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Abstract

We present the opinion of some authors who believed there was no
force between a stationary charge and a stationary resistive wire carrying
a constant current. We show that this force is different from zero and
present its main components: The force due to the charges induced in
the wire by the test charge and a force proportional to the current in the
resistive wire. We also discuss briefly a component of the force propor-
tional to the square of the current which should exist according to some
models and another component due to the acceleration of the conduction
electrons in a curved wire carrying a dc current (centripetal acceleration).
Finally we analyse experiments showing the existence of the electric field
proportional to the current in resistive wires.
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1 Introduction

Consider a circuit like that of Figure 1, where a stationary resistive wire con-
nected to a battery carries a constant current I. Will it exert a force on a
stationary charge ¢ located nearby?

One force which will be there regardless of the value of the current is that
due to the induced charges in the wire. That is, the point particle ¢ induces
a distribution of charges in the conducting wire and the net result will be an
attraction between the wire and g. Most authors know about this fact, although
forgetting to mention it. Moreover, they do not consider it in detail nor give its
order of magnitude.

Is there any other force between the wire and the stationary charge? Many
physicists believe the answer to this question is no, and this opinion has been
held for a long time. There are three main ideas leading to this belief. We
analyze each one of them here.

(A) The first idea is related to the supposition that a stationary resistive
wire carrying a constant current is essentially neutral in its interior and along
its surface. And this leads to the idea that a resistive current carrying wire
generates only a magnetic field outside it. For more than a century scientists
have been used to believe in this statement. Clausius, for instance, based all
his electrodynamics on this belief. In 1877 he wrote: “We accept as criterion
the experimental result that a closed constant current in a stationary conductor
exerts no force on stationary electricity” (quoted in [1, page 589]). Although
he affirmed that this is an experimental result, he didn’t cite any experiments
which tried to find this force. His electrodynamics led to this prediction: “The
law formulated by me leads to the result that a constant stationary closed
circuit exercises no force on a stationary charge” (Clausius statement in 1880
as quoted in [1, page 589]). As we will see, he based his electrodynamics in a
wrong principle as there is a force between a stationary charge and a stationary
wire carrying a constant current. This force has been shown by Jefimenko’s
experiment, [2, pages 299-319 and 509-511], and confirmed by our calculations.

Even in electromagnetic textbooks we can find statements like this. As we
will see, the electric field inside and outside a resistive wire carrying a constant
current is due to surface charges distributed along the wire. On the other hand,
Reitz and Milford, for instance, seem to say that no steady surface charges can
exist in resistive wires ([3], pp. 128-129): “Consider a conducting specimen
obeying Ohm’s law, in the shape of a straight wire of uniform cross section
whose ends are maintained at a constant potential difference AU. The wire is
assumed to be homogeneous and characterized by the constant conductivity g.
Under these conditions an electric field will exist in the wire, the field being
related to AU by the relation AU = fE -dl. Tt is evident that there can be
no component of electric field at right angles to the axis of the wire, since by
J= gE this would produce a charging of the wire’s surface. As was mentioned
earlier, excess charge is dissipated rapidly in a conductor, and because of the low
potential energy sink for charge carriers at one end of the wire, not even a surface
charge can be tolerated.” In this paper we consider exactly this situation and



show not only the existence of these surface charges which they are rejecting,
but that they are the charges which generate the electric field inside the resistive
wire. The role of the battery is to keep the longitudinal distribution of surface
charges constant in time for dc currents and to avoid the neutralization of the
wire. But it is not the chemical battery itself which creates the electric field at
all points in space. This electric field is created by the charges distributed along
the surface of the wire. These surface charges will generate the longitudinal
electric field inside the resistive wire and also an electric field outside the wire,
with longitudinal and radial components. Moreover, when considering the radial
Hall effect, we also show that there will be a radial component of the electric
field inside the resistive current carrying wire, contrary to their statement. This
radial electric field is due to the fact that the wire is negatively charged in its
interior.

In Jackson’s book, [4], there is the following statement in exercise 14.13, page
697: “As an idealization of steady-state currents flowing in a circuit, consider
a system of N identical charges ¢ moving with constant speed v (but subject
to acceleration) in an arbitrary closed path. Successive charges are separated
by a constant small interval A. Starting with the Liénard-Wiechert fields for
each particle, and making no assumptions concerning the speed v relative to the
velocity of light show that, in the limit N — oo, ¢ — 0, and A — 0, but Ng
= constant and ¢//A = constant, no radiation is emitted by the system and the
electric and magnetic fields of the system are the usual static value. (Note that
for a real circuit the stationary positive ions in the conductors will produce an
electric field which just cancels that due to the moving charges.)” Any person
reading this statement, especially the sentence in parenthesis, will conclude that
Clausius was right. However, we will see here that there is a net electric field
different from zero outside a stationary resistive wire carrying a steady current.
Despite the words in this exercise, it must be stressed that Jackson himself is
aware of this electric field outside wires carrying steady currents, see [5].

Here are the words of Edwards, Kenyon and Lemon, [6], related to first order
terms, that is, to forces proportional to vg/c or to the drifting velocity of the
moving charges in the wire divided by c: “It has long been known that the
zero- and first- order forces on a charged object near a charge- neutral, current-
carrying conductor at rest in the laboratory are zero in magnitude.” Jefimenko’s
experiment and our calculations show that a normal resistive wire carrying a
constant current cannot be charge neutral. Moreover, it will generate zero-order
and first-order forces on a charged object at rest near it, namely: the induction
force Fy and the first order force F; (see below).

One of us also assumed in previous works that a conducting wire is essentially
neutral at all points, see: [7], [8] and [9, pp. 85 and 161]. Here we show in details
that this is not valid for normal resistive wires carrying constant currents.

(B) The second idea leading to the conclusion that a normal resistive current
carrying wire generates no electric field outside it arises from the supposition
that magnetism is a relativistic effect. A typical representative of this position
can be found in Feynman’s Lectures on Physics, [10, Section 13-6: The relativity
of magnetic and electric fields, p. 13-7], our emphasys: “We return to our



atomic description of a wire carrying a current. In a normal conductor, like
copper, the electric currents come from the motion of some of the negative
electrons - called the conduction electrons - while the positive nuclear charges
and the remainder of the electrons stay fixed in the body of the material. We
let the density of the conduction electrons be p_ and their velocity in S be
v. The density of the charges at rest in S is p4, which must be equal to the
negative of p_, since we are considering an uncharged wire. There is thus no
electric field outside the wire, and the force on the moving particle is just
F=qvoxB.”

In Purcell’s Electricity and Magnetism we can find the same ideas. In Sec-
tion 5.9 of this book, which considers magnetism as a relativistic phenomenon,
he models a current carrying wire by by two strings of charges, positive and
negative, moving relative to one another. He then consider two current carrying
metallic wires at rest in the frame of the laboratory and says (p. 178): “In
a metal, however, only the positive charges remain fixed in the crystal lattice.
Two such wires carrying currents in opposite directions are seen in the lab frame
in Fig. 5.23a. The wires being neutral, there is no electric force from the op-
posite wire on the positive ions which are stationary in the lab frame.” That
is, he believes there will be no electric field generated by the stationary current
carrying resistive wire in any point outside itself.

Other books present similar statements, so that we will not quote them here.

(C) The third kind of idea related to this widespread belief is related to
Weber’s electrodynamics. As we shall see, even if a resistive current carrying
wire were neutral at all points in its interior and along its surface, Weber’s
electrodynamics predicts that it would exert a net force on a point charge at
rest outside it. This force is proportional to v3/c?, where vq is the drifting
velocity of the conduction electrons and ¢ = 3 x 108ms~!. Based on the wrong
belief (see below) that this wire exerts no force on a stationary charge nearby,
unware even of the larger first order electric field proportional to vg, many
authors condemned Weber’s law as experimentally invalidated.

This goes back at least to Maxwell’s Treatise on Electricity and Magnetism.
He was considering the force between a conducting wire carrying a constant
current and another wire which carries no current, both of them at rest in the
laboratory. He then said, see [11, Volume 2, Article 848, page 482] (between
square brackets are our words): “Now we know that by charging the second
conducting wire as a whole, we can make e’ +¢] [net charge on the wire without
current] either positive or negative. Such a charged wire, even without a current,
according to this formula [based on Weber’s electrodynamics|, would act on the
first wire carrying a current in which v?e+wv?e; [sum of the positive and negative
charges of the current carrying wire by the square of their drifting velocities]
has a value different from zero. Such an action has never been observed.” As
with Clausius comment, Maxwell did not quote any experiments which tried to
observe this force (and which failed to find the effect), the upper limit of this
effect etc.

Writing in 1951 Whittaker criticized Weber’s electrodynamics along the same
lines ([12, page 205], our emphasys): “The assumption that positive and neg-



ative charges move with equal and opposite velocities relative to the matter
of the conductor is one to which, for various reasons which will appear later,
objection may be taken; but it is an integral part of Weber’s theory, and can-
not be excised from it. In fact, if this condition were not satisfied, and if the
law of force were Weber’s, electric currents would exert forces on electrostatic
charges at rest (...)”. Obviously he is here expressing the view that there are no
such forces. By consequence, Weber’s electrodynamics must be wrong accord-
ing to Whittaker’s view, because we now know that only the negative electrons
move in metallic wires. And applying Weber’s electrodynamics to this situation
(in which a current in a metallic conductor is due to the motion of conduction
electrons, while the positive charges of the lattice remain stationary) implies
that a conducting wire should exert force on a stationary electric charge nearby.
Whittaker seems to be unware of the experimental fact that electric currents
exert forces on electrostatic charges at rest, see the experiments by Jefimenko
discussed below.

Other examples of this widespread belief: In 1969 Skinner said, relative to
Figure 2 in which the stationary closed circuit carries a constant current and
there is a stationary charge at P ([13, page 163]): “According to Weber’s force
law, the current of Figure 2.39 [Figure 2] would exert a force on an electric
charge at rest at the point P. (...) And yet a charge at P does not experience
any force.” As with Clausius’s and Maxwell’s generic statements, Skinner did
not quote any specific experiment which tried to find this force.

Pearson and Kilambi, in a paper discussing the analogies between Weber’s
electrodynamics and nuclear forces, made the same kind of criticisms in a Section
called “Invalidity of Weber’s electrodynamics,” [14]. They consider a straight
wire carrying a constant current. They calculate the force on a stationary charge
nearby due to this wire with classical electromagnetism and with Weber’s law,
supposing the wire to be electrically neutral at all points. According to his
calculations, classical electromagnetism does not yield any force on the test
charge and he interprets this as (our emphasis): “The vanishing of the force on
the stationary charge ¢ corresponds simply to the fact that a steady current
does not give rise to any induced electric field.” With Weber’s law he finds a
second order force and interprets this as meaning (our emphasis): “that Weber’s
electrodynamics give rise to spurious induction effects. This is probably the
most obvious defect of the theory, and the only way of avoiding it is to suppose
that the positive charges in the wire move with an equal velocity in the opposite
direction, which of course they do not.” As we will see, the fact is that a steady
current give rise to an induced electric field, as shown by Jefimenko’s experiment.

In this work we argue that all of these statements were misleading. That
is, we show the existence of a force on the stationary charge proportional to
the current in a resistive stationary wire carrying a constant current. We also
compare our calculations with Jefimenko’s experiment, see below, which proved
the existence of this force.



2 Geometry of the Problem

In this work the frame of reference will always be the laboratory. The situation
considered here is that of a cylindrical conducting resistive wire of length £ and
radius a < /¢, Figure 3. The axis of the wire coincides with the z direction,
with z = 0 at the center of the wire. A battery maintains constant potentials
at the extremities z = —¢/2 and z = +£/2 of the wire given by ¢, and ¢g,
respectively. The wire carries a constant current I, has a finite conductivity g
and is at rest relative to the laboratory. There is air or vacuum outside the wire.
At a distance r to the axis of the wire there is a stationary point charge q. We
want to know the force exerted by the wire on ¢ in the following approximation:

> 7r>aand > 2], (1)

where z is the longitudinal component of the vector position of q. We utilize
throughout this paper cylindrical coordinates (r, ¢, z) with r = \/22 + y? and
unit vectors 7, ¢ and Z.

This wire must be closed somewhere. The calculations presented here with
this approximation should be valid for the circuit of Figure 4 (square circuit of
side ¢ with a wire of radius a < ¢, with a point charge close to the middle of
one of its sides and far from the battery). That is, the three other sides will not
contribute significantly to the potential and field near the center of the fourth
side. Alternatively, it should also give approximate results for a circular loop of
larger radius R = /27 and smaller radius a < R (a ring) if the point charge is
at a distance R + r to the center of the wire, such that a < r < R. It might
even be utilized as a first gross approximation for the force on the point charge
of Figure 1 considering a generic circuit of large length and small curvatures
(that is, with radii of curvature much larger than the diameter of the wire and
also much larger than the distance of the point charge to the wire).

We consider separetely three components of the force exerted by the wire
on ¢: That due to the charges induced in the wire by ¢, that due to the sur-
face charges which exist in resistive current carrying wires (proportional to the
current or to the drifting velocity vg of the electrons) and that due to v3/c?.

3 Induction Force

Consider a neutral conductor carrying no current. If we put a point particle ¢
nearby, it will induce a distribution of charges in the conductor such that the
potential anywhere inside it will reach a constant value in equilibrium. The net
effect of these induced charges is an attraction between ¢ and the conductor.

We can estimate its value for the situation of Figure 3 in the case £ > r > a
without any calculation. This situation is equivalent to the force between a
point charge at a distance r to an infinite conducting line. As there is only one
charge and one distance involved in this problem, dimensional analysis requires
the force between the point charge and the infinite conducting line to be given
by
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where 7 is the unit vector pointing away from the line to the charge ¢ and ar,
is a positive dimensionless constant of the order of unity. It would be one if
all the induced charge were located at the origin, that is, at a distance r to g.
As part of the induced charge will be distributed along the wire with a linear
charge density A(z), which means at a distance to g greater than r, we conclude
that az must be smaller than one. Although we don’t know the exact value of
ar,, we know the order of magnitude of the induction force.

An analogous analysis might be performed for the induction force between
a point charge ¢ at a distance r from an infinite plane. As before, there is only
one charge and one distance involved in this problem, so that the force must be
given by Eq. (2) with a dimensionless constant ap replacing a;, (as we now have
an infinite plane instead of an infinite line, the dimensionless constant does not
need to be the same). But in this case we can easily solve exactly the problem
by the method of images. The final solution yields in this case an image charge
—q at the other side of the plane, also at a distance r to it. As the distance
between ¢ and —q is 2r, this yields ap = 1/4. This shows that our reasoning
without performing any calculation was correct.

Suppose now we have the case of Figure 3, but now with 7 being of the same
order of magnitude as a. As there is only one charge and two distances involved
in the problem (considering ¢ going to infinity), the force must be given by
Fy = —h(r,a)q*# /4xme,. Here h(r,a) is a function of r and a such that if 7 > a
it will be proportional to 1/7? and if r — a it diverges to infinity as this is
the general behaviour of induction forces (if the charge approaches an infinite
plane or the surface of a conducting sphere the induction force always goes to
infinity).

We have then estimated the value of the induction force in the case of figure
3, for £ > r > a, as given by Eq. (2). This estimative is ours, as we were unable
to locate it anywhere in the literature. This force will be there irrespective of
whether or not there is current in the wire. For an order of magnitude, suppose
a charge generated by friction of 107?C, at a distance of 10cm from a long thin
wire. The induction force in this case should be of the order of 107N,

In the sequence we consider the influence of the current on the net force
exerted by the wire on ¢.

4 Force Proportional to the Current

When a current flows in a resistive wire connected to a battery, the electric
field driving the conduction electrons against the resistive friction of the wire
is due to free charges distributed along the surface of the wire. We represent
this surface charge density by of(a, ¢, z). The battery creates and maintains
this distribution of charges but does not generate the electric field along the
circuit. This was first pointed out by Kirchhoff: [15], [16] and [17], with English



translation in [18]. These surface charges generate not only the electric field
inside the wire but also an electric field outside it.

However, most authors are not aware of these surface charges and related
electric field outside the wire, as we can see from the quotations above. Fortu-
nately this subject has been considered again in some important works: Heald,
Jefimenko, Griffiths, Jackson and those quoted by them (see [19], [2, pages 299-
319 and 509-511], [20, pages 279 and 336] and [5]). As none of them considered
the geometry of Figure 3, we decided to analyse it here.

Our approach in this paper is the following: We consider the cylindrical
wire carrying the constant current I and calculate the potential ¢; and electric
field E; inside and outside the wire due to these surface charges in the absence
of the test charge ¢. When we put the test charge at a distance r from the
wire the force on it due to the surface charges will be then given by F_"l = qu,
supposing that it is small enough such that it does not disturb the current nor
the wire (except from the induction charges already considered above). We
begin calculating the potential due to the surface charges.

As there is a constant current in the wire, the electric field inside it and
driving the current must be constant over the cross section of the wire, neglecting
the small radial Hall effect inside the wire due to the poloidal magnetic field
generated by the current. This means that the potential and surface charge
distribution must be a linear function of z, [21]. Due to the axial symmetry
of the wire it cannot depend on the poloidal angle either. This means that
of(a,p,2) = oaz/l + op, where 04 and op are constants. Due to this axial
symmetry we can calculate ¢ at ¢ = 0 and then generalize the solution to all
. The potential inside or outside the wire is then given by

1 m ¢/2 oradpsdzs
¢1(’I‘,Z) = 4— > > )
M0 Jpo=0 Jzo=—1/2 \/’I‘ +a? —2racosps + (22 — 2)

1 /2" /4/2 (caz2/l + oB)dp2dzs 3)
4re, 02=0 Jz0=—1/2 \/(1 _ 25 Cos @2 + 2_2) + (Z2a_z)2
Defining the dimensionless variables s* = 1—2(r/a) cos g2+ (r?/a?) and u =

(22 — z)/a we are then led to: ¢1(r, z) = (a/4me,)[(caa/l) 1 + (caz/l+oB)I2],
where

27 l/2a—z/a dwosdu
I = / / u—i (4)
02=0 Ju=—(£/2a+z/a) VS° + U
and
27 l/2a—z/a dwod
— p20U
L= / / opdu (5)
02=0 Ju=—(£/2a+z/a) VS* + U
These integrals can be solved with the approximation (1), where we now
allow r to be smaller or greater than a, yielding (see Appendix):
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The coulombian force on a test charge ¢ located at (r, ¢, z) is then given by:
(Wlth Fl = —qV<;51):
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We can relate these expressions with the current I flowing in the wire. From
Figure 3 and the fact that ¢, is a linear function of z yields:

¢1(TSG7Z)Z¢R;¢Lz+¢R;‘¢L ‘ (10)

Equating this with Eq. (6) and utilizing Ohm’s law ¢, —¢r = RI, where R =
¢/gma? is the resistance of the wire, with g being its conductivity, yields o4 =
—ReoI/aln(l/a) and op = ,(¢pr + é1)/2aln(l/a) = e,(RI + 2¢r) /2a1n(/a).
The density of free charges along the surface of the wire can then be written as:

o (a © Z) — R‘SOI P 50(¢R+¢L)
A aln({/a) 2a1n(f/a)

This means that the potential and the force on the test charge g are given by:

(11)
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Now that we have obtained the potential outside the wire we might also
revert the argument. That is, we might solve Laplace’s equation VZ¢ = 0



in cylindrical coordinates inside and outside the wire (for a < r < £) by the
method of separation of variables imposing the following boundary conditions:
finite ¢(0,(,0,Z), ¢(a,<,0,z) = (¢R - ¢L)Z/£ + (¢R + ¢L)/2 and ¢(€790>z) = 0.
This last condition is not a trivial one and was obtained only after we found the
solution in the order presented in this work. The usual boundary condition that
the potential goes to zero at infinity does not work in the case of a long cylinder
carrying a dc current. By this reverse method we obtain the potential inside
and outside the wire, then the electric field by E= —V¢ and lastly the surface
charge density by e, times the normal component of the electric field outside
the wire in the limit in which » — a. In this way we checked our calculations.

If we put ¢, = ¢r = ¢, or I = 0 in Egs. (12) to (15) we recover the
electrostatic solution (long wire carried uniformly with a constant charge density
op), namely:

o(r<a)=¢o=—In—, (16)
In(¢ 4
o2 @) = b = o a7
Fi(r<a)=0, (18)
F _ qpo T _ qaoB T
1(r > a) - (19)

T In(l/ayr e, T

We can also obtain the capacitance per unit length of this long and thin cylin-
drical wire as C/¢ = (Qp/¢(a))/t = 27e,/ In(L/a).

This is the first time in the literature the potentials (7) or (13) and the forces
(9) or (15) outside a cylindrical wire are calculated. Kirchhoff had obtained
Eq. (6) but did not consider the fields and forces outside the wire (see [16],
especially the last equation of page 400). Recently Coombes and Laue analysed
the same problem, [22]. Their paper is fine but they arrived at Eqgs. (6) and
(8) believing they would be valid inside and outside the wire. This is evident
from their statements in the paragraph below their Eq. (8), our emphasis:
“Thus we obtain to the questions asked at the beginning the surprising answer
that an infinitely long wire in which a steady current is flowing has a vanishing
surface charge density c¢z/R = [-Ee,/RIn(L/R)]z and a uniform electric field
E = —V¢ = —(¢/e,)(In L/R)% both inside and outside the wire.” The
reason for the discrepancy can be seen in their Eq. (A7) which is correct and
represents the potential, namely (replacing their L, R and ¢ by our equivalent
¢, a and o 4, remembering that they are considering the particular case in which
oB = 0):

oaz (€ 1 /2” 4 )
2) = In—+— [ dbl -1) . (20
9(r,2) €o < Y T 0 hsin® e + (cos® —r/a)? (20)
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Just after this equation they wrote: “For sufficiently large ¢, Eq. (A7) [this
equation] is dominated by the first term on the right-hand side, and we obtain
formula ¢(r,z) = (0a/eo)(Inl/a)z, with £ > a, £ > z,7.” Their only mistake
was to disregard the integral of Eq. (20). Its correct value can be obtained
utilizing Eqgs. (33) and (34) of our Appendix. If they had taken this into
account they would have arrived at our Eqgs. (6) to (9).

These expressions show that this force is proportional to the current in the
wire. Moreover, there will be not only a tangential component of the electric
field outside the wire but also a radial one. In the symmetric case in which
¢ = —¢r = RI/2 the ratio of the radial component of F to the tangential
component is given by z/(rIn(¢/r)). For a wire of 1m length and z = r = 10cm
we have this ratio as 0.4, indicating that these two components are of the same
order of magnitude.

Schaeffer (reference in [5]), Sommerfeld, Marcus, Griffiths and Jackson con-
sidered the electric field due to a long coaxial cable of length ¢ carrying a con-
stant current along the inner wire of resistivity g and radius a, returning along
a hollow cylinder with inner radius b such that £ > b > a: [23, pp. 125-130, Eq.
(8)], [24], [20, pp. 336-337] and [5, Eq. (A17)]. In Sommerfeld’s case the return
conductor had finite conductivity and an external radius tending to infinity,
while in Marcus, Griffiths and Jackson’s case the return conductor was a cylin-
drical shell of radius b and zero resistivity. For all these authors the potential
and electric field went to zero for r > b. Their solution in the region a < r < b
and considering the zero of the potential at z = 0 is given by:

B I In(b/r)
(Zscoawwl - g7ra2 ln(b/a) z.

We now compare this solution with our Eq. (13) in this particular case
in which ¢ + ¢ = 0. The main difference is the appearance in our case of
In(¢/r)/In(¢/a) instead of ln(b/r)/In(b/a). That is, while the potential and
electric field outside the resistive current carrying wire (and also the force ex-
erted by this wire on a point charge) depend on the length of the long wire, the
same does not happen in the interior region of the coaxial cable near z = 0. If
we keep a, g and I constant (and also b for the coaxial cable) and double the
length of the wire (coaxial cable), the potential outside the wire will change,
but not inside the coaxial cable. The two solutions will only coincide if we fix
b = £. As this is not the general case, the two solutions are not equivalent to
one another in all situations.

In the sequence we consider a force due to the square of the current.

(21)

5 Force Proportional to the Square of the Cur-
rent

Up to now we have only considered the induction force and the force of the sur-
face charges on the stationary test charge. We have not yet taken into account
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the force of the stationary lattice and mobile conduction electrons on the sta-
tionary test charge. We consider it here in this Section, analysing two different
theoretical models. We first consider Lorentz’s law or Liénard-Schwarzschild’s
force. In this case there are also components of the force exerted by a charge
g2 belonging to the current carrying circuit on ¢ which depend on the square
of the velocity of g2, v3, and on its acceleration. If we have a constant current,
the acceleration of g» will be its centripetal acceleration due to any curvature in
the wire, proportional to U?i /7, where . is the radius of curvature of the wire
in each point. This might lead to a force proportional to v3 or to I2. However,
it has been shown that if we have a closed circuit carrying a constant current,
there is no net effect of the sum of all these terms on a stationary charge outside
the wire. For a proof see [4, page 697, exercise 14.13] or [6].

We now consider Weber’s electrodynamics, [9]. As stated above, we are ne-
glecting the small radial Hall effect inside the wire due to the poloidal magnetic
field generated by the current. This means that the interior of the wire can
be considered essentially neutral. Despite this fact Weber’s electrodynamics
predicts a force exerted by this neutral part of the wire in a stationary charge
nearby. The reason for this effect is that the force exerted by the mobile elec-
trons on the stationary test charge is different from the force exerted by the
stationary positive ions of the lattice on the test charge. One of us have already
performed these calculations in related situations, see for instance [9, Section
6.6, pages 161-168], so that we present here only the final result. Once more
we assume (1). For the situation of Figure 3, with a uniform current density
J = (I/7a?)2, the force on the test charge is given by:

- Tvg 7 po qI? 7
Fy = — ——=——————if r > q, 22
2 dre, 2 r 472 a2enr tHroa (22)

where v4 is the drifting velocity of the electrons. We also utilized p, = 47 x
1077 kgmC~2, ¢® = 1/eopto and vg = I/ma’en, where e = 1.6 x 10719C is the
elementary charge and n is the number of free electrons per unit volume.

This force is proportional to the square of the current. The electric field
E, = B /q points towards the current, as if the wire had become negatively
charged. Sometimes this second order field is called motional electric field.

If we have a bent wire carrying a constant current, Weber’s electrodynamics
predicts another component of the force exerted by this current on a stationary
charge outside it, proportional to the acceleration of the conduction electrons.
As we are supposing a constant current, the relevant acceleration here is the
centripetal one proportional to v3/r., where 7. is the radius of curvature of the
wire at that location. This means that also this component of the force will be
proportional to v?i or to I2. The order of magnitude is the same as the previous
one.
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6 Radial Hall Effect

Another simple question which might be asked is the following: Is a stationary
resistive wire carrying a constant current electrically neutral in its interior and
along its surface?

Most authors quoted in the Introduction would answer positively to this
question as this was their reason for believing this wire would not generate
any electric field outside itself. However, we already showed that there will
be a longitudinal distribution of surface charges which will give rise to the
longitudinal electric field inside the wire and also to an electric field outside it.
Here we show that there will also be a radial electric field inside the wire due to
the fact that its interior is negatively charged. As we saw in the Introduction,
Reitz and Milford rejected explicitly this charge. But they were not alone in
this. See, for instance, Griffiths statements in [20, p. 273]: “Within a material
of uniform conductivity, V-E = (V -J)/o = 0 for steady currents (equation
V -J = 0), and therefore the charge density is zero. Any unbalanced charge
resides on the surface.”

We here consider the radial Hall effect due to the poloidal magnetic field
inside the wire. Asis usually considered, [12, p. 90], we will suppose the constant
total current I to flow uniformly over the cross section of the cylindrical wire
with a current density J = I/ma®. With the magnetic circuital law ¢, B-dl =
ol , where C'is the circuit of integration and I is the current passing through
the surface enclosed by C, we obtain that the magnetic field inside and outside
the wire is given by:

53 polr
B(r<a)= ~Q, 23
(r<a) =520 (23)
= 1
B(r >a) = Ko & . (24)
2nr
The magnetic force on a conduction electron of charge ¢ = —e inside the

wire, at a distance r < a from the center and moving with drifting velocity
U= —|vg|Z is given by:

|oevalr| .

F=qixB= 7, (25)

2ma?

This radial force pointing inwards will create a concentration of negative
charges in the body of the conductor. In equilibrium there will be a radial force
generated by these charges which will balance the magnetic force: ¢FE = quB.
That is, there will be inside the wire, beyond the longitudinal electric field E;
driving the current, a radial electric field pointing inwards given by:

|,U'0'UdIT| N
—

By (r < a) = 5

(26)

The longitudinal electric field inside the wire driving the current is given by
E, = RI/¢. In order to compare it with the magnitude of the radial electric
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field E, due to the Hall effect we consider the maximum value of this last field
very close to the surface of the wire, at r — a: E, — |uovql|/2ma. This means
that (with R = ¢/gna®):

@ — |/1’0Udga| i (27)
| Ex | 2
For a typical copper wire (vg ~ 4 x 1073ms~! and g = 5.7 x 10"Qm) with 1lmm
diameter this yields: E,/E, ~ 7 x 10~2. This shows that the radial electric field
is negligible compared to the longitudinal one.

By Gauss’s law V - E = p/e, we obtain that inside the wire there will be a
constant negative charge density p_ given by: p_ = —|Ivg|/ma’*c®. The total
charge inside the wire is compensated by a positive charge spread over the
surface of the wire with a constant surface density o = |p_a/2| = |Ivq|/2mac?.
That is, the negative charge inside the wire in a small segment of length dz,
p_ma’dz, is equal and opposite to the positive charge along its surface, oy 2wadz.
This means that the radial Hall effect will not generate any electric field outside
the wire, only inside it. For this reason it is not relevant to the experiments
discussed here. In any event it is important to clarify this effect.

In our analysis of the radial Hall effect we are not considering the motional
electric field discussed above as it is not yet completely clear if it exists or not.

In conclusion we may say that the total surface charge density along the
wire, not taking into account the motional electric field and the induction of
charges in the conductor due to external charges, is given by the constant o
added to the oy given by Eq. (11).

We now compare all three components of the electric field outside the wire
with one another and discuss an important experiment related to this subject.

7 Discussion and Conclusions

Although many authors forget about the induction force when dealing with a
current carrying wire interacting with an external charge, there is no doubt it
exists. Comparing the three forces above, it is the only one which diverges as
we approach the wire. If we are far away from the wire it falls as 1/72, while
the radial component of F; and F; fall as 1/r.

We now compare the three components of this force in a particular example:
A copper wire (g = 5.7 x 107Qm, n = 8.5 x 10?8m~3) with a length £ = 1m
and diameter 1mm (a = 5 x 10~*m). The resistance of the wire is then given
by R = {/gma® = 0.022Q. With a potential difference between its extremities
of ¢ — ¢r = 1V this yields a current of I = 44,8A. The drifting velocity in
this case amounts to vg = I /ma’en = 4 x 107 3ms 1. We will suppose moreover
the symmetrical case in which ¢p = —¢ = —0.5V. The test charge will be a
typical one generated by friction, ¢ = 107°C, at a distance of r = 10cm = 0.1m
to the wire. The magnitude of each one of the forces and their ratios are then
given by (considering only the radial component of Fiandz=r = 10cm): F, ~
107N, F1 ~ 107N, F» = 107N (in terms of electric field: E, ~ 103N/C,
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E, ~107!N/C and E» ~ 107 "N/C), so that F,/F, ~ 10%, F,/F, ~ 10!° and
F\/F = 10%. This means that in this case F, > F} > Fy or E, > E; > E,.

Despite this fact the force F has already been observed in the laboratory
by Jefimenko. He had an ingenious idea of utilizing grass seeds as test particles
near current carrying wires. They are electrically neutral in normal state, so
that they do not induce any charges in the conductor. On the other hand, they
are easily polarized in the presence of an electric field, aligning themselves with
it. The lines of electric field are then observed in analogy with iron fillings
generating the lines of magnetic field. What we consider here is the result of
his experiment as presented in Plate 6 of [2] (see also his Section 9-6: Electric
field outside a current-carrying conductor, pages 299-305) and Figure 1 of [25].
The current was flowing in a circuit like that of our Figure 3, with symmetrical
potentials: ¢g = —¢r. He performed the experiment but did not make the
calculations for this case. These calculations have been presented here. In order
to compare our results with his experiments, we need to obtain the lines of
electric field. We obtain this in the plane zz (y = 0). Any plane containing the
z axis will yield a similar solution. We are looking for a function £(r, z) such
that

VE&(r,z) - Veo(r,z) =0 . (28)
For r < a we have ¢ as a linear function of z, such that ¢ can be found
proportional to r. We write it as £(r < a,z) = —Afr, with A as a constant.

The equipotential lines ¢(r, z) = constant can be written as 21 (r) = K1, where
K, is a constant (for each constant we have a different equipotential line).
Analogously the lines of electric force will be given by z2(r) = K, where K is
another constant (for each K we have a different line of electric force). From
Eq. (28) we get dzo/dr = —1/(dz1/dr) = (04/0z)/(0¢/0r). Integrating this
equation we can obtain £(r, z). With Eq. (7) this yields the solution for r > a.
We are then led to:

E&(ryz) =—Alrifr<a, (29)
2
f(r,z):Ar2ln%—A%—Az2—QBz ifr>a, (30)

where A = (pr— 1)/l = —I/7ga® and B = (pr+¢r)/2. From these equations
we can easily verify Eq. (28).

In order to compare these results with Jefimenko’s experiment we need es-
sentially the value of £/a. From his plate 6 we get £/a ~ 40/3. The plot of the
equipotentials between z = —¢/2 and ¢/2 given by Eqgs. (6) and (7) is given
in Figure 5. A plot of the lines of electric force given by Eqgs. (29) and (30) is
given in Figure 6. This is extremely similar to Jefimenko’s experiment (Plate 6
of [2] or Figure 1 of [25]), showing the correctness of our approach.

The example discussed here is important to show clearly the existence of the
electric field outside a resistive wire carrying a constant current. It does not
depend on a variable current (longitudinal acceleration of the electrons along
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the wire) nor on a centripetal acceleration of the electrons (due to any curvature
in the wire). That is, this electric field will be there even if there were not any
acceleration of the conduction electrons. In the case of a coaxial cable discussed
by Sommerfeld and many others (see above), they have found an electric field
only in the region between the cables, but not outside the return conductor.
The reason for this is that they were considering a return conductor of infinite
area (Sommerfeld) or of zero resistivity (Marcus, Griffiths and Jackson). For
this reason it may not have been clear to many people that usually any current
carrying resistive wire should generate an electric field outside it. We hope the
calculations presented in this paper, coupled with Jefimenko’s experiments, will
make people aware of this electric field.

As regards those who consider magnetism as a relativistic effect, we have
shown here that a resistive current carrying wire generates not only a magnetic
field but also an electric field. As Jackson has shown, it is impossible to derive
magnetic fields from Coulomb’s law and the kinematics of special relativity
without additional assumptions, [4, pp. 578-581] and [26].

It should also be mentioned that the magnetic field in this case is the usual
poloidal field in the direction ¢, proportional to 7 for r < a and to 1/r for
r > a. It is orthogonal to E; at all points in space. This means that Poynting’s
vector S = E x B /o will follow the equipotential lines represented in Figure 5
when ¢ = —¢p. This general behaviour of the lines of Poynting’s vector was
pointed out by Heald, [19]. As we can see from Figure 5, just outside the wire
S is orthogonal to it only at z = 0. At all other points it is inclined relative
to the z axis, at an angle 6 with a tangent given by the ratio of the radial
and longitudinal components of E;. As we have seen, just outside the wire this
is given by: tanf = z/(aln(f/a)). Many textbooks only consider an electric
field outside the current carrying wire when discussing boundary conditions.
As the longitudinal component of E is continuous at a boundary and must exist
inside a resistive wire carrying a current, it must also exist just outside the
wire. These authors then present Poynting’s vector pointing radially inwards
towards the wire (see, for instance, [27, pp. 180-181] and [10, p. 27-8]). There
are two main things to comment here. In the first place, these drawings and
statements suggest that this electric field should exist only close to the wire. In
the second place, they indicate that these authors are not aware of the surface
charges generating the field. As we have seen, it is only at one point that S will
be orthogonal to the wire just outside it. This point is an exception and not
the rule. The rule is that there will be a radial component which may be larger
than the longitudinal one, pointing towards the wire or away from it. One of
the effects of this radial component is that S will usually be inclined just outside
the wire and not orthogonal to it.

The verification of the existence or not of the second order electric field is
much more difficult due to its small order of magnitude (as compared with E,
and E;). However, if the resistance of the wire goes to zero, o4 also goes to
zero. This means that in a superconductor there should not be the external
electric field proportional to the current. Avoiding also the induction force,
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there remains in this case only the second order electric field. This was the
approach utilized by Edwards, Kenyon and Lemon in their experiment, [6],
which is the best one known to us analysing this effect. They found an electric
field proportional to I2, independent of the direction of the current, pointing
towards the wire and with an order of magnitude compatible with that predicted
by Weber’s law. Despite this positive evidence more research is necessary before
a final conclusion may be drawn related to this second order electric field, [9,
Section 6.6, pages 161-168].

As we have seen, usually Fy > F; > F5. Moreover, Fy and F; have been
shown to exist experimentally. We can then disregard the criticisms of Maxwell,
Whittaker and Skinner presented above against Weber’s electrodynamics. That
is, there is a force between the wire and g proportional to the current I, contrary
to their statements. It is much more difficult to know if there is or not a second
order component of this force proportional to v3/c*. Only future experiments
taking all of these effects as F and F} into account can decide the matter in
this case.

In conclusion we may say that despite the widespread belief that a stationary
resistive wire carrying a constant current exerts no force on a stationary charge,
there will certainly be a component of this force due to the induced charges
and another one proportional to the current in the wire, as comproved by these
calculations and Jefimenko’s experiment. The existence or not of a second order
force still needs to be confirmed.
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Appendix

We now show how to calculate the integrals (4) and (5).

Applying approximation (1) in the limits of integration of I; and integrating
it in u yields a zero value (as it is an odd function integrated between symmetric
limits).

Integrating I, in u yields, applying (1) in its limits of integration:

Lo 27 dios In s2 + (€/2a):2 + (£/2a) ' 31)
0 s2 + (£/2a)? — (£/2a)

Once more with approximation (1) this can be written as
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2m 2 2m 2
I, = d@glﬂ@zélﬂ'ln{—/ [ln <1—2£cos<p2+r—2>]d<p2. (32)
0 s a Jo a a

This last integral is equal to zero if r < a. If r > a we can put 7?/a® in
evidence and utilize once more this result to solve the last integral, namely:

2 r 7“2
/ [ln<1—2—cos<p2+—2>]d<p2:Oifr§a, (33)
0 a a
2 r 7“2 7“2
/ [ln <1—2—cosgo2+—2>]dgo2:27rln—2ifrZa. (34)
0 a a a
This means that the final value of I5 is found to be
0.
12:47rln61fr§a, (35)
¢
I =4rln-ifr>a. (36)
T
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Figure Captions

1. A resistive stationary wire connected to a battery and carrying a dc current
I, with a stationary point charge ¢ nearby.

2. A constant current flows in the closed wire and there is a point charge at
P.

3. A cylindrical wire of length ¢ and radius ¢ < ¢ carrying a constant current
I. A point charge ¢ is at a distance r to the axis of the wire, with a
longitudinal component z relative to the center of the wire.

4. Square circuit of side ¢ made of a cylindrical wire of radius a < £, with a
point charge close to the middle of one of its sides.

5. Equipotentials as given by Eqgs. (6) and (7) with Jefimenko’s value ¢/a ~
40/3 and with op =0 (or ¢r = —¢r).

6. Lines of electric force as given by Eqgs. (29) and (30) with ¢r = —¢r.
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