
Estimation of the opti
al 
onstants and the

thi
kness of thin �lms using un
onstrained

optimization

Ernesto G. Birgin

Department of Applied Mathemati
s, IMECC-UNICAMP,

CP 6065, CEP 13081-970, Campinas - SP - Brazil

ernesto�ime.uni
amp.br

Ivan Chambouleyron

Institute of Physi
s Gleb Wataghin, UNICAMP,

CP 6065, CEP 13081-970, Campinas - SP - Brazil

ivan
h�i�.uni
amp.br

Jos�e Mario Mart��nez

Department of Applied Mathemati
s, IMECC-UNICAMP,

CP 6065, CEP 13081-970, Campinas - SP - Brazil

martinez�ime.uni
amp.br

January 9, 2001

Subje
t 
lassi�
ation: AMS 65K, PACS 78.65.-s

Key words: un
onstrained minimization, spe
tral gradient method, opti
al


onstants, thin �lms

1



Proposed running head:

Estimation of opti
al 
onstants of thin �lms using SGM

Corresponding author:

Jos�e Mario Mart��nez

Departamento de Matem�ati
a Apli
ada

IMECC - UNICAMP, CP 6065

13081-970 - Campinas - SP - Brazil.

e-mail: martinez�ime.uni
amp.br

FAX: +55(19)7885929

2



Abstra
t

The problem of estimating the thi
kness and the opti
al 
onstants of thin

�lms using transmission data only is very 
hallenging from the mathemati-


al point of view, and has a te
hnologi
al and an e
onomi
 importan
e. In

many 
ases it represents a very ill-
onditioned inverse problem with many

lo
al-nonglobal solutions. In a re
ent publi
ation we proposed nonlinear

programming models for solving this problem. Well-known software for lin-

early 
onstrained optimization was used with su

ess for this purpose. In

this paper we introdu
e an un
onstrained formulation of the nonlinear pro-

gramming model and we solve the estimation problem using a method based

on repeated 
alls to a re
ently introdu
ed un
onstrained minimization algo-

rithm. Numeri
al experiments on 
omputer-generated �lms show that the

new pro
edure is reliable.
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1 Introdu
tion

For most modern appli
ations of thin diele
tri
 or semi
ondu
tor �lms, the

opti
al properties of interest 
over a photon energy range around the fun-

damental absorption edge of the material. Moreover, as the appli
ations

make use of multiple 
oherent re
e
tions at the interfa
es, the thi
kness

of the �lms is an important design and 
hara
terization parameter. Opti-


al transmittan
e provides a

urate and rapid information on the spe
tral

range where the material goes from 
omplete opa
ity to some degree of

transparen
y [1,2℄. As a 
onsequen
e, the problem of retrieving the opti-


al 
onstants (

�

n

(�) = n(�)+ ik(�)) and the thi
kness (d) of thin �lms, from

transmission data only, is of parti
ular importan
e. Some useful approxi-

mate solutions have been found in 
ases where the transmittan
e displays an

interferen
e pattern in a highly transparent spe
tral region [3,4℄. Up to now,

however, the general solution of the problem has been elusive, be
ause the

system of equations is highly underdetermined. Re
ently, we reported a new

method, based on a pointwise 
onstrained optimization approa
h, whi
h al-

lows to solve the general 
ase [5,6℄. The method de�nes a nonlinear program-

ming problem, the unknowns of whi
h are the 
oeÆ
ients to be estimated,

with linear 
onstraints that represent prior knowledge about the physi
al so-

lution. The retrieval of the 
orre
t thi
kness and opti
al 
onstants of the �lms

does not rely on the existen
e of interferen
e fringes. The new method was

su

essful in retrieving d and

�

n

(�) from very di�erent transmission spe
tra

of 
omputer made and real world �lms [5,6℄. The main in
onvenient of the

pointwise 
onstrained optimization approa
h [5,6℄ is that is a rather 
omplex

large-s
ale linearly 
onstrained nonlinear programming problem whose solu-

tion 
an be obtained only by means of rather sophisti
ated and not always

available 
omputer 
odes that 
an deal e�e
tively with sparsity of the matrix
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of 
onstraints [7,8℄.

We 
onsider then the problem of estimating the absorption 
oeÆ
ients,

the refra
tive index and the thi
kness of thin �lms, using transmission data

only. Given the wavelength �, the refra
tive index of the substrate s and the

unknowns d (thi
kness), n(�) (refra
tive index) and k(�) (attenuation 
oef-

�
ient), the theoreti
al transmission is given by a well-known formula [2,4℄.

Having measurements of the transmission at (many) di�erent wavelengths

we want to estimate the above mentioned unknowns. At a �rst glan
e, this

problem is highly underdetermined sin
e, for ea
h wavelength, the single

equation

Theoreti
al transmission = Measured transmission (1)

has three unknowns d; n(�); k(�) and only d is repeated for all values of �.

The driving idea in [5,6℄ was to in
orporate prior knowledge on the fun
tions

n(�); k(�) in order to de
rease the degrees of freedom of (1) up to a point

that only physi
ally meaningful estimated parameters are admitted.

The idea of assuming a 
losed formula for n and k depending of few 
o-

eÆ
ients has been already reported [3,4℄. The methods originating from this

idea are eÆ
ient when the transmission 
urve exhibits a fringe pattern rep-

resenting rather large spe
tral zones were k(�) is almost null. In other 
ases,

the satisfa
tion of (1) is very rough or the 
urves n(�); k(�) are physi
ally

una

eptable.

In [5,6℄, instead of imposing a fun
tional form to n(�) and k(�), the

phenomenologi
al 
onstraints that restri
t the variability of these fun
tions

were stated expli
itly so that the estimation problem took the form:

Minimize

X

�

[Theoreti
al transmission (�)�Measured transmission (�)℄

2

subje
t to Physi
al Constraints:

(2)
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In this way, well behaved fun
tions n(�) and k(�) 
an be obtained without

severe restri
tions that may damage the quality of the �tting (1).

The main 
ontribution of the present paper is to establish a method for

solving the estimation problem where (2) is repla
ed by an un
onstrained

optimization problem. We solved this problem using a very simple algorithm

introdu
ed re
ently by Raydan [9℄. This method realizes a very e�e
tive

idea for potentially large-s
ale un
onstrained minimization. It 
onsists of

using only gradient dire
tions with steplengths that ensure rapid 
onvergen
e.

The redu
tion of (2) to an un
onstrained minimization problem needed the


al
ulation of very 
ompli
ate derivatives of fun
tions, whi
h 
ould not be

possible without the use of automati
 di�erentiation te
hniques. Here we

used the pro
edures for automati
 di�erentiation des
ribed in [10℄.

2 Un
onstrained formulation of the estima-

tion problem

The transmission T of a thin absorbing �lm deposited on a thi
k transparent

substrate (see [4℄) is given by:

T =

Ax

B � Cx+Dx

2

(3)

where

A = 16s(n

2

+ k

2

) (4)

B = [(n + 1)

2

+ k

2

℄[(n+ 1)(n+ s

2

) + k

2

℄ (5)

C = [(n

2

� 1 + k

2

)(n

2

� s

2

+ k

2

)� 2k

2

(s

2

+ 1)℄2 
os'

�k[2(n

2

� s

2

+ k

2

) + (s

2

+ 1)(n

2

� 1 + k

2

)℄2 sin' (6)

D = [(n� 1)

2

+ k

2

℄[(n� 1)(n� s

2

) + k

2

℄ (7)
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' = 4�nd=�; x = exp(��d); � = 4�k=�: (8)

In formulae (4){(8) the following notation is used:

(a) � is the wavelength;

(b) s = s(�) is the refra
tive index of the transparent substrate (assumed

to be known),

(
) n = n(�) is the refra
tive index of the �lm;

(d) k = k(�) is the attenuation 
oeÆ
ient of the �lm (� is the absorption


oeÆ
ient);

(e) d is the thi
kness of the �lm.

A set of experimental data (�

i

; T

meas

(�

i

)), �

min

� �

i

< �

i+1

� �

max

,

for i = 1; : : : ; N , is given, and we want to estimate d, n(�) and k(�). This

problem seems highly underdetermined. In fa
t, for known d and given �,

the following equation must hold:

T (�; s(�); d; n(�); k(�)) = T

meas

(�): (9)

Equation (9) has two unknowns n(�) and k(�) and, therefore, in general, its

set of solutions is a 
urve in the two-dimensional (n(�); k(�)) spa
e. There-

fore, the set of fun
tions (n; k) that satisfy (9) for a given d is in�nite and,

roughly speaking, is represented by a nonlinear manifold of dimension N in

IR

2N

.

However, physi
al 
onstraints redu
e drasti
ally the range of variability

of the unknowns n(�); k(�). For example, in the neighborhood of the funda-

mental absorption edge (normal dispersion), these physi
al 
onstraints are:

PC1: n(�) � 1; k(�) � 0 for all � 2 [�

min

; �

max

℄;
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PC2: n(�) and k(�) are de
reasing fun
tions of �;

PC3: n(�) is 
onvex;

PC4: There exists �

infl

2 [�

min

; �

max

℄ su
h that k(�) is 
onvex if � � �

infl

and 
on
ave if � < �

infl

.

Observe that, assuming PC2, PC1 is satis�ed under the sole assumption

n(�

max

) � 1 and k(�

max

) � 0. The 
onstraints PC2, PC3 and PC4 
an be

written, respe
tively, as

n

0

(�) � 0; k

0

(�) � 0 for all � 2 [�

min

; �

max

℄; (10)

n

00

(�) � 0 for all � 2 [�

min

; �

max

℄; (11)

k

00

(�) � 0 for � 2 [�

min

; �

infl

℄ and (12)

k

00

(�) � 0 for � 2 [�

infl

; �

max

℄: (13)

Clearly, the 
onstraints

n

00

(�) � 0 for all � 2 [�

min

; �

max

℄ and n

0

(�

max

) � 0

imply that

n

0

(�) � 0 for all � 2 [�

min

; �

max

℄:

Moreover,

k

00

(�) � 0 for all � 2 [�

infl

; �

max

℄ and k

0

(�

max

) � 0
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imply that

k

0

(�) � 0 for all � 2 [�

infl

; �

max

℄:

Finally,

k

00

(�) � 0 for all � 2 [�

min

; �

infl

℄ and k

0

(�

min

) � 0

imply that

k

0

(�) � 0 for all � 2 [�

min

; �

infl

℄:

Therefore, PC2 
an be repla
ed by

n

0

(�

max

) � 0; k

0

(�

max

) � 0; k

0

(�

min

) � 0: (14)

Summing up, the assumptions PC1{PC4 will be satis�ed if, and only if,

n(�

max

) � 1; k(�

max

) � 0; (15)

n

0

(�

max

) � 0; k

0

(�

max

) � 0; (16)

n

00

(�) � 0 for all � 2 [�

min

; �

max

℄; (17)

k

00

(�) � 0 for all � 2 [�

infl

; �

max

℄; (18)

k

00

(�) � 0 for all � 2 [�

min

; �

infl

℄; (19)

k

0

(�

min

) � 0: (20)

So, the 
ontinuous least squares solution of the estimation problem is the

solution (d; n(�); k(�)) of

Minimize

Z

�

max

�

min

jT (�; s(�); d; n(�); k(�))� T

meas

(�)j

2

d� (21)

subje
t to the 
onstraints (15){(20).

Our idea in this work is to eliminate, as far as possible, the 
onstraints of

the problem, by means of a suitable 
hange of variables. Roughly speaking,
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we are going to put the obje
tive fun
tion (21) as depending on the se
ond

derivatives of n(�) and k(�) plus fun
tional values and �rst derivatives at

�

max

. Moreover, positivity will be guaranteed expressing the variables as

squares of auxiliary unknowns. In fa
t, we write

n(�

max

) = 1 + u

2

; k(�

max

) = v

2

; (22)

n

0

(�

max

) = �u

2

1

; k

0

(�

max

) = �v

2

1

; (23)

n

00

(�) = w(�)

2

for all � 2 [�

min

; �

max

℄; (24)

k

00

(�) = z(�)

2

for all � 2 [�

infl

; �

max

℄; (25)

k

00

(�) = �z(�)

2

for all � 2 [�

min

; �

infl

℄: (26)

At this point, in order to avoid a rather pedanti
 
ontinuous formulation

of the problem, we 
onsider the real-life situation, in whi
h data are given for

a set of N equally spa
ed points on the interval [�

min

; �

max

℄. So, we de�ne

h = (�

max

� �

min

)=(N � 1);

�

i

= �

min

+ (i� 1)h; i = 1; : : : ; N:

Consequently, the measured transmission at �

i

will be 
alled T

meas

i

. More-

over, we will use the notation n

i

, k

i

, w

i

, z

i

for the �nite di�eren
e estimates

of n(�

i

), k(�

i

), w(�

i

) and z(�

i

):

n

i

� n(�

i

); k

i

� k(�

i

);

w

i

� w(�

i+1

); z

i

� z(�

i+1

);

for all i = 1; : : : ; N . Dis
retization of the di�erential relations (22-26) gives:

n

N

= 1 + u

2

; v

N

= v

2

; (27)
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n

N�1

= n

N

+ u

2

1

h; k

N�1

= k

N

+ v

2

1

h; (28)

n

i

= w

2

i

h

2

+ 2n

i+1

� n

i+2

; i = 1; : : : ; N � 2; (29)

k

i

= z

2

i

h

2

+ 2k

i+1

� k

i+2

if �

i+1

� �

infl

; (30)

k

i

= �z

2

i

h

2

+ 2k

i+1

� k

i+2

if �

i+1

< �

infl

: (31)

Finally, the obje
tive fun
tion (21) is approximated by a sum of squares,

giving the optimization problem

Minimize

N

X

i=1

[T (�

i

; s(�

i

); d; n

i

; k

i

)� T

meas

i

℄

2

(32)

subje
t to

k

1

� k

2

(33)

Sin
e n

i

and k

i

depend on u; u

1

; v; v

1

; w; z and �

infl

through (27{31),

problem (32) takes the form

Minimize f(d; �

infl

; u; u

1

; v; v

1

; w

1

; : : : ; w

N�2

; z

1

; : : : ; z

N�2

)) (34)

subje
t to (33).

We expe
t that the 
onstraint (33) will be ina
tive at a solution of (34-

33), so that we are going to 
onsider the un
onstrained problem (34). The

unknowns that appear in (34) have a di�erent nature. The thi
kness d is a

dimensional variable (measured in nanometers in our real-life problems) that


an be determined using the observations T

meas

(�

i

) for (say) �

i

� �

bound

,

where �

bound

, an upper bound for �

infl

, re
e
ts our prior knowledge of the

problem. For this reason, our �rst step in the estimation pro
edure will be

to estimate d using data that 
orrespond to �

i

� �

bound

. For a

omplishing

this obje
tive we solve the problem

Minimize

�

f(u; u

1

; v; v

1

; w; z) �

X

�

i

��

bound

[T (�

i

; s(�

i

); d; n

i

; k

i

)�T

meas

i

℄

2

(35)
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for di�erent values of d and we take as estimated thi
kness the one that

gives the lowest fun
tional value. In this 
ase the 
onstraint (33) is irrelevant

sin
e it is automati
ally satis�ed by the 
onvexity of k and the fa
t that the

derivative of k and �

min

are nonpositive. From now on we 
onsider that d is

�xed, 
oming from the pro
edure above.

The se
ond step 
onsists of determining �

infl

, together with the unknowns

u; u

1

; v; v

1

; w; z. For this purpose observe that, given d and �

infl

the problem

Minimize

N

X

i=1

[T (�

i

; s(�

i

); d; n

i

; k

i

)� T

meas

i

℄

2

(36)

is (negle
ting (33)) an un
onstrained minimization problem whose variables

are u; u

1

; v; v

1

; w; z (2N variables). We solve this problem for several trial val-

ues of �

infl

and we take as estimates of n and k the 
ombination of variables

that gives the lowest value. For minimizing this fun
tion and for solving (35)

for di�erent trial thi
kness, we use the un
onstrained minimization solver

that will be des
ribed in the next se
tion.

3 Des
ription of the un
onstrained minimiza-

tion algorithm

As we saw in the previous se
tion, the un
onstrained minimization problem

(35) and (36) have the form

Minimize f(u; u

1

; v; v

1

; w

1

; : : : ; w

N�2

; z

1

; : : : ; z

N�2

): (37)

In order to simplify the notation, in this se
tion we will write

x = (u; u

1

; v; v

1

; w

1

; : : : ; w

N�2

; z

1

; : : : ; z

N�2

):
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Partial derivatives of f are usually ne
essary in optimization algorithms,

sin
e they provide the �rst-order information on the obje
tive fun
tion that

allows 
omputational algorithms to follow downhill traje
tories. In this 
ase,

derivatives are very hard to 
ompute. For this reason it was ne
essary to use

an automati
 di�erentiation pro
edure (reverse mode) for performing this

task. See [10℄ for details.

In prin
iple, any un
onstrained optimization algorithm 
an be used to

solve (37) (see [11-13℄). Sin
e the problem has, potentially, a large num-

ber of variables, our 
hoi
e must be restri
ted to methods that are able to


ope with that situation. A re
ent paper by Raydan [9℄ indu
ed us to use

the Spe
tral Gradient Method (SGM), an implementation of the Barzilai-

Borwein for quadrati
s introdu
ed in [9℄. In fa
t, Raydan showed, using a

well known set of 
lassi
al test problems, that SGM outperforms 
onjugate

gradient algorithms (see [12,13℄) for large s
ale un
onstrained optimization.

Raydan's spe
tral gradient method is extremely easy to implement, a fa
t

that 
ontributed to support our de
ision, sin
e it enables us to be
ome inde-

pendent of bla
k-box like imported software. Our des
ription of SGM here

is, essentially, the one of Raydan with a small di�eren
e in the 
hoi
e of the

step �

k

when b

k

� 0.

We denote g(x) = rf(x). The algorithm starts with x

0

2 IR

n

and uses

an integer M � 0, a small parameter " > 0, a suÆ
ient de
rease param-

eter 
 2 (0; 1) and safeguarding parameters 0 < �

1

; < �

2

< 1. Initially,

�

0

2 [1="; "℄ is arbitrary. Given x

k

2 IR

n

, �

k

2 [1="; "℄, Algorithm 3.1 de-

s
ribes how to obtain x

k+1

and �

k+1

, and when to terminate the pro
ess.

Algorithm 3.1

Step 1. Dete
t whether the 
urrent point is stationary

13



If kg(x

k

))k = 0, terminate the generation of the sequen
e, de
laring that

x

k

is stationary.

Step 2. Ba
ktra
king

Step 2.1 Set � �

k

.

Step 2.2 Set x

+

= x

k

� �g(x

k

).

Step 2.3 If

f(x

+

) � max

j�minf0;k�Mg

f(x

j

) + 
hx

+

� x

k

; g(x

k

)i; (38)

then de�ne x

k+1

= x

k

, s

k

= x

k+1

�x

k

, y

k

= g(x

k+1

)�g(x

k

) and go to Step 3.

If (38) does not hold, de�ne

�

new

2 [�

1

�; �

2

�℄; (39)

set � �

new

and go to Step 2.2.

Step 3 Compute spe
tral steplenght

Compute b

k

= hs

k

;y

k

i.

If b

k

� 0, set �

k+1

= 1=", else, 
ompute a

k

= �hs

k

; g(x

k

)i and

�

k+1

= min f1=";max f"; a

k

=b

k

gg:

In pra
ti
e the 
omputation of �

new

uses one-dimensional quadrati
 in-

terpolation and it is safeguarded with (39).

4 Numeri
al results

In order to test the reliability of the new un
onstrained optimization ap-

proa
h we used the 
omputer-generated transmission of gedanken �lms de-

posited onto glass or 
rystalline sili
on substrates. In the simulations the

refra
tive index of the glass s

glass

(�) is given by:

s

glass

(�) =

q

1 + 1=(0:76194� 7940=�

2

);
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and the refra
tive index of the sili
on substrate s

Si

(�) was assumed to be

given by:

s

Si

(�) = 3:71382� 8:6912310

�5

�� 2:4712510

�8

�

2

+ 1:0467710

�11

�

3

:

In all the simulations, we assume that the wavelength and the thi
kness

are measured in nanometers. The transmission T

meas

(�) for ea
h �lm was

�rst 
omputed in the range � 2 [�

min

; �

max

℄ using a known thi
kness d

true

and a known refra
tive index n

true

(�) and absorption 
oeÆ
ient �

true

(�). In

order to 
onsider realisti
 situations, in
luding experimental ina

ura
y, we


onsidered alternative 
omputations of T

meas

(�), were the true transmission

was rounded to four, three and two de
imals. We also performed numeri
al

experiments using a di�erent number of transmission points: 100, 50 and 25.

The des
ription of these gedanken �lms and the 
orresponding numeri
al

results are given below.

Film A. This 
omputer-generated �lm simulates an amorphous germanium

thin �lm deposited on a glass substrate with d

true

= 118 nm. The 
om-

puted transmission T

meas

(�) [�

min

= 600 nm, �

max

= 2000 nm℄;the fun
tions

n

true

(�) and �

true

(�) are shown as 
ontinuous lines in Fig. 1. Note that

n

true

(�) and �

true

(�) are represented as a fun
tion of photon energy.

Film B. This 
omputer-generated �lm is identi
al to Film A ex
ept for

its thi
kness d

true

= 782 nm. The true values of T

meas

[�

min

= 1000 nm,

�

max

= 2000 nm℄, n(�), and �(�) are shown in Fig.2.

Film C. This 
omputer-generated �lm simulates an amorphous germanium

thin �lm deposited on a 
rystalline sili
on substrate with d

true

= 147 nm,

�

min

= 1250 nm and �

max

= 2500 nm. The 
omputed transmission T

meas

(�)

and the fun
tions n

true

(�) and �

true

(�) are shown as 
ontinuous lines in Fig.

3. Note that, again, n

true

(�) and �

true

(�) are represented as a fun
tion of

photon energy.
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Film D. This is also a simulated �lm of amorphous germanium over a 
-Si

substrate. A thi
kness d

true

= 640 nm has been assumed. The transmission

was 
omputed in the [�

min

= 640 nm, �

max

= 1250 nm℄ interval. Figure 3

shows, as 
ontinuous lines the 
omputed values.

Film E. Simulated �lm of hydrogenated amorphous sili
on deposited onto

glass with d

true

= 624 nm, T

meas

[�

min

= 600 nm, �

max

= 1600 nm℄. See also

n

true

and �

true

in Fig. 5.

For our 
al
ulations we need initial estimates of k(�) and n(�). As initial

estimate of k(�) we used a pie
ewise linear fun
tion the values of whi
h are

0:1 at the smallest wavelength of the spe
trum, 0:01 at �

min

+0:2(�

max

��

min

)

and 10

�10

at �

max

. The initial estimate of n(�) is a linear fun
tion varying

between 5 (�

min

) and 3 (�

max

) with step 1 (these values were 
hosen be
ause

of the previous knowledge of the simulated materials). As we ex
lude the


onstant fun
tions, i.e., linear fun
tions with the left extreme equal to the

right one, for whi
h preliminary tests showed us they lead the method to lo
al

minimizers, we have three possibilities for the initial estimate of n(�): the

de
reasing linear fun
tions de�ned by the pairs of points [(�

min

; 4); (�

max

; 3)℄,

[(�

min

; 5); (�

max

; 3)℄ and [(�

min

; 5); (�

max

; 4)℄.

The general s
heme to obtain the optimal parameters of these �lms is

as follows. First, we need to break down the spe
trum into two parts:

[�

min

; �

bound

℄ and [�

bound

; �

max

℄, where �

bound

is a known upper bound of

�

infl

. To estimate the thi
kness we use the points with ab
issa belonging

to [�

bound

; �

max

℄: The pro
edure 
onsist in running Algorithm 3.1 for dif-

ferent values of d between d

min

=

1

2

d

ki
k

and d

max

=

3

2

d

ki
k

with step 10

(d

min

; d

min

+ 10; d

min

+ 20; : : :), where d

ki
k


an be a rough initial estimate

of the true thi
kness. In this way, we obtain d

trial

, the thi
kness value for

whi
h the smallest quadrati
 error o

urs. Then we repeat the pro
edure
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with d

min

= d

trial

� 10, d

max

= d

trial

+ 10 and step 1 obtaining, �nally, the

estimated thi
kness d

best

.

To estimate the in
e
tion point we pro
eed in an analogous way, using

the whole spe
trum and the thi
kness �xed at d

best

, trying di�erent possible

in
e
tion points (obviously between �

min

and �

bound

) and taking as estimated

in
e
tion point the one whi
h gives the smallest quadrati
 error. In all the

runs just des
ribed, we allow only 3000 iterations of Algorithm 3.1. The �nal

step of the method 
onsists on �xing d

best

and �

inf l

and running Algorithm

3.1 on
e more allowing 30000 iterations.

All the experiments were run in a SPARCstation Sun Ultra 1, with an

UltraSPARC 64 bits pro
essor, 167-MHz 
lo
k and 128-MBytes of RAM

memory. We used the language C++ with the g++ 
ompiler (GNU proje
t

C and C++ 
ompiler v2.7) and the optimization 
ompiler option -O4. In

spite of the many exe
utions of the un
onstrained minimization algorithm

that are ne
essary to solve ea
h problem, the total CPU time used under the

mentioned 
omputer environment for the 
omplete pro
ess never ex
eeded

10 minutes.

Table I 
orresponds to Film A only. It shows the pre
ision obtained

in n(�) and �(�) using 25, 50 and 100 measured transmission points, and

rounding the transmission data to two, three and four de
imal pla
es after

the de
imal point and, �nally, without rounding. The errors reported are the

maximum values of j n(�) � n

true

(�) j and j �(�) � �

true

(�) j for large and

small photon energy spe
tral regions, respe
tively. Table II 
orresponds to

the same �lm. It shows the estimated thi
kness for 25, 50 and 100 data points

and di�erent number of de
imal pla
es in T

meas

(�). Table III shows the

estimated thi
kness, and the quadrati
 errors obtained in the minimization

pro
ess.
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Figures 1 to 5 are self explanatory. Continuous lines are true trans-

missions, true refra
tive indi
es and true absorption 
oeÆ
ients for the �ve


onsidered examples. The open 
ir
les represent best estimates (using all

de
imal pla
es). Finally, Figs. 6, 7 and 8 show how the pro
ess of estimating

the thi
kness worked for ea
h di�erent �lm.

5 Con
lusions

The analysis of the numeri
al results allow us to draw the following 
on
lu-

sions:

1) The proposed pro
edure is highly reliable for estimating the true thi
k-

ness in all �lms when four (or all) digits of the transmission data are

used. The method provides a very good retrieval of the true transmis-

sion in 
ases where no approximate methods are useful, i.e., very thin

�lms or absorbing layers.

2) The pre
ision of the \measured" transmission data has an e�e
t on the

a

ura
y of the estimation of n(�) but it is almost irrelevant for the

estimation of �(�). In a realisti
 situation using a modern spe
tropho-

tometer the transmission 
an be obtained with 3

1

2

or 4 digits. In this


ase, and using 100 transmission data points, the error in the estimation

of n(�) is around 0.11 (for Film A). The di�eren
e between the results

obtained using 100 and 50 transmission points is not meaningful.

3) In most 
ases the quadrati
 error as a fun
tion of the guessed thi
kness

(Figs. 6 and 7) is a fun
tion with several lo
al-nonglobal minimizers.

This is an intrinsi
 property of this fun
tion, whi
h might originate

from a \perturbed periodi
" form of the transmission. Therefore, the

strategy of separating the variable d from the other variables of the
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optimization problem appears to be 
orre
t, sin
e it tends to avoid

spurious 
onvergen
e to those lo
al minimizers.

4) The 
omparison of the present results with those previously obtained

using the algorithm des
ribed in [5,6℄ seems to 
on�rm that the new

method is, at least, as eÆ
ient as the previous 
onstrained optimization

approa
h. In addition, the resulting pie
e of software is more portable

and easier to manipulate.
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25 50 100

n � n � n �

2 E

ph�min

0.1136 1.9021�10

�4

0.1063 4.3521�10

�4

0.1139 4.3108�10

�4

E

ph�max

0.8742 4.4408�10

�3

1.4727 4.9223�10

�3

0.4761 1.9139�10

�3

3 E

ph�min

0.0442 2.7240�10

�4

0.1317 6.5932�10

�4

0.2249 1.1136�10

�3

E

ph�max

1.3505 4.4571�10

�3

0.2298 1.4237�10

�3

0.1278 1.0697�10

�3

4 E

ph�min

0.0552 3.3624�10

�4

0.1093 4.0392�10

�4

0.1103 4.3715�10

�4

E

ph�max

1.3631 4.5240�10

�3

0.1418 1.0016�10

�3

0.1149 3.8185�10

�4

all E

ph�min

0.0358 3.9590�10

�4

0.0749 3.0955�10

�4

0.0184 1.6248�10

�4

E

ph�max

1.4558 4.5031�10

�3

0.2367 7.5514�10

�4

0.0117 1.9621�10

�4

Table I. Film A: Quadrati
 errors in the estimated refra
tive index and

absorption 
oeÆ
ient with varying pre
ision and total numbers of transmis-

sion data points.
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25 50 100

2 121 121 121

3 119 122 124

4 119 121 121

all 118 119 119

Table II. Film A: Estimated thi
kness with varying pre
ision and number

of transmission data points.
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Film True thi
kness Estimated thi
kness Quadrati
 error

A 118 119 6.929605�10

�7

B 782 782 2.203053�10

�7

C 147 152 6.224862�10

�6

D 640 639 1.365270�10

�6

E 624 624 2.120976�10

�7

Table III. True and estimated thi
kness and quadrati
 errors for all 
omputer-

generated �lms.
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6 Figure 
aptions

Figure 1: \True" and retrieved values of the transmission, the refra
tive index

and the absorption 
oeÆ
ient of a numeri
ally generated very thin �lm of

thi
kness d = 118 nm simulating an a-Ge layer deposited on glass. Note the

very good agreement found for the opti
al 
onstants and the transmission.

Figure 2: \True" and retrieved values of the transmission, the refra
tive

index and the absorption 
oeÆ
ient of a numeri
ally generated �lm of thi
k-

ness d = 782 nm simulating an a-Ge layer deposited on glass: Note the very

good agreement found for the opti
al 
onstants and the transmission in this

absorbing �lm.

Figure 3: \True" and retrieved values of the transmission, the refra
tive

index and the absorption 
oeÆ
ient of a numeri
ally generated very thin �lm

of thi
kness d = 147 nm simulating an a-Ge layer deposited on a 
rystalline

sili
on substrate. Note the very good agreement found for the opti
al 
on-

stants and the transmission from an almost 
at and featureless transmission

spe
trum 
orresponding to a rather narrow spe
tral region.

Figure 4: \True" and retrieved values of the transmission, the refra
tive

index and the absorption 
oeÆ
ient of a numeri
ally generated thin �lm of

thi
kness d = 640 nm simulating an a-Ge layer deposited on a 
rystalline

sili
on substrate. Note the overall good agreement found for the opti
al


onstants and the transmission. The retrieval of the \true" index of refra
tion

at the highest photon energies appears somewhat defe
tive.

Figure 5: \True" and retrieved values of the transmission, the refra
tive

index and the absorption 
oeÆ
ient of a numeri
ally generated thin �lm of

thi
kness d = 624 nm simulating an a-Si:H layer deposited on glass. The

overall agreement for both opti
al 
onstants and the transmission is very

good.
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Figure 6: Quadrati
 error of the minimization pro
ess as a fun
tion of

trial thi
kness for Films A and B. On the left side the step is 10 nm while

on the right hand side of the �gure the re�ned step is 1 nm. Note the lo
al-

nonglobal minimizers.

Figure 7: Quadrati
 error of the minimization pro
ess as a fun
tion of

trial thi
kness for Films C and D. On the left side the step is 10 nm while

on the right hand side of the �gure the re�ned step is 1 nm. Note the lo
al-

nonglobal minimizers.

Figure 8: Quadrati
 error of the minimization pro
ess as a fun
tion of

trial thi
kness for Film E. On the left side the step is 10 nm while on the

right hand side of the �gure the re�ned step is 1 nm. Note the lo
al-nonglobal

minimizers.
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