude the
constant functions, i.e., linear functions with the left extreme equal to the
right one, for which preliminary tests showed us they lead the method to local
minimizers, we have three possibilities for the initial estimate of n(\): the
decreasing linear functions defined by the pairs of points [(Amin, 4); (Amazs 3)],
[(Amin, 5); (Amaz, 3)] and [(Amin, 5); (Amaz, 4)]-

The general scheme to obtain the optimal parameters of these films is
as follows. First, we need to break down the spectrum into two parts:
[Amins Mvound] and [Moound> Amaz], Where Apoung is a known upper bound of
Ainfi- To estimate the thickness we use the points with abcissa belonging
t0 [Aoound> Amaz|- The procedure consist in running Algorithm 3.1 for dif-
ferent values of d between d,,;,, = %dlmk and dpe; = %dlmk with step 10
(dmin, Amin + 10, dmin + 20, ...), where dg;, can be a rough initial estimate
of the true thickness. In this way, we obtain d;.;,, the thickness value for

which the smallest quadratic error occurs. Then we repeat the procedure
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with dyin = dyria — 10, dpax = dyrir + 10 and step 1 obtaining, finally, the
estimated thickness dpqg;.

To estimate the inflection point we proceed in an analogous way, using
the whole spectrum and the thickness fixed at dj.q, trying different possible
inflection points (obviously between Ay, and Apeuna) and taking as estimated
inflection point the one which gives the smallest quadratic error. In all the
runs just described, we allow only 3000 iterations of Algorithm 3.1. The final
step of the method consists on fixing dpes; and Ai¢; and running Algorithm
3.1 once more allowing 30000 iterations.

All the experiments were run in a SPARCstation Sun Ultra 1, with an
UltraSPARC 64 bits processor, 167-MHz clock and 128-MBytes of RAM
memory. We used the language C++ with the g+4 compiler (GNU project
C and C++ compiler v2.7) and the optimization compiler option -O4. In
spite of the many executions of the unconstrained minimization algorithm
that are necessary to solve each problem, the total CPU time used under the
mentioned computer environment for the complete process never exceeded
10 minutes.

Table I corresponds to Film A only. It shows the precision obtained
in n(A) and a(A) using 25, 50 and 100 measured transmission points, and
rounding the transmission data to two, three and four decimal places after
the decimal point and, finally, without rounding. The errors reported are the
maximum values of | n(A) — nyue(A) | and | @(X) — ayue(A) | for large and
small photon energy spectral regions, respectively. Table II corresponds to
the same film. It shows the estimated thickness for 25, 50 and 100 data points
and different number of decimal places in T™¢*()\). Table III shows the
estimated thickness, and the quadratic errors obtained in the minimization

process.
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Figures 1 to 5 are self explanatory. Continuous lines are true trans-
missions, true refractive indices and true absorption coefficients for the five
considered examples. The open circles represent best estimates (using all
decimal places). Finally, Figs. 6, 7 and 8 show how the process of estimating

the thickness worked for each different film.

5 Conclusions

The analysis of the numerical results allow us to draw the following conclu-

sions:

1) The proposed procedure is highly reliable for estimating the true thick-
ness in all films when four (or all) digits of the transmission data are
used. The method provides a very good retrieval of the true transmis-
sion in cases where no approximate methods are useful, i.e., very thin

films or absorbing layers.

2) The precision of the “measured” transmission data has an effect on the
accuracy of the estimation of n(\) but it is almost irrelevant for the
estimation of a(A). In a realistic situation using a modern spectropho-
tometer the transmission can be obtained with 3% or 4 digits. In this
case, and using 100 transmission data points, the error in the estimation
of n(\) is around 0.11 (for Film A). The difference between the results

obtained using 100 and 50 transmission points is not meaningful.

3) In most cases the quadratic error as a function of the guessed thickness
(Figs. 6 and 7) is a function with several local-nonglobal minimizers.
This is an intrinsic property of this function, which might originate
from a “perturbed periodic” form of the transmission. Therefore, the

strategy of separating the variable d from the other variables of the
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optimization problem appears to be correct, since it tends to avoid

spurious convergence to those local minimizers.

4) The comparison of the present results with those previously obtained
using the algorithm described in [5,6] seems to confirm that the new
method is, at least, as efficient as the previous constrained optimization
approach. In addition, the resulting piece of software is more portable

and easier to manipulate.
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25

50

100

n

(07

n

(07

n

(0%

Eph—min

0.1136

1.9021x10°1

0.1063

4.3521x10°*

0.1139

4.3108x10 %

Ephfmax

0.8742

4.4408x103

1.4727

4.9223x10 3

0.4761

1.9139x1073

Eph—min

0.0442

2.7240x10*

0.1317

6.5932x10 %

0.2249

1.1136x10°*

Ephfmax

1.3505

4.4571x1073

0.2298

1.4237x1073

0.1278

1.0697x1073

Eph—min

0.0552

3.3624x10~*

0.1093

4.0392x10*

0.1103

4.3715%x10~%

Ephfmax

1.3631

4.5240x1073

0.1418

1.0016x1073

0.1149

3.8185x10~*

all

Eph—min

0.0358

3.9590x 10 %

0.0749

3.0955x 10 %

0.0184

1.6248x10~ ¢

Ephfmax

1.4558

4.5031x1073

0.2367

7.5514x10~%

0.0117

1.9621x10~%

Table 1. Film A: Quadratic errors in the estimated refractive index and

absorption coefficient with varying precision and total numbers of transmis-

ston data points.
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[ 25 ] 50 ]100 |

2 | 121 | 121 | 121
3 || 119 | 122 | 124
4 | 119 | 121 | 121
all || 118 | 119 | 119

Table I1. Film A: Estimated thickness with varying precision and number

of transmission data points.
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‘ Film H True thickness | Estimated thickness ‘ Quadratic error

A 118 119 6.929605x 107
B 782 782 2.203053x 107
C 147 152 6.224862x 10 ©
D 640 639 1.365270x 10
E 624 624 2.120976x10~7

Table II1. True and estimated thickness and quadratic errors for all computer-

generated films.
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6 Figure captions

Figure 1: “True” and retrieved values of the transmission, the refractive index
and the absorption coefficient of a numerically generated very thin film of
thickness d = 118 nm simulating an a-Ge layer deposited on glass. Note the
very good agreement found for the optical constants and the transmission.

Figure 2: “True” and retrieved values of the transmission, the refractive
index and the absorption coefficient of a numerically generated film of thick-
ness d = 782 nm simulating an a-Ge layer deposited on glass. Note the very
good agreement found for the optical constants and the transmission in this
absorbing film.

Figure 3: “True” and retrieved values of the transmission, the refractive
index and the absorption coefficient of a numerically generated very thin film
of thickness d = 147 nm simulating an a-Ge layer deposited on a crystalline
silicon substrate. Note the very good agreement found for the optical con-
stants and the transmission from an almost flat and featureless transmission
spectrum corresponding to a rather narrow spectral region.

Figure 4: “True” and retrieved values of the transmission, the refractive
index and the absorption coefficient of a numerically generated thin film of
thickness d = 640 nm simulating an a-Ge layer deposited on a crystalline
silicon substrate. Note the overall good agreement found for the optical
constants and the transmission. The retrieval of the “true” index of refraction
at the highest photon energies appears somewhat defective.

Figure 5: “True” and retrieved values of the transmission, the refractive
index and the absorption coefficient of a numerically generated thin film of
thickness d = 624 nm simulating an a-Si:H layer deposited on glass. The
overall agreement for both optical constants and the transmission is very

good.
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Figure 6: Quadratic error of the minimization process as a function of
trial thickness for Films A and B. On the left side the step is 10 nm while
on the right hand side of the figure the refined step is 1 nm. Note the local-
nonglobal minimizers.

Figure 7: Quadratic error of the minimization process as a function of
trial thickness for Films C and D. On the left side the step is 10 nm while
on the right hand side of the figure the refined step is 1 nm. Note the local-
nonglobal minimizers.

Figure 8: Quadratic error of the minimization process as a function of
trial thickness for Film E. On the left side the step is 10 nm while on the
right hand side of the figure the refined step is 1 nm. Note the local-nonglobal

minimizers.
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