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Abstra
t

We present the opinion of some authors who believed there was no

for
e between a stationary 
harge and a stationary resistive wire 
arrying

a 
onstant 
urrent. We show that this for
e is di�erent from zero and

present its main 
omponents: The for
e due to the 
harges indu
ed in

the wire by the test 
harge and a for
e proportional to the 
urrent in the

resistive wire. We also dis
uss brie
y a 
omponent of the for
e propor-

tional to the square of the 
urrent whi
h should exist a

ording to some

models and another 
omponent due to the a

eleration of the 
ondu
tion

ele
trons in a 
urved wire 
arrying a d
 
urrent (
entripetal a

eleration).

Finally we analyse experiments showing the existen
e of the ele
tri
 �eld

proportional to the 
urrent in resistive wires.
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1 Introdu
tion

Consider a 
ir
uit like that of Figure 1, where a stationary resistive wire 
on-

ne
ted to a battery 
arries a 
onstant 
urrent I . Will it exert a for
e on a

stationary 
harge q lo
ated nearby?

One for
e whi
h will be there regardless of the value of the 
urrent is that

due to the indu
ed 
harges in the wire. That is, the point parti
le q indu
es

a distribution of 
harges in the 
ondu
ting wire and the net result will be an

attra
tion between the wire and q. Most authors know about this fa
t, although

forgetting to mention it. Moreover, they do not 
onsider it in detail nor give its

order of magnitude.

Is there any other for
e between the wire and the stationary 
harge? Many

physi
ists believe the answer to this question is no, and this opinion has been

held for a long time. There are three main ideas leading to this belief. We

analyze ea
h one of them here.

(A) The �rst idea is related to the supposition that a stationary resistive

wire 
arrying a 
onstant 
urrent is essentially neutral in its interior and along

its surfa
e. And this leads to the idea that a resistive 
urrent 
arrying wire

generates only a magneti
 �eld outside it. For more than a 
entury s
ientists

have been used to believe in this statement. Clausius, for instan
e, based all

his ele
trodynami
s on this belief. In 1877 he wrote: \We a

ept as 
riterion

the experimental result that a 
losed 
onstant 
urrent in a stationary 
ondu
tor

exerts no for
e on stationary ele
tri
ity" (quoted in [1, page 589℄). Although

he aÆrmed that this is an experimental result, he didn't 
ite any experiments

whi
h tried to �nd this for
e. His ele
trodynami
s led to this predi
tion: \The

law formulated by me leads to the result that a 
onstant stationary 
losed


ir
uit exer
ises no for
e on a stationary 
harge" (Clausius statement in 1880

as quoted in [1, page 589℄). As we will see, he based his ele
trodynami
s in a

wrong prin
iple as there is a for
e between a stationary 
harge and a stationary

wire 
arrying a 
onstant 
urrent. This for
e has been shown by Je�menko's

experiment, [2, pages 299-319 and 509-511℄, and 
on�rmed by our 
al
ulations.

Even in ele
tromagneti
 textbooks we 
an �nd statements like this. As we

will see, the ele
tri
 �eld inside and outside a resistive wire 
arrying a 
onstant


urrent is due to surfa
e 
harges distributed along the wire. On the other hand,

Reitz and Milford, for instan
e, seem to say that no steady surfa
e 
harges 
an

exist in resistive wires ([3℄, pp. 128-129): \Consider a 
ondu
ting spe
imen

obeying Ohm's law, in the shape of a straight wire of uniform 
ross se
tion

whose ends are maintained at a 
onstant potential di�eren
e 4U . The wire is

assumed to be homogeneous and 
hara
terized by the 
onstant 
ondu
tivity g.

Under these 
onditions an ele
tri
 �eld will exist in the wire, the �eld being

related to 4U by the relation 4U =

R

~

E � d

~

`. It is evident that there 
an be

no 
omponent of ele
tri
 �eld at right angles to the axis of the wire, sin
e by

~

J = g

~

E this would produ
e a 
harging of the wire's surfa
e. As was mentioned

earlier, ex
ess 
harge is dissipated rapidly in a 
ondu
tor, and be
ause of the low

potential energy sink for 
harge 
arriers at one end of the wire, not even a surfa
e


harge 
an be tolerated." In this paper we 
onsider exa
tly this situation and
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show not only the existen
e of these surfa
e 
harges whi
h they are reje
ting,

but that they are the 
harges whi
h generate the ele
tri
 �eld inside the resistive

wire. The role of the battery is to keep the longitudinal distribution of surfa
e


harges 
onstant in time for d
 
urrents and to avoid the neutralization of the

wire. But it is not the 
hemi
al battery itself whi
h 
reates the ele
tri
 �eld at

all points in spa
e. This ele
tri
 �eld is 
reated by the 
harges distributed along

the surfa
e of the wire. These surfa
e 
harges will generate the longitudinal

ele
tri
 �eld inside the resistive wire and also an ele
tri
 �eld outside the wire,

with longitudinal and radial 
omponents. Moreover, when 
onsidering the radial

Hall e�e
t, we also show that there will be a radial 
omponent of the ele
tri


�eld inside the resistive 
urrent 
arrying wire, 
ontrary to their statement. This

radial ele
tri
 �eld is due to the fa
t that the wire is negatively 
harged in its

interior.

In Ja
kson's book, [4℄, there is the following statement in exer
ise 14.13, page

697: \As an idealization of steady-state 
urrents 
owing in a 
ir
uit, 
onsider

a system of N identi
al 
harges q moving with 
onstant speed v (but subje
t

to a

eleration) in an arbitrary 
losed path. Su

essive 
harges are separated

by a 
onstant small interval 4. Starting with the Li�enard-Wie
hert �elds for

ea
h parti
le, and making no assumptions 
on
erning the speed v relative to the

velo
ity of light show that, in the limit N ! 1, q ! 0, and 4 ! 0, but Nq

= 
onstant and q=4 = 
onstant, no radiation is emitted by the system and the

ele
tri
 and magneti
 �elds of the system are the usual stati
 value. (Note that

for a real 
ir
uit the stationary positive ions in the 
ondu
tors will produ
e an

ele
tri
 �eld whi
h just 
an
els that due to the moving 
harges.)" Any person

reading this statement, espe
ially the senten
e in parenthesis, will 
on
lude that

Clausius was right. However, we will see here that there is a net ele
tri
 �eld

di�erent from zero outside a stationary resistive wire 
arrying a steady 
urrent.

Despite the words in this exer
ise, it must be stressed that Ja
kson himself is

aware of this ele
tri
 �eld outside wires 
arrying steady 
urrents, see [5℄.

Here are the words of Edwards, Kenyon and Lemon, [6℄, related to �rst order

terms, that is, to for
es proportional to v

d

=
 or to the drifting velo
ity of the

moving 
harges in the wire divided by 
: \It has long been known that the

zero- and �rst- order for
es on a 
harged obje
t near a 
harge- neutral, 
urrent-


arrying 
ondu
tor at rest in the laboratory are zero in magnitude." Je�menko's

experiment and our 
al
ulations show that a normal resistive wire 
arrying a


onstant 
urrent 
annot be 
harge neutral. Moreover, it will generate zero-order

and �rst-order for
es on a 
harged obje
t at rest near it, namely: the indu
tion

for
e F

0

and the �rst order for
e F

1

(see below).

One of us also assumed in previous works that a 
ondu
ting wire is essentially

neutral at all points, see: [7℄, [8℄ and [9, pp. 85 and 161℄. Here we show in details

that this is not valid for normal resistive wires 
arrying 
onstant 
urrents.

(B) The se
ond idea leading to the 
on
lusion that a normal resistive 
urrent


arrying wire generates no ele
tri
 �eld outside it arises from the supposition

that magnetism is a relativisti
 e�e
t. A typi
al representative of this position


an be found in Feynman's Le
tures on Physi
s, [10, Se
tion 13-6: The relativity

of magneti
 and ele
tri
 �elds, p. 13-7℄, our emphasys: \We return to our
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atomi
 des
ription of a wire 
arrying a 
urrent. In a normal 
ondu
tor, like


opper, the ele
tri
 
urrents 
ome from the motion of some of the negative

ele
trons - 
alled the 
ondu
tion ele
trons - while the positive nu
lear 
harges

and the remainder of the ele
trons stay �xed in the body of the material. We

let the density of the 
ondu
tion ele
trons be �

�

and their velo
ity in S be

v. The density of the 
harges at rest in S is �

+

, whi
h must be equal to the

negative of �

�

, sin
e we are 
onsidering an un
harged wire. There is thus no

ele
tri
 �eld outside the wire, and the for
e on the moving parti
le is just

F = qv

o

�B."

In Pur
ell's Ele
tri
ity and Magnetism we 
an �nd the same ideas. In Se
-

tion 5.9 of this book, whi
h 
onsiders magnetism as a relativisti
 phenomenon,

he models a 
urrent 
arrying wire by by two strings of 
harges, positive and

negative, moving relative to one another. He then 
onsider two 
urrent 
arrying

metalli
 wires at rest in the frame of the laboratory and says (p. 178): \In

a metal, however, only the positive 
harges remain �xed in the 
rystal latti
e.

Two su
h wires 
arrying 
urrents in opposite dire
tions are seen in the lab frame

in Fig. 5.23a. The wires being neutral, there is no ele
tri
 for
e from the op-

posite wire on the positive ions whi
h are stationary in the lab frame." That

is, he believes there will be no ele
tri
 �eld generated by the stationary 
urrent


arrying resistive wire in any point outside itself.

Other books present similar statements, so that we will not quote them here.

(C) The third kind of idea related to this widespread belief is related to

Weber's ele
trodynami
s. As we shall see, even if a resistive 
urrent 
arrying

wire were neutral at all points in its interior and along its surfa
e, Weber's

ele
trodynami
s predi
ts that it would exert a net for
e on a point 
harge at

rest outside it. This for
e is proportional to v

2

d

=


2

, where v

d

is the drifting

velo
ity of the 
ondu
tion ele
trons and 
 = 3� 10

8

ms

�1

. Based on the wrong

belief (see below) that this wire exerts no for
e on a stationary 
harge nearby,

unware even of the larger �rst order ele
tri
 �eld proportional to v

d

, many

authors 
ondemned Weber's law as experimentally invalidated.

This goes ba
k at least to Maxwell's Treatise on Ele
tri
ity and Magnetism.

He was 
onsidering the for
e between a 
ondu
ting wire 
arrying a 
onstant


urrent and another wire whi
h 
arries no 
urrent, both of them at rest in the

laboratory. He then said, see [11, Volume 2, Arti
le 848, page 482℄ (between

square bra
kets are our words): \Now we know that by 
harging the se
ond


ondu
ting wire as a whole, we 
an make e

0

+e

0

1

[net 
harge on the wire without


urrent℄ either positive or negative. Su
h a 
harged wire, even without a 
urrent,

a

ording to this formula [based on Weber's ele
trodynami
s℄, would a
t on the

�rst wire 
arrying a 
urrent in whi
h v

2

e+v

2

1

e

1

[sum of the positive and negative


harges of the 
urrent 
arrying wire by the square of their drifting velo
ities℄

has a value di�erent from zero. Su
h an a
tion has never been observed." As

with Clausius 
omment, Maxwell did not quote any experiments whi
h tried to

observe this for
e (and whi
h failed to �nd the e�e
t), the upper limit of this

e�e
t et
.

Writing in 1951Whittaker 
riti
izedWeber's ele
trodynami
s along the same

lines ([12, page 205℄, our emphasys): \The assumption that positive and neg-
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ative 
harges move with equal and opposite velo
ities relative to the matter

of the 
ondu
tor is one to whi
h, for various reasons whi
h will appear later,

obje
tion may be taken; but it is an integral part of Weber's theory, and 
an-

not be ex
ised from it. In fa
t, if this 
ondition were not satis�ed, and if the

law of for
e were Weber's, ele
tri
 
urrents would exert for
es on ele
trostati



harges at rest (...)". Obviously he is here expressing the view that there are no

su
h for
es. By 
onsequen
e, Weber's ele
trodynami
s must be wrong a

ord-

ing to Whittaker's view, be
ause we now know that only the negative ele
trons

move in metalli
 wires. And applying Weber's ele
trodynami
s to this situation

(in whi
h a 
urrent in a metalli
 
ondu
tor is due to the motion of 
ondu
tion

ele
trons, while the positive 
harges of the latti
e remain stationary) implies

that a 
ondu
ting wire should exert for
e on a stationary ele
tri
 
harge nearby.

Whittaker seems to be unware of the experimental fa
t that ele
tri
 
urrents

exert for
es on ele
trostati
 
harges at rest, see the experiments by Je�menko

dis
ussed below.

Other examples of this widespread belief: In 1969 Skinner said, relative to

Figure 2 in whi
h the stationary 
losed 
ir
uit 
arries a 
onstant 
urrent and

there is a stationary 
harge at P ([13, page 163℄): \A

ording to Weber's for
e

law, the 
urrent of Figure 2.39 [Figure 2℄ would exert a for
e on an ele
tri



harge at rest at the point P . (...) And yet a 
harge at P does not experien
e

any for
e." As with Clausius's and Maxwell's generi
 statements, Skinner did

not quote any spe
i�
 experiment whi
h tried to �nd this for
e.

Pearson and Kilambi, in a paper dis
ussing the analogies between Weber's

ele
trodynami
s and nu
lear for
es, made the same kind of 
riti
isms in a Se
tion


alled \Invalidity of Weber's ele
trodynami
s," [14℄. They 
onsider a straight

wire 
arrying a 
onstant 
urrent. They 
al
ulate the for
e on a stationary 
harge

nearby due to this wire with 
lassi
al ele
tromagnetism and with Weber's law,

supposing the wire to be ele
tri
ally neutral at all points. A

ording to his


al
ulations, 
lassi
al ele
tromagnetism does not yield any for
e on the test


harge and he interprets this as (our emphasis): \The vanishing of the for
e on

the stationary 
harge q 
orresponds simply to the fa
t that a steady 
urrent

does not give rise to any indu
ed ele
tri
 �eld." With Weber's law he �nds a

se
ond order for
e and interprets this as meaning (our emphasis): \that Weber's

ele
trodynami
s give rise to spurious indu
tion e�e
ts. This is probably the

most obvious defe
t of the theory, and the only way of avoiding it is to suppose

that the positive 
harges in the wire move with an equal velo
ity in the opposite

dire
tion, whi
h of 
ourse they do not." As we will see, the fa
t is that a steady


urrent give rise to an indu
ed ele
tri
 �eld, as shown by Je�menko's experiment.

In this work we argue that all of these statements were misleading. That

is, we show the existen
e of a for
e on the stationary 
harge proportional to

the 
urrent in a resistive stationary wire 
arrying a 
onstant 
urrent. We also


ompare our 
al
ulations with Je�menko's experiment, see below, whi
h proved

the existen
e of this for
e.
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2 Geometry of the Problem

In this work the frame of referen
e will always be the laboratory. The situation


onsidered here is that of a 
ylindri
al 
ondu
ting resistive wire of length ` and

radius a � `, Figure 3. The axis of the wire 
oin
ides with the z dire
tion,

with z = 0 at the 
enter of the wire. A battery maintains 
onstant potentials

at the extremities z = �`=2 and z = +`=2 of the wire given by �

L

and �

R

,

respe
tively. The wire 
arries a 
onstant 
urrent I , has a �nite 
ondu
tivity g

and is at rest relative to the laboratory. There is air or va
uum outside the wire.

At a distan
e r to the axis of the wire there is a stationary point 
harge q. We

want to know the for
e exerted by the wire on q in the following approximation:

`� r > a and `� jzj ; (1)

where z is the longitudinal 
omponent of the ve
tor position of q. We utilize

throughout this paper 
ylindri
al 
oordinates (r; '; z) with r =

p

x

2

+ y

2

and

unit ve
tors r̂, '̂ and ẑ.

This wire must be 
losed somewhere. The 
al
ulations presented here with

this approximation should be valid for the 
ir
uit of Figure 4 (square 
ir
uit of

side ` with a wire of radius a � `, with a point 
harge 
lose to the middle of

one of its sides and far from the battery). That is, the three other sides will not


ontribute signi�
antly to the potential and �eld near the 
enter of the fourth

side. Alternatively, it should also give approximate results for a 
ir
ular loop of

larger radius R = `=2� and smaller radius a� R (a ring) if the point 
harge is

at a distan
e R + r to the 
enter of the wire, su
h that a < r � R. It might

even be utilized as a �rst gross approximation for the for
e on the point 
harge

of Figure 1 
onsidering a generi
 
ir
uit of large length and small 
urvatures

(that is, with radii of 
urvature mu
h larger than the diameter of the wire and

also mu
h larger than the distan
e of the point 
harge to the wire).

We 
onsider separetely three 
omponents of the for
e exerted by the wire

on q: That due to the 
harges indu
ed in the wire by q, that due to the sur-

fa
e 
harges whi
h exist in resistive 
urrent 
arrying wires (proportional to the


urrent or to the drifting velo
ity v

d

of the ele
trons) and that due to v

2

d

=


2

.

3 Indu
tion For
e

Consider a neutral 
ondu
tor 
arrying no 
urrent. If we put a point parti
le q

nearby, it will indu
e a distribution of 
harges in the 
ondu
tor su
h that the

potential anywhere inside it will rea
h a 
onstant value in equilibrium. The net

e�e
t of these indu
ed 
harges is an attra
tion between q and the 
ondu
tor.

We 
an estimate its value for the situation of Figure 3 in the 
ase `� r � a

without any 
al
ulation. This situation is equivalent to the for
e between a

point 
harge at a distan
e r to an in�nite 
ondu
ting line. As there is only one


harge and one distan
e involved in this problem, dimensional analysis requires

the for
e between the point 
harge and the in�nite 
ondu
ting line to be given

by

6



~

F

0

= ��

L

q

2

4�"

o

r̂

r

2

; 0 < �

L

< 1 (2)

where r̂ is the unit ve
tor pointing away from the line to the 
harge q and �

L

is a positive dimensionless 
onstant of the order of unity. It would be one if

all the indu
ed 
harge were lo
ated at the origin, that is, at a distan
e r to q.

As part of the indu
ed 
harge will be distributed along the wire with a linear


harge density �(z), whi
h means at a distan
e to q greater than r, we 
on
lude

that �

L

must be smaller than one. Although we don't know the exa
t value of

�

L

, we know the order of magnitude of the indu
tion for
e.

An analogous analysis might be performed for the indu
tion for
e between

a point 
harge q at a distan
e r from an in�nite plane. As before, there is only

one 
harge and one distan
e involved in this problem, so that the for
e must be

given by Eq. (2) with a dimensionless 
onstant �

P

repla
ing �

L

(as we now have

an in�nite plane instead of an in�nite line, the dimensionless 
onstant does not

need to be the same). But in this 
ase we 
an easily solve exa
tly the problem

by the method of images. The �nal solution yields in this 
ase an image 
harge

�q at the other side of the plane, also at a distan
e r to it. As the distan
e

between q and �q is 2r, this yields �

P

= 1=4. This shows that our reasoning

without performing any 
al
ulation was 
orre
t.

Suppose now we have the 
ase of Figure 3, but now with r being of the same

order of magnitude as a. As there is only one 
harge and two distan
es involved

in the problem (
onsidering ` going to in�nity), the for
e must be given by

~

F

0

= �h(r; a)q

2

r̂=4�"

o

. Here h(r; a) is a fun
tion of r and a su
h that if r � a

it will be proportional to 1=r

2

and if r ! a it diverges to in�nity as this is

the general behaviour of indu
tion for
es (if the 
harge approa
hes an in�nite

plane or the surfa
e of a 
ondu
ting sphere the indu
tion for
e always goes to

in�nity).

We have then estimated the value of the indu
tion for
e in the 
ase of �gure

3, for `� r � a, as given by Eq. (2). This estimative is ours, as we were unable

to lo
ate it anywhere in the literature. This for
e will be there irrespe
tive of

whether or not there is 
urrent in the wire. For an order of magnitude, suppose

a 
harge generated by fri
tion of 10

�9

C, at a distan
e of 10
m from a long thin

wire. The indu
tion for
e in this 
ase should be of the order of 10

�6

N .

In the sequen
e we 
onsider the in
uen
e of the 
urrent on the net for
e

exerted by the wire on q.

4 For
e Proportional to the Current

When a 
urrent 
ows in a resistive wire 
onne
ted to a battery, the ele
tri


�eld driving the 
ondu
tion ele
trons against the resistive fri
tion of the wire

is due to free 
harges distributed along the surfa
e of the wire. We represent

this surfa
e 
harge density by �

f

(a; '; z). The battery 
reates and maintains

this distribution of 
harges but does not generate the ele
tri
 �eld along the


ir
uit. This was �rst pointed out by Kir
hho�: [15℄, [16℄ and [17℄, with English

7



translation in [18℄. These surfa
e 
harges generate not only the ele
tri
 �eld

inside the wire but also an ele
tri
 �eld outside it.

However, most authors are not aware of these surfa
e 
harges and related

ele
tri
 �eld outside the wire, as we 
an see from the quotations above. Fortu-

nately this subje
t has been 
onsidered again in some important works: Heald,

Je�menko, GriÆths, Ja
kson and those quoted by them (see [19℄, [2, pages 299-

319 and 509-511℄, [20, pages 279 and 336℄ and [5℄). As none of them 
onsidered

the geometry of Figure 3, we de
ided to analyse it here.

Our approa
h in this paper is the following: We 
onsider the 
ylindri
al

wire 
arrying the 
onstant 
urrent I and 
al
ulate the potential �

1

and ele
tri


�eld

~

E

1

inside and outside the wire due to these surfa
e 
harges in the absen
e

of the test 
harge q. When we put the test 
harge at a distan
e r from the

wire the for
e on it due to the surfa
e 
harges will be then given by

~

F

1

= q

~

E

1

,

supposing that it is small enough su
h that it does not disturb the 
urrent nor

the wire (ex
ept from the indu
tion 
harges already 
onsidered above). We

begin 
al
ulating the potential due to the surfa
e 
harges.

As there is a 
onstant 
urrent in the wire, the ele
tri
 �eld inside it and

driving the 
urrent must be 
onstant over the 
ross se
tion of the wire, negle
ting

the small radial Hall e�e
t inside the wire due to the poloidal magneti
 �eld

generated by the 
urrent. This means that the potential and surfa
e 
harge

distribution must be a linear fun
tion of z, [21℄. Due to the axial symmetry

of the wire it 
annot depend on the poloidal angle either. This means that

�

f

(a; '; z) = �

A

z=` + �

B

, where �

A

and �

B

are 
onstants. Due to this axial

symmetry we 
an 
al
ulate � at ' = 0 and then generalize the solution to all

'. The potential inside or outside the wire is then given by

�

1

(r; z) =

1

4�"

o

Z

2�

'

2

=0

Z

`=2

z

2

=�`=2

�

f

ad'

2

dz

2

p

r

2

+ a

2

� 2ra 
os'

2

+ (z

2

� z)

2

=

1

4�"

o

Z

2�

'

2

=0

Z

`=2

z

2

=�`=2

(�

A

z

2

=`+ �

B

)d'

2

dz

2

q

�

1� 2

r

a


os'

2

+

r

2

a

2

�

+

�

z

2

�z

a

�

2

: (3)

De�ning the dimensionless variables s

2

� 1�2(r=a) 
os'

2

+(r

2

=a

2

) and u �

(z

2

� z)=a we are then led to: �

1

(r; z) = (a=4�"

o

)[(�

A

a=`)I

1

+(�

A

z=`+�

B

)I

2

℄,

where

I

1

�

Z

2�

'

2

=0

Z

`=2a�z=a

u=�(`=2a+z=a)

u

d'

2

du

p

s

2

+ u

2

; (4)

and

I

2

�

Z

2�

'

2

=0

Z

`=2a�z=a

u=�(`=2a+z=a)

d'

2

du

p

s

2

+ u

2

: (5)

These integrals 
an be solved with the approximation (1), where we now

allow r to be smaller or greater than a, yielding (see Appendix):
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�

1

(r; '; z) =

a�

f

(z)

"

o

ln

`

a

=

a(�

A

z=`+ �

B

)

"

o

ln

`

a

if r � a ; (6)

�

1

(r; '; z) =

a�

f

(z)

"

o

ln

`

r

=

a(�

A

z=`+ �

B

)

"

o

ln

`

r

if r � a : (7)

The 
oulombian for
e on a test 
harge q lo
ated at (r; '; z) is then given by:

(with

~

F

1

= �qr�

1

):

~

F

1

= �

qa

"

o

��

f

(z)

�z

�

ln

`

a

�

ẑ = �

qa�

A

`"

o

�

ln

`

a

�

ẑ if r < a ; (8)

~

F

1

=

qa�

f

(z)

"

o

r̂

r

�

qa

"

o

��

f

(z)

�z

�

ln

`

r

�

ẑ =

=

qa(�

A

z=`+ �

B

)

"

o

r̂

r

�

qa�

A

`"

o

�

ln

`

r

�

ẑ if r � a : (9)

We 
an relate these expressions with the 
urrent I 
owing in the wire. From

Figure 3 and the fa
t that �

1

is a linear fun
tion of z yields:

�

1

(r � a; z) =

�

R

� �

L

`

z +

�

R

+ �

L

2

: (10)

Equating this with Eq. (6) and utilizing Ohm's law �

L

��

R

= RI , where R =

`=g�a

2

is the resistan
e of the wire, with g being its 
ondu
tivity, yields �

A

=

�R"

o

I=a ln(`=a) and �

B

= "

o

(�

R

+ �

L

)=2a ln(`=a) = "

o

(RI + 2�

R

)=2a ln(`=a).

The density of free 
harges along the surfa
e of the wire 
an then be written as:

�

f

(a; '; z) = �

R"

o

I

a ln(`=a)

z +

"

o

(�

R

+ �

L

)

2a ln(`=a)

: (11)

This means that the potential and the for
e on the test 
harge q are given by:

�

1

= �

RI

`

z +

�

R

+ �

L

2

if r � a ; (12)

�

1

= �

RI

`

ln(`=r)

ln(`=a)

z +

�

R

+ �

L

2

ln(`=r)

ln(`=a)

if r � a ; (13)

~

F

1

= q

RI

`

ẑ if r < a ; (14)

~

F

1

= q

�

�1

ln(`=a)

�

RI

`

z �

RI + 2�

R

2

�

r̂

r

+

RI

`

ln(`=r)

ln(`=a)

ẑ

�

if r � a : (15)

Now that we have obtained the potential outside the wire we might also

revert the argument. That is, we might solve Lapla
e's equation r

2

� = 0

9



in 
ylindri
al 
oordinates inside and outside the wire (for a � r � `) by the

method of separation of variables imposing the following boundary 
onditions:

�nite �(0; '; z), �(a; '; z) = (�

R

� �

L

)z=` + (�

R

+ �

L

)=2 and �(`; '; z) = 0.

This last 
ondition is not a trivial one and was obtained only after we found the

solution in the order presented in this work. The usual boundary 
ondition that

the potential goes to zero at in�nity does not work in the 
ase of a long 
ylinder


arrying a d
 
urrent. By this reverse method we obtain the potential inside

and outside the wire, then the ele
tri
 �eld by

~

E = �r� and lastly the surfa
e


harge density by "

o

times the normal 
omponent of the ele
tri
 �eld outside

the wire in the limit in whi
h r ! a. In this way we 
he
ked our 
al
ulations.

If we put �

L

= �

R

= �

o

or I = 0 in Eqs. (12) to (15) we re
over the

ele
trostati
 solution (long wire 
arried uniformly with a 
onstant 
harge density

�

B

), namely:

�(r � a) = �

o

=

a�

B

"

o

ln

`

a

; (16)

�(r � a) = �

o

ln(`=r)

ln(`=a)

=

a�

B

"

o

ln

`

r

; (17)

~

F

1

(r < a) = 0 ; (18)

~

F

1

(r � a) =

q�

o

ln(`=a)

r̂

r

=

qa�

B

"

o

r̂

r

: (19)

We 
an also obtain the 
apa
itan
e per unit length of this long and thin 
ylin-

dri
al wire as C=` = (Q

B

=�(a))=` = 2�"

o

= ln(`=a).

This is the �rst time in the literature the potentials (7) or (13) and the for
es

(9) or (15) outside a 
ylindri
al wire are 
al
ulated. Kir
hho� had obtained

Eq. (6) but did not 
onsider the �elds and for
es outside the wire (see [16℄,

espe
ially the last equation of page 400). Re
ently Coombes and Laue analysed

the same problem, [22℄. Their paper is �ne but they arrived at Eqs. (6) and

(8) believing they would be valid inside and outside the wire. This is evident

from their statements in the paragraph below their Eq. (8), our emphasis:

\Thus we obtain to the questions asked at the beginning the surprising answer

that an in�nitely long wire in whi
h a steady 
urrent is 
owing has a vanishing

surfa
e 
harge density 
z=R = [�E"

o

=R ln(L=R)℄z and a uniform ele
tri
 �eld

~

E = �r� = �(
="

o

)(lnL=R)ẑ both inside and outside the wire." The

reason for the dis
repan
y 
an be seen in their Eq. (A7) whi
h is 
orre
t and

represents the potential, namely (repla
ing their L, R and 
 by our equivalent

`, a and �

A

, remembering that they are 
onsidering the parti
ular 
ase in whi
h

�

B

= 0):

�(r; z) =

�

A

z

"

o

�

ln

`

a

+

1

4�

Z

2�

0

d� ln

4

sin

2

� + (
os � � r=a)

2

� 1

�

: (20)
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Just after this equation they wrote: \For suÆ
iently large `, Eq. (A7) [this

equation℄ is dominated by the �rst term on the right-hand side, and we obtain

formula �(r; z) = (�

A

="

o

)(ln `=a)z, with ` � a, ` � z; r." Their only mistake

was to disregard the integral of Eq. (20). Its 
orre
t value 
an be obtained

utilizing Eqs. (33) and (34) of our Appendix. If they had taken this into

a

ount they would have arrived at our Eqs. (6) to (9).

These expressions show that this for
e is proportional to the 
urrent in the

wire. Moreover, there will be not only a tangential 
omponent of the ele
tri


�eld outside the wire but also a radial one. In the symmetri
 
ase in whi
h

�

L

= ��

R

= RI=2 the ratio of the radial 
omponent of

~

F

1

to the tangential


omponent is given by z=(r ln(`=r)). For a wire of 1m length and z = r = 10
m

we have this ratio as 0:4, indi
ating that these two 
omponents are of the same

order of magnitude.

S
hae�er (referen
e in [5℄), Sommerfeld, Mar
us, GriÆths and Ja
kson 
on-

sidered the ele
tri
 �eld due to a long 
oaxial 
able of length ` 
arrying a 
on-

stant 
urrent along the inner wire of resistivity g and radius a, returning along

a hollow 
ylinder with inner radius b su
h that `� b > a: [23, pp. 125-130, Eq.

(8)℄, [24℄, [20, pp. 336-337℄ and [5, Eq. (A17)℄. In Sommerfeld's 
ase the return


ondu
tor had �nite 
ondu
tivity and an external radius tending to in�nity,

while in Mar
us, GriÆths and Ja
kson's 
ase the return 
ondu
tor was a 
ylin-

dri
al shell of radius b and zero resistivity. For all these authors the potential

and ele
tri
 �eld went to zero for r > b. Their solution in the region a < r < b

and 
onsidering the zero of the potential at z = 0 is given by:

�


oaxial

= �

I

g�a

2

ln(b=r)

ln(b=a)

z : (21)

We now 
ompare this solution with our Eq. (13) in this parti
ular 
ase

in whi
h �

R

+ �

L

= 0. The main di�eren
e is the appearan
e in our 
ase of

ln(`=r)= ln(`=a) instead of ln(b=r)= ln(b=a). That is, while the potential and

ele
tri
 �eld outside the resistive 
urrent 
arrying wire (and also the for
e ex-

erted by this wire on a point 
harge) depend on the length of the long wire, the

same does not happen in the interior region of the 
oaxial 
able near z = 0. If

we keep a, g and I 
onstant (and also b for the 
oaxial 
able) and double the

length of the wire (
oaxial 
able), the potential outside the wire will 
hange,

but not inside the 
oaxial 
able. The two solutions will only 
oin
ide if we �x

b = `. As this is not the general 
ase, the two solutions are not equivalent to

one another in all situations.

In the sequen
e we 
onsider a for
e due to the square of the 
urrent.

5 For
e Proportional to the Square of the Cur-

rent

Up to now we have only 
onsidered the indu
tion for
e and the for
e of the sur-

fa
e 
harges on the stationary test 
harge. We have not yet taken into a

ount

11



the for
e of the stationary latti
e and mobile 
ondu
tion ele
trons on the sta-

tionary test 
harge. We 
onsider it here in this Se
tion, analysing two di�erent

theoreti
al models. We �rst 
onsider Lorentz's law or Li�enard-S
hwarzs
hild's

for
e. In this 
ase there are also 
omponents of the for
e exerted by a 
harge

q

2

belonging to the 
urrent 
arrying 
ir
uit on q whi
h depend on the square

of the velo
ity of q

2

, v

2

d

, and on its a

eleration. If we have a 
onstant 
urrent,

the a

eleration of q

2

will be its 
entripetal a

eleration due to any 
urvature in

the wire, proportional to v

2

d

=r




, where r




is the radius of 
urvature of the wire

in ea
h point. This might lead to a for
e proportional to v

2

d

or to I

2

. However,

it has been shown that if we have a 
losed 
ir
uit 
arrying a 
onstant 
urrent,

there is no net e�e
t of the sum of all these terms on a stationary 
harge outside

the wire. For a proof see [4, page 697, exer
ise 14.13℄ or [6℄.

We now 
onsider Weber's ele
trodynami
s, [9℄. As stated above, we are ne-

gle
ting the small radial Hall e�e
t inside the wire due to the poloidal magneti


�eld generated by the 
urrent. This means that the interior of the wire 
an

be 
onsidered essentially neutral. Despite this fa
t Weber's ele
trodynami
s

predi
ts a for
e exerted by this neutral part of the wire in a stationary 
harge

nearby. The reason for this e�e
t is that the for
e exerted by the mobile ele
-

trons on the stationary test 
harge is di�erent from the for
e exerted by the

stationary positive ions of the latti
e on the test 
harge. One of us have already

performed these 
al
ulations in related situations, see for instan
e [9, Se
tion

6.6, pages 161-168℄, so that we present here only the �nal result. On
e more

we assume (1). For the situation of Figure 3, with a uniform 
urrent density

~

J = (I=�a

2

)ẑ, the for
e on the test 
harge is given by:

~

F

2

= �q

Iv

d

4�"

o




2

r̂

r

= �

�

o

4�

2

qI

2

a

2

en

r̂

r

if r > a; (22)

where v

d

is the drifting velo
ity of the ele
trons. We also utilized �

o

= 4� �

10

�7

kgmC

�2

, 


2

= 1="

o

�

o

and v

d

= I=�a

2

en, where e = 1:6� 10

�19

C is the

elementary 
harge and n is the number of free ele
trons per unit volume.

This for
e is proportional to the square of the 
urrent. The ele
tri
 �eld

~

E

2

=

~

F

2

=q points towards the 
urrent, as if the wire had be
ome negatively


harged. Sometimes this se
ond order �eld is 
alled motional ele
tri
 �eld.

If we have a bent wire 
arrying a 
onstant 
urrent, Weber's ele
trodynami
s

predi
ts another 
omponent of the for
e exerted by this 
urrent on a stationary


harge outside it, proportional to the a

eleration of the 
ondu
tion ele
trons.

As we are supposing a 
onstant 
urrent, the relevant a

eleration here is the


entripetal one proportional to v

2

d

=r




, where r




is the radius of 
urvature of the

wire at that lo
ation. This means that also this 
omponent of the for
e will be

proportional to v

2

d

or to I

2

. The order of magnitude is the same as the previous

one.
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6 Radial Hall E�e
t

Another simple question whi
h might be asked is the following: Is a stationary

resistive wire 
arrying a 
onstant 
urrent ele
tri
ally neutral in its interior and

along its surfa
e?

Most authors quoted in the Introdu
tion would answer positively to this

question as this was their reason for believing this wire would not generate

any ele
tri
 �eld outside itself. However, we already showed that there will

be a longitudinal distribution of surfa
e 
harges whi
h will give rise to the

longitudinal ele
tri
 �eld inside the wire and also to an ele
tri
 �eld outside it.

Here we show that there will also be a radial ele
tri
 �eld inside the wire due to

the fa
t that its interior is negatively 
harged. As we saw in the Introdu
tion,

Reitz and Milford reje
ted expli
itly this 
harge. But they were not alone in

this. See, for instan
e, GriÆths statements in [20, p. 273℄: \Within a material

of uniform 
ondu
tivity, r � E = (r � J)=� = 0 for steady 
urrents (equation

r � J = 0), and therefore the 
harge density is zero. Any unbalan
ed 
harge

resides on the surfa
e."

We here 
onsider the radial Hall e�e
t due to the poloidal magneti
 �eld

inside the wire. As is usually 
onsidered, [12, p. 90℄, we will suppose the 
onstant

total 
urrent I to 
ow uniformly over the 
ross se
tion of the 
ylindri
al wire

with a 
urrent density J = I=�a

2

. With the magneti
 
ir
uital law

H

C

~

B � d

~

` =

�

o

I

C

, where C is the 
ir
uit of integration and I

C

is the 
urrent passing through

the surfa
e en
losed by C, we obtain that the magneti
 �eld inside and outside

the wire is given by:

~

B(r � a) =

�

o

Ir

2�a

2

'̂ ; (23)

~

B(r � a) =

�

o

I

2�r

'̂ : (24)

The magneti
 for
e on a 
ondu
tion ele
tron of 
harge q = �e inside the

wire, at a distan
e r < a from the 
enter and moving with drifting velo
ity

~v = �jv

d

jẑ is given by:

~

F = q~v �

~

B = �

j�

o

ev

d

Irj

2�a

2

r̂ ; (25)

This radial for
e pointing inwards will 
reate a 
on
entration of negative


harges in the body of the 
ondu
tor. In equilibrium there will be a radial for
e

generated by these 
harges whi
h will balan
e the magneti
 for
e: qE = qvB.

That is, there will be inside the wire, beyond the longitudinal ele
tri
 �eld E

1

driving the 
urrent, a radial ele
tri
 �eld pointing inwards given by:

~

E

r

(r � a) = �

j�

o

v

d

Irj

2�a

2

r̂ : (26)

The longitudinal ele
tri
 �eld inside the wire driving the 
urrent is given by

E

1

= RI=`. In order to 
ompare it with the magnitude of the radial ele
tri
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�eld E

r

due to the Hall e�e
t we 
onsider the maximum value of this last �eld

very 
lose to the surfa
e of the wire, at r ! a: E

r

! j�

o

v

d

I j=2�a. This means

that (with R = `=g�a

2

):

jE

r

j

jE

1

j

=

j�

o

v

d

gaj

2

: (27)

For a typi
al 
opper wire (v

d

� 4�10

�3

ms

�1

and g = 5:7�10

7


m) with 1mm

diameter this yields: E

r

=E

1

� 7�10

�5

. This shows that the radial ele
tri
 �eld

is negligible 
ompared to the longitudinal one.

By Gauss's law r � E = �="

o

we obtain that inside the wire there will be a


onstant negative 
harge density �

�

given by: �

�

= �jIv

d

j=�a

2




2

. The total


harge inside the wire is 
ompensated by a positive 
harge spread over the

surfa
e of the wire with a 
onstant surfa
e density �

+

= j�

�

a=2j = jIv

d

j=2�a


2

.

That is, the negative 
harge inside the wire in a small segment of length dz,

�

�

�a

2

dz, is equal and opposite to the positive 
harge along its surfa
e, �

+

2�adz.

This means that the radial Hall e�e
t will not generate any ele
tri
 �eld outside

the wire, only inside it. For this reason it is not relevant to the experiments

dis
ussed here. In any event it is important to 
larify this e�e
t.

In our analysis of the radial Hall e�e
t we are not 
onsidering the motional

ele
tri
 �eld dis
ussed above as it is not yet 
ompletely 
lear if it exists or not.

In 
on
lusion we may say that the total surfa
e 
harge density along the

wire, not taking into a

ount the motional ele
tri
 �eld and the indu
tion of


harges in the 
ondu
tor due to external 
harges, is given by the 
onstant �

+

added to the �

f

given by Eq. (11).

We now 
ompare all three 
omponents of the ele
tri
 �eld outside the wire

with one another and dis
uss an important experiment related to this subje
t.

7 Dis
ussion and Con
lusions

Although many authors forget about the indu
tion for
e when dealing with a


urrent 
arrying wire intera
ting with an external 
harge, there is no doubt it

exists. Comparing the three for
es above, it is the only one whi
h diverges as

we approa
h the wire. If we are far away from the wire it falls as 1=r

2

, while

the radial 
omponent of F

1

and F

2

fall as 1=r.

We now 
ompare the three 
omponents of this for
e in a parti
ular example:

A 
opper wire (g = 5:7 � 10

7


m, n = 8:5 � 10

28

m

�3

) with a length ` = 1m

and diameter 1mm (a = 5 � 10

�4

m). The resistan
e of the wire is then given

by R = `=g�a

2

= 0:022
. With a potential di�eren
e between its extremities

of �

L

� �

R

= 1V this yields a 
urrent of I = 44; 8A. The drifting velo
ity in

this 
ase amounts to v

d

= I=�a

2

en = 4� 10

�3

ms

�1

. We will suppose moreover

the symmetri
al 
ase in whi
h �

R

= ��

L

= �0:5V . The test 
harge will be a

typi
al one generated by fri
tion, q = 10

�9

C, at a distan
e of r = 10
m = 0:1m

to the wire. The magnitude of ea
h one of the for
es and their ratios are then

given by (
onsidering only the radial 
omponent of

~

F

1

and z = r = 10
m): F

o

�

10

�6

N , F

1

� 10

�10

N , F

2

� 10

�16

N (in terms of ele
tri
 �eld: E

o

� 10

3

N=C,

14



E

1

� 10

�1

N=C and E

2

� 10

�7

N=C), so that F

o

=F

1

� 10

4

, F

o

=F

2

� 10

10

and

F

1

=F

2

� 10

6

. This means that in this 
ase F

o

� F

1

� F

2

or E

o

� E

1

� E

2

.

Despite this fa
t the for
e

~

F

1

has already been observed in the laboratory

by Je�menko. He had an ingenious idea of utilizing grass seeds as test parti
les

near 
urrent 
arrying wires. They are ele
tri
ally neutral in normal state, so

that they do not indu
e any 
harges in the 
ondu
tor. On the other hand, they

are easily polarized in the presen
e of an ele
tri
 �eld, aligning themselves with

it. The lines of ele
tri
 �eld are then observed in analogy with iron �llings

generating the lines of magneti
 �eld. What we 
onsider here is the result of

his experiment as presented in Plate 6 of [2℄ (see also his Se
tion 9-6: Ele
tri


�eld outside a 
urrent-
arrying 
ondu
tor, pages 299-305) and Figure 1 of [25℄.

The 
urrent was 
owing in a 
ir
uit like that of our Figure 3, with symmetri
al

potentials: �

R

= ��

L

. He performed the experiment but did not make the


al
ulations for this 
ase. These 
al
ulations have been presented here. In order

to 
ompare our results with his experiments, we need to obtain the lines of

ele
tri
 �eld. We obtain this in the plane xz (y = 0). Any plane 
ontaining the

z axis will yield a similar solution. We are looking for a fun
tion �(r; z) su
h

that

r�(r; z) � r�(r; z) = 0 : (28)

For r < a we have � as a linear fun
tion of z, su
h that � 
an be found

proportional to r. We write it as �(r < a; z) = �A`r, with A as a 
onstant.

The equipotential lines �(r; z) = 
onstant 
an be written as z

1

(r) = K

1

, where

K

1

is a 
onstant (for ea
h 
onstant we have a di�erent equipotential line).

Analogously the lines of ele
tri
 for
e will be given by z

2

(r) = K

2

, where K

2

is

another 
onstant (for ea
h K

2

we have a di�erent line of ele
tri
 for
e). From

Eq. (28) we get dz

2

=dr = �1=(dz

1

=dr) = (��=�z)=(��=�r). Integrating this

equation we 
an obtain �(r; z). With Eq. (7) this yields the solution for r > a.

We are then led to:

�(r; z) = �A`r if r < a ; (29)

�(r; z) = Ar

2

ln

r

`

�A

r

2

2

�Az

2

� 2Bz if r > a ; (30)

where A = (�

R

��

L

)=` = �I=�ga

2

and B = (�

R

+�

L

)=2. From these equations

we 
an easily verify Eq. (28).

In order to 
ompare these results with Je�menko's experiment we need es-

sentially the value of `=a. From his plate 6 we get `=a � 40=3. The plot of the

equipotentials between z = �`=2 and `=2 given by Eqs. (6) and (7) is given

in Figure 5. A plot of the lines of ele
tri
 for
e given by Eqs. (29) and (30) is

given in Figure 6. This is extremely similar to Je�menko's experiment (Plate 6

of [2℄ or Figure 1 of [25℄), showing the 
orre
tness of our approa
h.

The example dis
ussed here is important to show 
learly the existen
e of the

ele
tri
 �eld outside a resistive wire 
arrying a 
onstant 
urrent. It does not

depend on a variable 
urrent (longitudinal a

eleration of the ele
trons along

15



the wire) nor on a 
entripetal a

eleration of the ele
trons (due to any 
urvature

in the wire). That is, this ele
tri
 �eld will be there even if there were not any

a

eleration of the 
ondu
tion ele
trons. In the 
ase of a 
oaxial 
able dis
ussed

by Sommerfeld and many others (see above), they have found an ele
tri
 �eld

only in the region between the 
ables, but not outside the return 
ondu
tor.

The reason for this is that they were 
onsidering a return 
ondu
tor of in�nite

area (Sommerfeld) or of zero resistivity (Mar
us, GriÆths and Ja
kson). For

this reason it may not have been 
lear to many people that usually any 
urrent


arrying resistive wire should generate an ele
tri
 �eld outside it. We hope the


al
ulations presented in this paper, 
oupled with Je�menko's experiments, will

make people aware of this ele
tri
 �eld.

As regards those who 
onsider magnetism as a relativisti
 e�e
t, we have

shown here that a resistive 
urrent 
arrying wire generates not only a magneti


�eld but also an ele
tri
 �eld. As Ja
kson has shown, it is impossible to derive

magneti
 �elds from Coulomb's law and the kinemati
s of spe
ial relativity

without additional assumptions, [4, pp. 578-581℄ and [26℄.

It should also be mentioned that the magneti
 �eld in this 
ase is the usual

poloidal �eld in the dire
tion '̂, proportional to r for r � a and to 1=r for

r � a. It is orthogonal to

~

E

1

at all points in spa
e. This means that Poynting's

ve
tor

~

S =

~

E �

~

B=�

o

will follow the equipotential lines represented in Figure 5

when �

R

= ��

L

. This general behaviour of the lines of Poynting's ve
tor was

pointed out by Heald, [19℄. As we 
an see from Figure 5, just outside the wire

~

S is orthogonal to it only at z = 0. At all other points it is in
lined relative

to the z axis, at an angle � with a tangent given by the ratio of the radial

and longitudinal 
omponents of

~

E

1

. As we have seen, just outside the wire this

is given by: tan � = z=(a ln(`=a)). Many textbooks only 
onsider an ele
tri


�eld outside the 
urrent 
arrying wire when dis
ussing boundary 
onditions.

As the longitudinal 
omponent of

~

E is 
ontinuous at a boundary and must exist

inside a resistive wire 
arrying a 
urrent, it must also exist just outside the

wire. These authors then present Poynting's ve
tor pointing radially inwards

towards the wire (see, for instan
e, [27, pp. 180-181℄ and [10, p. 27-8℄). There

are two main things to 
omment here. In the �rst pla
e, these drawings and

statements suggest that this ele
tri
 �eld should exist only 
lose to the wire. In

the se
ond pla
e, they indi
ate that these authors are not aware of the surfa
e


harges generating the �eld. As we have seen, it is only at one point that

~

S will

be orthogonal to the wire just outside it. This point is an ex
eption and not

the rule. The rule is that there will be a radial 
omponent whi
h may be larger

than the longitudinal one, pointing towards the wire or away from it. One of

the e�e
ts of this radial 
omponent is that

~

S will usually be in
lined just outside

the wire and not orthogonal to it.

The veri�
ation of the existen
e or not of the se
ond order ele
tri
 �eld is

mu
h more diÆ
ult due to its small order of magnitude (as 
ompared with E

o

and E

1

). However, if the resistan
e of the wire goes to zero, �

A

also goes to

zero. This means that in a super
ondu
tor there should not be the external

ele
tri
 �eld proportional to the 
urrent. Avoiding also the indu
tion for
e,

16



there remains in this 
ase only the se
ond order ele
tri
 �eld. This was the

approa
h utilized by Edwards, Kenyon and Lemon in their experiment, [6℄,

whi
h is the best one known to us analysing this e�e
t. They found an ele
tri


�eld proportional to I

2

, independent of the dire
tion of the 
urrent, pointing

towards the wire and with an order of magnitude 
ompatible with that predi
ted

by Weber's law. Despite this positive eviden
e more resear
h is ne
essary before

a �nal 
on
lusion may be drawn related to this se
ond order ele
tri
 �eld, [9,

Se
tion 6.6, pages 161-168℄.

As we have seen, usually F

0

� F

1

� F

2

. Moreover, F

0

and F

1

have been

shown to exist experimentally. We 
an then disregard the 
riti
isms of Maxwell,

Whittaker and Skinner presented above against Weber's ele
trodynami
s. That

is, there is a for
e between the wire and q proportional to the 
urrent I , 
ontrary

to their statements. It is mu
h more diÆ
ult to know if there is or not a se
ond

order 
omponent of this for
e proportional to v

2

d

=


2

. Only future experiments

taking all of these e�e
ts as F

0

and F

1

into a

ount 
an de
ide the matter in

this 
ase.

In 
on
lusion we may say that despite the widespread belief that a stationary

resistive wire 
arrying a 
onstant 
urrent exerts no for
e on a stationary 
harge,

there will 
ertainly be a 
omponent of this for
e due to the indu
ed 
harges

and another one proportional to the 
urrent in the wire, as 
omproved by these


al
ulations and Je�menko's experiment. The existen
e or not of a se
ond order

for
e still needs to be 
on�rmed.
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Appendix

We now show how to 
al
ulate the integrals (4) and (5).

Applying approximation (1) in the limits of integration of I

1

and integrating

it in u yields a zero value (as it is an odd fun
tion integrated between symmetri


limits).

Integrating I

2

in u yields, applying (1) in its limits of integration:

I

2

=

Z

2�

0

d'

2

ln

p

s

2

+ (`=2a)

2

+ (`=2a)

p

s

2

+ (`=2a)

2

� (`=2a)

: (31)

On
e more with approximation (1) this 
an be written as
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I

2

=

Z

2�

0

d'

2

ln

(`=a)

2

s

2

= 4� ln

`

a

�

Z

2�

0

�

ln

�

1� 2

r

a


os'

2

+

r

2

a

2

��

d'

2

: (32)

This last integral is equal to zero if r � a. If r > a we 
an put r

2

=a

2

in

eviden
e and utilize on
e more this result to solve the last integral, namely:

Z

2�

0

�

ln

�

1� 2

r

a


os'

2

+

r

2

a

2

��

d'

2

= 0 if r � a ; (33)

Z

2�

0

�

ln

�

1� 2

r

a


os'

2

+

r

2

a

2

��

d'

2

= 2� ln

r

2

a

2

if r � a : (34)

This means that the �nal value of I

2

is found to be

I

2

= 4� ln

`

a

if r � a ; (35)

I

2

= 4� ln

`

r

if r � a : (36)
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Figure Captions

1. A resistive stationary wire 
onne
ted to a battery and 
arrying a d
 
urrent

I , with a stationary point 
harge q nearby.

2. A 
onstant 
urrent 
ows in the 
losed wire and there is a point 
harge at

P .

3. A 
ylindri
al wire of length ` and radius a� ` 
arrying a 
onstant 
urrent

I . A point 
harge q is at a distan
e r to the axis of the wire, with a

longitudinal 
omponent z relative to the 
enter of the wire.

4. Square 
ir
uit of side ` made of a 
ylindri
al wire of radius a� `, with a

point 
harge 
lose to the middle of one of its sides.

5. Equipotentials as given by Eqs. (6) and (7) with Je�menko's value `=a �

40=3 and with �

B

= 0 (or �

R

= ��

L

).

6. Lines of ele
tri
 for
e as given by Eqs. (29) and (30) with �

R

= ��

L

.
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