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Abstrat

The problem of estimating the thikness and the optial onstants of thin

�lms using transmission data only is very hallenging from the mathemati-

al point of view, and has a tehnologial and an eonomi importane. In

many ases it represents a very ill-onditioned inverse problem with many

loal-nonglobal solutions. In a reent publiation we proposed nonlinear

programming models for solving this problem. Well-known software for lin-

early onstrained optimization was used with suess for this purpose. In

this paper we introdue an unonstrained formulation of the nonlinear pro-

gramming model and we solve the estimation problem using a method based

on repeated alls to a reently introdued unonstrained minimization algo-

rithm. Numerial experiments on omputer-generated �lms show that the

new proedure is reliable.
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1 Introdution

For most modern appliations of thin dieletri or semiondutor �lms, the

optial properties of interest over a photon energy range around the fun-

damental absorption edge of the material. Moreover, as the appliations

make use of multiple oherent reetions at the interfaes, the thikness

of the �lms is an important design and haraterization parameter. Opti-

al transmittane provides aurate and rapid information on the spetral

range where the material goes from omplete opaity to some degree of

transpareny [1,2℄. As a onsequene, the problem of retrieving the opti-

al onstants (

�

n

(�) = n(�)+ ik(�)) and the thikness (d) of thin �lms, from

transmission data only, is of partiular importane. Some useful approxi-

mate solutions have been found in ases where the transmittane displays an

interferene pattern in a highly transparent spetral region [3,4℄. Up to now,

however, the general solution of the problem has been elusive, beause the

system of equations is highly underdetermined. Reently, we reported a new

method, based on a pointwise onstrained optimization approah, whih al-

lows to solve the general ase [5,6℄. The method de�nes a nonlinear program-

ming problem, the unknowns of whih are the oeÆients to be estimated,

with linear onstraints that represent prior knowledge about the physial so-

lution. The retrieval of the orret thikness and optial onstants of the �lms

does not rely on the existene of interferene fringes. The new method was

suessful in retrieving d and

�

n

(�) from very di�erent transmission spetra

of omputer made and real world �lms [5,6℄. The main inonvenient of the

pointwise onstrained optimization approah [5,6℄ is that is a rather omplex

large-sale linearly onstrained nonlinear programming problem whose solu-

tion an be obtained only by means of rather sophistiated and not always

available omputer odes that an deal e�etively with sparsity of the matrix
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of onstraints [7,8℄.

We onsider then the problem of estimating the absorption oeÆients,

the refrative index and the thikness of thin �lms, using transmission data

only. Given the wavelength �, the refrative index of the substrate s and the

unknowns d (thikness), n(�) (refrative index) and k(�) (attenuation oef-

�ient), the theoretial transmission is given by a well-known formula [2,4℄.

Having measurements of the transmission at (many) di�erent wavelengths

we want to estimate the above mentioned unknowns. At a �rst glane, this

problem is highly underdetermined sine, for eah wavelength, the single

equation

Theoretial transmission = Measured transmission (1)

has three unknowns d; n(�); k(�) and only d is repeated for all values of �.

The driving idea in [5,6℄ was to inorporate prior knowledge on the funtions

n(�); k(�) in order to derease the degrees of freedom of (1) up to a point

that only physially meaningful estimated parameters are admitted.

The idea of assuming a losed formula for n and k depending of few o-

eÆients has been already reported [3,4℄. The methods originating from this

idea are eÆient when the transmission urve exhibits a fringe pattern rep-

resenting rather large spetral zones were k(�) is almost null. In other ases,

the satisfation of (1) is very rough or the urves n(�); k(�) are physially

unaeptable.

In [5,6℄, instead of imposing a funtional form to n(�) and k(�), the

phenomenologial onstraints that restrit the variability of these funtions

were stated expliitly so that the estimation problem took the form:

Minimize

X

�

[Theoretial transmission (�)�Measured transmission (�)℄

2

subjet to Physial Constraints:

(2)
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In this way, well behaved funtions n(�) and k(�) an be obtained without

severe restritions that may damage the quality of the �tting (1).

The main ontribution of the present paper is to establish a method for

solving the estimation problem where (2) is replaed by an unonstrained

optimization problem. We solved this problem using a very simple algorithm

introdued reently by Raydan [9℄. This method realizes a very e�etive

idea for potentially large-sale unonstrained minimization. It onsists of

using only gradient diretions with steplengths that ensure rapid onvergene.

The redution of (2) to an unonstrained minimization problem needed the

alulation of very ompliate derivatives of funtions, whih ould not be

possible without the use of automati di�erentiation tehniques. Here we

used the proedures for automati di�erentiation desribed in [10℄.

2 Unonstrained formulation of the estima-

tion problem

The transmission T of a thin absorbing �lm deposited on a thik transparent

substrate (see [4℄) is given by:

T =

Ax

B � Cx+Dx

2

(3)

where

A = 16s(n

2

+ k

2

) (4)

B = [(n + 1)

2

+ k

2

℄[(n+ 1)(n+ s

2

) + k

2

℄ (5)

C = [(n

2

� 1 + k

2

)(n

2

� s

2

+ k

2

)� 2k

2

(s

2

+ 1)℄2 os'

�k[2(n

2

� s

2

+ k

2

) + (s

2

+ 1)(n

2

� 1 + k

2

)℄2 sin' (6)

D = [(n� 1)

2

+ k

2

℄[(n� 1)(n� s

2

) + k

2

℄ (7)
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' = 4�nd=�; x = exp(��d); � = 4�k=�: (8)

In formulae (4){(8) the following notation is used:

(a) � is the wavelength;

(b) s = s(�) is the refrative index of the transparent substrate (assumed

to be known),

() n = n(�) is the refrative index of the �lm;

(d) k = k(�) is the attenuation oeÆient of the �lm (� is the absorption

oeÆient);

(e) d is the thikness of the �lm.

A set of experimental data (�

i

; T

meas

(�

i

)), �

min

� �

i

< �

i+1

� �

max

,

for i = 1; : : : ; N , is given, and we want to estimate d, n(�) and k(�). This

problem seems highly underdetermined. In fat, for known d and given �,

the following equation must hold:

T (�; s(�); d; n(�); k(�)) = T

meas

(�): (9)

Equation (9) has two unknowns n(�) and k(�) and, therefore, in general, its

set of solutions is a urve in the two-dimensional (n(�); k(�)) spae. There-

fore, the set of funtions (n; k) that satisfy (9) for a given d is in�nite and,

roughly speaking, is represented by a nonlinear manifold of dimension N in

IR

2N

.

However, physial onstraints redue drastially the range of variability

of the unknowns n(�); k(�). For example, in the neighborhood of the funda-

mental absorption edge (normal dispersion), these physial onstraints are:

PC1: n(�) � 1; k(�) � 0 for all � 2 [�

min

; �

max

℄;
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PC2: n(�) and k(�) are dereasing funtions of �;

PC3: n(�) is onvex;

PC4: There exists �

infl

2 [�

min

; �

max

℄ suh that k(�) is onvex if � � �

infl

and onave if � < �

infl

.

Observe that, assuming PC2, PC1 is satis�ed under the sole assumption

n(�

max

) � 1 and k(�

max

) � 0. The onstraints PC2, PC3 and PC4 an be

written, respetively, as

n

0

(�) � 0; k

0

(�) � 0 for all � 2 [�

min

; �

max

℄; (10)

n

00

(�) � 0 for all � 2 [�

min

; �

max

℄; (11)

k

00

(�) � 0 for � 2 [�

min

; �

infl

℄ and (12)

k

00

(�) � 0 for � 2 [�

infl

; �

max

℄: (13)

Clearly, the onstraints

n

00

(�) � 0 for all � 2 [�

min

; �

max

℄ and n

0

(�

max

) � 0

imply that

n

0

(�) � 0 for all � 2 [�

min

; �

max

℄:

Moreover,

k

00

(�) � 0 for all � 2 [�

infl

; �

max

℄ and k

0

(�

max

) � 0
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imply that

k

0

(�) � 0 for all � 2 [�

infl

; �

max

℄:

Finally,

k

00

(�) � 0 for all � 2 [�

min

; �

infl

℄ and k

0

(�

min

) � 0

imply that

k

0

(�) � 0 for all � 2 [�

min

; �

infl

℄:

Therefore, PC2 an be replaed by

n

0

(�

max

) � 0; k

0

(�

max

) � 0; k

0

(�

min

) � 0: (14)

Summing up, the assumptions PC1{PC4 will be satis�ed if, and only if,

n(�

max

) � 1; k(�

max

) � 0; (15)

n

0

(�

max

) � 0; k

0

(�

max

) � 0; (16)

n

00

(�) � 0 for all � 2 [�

min

; �

max

℄; (17)

k

00

(�) � 0 for all � 2 [�

infl

; �

max

℄; (18)

k

00

(�) � 0 for all � 2 [�

min

; �

infl

℄; (19)

k

0

(�

min

) � 0: (20)

So, the ontinuous least squares solution of the estimation problem is the

solution (d; n(�); k(�)) of

Minimize

Z

�

max

�

min

jT (�; s(�); d; n(�); k(�))� T

meas

(�)j

2

d� (21)

subjet to the onstraints (15){(20).

Our idea in this work is to eliminate, as far as possible, the onstraints of

the problem, by means of a suitable hange of variables. Roughly speaking,
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we are going to put the objetive funtion (21) as depending on the seond

derivatives of n(�) and k(�) plus funtional values and �rst derivatives at

�

max

. Moreover, positivity will be guaranteed expressing the variables as

squares of auxiliary unknowns. In fat, we write

n(�

max

) = 1 + u

2

; k(�

max

) = v

2

; (22)

n

0

(�

max

) = �u

2

1

; k

0

(�

max

) = �v

2

1

; (23)

n

00

(�) = w(�)

2

for all � 2 [�

min

; �

max

℄; (24)

k

00

(�) = z(�)

2

for all � 2 [�

infl

; �

max

℄; (25)

k

00

(�) = �z(�)

2

for all � 2 [�

min

; �

infl

℄: (26)

At this point, in order to avoid a rather pedanti ontinuous formulation

of the problem, we onsider the real-life situation, in whih data are given for

a set of N equally spaed points on the interval [�

min

; �

max

℄. So, we de�ne

h = (�

max

� �

min

)=(N � 1);

�

i

= �

min

+ (i� 1)h; i = 1; : : : ; N:

Consequently, the measured transmission at �

i

will be alled T

meas

i

. More-

over, we will use the notation n

i

, k

i

, w

i

, z

i

for the �nite di�erene estimates

of n(�

i

), k(�

i

), w(�

i

) and z(�

i

):

n

i

� n(�

i

); k

i

� k(�

i

);

w

i

� w(�

i+1

); z

i

� z(�

i+1

);

for all i = 1; : : : ; N . Disretization of the di�erential relations (22-26) gives:

n

N

= 1 + u

2

; v

N

= v

2

; (27)
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n

N�1

= n

N

+ u

2

1

h; k

N�1

= k

N

+ v

2

1

h; (28)

n

i

= w

2

i

h

2

+ 2n

i+1

� n

i+2

; i = 1; : : : ; N � 2; (29)

k

i

= z

2

i

h

2

+ 2k

i+1

� k

i+2

if �

i+1

� �

infl

; (30)

k

i

= �z

2

i

h

2

+ 2k

i+1

� k

i+2

if �

i+1

< �

infl

: (31)

Finally, the objetive funtion (21) is approximated by a sum of squares,

giving the optimization problem

Minimize

N

X

i=1

[T (�

i

; s(�

i

); d; n

i

; k

i

)� T

meas

i

℄

2

(32)

subjet to

k

1

� k

2

(33)

Sine n

i

and k

i

depend on u; u

1

; v; v

1

; w; z and �

infl

through (27{31),

problem (32) takes the form

Minimize f(d; �

infl

; u; u

1

; v; v

1

; w

1

; : : : ; w

N�2

; z

1

; : : : ; z

N�2

)) (34)

subjet to (33).

We expet that the onstraint (33) will be inative at a solution of (34-

33), so that we are going to onsider the unonstrained problem (34). The

unknowns that appear in (34) have a di�erent nature. The thikness d is a

dimensional variable (measured in nanometers in our real-life problems) that

an be determined using the observations T

meas

(�

i

) for (say) �

i

� �

bound

,

where �

bound

, an upper bound for �

infl

, reets our prior knowledge of the

problem. For this reason, our �rst step in the estimation proedure will be

to estimate d using data that orrespond to �

i

� �

bound

. For aomplishing

this objetive we solve the problem

Minimize

�

f(u; u

1

; v; v

1

; w; z) �

X

�

i

��

bound

[T (�

i

; s(�

i

); d; n

i

; k

i

)�T

meas

i

℄

2

(35)
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for di�erent values of d and we take as estimated thikness the one that

gives the lowest funtional value. In this ase the onstraint (33) is irrelevant

sine it is automatially satis�ed by the onvexity of k and the fat that the

derivative of k and �

min

are nonpositive. From now on we onsider that d is

�xed, oming from the proedure above.

The seond step onsists of determining �

infl

, together with the unknowns

u; u

1

; v; v

1

; w; z. For this purpose observe that, given d and �

infl

the problem

Minimize

N

X

i=1

[T (�

i

; s(�

i

); d; n

i

; k

i

)� T

meas

i

℄

2

(36)

is (negleting (33)) an unonstrained minimization problem whose variables

are u; u

1

; v; v

1

; w; z (2N variables). We solve this problem for several trial val-

ues of �

infl

and we take as estimates of n and k the ombination of variables

that gives the lowest value. For minimizing this funtion and for solving (35)

for di�erent trial thikness, we use the unonstrained minimization solver

that will be desribed in the next setion.

3 Desription of the unonstrained minimiza-

tion algorithm

As we saw in the previous setion, the unonstrained minimization problem

(35) and (36) have the form

Minimize f(u; u

1

; v; v

1

; w

1

; : : : ; w

N�2

; z

1

; : : : ; z

N�2

): (37)

In order to simplify the notation, in this setion we will write

x = (u; u

1

; v; v

1

; w

1

; : : : ; w

N�2

; z

1

; : : : ; z

N�2

):
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Partial derivatives of f are usually neessary in optimization algorithms,

sine they provide the �rst-order information on the objetive funtion that

allows omputational algorithms to follow downhill trajetories. In this ase,

derivatives are very hard to ompute. For this reason it was neessary to use

an automati di�erentiation proedure (reverse mode) for performing this

task. See [10℄ for details.

In priniple, any unonstrained optimization algorithm an be used to

solve (37) (see [11-13℄). Sine the problem has, potentially, a large num-

ber of variables, our hoie must be restrited to methods that are able to

ope with that situation. A reent paper by Raydan [9℄ indued us to use

the Spetral Gradient Method (SGM), an implementation of the Barzilai-

Borwein for quadratis introdued in [9℄. In fat, Raydan showed, using a

well known set of lassial test problems, that SGM outperforms onjugate

gradient algorithms (see [12,13℄) for large sale unonstrained optimization.

Raydan's spetral gradient method is extremely easy to implement, a fat

that ontributed to support our deision, sine it enables us to beome inde-

pendent of blak-box like imported software. Our desription of SGM here

is, essentially, the one of Raydan with a small di�erene in the hoie of the

step �

k

when b

k

� 0.

We denote g(x) = rf(x). The algorithm starts with x

0

2 IR

n

and uses

an integer M � 0, a small parameter " > 0, a suÆient derease param-

eter  2 (0; 1) and safeguarding parameters 0 < �

1

; < �

2

< 1. Initially,

�

0

2 [1="; "℄ is arbitrary. Given x

k

2 IR

n

, �

k

2 [1="; "℄, Algorithm 3.1 de-

sribes how to obtain x

k+1

and �

k+1

, and when to terminate the proess.

Algorithm 3.1

Step 1. Detet whether the urrent point is stationary
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If kg(x

k

))k = 0, terminate the generation of the sequene, delaring that

x

k

is stationary.

Step 2. Baktraking

Step 2.1 Set � �

k

.

Step 2.2 Set x

+

= x

k

� �g(x

k

).

Step 2.3 If

f(x

+

) � max

j�minf0;k�Mg

f(x

j

) + hx

+

� x

k

; g(x

k

)i; (38)

then de�ne x

k+1

= x

k

, s

k

= x

k+1

�x

k

, y

k

= g(x

k+1

)�g(x

k

) and go to Step 3.

If (38) does not hold, de�ne

�

new

2 [�

1

�; �

2

�℄; (39)

set � �

new

and go to Step 2.2.

Step 3 Compute spetral steplenght

Compute b

k

= hs

k

;y

k

i.

If b

k

� 0, set �

k+1

= 1=", else, ompute a

k

= �hs

k

; g(x

k

)i and

�

k+1

= min f1=";max f"; a

k

=b

k

gg:

In pratie the omputation of �

new

uses one-dimensional quadrati in-

terpolation and it is safeguarded with (39).

4 Numerial results

In order to test the reliability of the new unonstrained optimization ap-

proah we used the omputer-generated transmission of gedanken �lms de-

posited onto glass or rystalline silion substrates. In the simulations the

refrative index of the glass s

glass

(�) is given by:

s

glass

(�) =

q

1 + 1=(0:76194� 7940=�

2

);
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and the refrative index of the silion substrate s

Si

(�) was assumed to be

given by:

s

Si

(�) = 3:71382� 8:6912310

�5

�� 2:4712510

�8

�

2

+ 1:0467710

�11

�

3

:

In all the simulations, we assume that the wavelength and the thikness

are measured in nanometers. The transmission T

meas

(�) for eah �lm was

�rst omputed in the range � 2 [�

min

; �

max

℄ using a known thikness d

true

and a known refrative index n

true

(�) and absorption oeÆient �

true

(�). In

order to onsider realisti situations, inluding experimental inauray, we

onsidered alternative omputations of T

meas

(�), were the true transmission

was rounded to four, three and two deimals. We also performed numerial

experiments using a di�erent number of transmission points: 100, 50 and 25.

The desription of these gedanken �lms and the orresponding numerial

results are given below.

Film A. This omputer-generated �lm simulates an amorphous germanium

thin �lm deposited on a glass substrate with d

true

= 118 nm. The om-

puted transmission T

meas

(�) [�

min

= 600 nm, �

max

= 2000 nm℄;the funtions

n

true

(�) and �

true

(�) are shown as ontinuous lines in Fig. 1. Note that

n

true

(�) and �

true

(�) are represented as a funtion of photon energy.

Film B. This omputer-generated �lm is idential to Film A exept for

its thikness d

true

= 782 nm. The true values of T

meas

[�

min

= 1000 nm,

�

max

= 2000 nm℄, n(�), and �(�) are shown in Fig.2.

Film C. This omputer-generated �lm simulates an amorphous germanium

thin �lm deposited on a rystalline silion substrate with d

true

= 147 nm,

�

min

= 1250 nm and �

max

= 2500 nm. The omputed transmission T

meas

(�)

and the funtions n

true

(�) and �

true

(�) are shown as ontinuous lines in Fig.

3. Note that, again, n

true

(�) and �

true

(�) are represented as a funtion of

photon energy.
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Film D. This is also a simulated �lm of amorphous germanium over a -Si

substrate. A thikness d

true

= 640 nm has been assumed. The transmission

was omputed in the [�

min

= 640 nm, �

max

= 1250 nm℄ interval. Figure 3

shows, as ontinuous lines the omputed values.

Film E. Simulated �lm of hydrogenated amorphous silion deposited onto

glass with d

true

= 624 nm, T

meas

[�

min

= 600 nm, �

max

= 1600 nm℄. See also

n

true

and �

true

in Fig. 5.

For our alulations we need initial estimates of k(�) and n(�). As initial

estimate of k(�) we used a pieewise linear funtion the values of whih are

0:1 at the smallest wavelength of the spetrum, 0:01 at �

min

+0:2(�

max

��

min

)

and 10

�10

at �

max

. The initial estimate of n(�) is a linear funtion varying

between 5 (�

min

) and 3 (�

max

) with step 1 (these values were hosen beause

of the previous knowledge of the simulated materials). As we exlude the

onstant funtions, i.e., linear funtions with the left extreme equal to the

right one, for whih preliminary tests showed us they lead the method to loal

minimizers, we have three possibilities for the initial estimate of n(�): the

dereasing linear funtions de�ned by the pairs of points [(�

min

; 4); (�

max

; 3)℄,

[(�

min

; 5); (�

max

; 3)℄ and [(�

min

; 5); (�

max

; 4)℄.

The general sheme to obtain the optimal parameters of these �lms is

as follows. First, we need to break down the spetrum into two parts:

[�

min

; �

bound

℄ and [�

bound

; �

max

℄, where �

bound

is a known upper bound of

�

infl

. To estimate the thikness we use the points with abissa belonging

to [�

bound

; �

max

℄: The proedure onsist in running Algorithm 3.1 for dif-

ferent values of d between d

min

=

1

2

d

kik

and d

max

=

3

2

d

kik

with step 10

(d

min

; d

min

+ 10; d

min

+ 20; : : :), where d

kik

an be a rough initial estimate

of the true thikness. In this way, we obtain d

trial

, the thikness value for

whih the smallest quadrati error ours. Then we repeat the proedure
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with d

min

= d

trial

� 10, d

max

= d

trial

+ 10 and step 1 obtaining, �nally, the

estimated thikness d

best

.

To estimate the inetion point we proeed in an analogous way, using

the whole spetrum and the thikness �xed at d

best

, trying di�erent possible

inetion points (obviously between �

min

and �

bound

) and taking as estimated

inetion point the one whih gives the smallest quadrati error. In all the

runs just desribed, we allow only 3000 iterations of Algorithm 3.1. The �nal

step of the method onsists on �xing d

best

and �

inf l

and running Algorithm

3.1 one more allowing 30000 iterations.

All the experiments were run in a SPARCstation Sun Ultra 1, with an

UltraSPARC 64 bits proessor, 167-MHz lok and 128-MBytes of RAM

memory. We used the language C++ with the g++ ompiler (GNU projet

C and C++ ompiler v2.7) and the optimization ompiler option -O4. In

spite of the many exeutions of the unonstrained minimization algorithm

that are neessary to solve eah problem, the total CPU time used under the

mentioned omputer environment for the omplete proess never exeeded

10 minutes.

Table I orresponds to Film A only. It shows the preision obtained

in n(�) and �(�) using 25, 50 and 100 measured transmission points, and

rounding the transmission data to two, three and four deimal plaes after

the deimal point and, �nally, without rounding. The errors reported are the

maximum values of j n(�) � n

true

(�) j and j �(�) � �

true

(�) j for large and

small photon energy spetral regions, respetively. Table II orresponds to

the same �lm. It shows the estimated thikness for 25, 50 and 100 data points

and di�erent number of deimal plaes in T

meas

(�). Table III shows the

estimated thikness, and the quadrati errors obtained in the minimization

proess.
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Figures 1 to 5 are self explanatory. Continuous lines are true trans-

missions, true refrative indies and true absorption oeÆients for the �ve

onsidered examples. The open irles represent best estimates (using all

deimal plaes). Finally, Figs. 6, 7 and 8 show how the proess of estimating

the thikness worked for eah di�erent �lm.

5 Conlusions

The analysis of the numerial results allow us to draw the following onlu-

sions:

1) The proposed proedure is highly reliable for estimating the true thik-

ness in all �lms when four (or all) digits of the transmission data are

used. The method provides a very good retrieval of the true transmis-

sion in ases where no approximate methods are useful, i.e., very thin

�lms or absorbing layers.

2) The preision of the \measured" transmission data has an e�et on the

auray of the estimation of n(�) but it is almost irrelevant for the

estimation of �(�). In a realisti situation using a modern spetropho-

tometer the transmission an be obtained with 3

1

2

or 4 digits. In this

ase, and using 100 transmission data points, the error in the estimation

of n(�) is around 0.11 (for Film A). The di�erene between the results

obtained using 100 and 50 transmission points is not meaningful.

3) In most ases the quadrati error as a funtion of the guessed thikness

(Figs. 6 and 7) is a funtion with several loal-nonglobal minimizers.

This is an intrinsi property of this funtion, whih might originate

from a \perturbed periodi" form of the transmission. Therefore, the

strategy of separating the variable d from the other variables of the

18



optimization problem appears to be orret, sine it tends to avoid

spurious onvergene to those loal minimizers.

4) The omparison of the present results with those previously obtained

using the algorithm desribed in [5,6℄ seems to on�rm that the new

method is, at least, as eÆient as the previous onstrained optimization

approah. In addition, the resulting piee of software is more portable

and easier to manipulate.
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25 50 100

n � n � n �

2 E

ph�min

0.1136 1.9021�10

�4

0.1063 4.3521�10

�4

0.1139 4.3108�10

�4

E

ph�max

0.8742 4.4408�10

�3

1.4727 4.9223�10

�3

0.4761 1.9139�10

�3

3 E

ph�min

0.0442 2.7240�10

�4

0.1317 6.5932�10

�4

0.2249 1.1136�10

�3

E

ph�max

1.3505 4.4571�10

�3

0.2298 1.4237�10

�3

0.1278 1.0697�10

�3

4 E

ph�min

0.0552 3.3624�10

�4

0.1093 4.0392�10

�4

0.1103 4.3715�10

�4

E

ph�max

1.3631 4.5240�10

�3

0.1418 1.0016�10

�3

0.1149 3.8185�10

�4

all E

ph�min

0.0358 3.9590�10

�4

0.0749 3.0955�10

�4

0.0184 1.6248�10

�4

E

ph�max

1.4558 4.5031�10

�3

0.2367 7.5514�10

�4

0.0117 1.9621�10

�4

Table I. Film A: Quadrati errors in the estimated refrative index and

absorption oeÆient with varying preision and total numbers of transmis-

sion data points.
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25 50 100

2 121 121 121

3 119 122 124

4 119 121 121

all 118 119 119

Table II. Film A: Estimated thikness with varying preision and number

of transmission data points.
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Film True thikness Estimated thikness Quadrati error

A 118 119 6.929605�10

�7

B 782 782 2.203053�10

�7

C 147 152 6.224862�10

�6

D 640 639 1.365270�10

�6

E 624 624 2.120976�10

�7

Table III. True and estimated thikness and quadrati errors for all omputer-

generated �lms.
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6 Figure aptions

Figure 1: \True" and retrieved values of the transmission, the refrative index

and the absorption oeÆient of a numerially generated very thin �lm of

thikness d = 118 nm simulating an a-Ge layer deposited on glass. Note the

very good agreement found for the optial onstants and the transmission.

Figure 2: \True" and retrieved values of the transmission, the refrative

index and the absorption oeÆient of a numerially generated �lm of thik-

ness d = 782 nm simulating an a-Ge layer deposited on glass: Note the very

good agreement found for the optial onstants and the transmission in this

absorbing �lm.

Figure 3: \True" and retrieved values of the transmission, the refrative

index and the absorption oeÆient of a numerially generated very thin �lm

of thikness d = 147 nm simulating an a-Ge layer deposited on a rystalline

silion substrate. Note the very good agreement found for the optial on-

stants and the transmission from an almost at and featureless transmission

spetrum orresponding to a rather narrow spetral region.

Figure 4: \True" and retrieved values of the transmission, the refrative

index and the absorption oeÆient of a numerially generated thin �lm of

thikness d = 640 nm simulating an a-Ge layer deposited on a rystalline

silion substrate. Note the overall good agreement found for the optial

onstants and the transmission. The retrieval of the \true" index of refration

at the highest photon energies appears somewhat defetive.

Figure 5: \True" and retrieved values of the transmission, the refrative

index and the absorption oeÆient of a numerially generated thin �lm of

thikness d = 624 nm simulating an a-Si:H layer deposited on glass. The

overall agreement for both optial onstants and the transmission is very

good.
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Figure 6: Quadrati error of the minimization proess as a funtion of

trial thikness for Films A and B. On the left side the step is 10 nm while

on the right hand side of the �gure the re�ned step is 1 nm. Note the loal-

nonglobal minimizers.

Figure 7: Quadrati error of the minimization proess as a funtion of

trial thikness for Films C and D. On the left side the step is 10 nm while

on the right hand side of the �gure the re�ned step is 1 nm. Note the loal-

nonglobal minimizers.

Figure 8: Quadrati error of the minimization proess as a funtion of

trial thikness for Film E. On the left side the step is 10 nm while on the

right hand side of the �gure the re�ned step is 1 nm. Note the loal-nonglobal

minimizers.
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