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Abstrat

We present the opinion of some authors who believed there was no

fore between a stationary harge and a stationary resistive wire arrying

a onstant urrent. We show that this fore is di�erent from zero and

present its main omponents: The fore due to the harges indued in

the wire by the test harge and a fore proportional to the urrent in the

resistive wire. We also disuss briey a omponent of the fore propor-

tional to the square of the urrent whih should exist aording to some

models and another omponent due to the aeleration of the ondution

eletrons in a urved wire arrying a d urrent (entripetal aeleration).

Finally we analyse experiments showing the existene of the eletri �eld

proportional to the urrent in resistive wires.
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1 Introdution

Consider a iruit like that of Figure 1, where a stationary resistive wire on-

neted to a battery arries a onstant urrent I . Will it exert a fore on a

stationary harge q loated nearby?

One fore whih will be there regardless of the value of the urrent is that

due to the indued harges in the wire. That is, the point partile q indues

a distribution of harges in the onduting wire and the net result will be an

attration between the wire and q. Most authors know about this fat, although

forgetting to mention it. Moreover, they do not onsider it in detail nor give its

order of magnitude.

Is there any other fore between the wire and the stationary harge? Many

physiists believe the answer to this question is no, and this opinion has been

held for a long time. There are three main ideas leading to this belief. We

analyze eah one of them here.

(A) The �rst idea is related to the supposition that a stationary resistive

wire arrying a onstant urrent is essentially neutral in its interior and along

its surfae. And this leads to the idea that a resistive urrent arrying wire

generates only a magneti �eld outside it. For more than a entury sientists

have been used to believe in this statement. Clausius, for instane, based all

his eletrodynamis on this belief. In 1877 he wrote: \We aept as riterion

the experimental result that a losed onstant urrent in a stationary ondutor

exerts no fore on stationary eletriity" (quoted in [1, page 589℄). Although

he aÆrmed that this is an experimental result, he didn't ite any experiments

whih tried to �nd this fore. His eletrodynamis led to this predition: \The

law formulated by me leads to the result that a onstant stationary losed

iruit exerises no fore on a stationary harge" (Clausius statement in 1880

as quoted in [1, page 589℄). As we will see, he based his eletrodynamis in a

wrong priniple as there is a fore between a stationary harge and a stationary

wire arrying a onstant urrent. This fore has been shown by Je�menko's

experiment, [2, pages 299-319 and 509-511℄, and on�rmed by our alulations.

Even in eletromagneti textbooks we an �nd statements like this. As we

will see, the eletri �eld inside and outside a resistive wire arrying a onstant

urrent is due to surfae harges distributed along the wire. On the other hand,

Reitz and Milford, for instane, seem to say that no steady surfae harges an

exist in resistive wires ([3℄, pp. 128-129): \Consider a onduting speimen

obeying Ohm's law, in the shape of a straight wire of uniform ross setion

whose ends are maintained at a onstant potential di�erene 4U . The wire is

assumed to be homogeneous and haraterized by the onstant ondutivity g.

Under these onditions an eletri �eld will exist in the wire, the �eld being

related to 4U by the relation 4U =

R

~

E � d

~

`. It is evident that there an be

no omponent of eletri �eld at right angles to the axis of the wire, sine by

~

J = g

~

E this would produe a harging of the wire's surfae. As was mentioned

earlier, exess harge is dissipated rapidly in a ondutor, and beause of the low

potential energy sink for harge arriers at one end of the wire, not even a surfae

harge an be tolerated." In this paper we onsider exatly this situation and
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show not only the existene of these surfae harges whih they are rejeting,

but that they are the harges whih generate the eletri �eld inside the resistive

wire. The role of the battery is to keep the longitudinal distribution of surfae

harges onstant in time for d urrents and to avoid the neutralization of the

wire. But it is not the hemial battery itself whih reates the eletri �eld at

all points in spae. This eletri �eld is reated by the harges distributed along

the surfae of the wire. These surfae harges will generate the longitudinal

eletri �eld inside the resistive wire and also an eletri �eld outside the wire,

with longitudinal and radial omponents. Moreover, when onsidering the radial

Hall e�et, we also show that there will be a radial omponent of the eletri

�eld inside the resistive urrent arrying wire, ontrary to their statement. This

radial eletri �eld is due to the fat that the wire is negatively harged in its

interior.

In Jakson's book, [4℄, there is the following statement in exerise 14.13, page

697: \As an idealization of steady-state urrents owing in a iruit, onsider

a system of N idential harges q moving with onstant speed v (but subjet

to aeleration) in an arbitrary losed path. Suessive harges are separated

by a onstant small interval 4. Starting with the Li�enard-Wiehert �elds for

eah partile, and making no assumptions onerning the speed v relative to the

veloity of light show that, in the limit N ! 1, q ! 0, and 4 ! 0, but Nq

= onstant and q=4 = onstant, no radiation is emitted by the system and the

eletri and magneti �elds of the system are the usual stati value. (Note that

for a real iruit the stationary positive ions in the ondutors will produe an

eletri �eld whih just anels that due to the moving harges.)" Any person

reading this statement, espeially the sentene in parenthesis, will onlude that

Clausius was right. However, we will see here that there is a net eletri �eld

di�erent from zero outside a stationary resistive wire arrying a steady urrent.

Despite the words in this exerise, it must be stressed that Jakson himself is

aware of this eletri �eld outside wires arrying steady urrents, see [5℄.

Here are the words of Edwards, Kenyon and Lemon, [6℄, related to �rst order

terms, that is, to fores proportional to v

d

= or to the drifting veloity of the

moving harges in the wire divided by : \It has long been known that the

zero- and �rst- order fores on a harged objet near a harge- neutral, urrent-

arrying ondutor at rest in the laboratory are zero in magnitude." Je�menko's

experiment and our alulations show that a normal resistive wire arrying a

onstant urrent annot be harge neutral. Moreover, it will generate zero-order

and �rst-order fores on a harged objet at rest near it, namely: the indution

fore F

0

and the �rst order fore F

1

(see below).

One of us also assumed in previous works that a onduting wire is essentially

neutral at all points, see: [7℄, [8℄ and [9, pp. 85 and 161℄. Here we show in details

that this is not valid for normal resistive wires arrying onstant urrents.

(B) The seond idea leading to the onlusion that a normal resistive urrent

arrying wire generates no eletri �eld outside it arises from the supposition

that magnetism is a relativisti e�et. A typial representative of this position

an be found in Feynman's Letures on Physis, [10, Setion 13-6: The relativity

of magneti and eletri �elds, p. 13-7℄, our emphasys: \We return to our
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atomi desription of a wire arrying a urrent. In a normal ondutor, like

opper, the eletri urrents ome from the motion of some of the negative

eletrons - alled the ondution eletrons - while the positive nulear harges

and the remainder of the eletrons stay �xed in the body of the material. We

let the density of the ondution eletrons be �

�

and their veloity in S be

v. The density of the harges at rest in S is �

+

, whih must be equal to the

negative of �

�

, sine we are onsidering an unharged wire. There is thus no

eletri �eld outside the wire, and the fore on the moving partile is just

F = qv

o

�B."

In Purell's Eletriity and Magnetism we an �nd the same ideas. In Se-

tion 5.9 of this book, whih onsiders magnetism as a relativisti phenomenon,

he models a urrent arrying wire by by two strings of harges, positive and

negative, moving relative to one another. He then onsider two urrent arrying

metalli wires at rest in the frame of the laboratory and says (p. 178): \In

a metal, however, only the positive harges remain �xed in the rystal lattie.

Two suh wires arrying urrents in opposite diretions are seen in the lab frame

in Fig. 5.23a. The wires being neutral, there is no eletri fore from the op-

posite wire on the positive ions whih are stationary in the lab frame." That

is, he believes there will be no eletri �eld generated by the stationary urrent

arrying resistive wire in any point outside itself.

Other books present similar statements, so that we will not quote them here.

(C) The third kind of idea related to this widespread belief is related to

Weber's eletrodynamis. As we shall see, even if a resistive urrent arrying

wire were neutral at all points in its interior and along its surfae, Weber's

eletrodynamis predits that it would exert a net fore on a point harge at

rest outside it. This fore is proportional to v

2

d

=

2

, where v

d

is the drifting

veloity of the ondution eletrons and  = 3� 10

8

ms

�1

. Based on the wrong

belief (see below) that this wire exerts no fore on a stationary harge nearby,

unware even of the larger �rst order eletri �eld proportional to v

d

, many

authors ondemned Weber's law as experimentally invalidated.

This goes bak at least to Maxwell's Treatise on Eletriity and Magnetism.

He was onsidering the fore between a onduting wire arrying a onstant

urrent and another wire whih arries no urrent, both of them at rest in the

laboratory. He then said, see [11, Volume 2, Artile 848, page 482℄ (between

square brakets are our words): \Now we know that by harging the seond

onduting wire as a whole, we an make e

0

+e

0

1

[net harge on the wire without

urrent℄ either positive or negative. Suh a harged wire, even without a urrent,

aording to this formula [based on Weber's eletrodynamis℄, would at on the

�rst wire arrying a urrent in whih v

2

e+v

2

1

e

1

[sum of the positive and negative

harges of the urrent arrying wire by the square of their drifting veloities℄

has a value di�erent from zero. Suh an ation has never been observed." As

with Clausius omment, Maxwell did not quote any experiments whih tried to

observe this fore (and whih failed to �nd the e�et), the upper limit of this

e�et et.

Writing in 1951Whittaker ritiizedWeber's eletrodynamis along the same

lines ([12, page 205℄, our emphasys): \The assumption that positive and neg-
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ative harges move with equal and opposite veloities relative to the matter

of the ondutor is one to whih, for various reasons whih will appear later,

objetion may be taken; but it is an integral part of Weber's theory, and an-

not be exised from it. In fat, if this ondition were not satis�ed, and if the

law of fore were Weber's, eletri urrents would exert fores on eletrostati

harges at rest (...)". Obviously he is here expressing the view that there are no

suh fores. By onsequene, Weber's eletrodynamis must be wrong aord-

ing to Whittaker's view, beause we now know that only the negative eletrons

move in metalli wires. And applying Weber's eletrodynamis to this situation

(in whih a urrent in a metalli ondutor is due to the motion of ondution

eletrons, while the positive harges of the lattie remain stationary) implies

that a onduting wire should exert fore on a stationary eletri harge nearby.

Whittaker seems to be unware of the experimental fat that eletri urrents

exert fores on eletrostati harges at rest, see the experiments by Je�menko

disussed below.

Other examples of this widespread belief: In 1969 Skinner said, relative to

Figure 2 in whih the stationary losed iruit arries a onstant urrent and

there is a stationary harge at P ([13, page 163℄): \Aording to Weber's fore

law, the urrent of Figure 2.39 [Figure 2℄ would exert a fore on an eletri

harge at rest at the point P . (...) And yet a harge at P does not experiene

any fore." As with Clausius's and Maxwell's generi statements, Skinner did

not quote any spei� experiment whih tried to �nd this fore.

Pearson and Kilambi, in a paper disussing the analogies between Weber's

eletrodynamis and nulear fores, made the same kind of ritiisms in a Setion

alled \Invalidity of Weber's eletrodynamis," [14℄. They onsider a straight

wire arrying a onstant urrent. They alulate the fore on a stationary harge

nearby due to this wire with lassial eletromagnetism and with Weber's law,

supposing the wire to be eletrially neutral at all points. Aording to his

alulations, lassial eletromagnetism does not yield any fore on the test

harge and he interprets this as (our emphasis): \The vanishing of the fore on

the stationary harge q orresponds simply to the fat that a steady urrent

does not give rise to any indued eletri �eld." With Weber's law he �nds a

seond order fore and interprets this as meaning (our emphasis): \that Weber's

eletrodynamis give rise to spurious indution e�ets. This is probably the

most obvious defet of the theory, and the only way of avoiding it is to suppose

that the positive harges in the wire move with an equal veloity in the opposite

diretion, whih of ourse they do not." As we will see, the fat is that a steady

urrent give rise to an indued eletri �eld, as shown by Je�menko's experiment.

In this work we argue that all of these statements were misleading. That

is, we show the existene of a fore on the stationary harge proportional to

the urrent in a resistive stationary wire arrying a onstant urrent. We also

ompare our alulations with Je�menko's experiment, see below, whih proved

the existene of this fore.
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2 Geometry of the Problem

In this work the frame of referene will always be the laboratory. The situation

onsidered here is that of a ylindrial onduting resistive wire of length ` and

radius a � `, Figure 3. The axis of the wire oinides with the z diretion,

with z = 0 at the enter of the wire. A battery maintains onstant potentials

at the extremities z = �`=2 and z = +`=2 of the wire given by �

L

and �

R

,

respetively. The wire arries a onstant urrent I , has a �nite ondutivity g

and is at rest relative to the laboratory. There is air or vauum outside the wire.

At a distane r to the axis of the wire there is a stationary point harge q. We

want to know the fore exerted by the wire on q in the following approximation:

`� r > a and `� jzj ; (1)

where z is the longitudinal omponent of the vetor position of q. We utilize

throughout this paper ylindrial oordinates (r; '; z) with r =

p

x

2

+ y

2

and

unit vetors r̂, '̂ and ẑ.

This wire must be losed somewhere. The alulations presented here with

this approximation should be valid for the iruit of Figure 4 (square iruit of

side ` with a wire of radius a � `, with a point harge lose to the middle of

one of its sides and far from the battery). That is, the three other sides will not

ontribute signi�antly to the potential and �eld near the enter of the fourth

side. Alternatively, it should also give approximate results for a irular loop of

larger radius R = `=2� and smaller radius a� R (a ring) if the point harge is

at a distane R + r to the enter of the wire, suh that a < r � R. It might

even be utilized as a �rst gross approximation for the fore on the point harge

of Figure 1 onsidering a generi iruit of large length and small urvatures

(that is, with radii of urvature muh larger than the diameter of the wire and

also muh larger than the distane of the point harge to the wire).

We onsider separetely three omponents of the fore exerted by the wire

on q: That due to the harges indued in the wire by q, that due to the sur-

fae harges whih exist in resistive urrent arrying wires (proportional to the

urrent or to the drifting veloity v

d

of the eletrons) and that due to v

2

d

=

2

.

3 Indution Fore

Consider a neutral ondutor arrying no urrent. If we put a point partile q

nearby, it will indue a distribution of harges in the ondutor suh that the

potential anywhere inside it will reah a onstant value in equilibrium. The net

e�et of these indued harges is an attration between q and the ondutor.

We an estimate its value for the situation of Figure 3 in the ase `� r � a

without any alulation. This situation is equivalent to the fore between a

point harge at a distane r to an in�nite onduting line. As there is only one

harge and one distane involved in this problem, dimensional analysis requires

the fore between the point harge and the in�nite onduting line to be given

by
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~

F

0

= ��

L

q

2

4�"

o

r̂

r

2

; 0 < �

L

< 1 (2)

where r̂ is the unit vetor pointing away from the line to the harge q and �

L

is a positive dimensionless onstant of the order of unity. It would be one if

all the indued harge were loated at the origin, that is, at a distane r to q.

As part of the indued harge will be distributed along the wire with a linear

harge density �(z), whih means at a distane to q greater than r, we onlude

that �

L

must be smaller than one. Although we don't know the exat value of

�

L

, we know the order of magnitude of the indution fore.

An analogous analysis might be performed for the indution fore between

a point harge q at a distane r from an in�nite plane. As before, there is only

one harge and one distane involved in this problem, so that the fore must be

given by Eq. (2) with a dimensionless onstant �

P

replaing �

L

(as we now have

an in�nite plane instead of an in�nite line, the dimensionless onstant does not

need to be the same). But in this ase we an easily solve exatly the problem

by the method of images. The �nal solution yields in this ase an image harge

�q at the other side of the plane, also at a distane r to it. As the distane

between q and �q is 2r, this yields �

P

= 1=4. This shows that our reasoning

without performing any alulation was orret.

Suppose now we have the ase of Figure 3, but now with r being of the same

order of magnitude as a. As there is only one harge and two distanes involved

in the problem (onsidering ` going to in�nity), the fore must be given by

~

F

0

= �h(r; a)q

2

r̂=4�"

o

. Here h(r; a) is a funtion of r and a suh that if r � a

it will be proportional to 1=r

2

and if r ! a it diverges to in�nity as this is

the general behaviour of indution fores (if the harge approahes an in�nite

plane or the surfae of a onduting sphere the indution fore always goes to

in�nity).

We have then estimated the value of the indution fore in the ase of �gure

3, for `� r � a, as given by Eq. (2). This estimative is ours, as we were unable

to loate it anywhere in the literature. This fore will be there irrespetive of

whether or not there is urrent in the wire. For an order of magnitude, suppose

a harge generated by frition of 10

�9

C, at a distane of 10m from a long thin

wire. The indution fore in this ase should be of the order of 10

�6

N .

In the sequene we onsider the inuene of the urrent on the net fore

exerted by the wire on q.

4 Fore Proportional to the Current

When a urrent ows in a resistive wire onneted to a battery, the eletri

�eld driving the ondution eletrons against the resistive frition of the wire

is due to free harges distributed along the surfae of the wire. We represent

this surfae harge density by �

f

(a; '; z). The battery reates and maintains

this distribution of harges but does not generate the eletri �eld along the

iruit. This was �rst pointed out by Kirhho�: [15℄, [16℄ and [17℄, with English
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translation in [18℄. These surfae harges generate not only the eletri �eld

inside the wire but also an eletri �eld outside it.

However, most authors are not aware of these surfae harges and related

eletri �eld outside the wire, as we an see from the quotations above. Fortu-

nately this subjet has been onsidered again in some important works: Heald,

Je�menko, GriÆths, Jakson and those quoted by them (see [19℄, [2, pages 299-

319 and 509-511℄, [20, pages 279 and 336℄ and [5℄). As none of them onsidered

the geometry of Figure 3, we deided to analyse it here.

Our approah in this paper is the following: We onsider the ylindrial

wire arrying the onstant urrent I and alulate the potential �

1

and eletri

�eld

~

E

1

inside and outside the wire due to these surfae harges in the absene

of the test harge q. When we put the test harge at a distane r from the

wire the fore on it due to the surfae harges will be then given by

~

F

1

= q

~

E

1

,

supposing that it is small enough suh that it does not disturb the urrent nor

the wire (exept from the indution harges already onsidered above). We

begin alulating the potential due to the surfae harges.

As there is a onstant urrent in the wire, the eletri �eld inside it and

driving the urrent must be onstant over the ross setion of the wire, negleting

the small radial Hall e�et inside the wire due to the poloidal magneti �eld

generated by the urrent. This means that the potential and surfae harge

distribution must be a linear funtion of z, [21℄. Due to the axial symmetry

of the wire it annot depend on the poloidal angle either. This means that

�

f

(a; '; z) = �

A

z=` + �

B

, where �

A

and �

B

are onstants. Due to this axial

symmetry we an alulate � at ' = 0 and then generalize the solution to all

'. The potential inside or outside the wire is then given by

�

1

(r; z) =

1

4�"

o

Z

2�

'

2

=0

Z

`=2

z

2

=�`=2

�

f

ad'

2

dz

2

p

r

2

+ a

2

� 2ra os'

2

+ (z

2

� z)

2

=

1

4�"

o

Z

2�

'

2

=0

Z

`=2

z

2

=�`=2

(�

A

z

2

=`+ �

B

)d'

2

dz

2

q

�

1� 2

r

a

os'

2

+

r

2

a

2

�

+

�

z

2

�z

a

�

2

: (3)

De�ning the dimensionless variables s

2

� 1�2(r=a) os'

2

+(r

2

=a

2

) and u �

(z

2

� z)=a we are then led to: �

1

(r; z) = (a=4�"

o

)[(�

A

a=`)I

1

+(�

A

z=`+�

B

)I

2

℄,

where

I

1

�

Z

2�

'

2

=0

Z

`=2a�z=a

u=�(`=2a+z=a)

u

d'

2

du

p

s

2

+ u

2

; (4)

and

I

2

�

Z

2�

'

2

=0

Z

`=2a�z=a

u=�(`=2a+z=a)

d'

2

du

p

s

2

+ u

2

: (5)

These integrals an be solved with the approximation (1), where we now

allow r to be smaller or greater than a, yielding (see Appendix):
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�

1

(r; '; z) =

a�

f

(z)

"

o

ln

`

a

=

a(�

A

z=`+ �

B

)

"

o

ln

`

a

if r � a ; (6)

�

1

(r; '; z) =

a�

f

(z)

"

o

ln

`

r

=

a(�

A

z=`+ �

B

)

"

o

ln

`

r

if r � a : (7)

The oulombian fore on a test harge q loated at (r; '; z) is then given by:

(with

~

F

1

= �qr�

1

):

~

F

1

= �

qa

"

o

��

f

(z)

�z

�

ln

`

a

�

ẑ = �

qa�

A

`"

o

�

ln

`

a

�

ẑ if r < a ; (8)

~

F

1

=

qa�

f

(z)

"

o

r̂

r

�

qa

"

o

��

f

(z)

�z

�

ln

`

r

�

ẑ =

=

qa(�

A

z=`+ �

B

)

"

o

r̂

r

�

qa�

A

`"

o

�

ln

`

r

�

ẑ if r � a : (9)

We an relate these expressions with the urrent I owing in the wire. From

Figure 3 and the fat that �

1

is a linear funtion of z yields:

�

1

(r � a; z) =

�

R

� �

L

`

z +

�

R

+ �

L

2

: (10)

Equating this with Eq. (6) and utilizing Ohm's law �

L

��

R

= RI , where R =

`=g�a

2

is the resistane of the wire, with g being its ondutivity, yields �

A

=

�R"

o

I=a ln(`=a) and �

B

= "

o

(�

R

+ �

L

)=2a ln(`=a) = "

o

(RI + 2�

R

)=2a ln(`=a).

The density of free harges along the surfae of the wire an then be written as:

�

f

(a; '; z) = �

R"

o

I

a ln(`=a)

z +

"

o

(�

R

+ �

L

)

2a ln(`=a)

: (11)

This means that the potential and the fore on the test harge q are given by:

�

1

= �

RI

`

z +

�

R

+ �

L

2

if r � a ; (12)

�

1

= �

RI

`

ln(`=r)

ln(`=a)

z +

�

R

+ �

L

2

ln(`=r)

ln(`=a)

if r � a ; (13)

~

F

1

= q

RI

`

ẑ if r < a ; (14)

~

F

1

= q

�

�1

ln(`=a)

�

RI

`

z �

RI + 2�

R

2

�

r̂

r

+

RI

`

ln(`=r)

ln(`=a)

ẑ

�

if r � a : (15)

Now that we have obtained the potential outside the wire we might also

revert the argument. That is, we might solve Laplae's equation r

2

� = 0

9



in ylindrial oordinates inside and outside the wire (for a � r � `) by the

method of separation of variables imposing the following boundary onditions:

�nite �(0; '; z), �(a; '; z) = (�

R

� �

L

)z=` + (�

R

+ �

L

)=2 and �(`; '; z) = 0.

This last ondition is not a trivial one and was obtained only after we found the

solution in the order presented in this work. The usual boundary ondition that

the potential goes to zero at in�nity does not work in the ase of a long ylinder

arrying a d urrent. By this reverse method we obtain the potential inside

and outside the wire, then the eletri �eld by

~

E = �r� and lastly the surfae

harge density by "

o

times the normal omponent of the eletri �eld outside

the wire in the limit in whih r ! a. In this way we heked our alulations.

If we put �

L

= �

R

= �

o

or I = 0 in Eqs. (12) to (15) we reover the

eletrostati solution (long wire arried uniformly with a onstant harge density

�

B

), namely:

�(r � a) = �

o

=

a�

B

"

o

ln

`

a

; (16)

�(r � a) = �

o

ln(`=r)

ln(`=a)

=

a�

B

"

o

ln

`

r

; (17)

~

F

1

(r < a) = 0 ; (18)

~

F

1

(r � a) =

q�

o

ln(`=a)

r̂

r

=

qa�

B

"

o

r̂

r

: (19)

We an also obtain the apaitane per unit length of this long and thin ylin-

drial wire as C=` = (Q

B

=�(a))=` = 2�"

o

= ln(`=a).

This is the �rst time in the literature the potentials (7) or (13) and the fores

(9) or (15) outside a ylindrial wire are alulated. Kirhho� had obtained

Eq. (6) but did not onsider the �elds and fores outside the wire (see [16℄,

espeially the last equation of page 400). Reently Coombes and Laue analysed

the same problem, [22℄. Their paper is �ne but they arrived at Eqs. (6) and

(8) believing they would be valid inside and outside the wire. This is evident

from their statements in the paragraph below their Eq. (8), our emphasis:

\Thus we obtain to the questions asked at the beginning the surprising answer

that an in�nitely long wire in whih a steady urrent is owing has a vanishing

surfae harge density z=R = [�E"

o

=R ln(L=R)℄z and a uniform eletri �eld

~

E = �r� = �(="

o

)(lnL=R)ẑ both inside and outside the wire." The

reason for the disrepany an be seen in their Eq. (A7) whih is orret and

represents the potential, namely (replaing their L, R and  by our equivalent

`, a and �

A

, remembering that they are onsidering the partiular ase in whih

�

B

= 0):

�(r; z) =

�

A

z

"

o

�

ln

`

a

+

1

4�

Z

2�

0

d� ln

4

sin

2

� + (os � � r=a)

2

� 1

�

: (20)
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Just after this equation they wrote: \For suÆiently large `, Eq. (A7) [this

equation℄ is dominated by the �rst term on the right-hand side, and we obtain

formula �(r; z) = (�

A

="

o

)(ln `=a)z, with ` � a, ` � z; r." Their only mistake

was to disregard the integral of Eq. (20). Its orret value an be obtained

utilizing Eqs. (33) and (34) of our Appendix. If they had taken this into

aount they would have arrived at our Eqs. (6) to (9).

These expressions show that this fore is proportional to the urrent in the

wire. Moreover, there will be not only a tangential omponent of the eletri

�eld outside the wire but also a radial one. In the symmetri ase in whih

�

L

= ��

R

= RI=2 the ratio of the radial omponent of

~

F

1

to the tangential

omponent is given by z=(r ln(`=r)). For a wire of 1m length and z = r = 10m

we have this ratio as 0:4, indiating that these two omponents are of the same

order of magnitude.

Shae�er (referene in [5℄), Sommerfeld, Marus, GriÆths and Jakson on-

sidered the eletri �eld due to a long oaxial able of length ` arrying a on-

stant urrent along the inner wire of resistivity g and radius a, returning along

a hollow ylinder with inner radius b suh that `� b > a: [23, pp. 125-130, Eq.

(8)℄, [24℄, [20, pp. 336-337℄ and [5, Eq. (A17)℄. In Sommerfeld's ase the return

ondutor had �nite ondutivity and an external radius tending to in�nity,

while in Marus, GriÆths and Jakson's ase the return ondutor was a ylin-

drial shell of radius b and zero resistivity. For all these authors the potential

and eletri �eld went to zero for r > b. Their solution in the region a < r < b

and onsidering the zero of the potential at z = 0 is given by:

�

oaxial

= �

I

g�a

2

ln(b=r)

ln(b=a)

z : (21)

We now ompare this solution with our Eq. (13) in this partiular ase

in whih �

R

+ �

L

= 0. The main di�erene is the appearane in our ase of

ln(`=r)= ln(`=a) instead of ln(b=r)= ln(b=a). That is, while the potential and

eletri �eld outside the resistive urrent arrying wire (and also the fore ex-

erted by this wire on a point harge) depend on the length of the long wire, the

same does not happen in the interior region of the oaxial able near z = 0. If

we keep a, g and I onstant (and also b for the oaxial able) and double the

length of the wire (oaxial able), the potential outside the wire will hange,

but not inside the oaxial able. The two solutions will only oinide if we �x

b = `. As this is not the general ase, the two solutions are not equivalent to

one another in all situations.

In the sequene we onsider a fore due to the square of the urrent.

5 Fore Proportional to the Square of the Cur-

rent

Up to now we have only onsidered the indution fore and the fore of the sur-

fae harges on the stationary test harge. We have not yet taken into aount

11



the fore of the stationary lattie and mobile ondution eletrons on the sta-

tionary test harge. We onsider it here in this Setion, analysing two di�erent

theoretial models. We �rst onsider Lorentz's law or Li�enard-Shwarzshild's

fore. In this ase there are also omponents of the fore exerted by a harge

q

2

belonging to the urrent arrying iruit on q whih depend on the square

of the veloity of q

2

, v

2

d

, and on its aeleration. If we have a onstant urrent,

the aeleration of q

2

will be its entripetal aeleration due to any urvature in

the wire, proportional to v

2

d

=r



, where r



is the radius of urvature of the wire

in eah point. This might lead to a fore proportional to v

2

d

or to I

2

. However,

it has been shown that if we have a losed iruit arrying a onstant urrent,

there is no net e�et of the sum of all these terms on a stationary harge outside

the wire. For a proof see [4, page 697, exerise 14.13℄ or [6℄.

We now onsider Weber's eletrodynamis, [9℄. As stated above, we are ne-

gleting the small radial Hall e�et inside the wire due to the poloidal magneti

�eld generated by the urrent. This means that the interior of the wire an

be onsidered essentially neutral. Despite this fat Weber's eletrodynamis

predits a fore exerted by this neutral part of the wire in a stationary harge

nearby. The reason for this e�et is that the fore exerted by the mobile ele-

trons on the stationary test harge is di�erent from the fore exerted by the

stationary positive ions of the lattie on the test harge. One of us have already

performed these alulations in related situations, see for instane [9, Setion

6.6, pages 161-168℄, so that we present here only the �nal result. One more

we assume (1). For the situation of Figure 3, with a uniform urrent density

~

J = (I=�a

2

)ẑ, the fore on the test harge is given by:

~

F

2

= �q

Iv

d

4�"

o



2

r̂

r

= �

�

o

4�

2

qI

2

a

2

en

r̂

r

if r > a; (22)

where v

d

is the drifting veloity of the eletrons. We also utilized �

o

= 4� �

10

�7

kgmC

�2

, 

2

= 1="

o

�

o

and v

d

= I=�a

2

en, where e = 1:6� 10

�19

C is the

elementary harge and n is the number of free eletrons per unit volume.

This fore is proportional to the square of the urrent. The eletri �eld

~

E

2

=

~

F

2

=q points towards the urrent, as if the wire had beome negatively

harged. Sometimes this seond order �eld is alled motional eletri �eld.

If we have a bent wire arrying a onstant urrent, Weber's eletrodynamis

predits another omponent of the fore exerted by this urrent on a stationary

harge outside it, proportional to the aeleration of the ondution eletrons.

As we are supposing a onstant urrent, the relevant aeleration here is the

entripetal one proportional to v

2

d

=r



, where r



is the radius of urvature of the

wire at that loation. This means that also this omponent of the fore will be

proportional to v

2

d

or to I

2

. The order of magnitude is the same as the previous

one.

12



6 Radial Hall E�et

Another simple question whih might be asked is the following: Is a stationary

resistive wire arrying a onstant urrent eletrially neutral in its interior and

along its surfae?

Most authors quoted in the Introdution would answer positively to this

question as this was their reason for believing this wire would not generate

any eletri �eld outside itself. However, we already showed that there will

be a longitudinal distribution of surfae harges whih will give rise to the

longitudinal eletri �eld inside the wire and also to an eletri �eld outside it.

Here we show that there will also be a radial eletri �eld inside the wire due to

the fat that its interior is negatively harged. As we saw in the Introdution,

Reitz and Milford rejeted expliitly this harge. But they were not alone in

this. See, for instane, GriÆths statements in [20, p. 273℄: \Within a material

of uniform ondutivity, r � E = (r � J)=� = 0 for steady urrents (equation

r � J = 0), and therefore the harge density is zero. Any unbalaned harge

resides on the surfae."

We here onsider the radial Hall e�et due to the poloidal magneti �eld

inside the wire. As is usually onsidered, [12, p. 90℄, we will suppose the onstant

total urrent I to ow uniformly over the ross setion of the ylindrial wire

with a urrent density J = I=�a

2

. With the magneti iruital law

H

C

~

B � d

~

` =

�

o

I

C

, where C is the iruit of integration and I

C

is the urrent passing through

the surfae enlosed by C, we obtain that the magneti �eld inside and outside

the wire is given by:

~

B(r � a) =

�

o

Ir

2�a

2

'̂ ; (23)

~

B(r � a) =

�

o

I

2�r

'̂ : (24)

The magneti fore on a ondution eletron of harge q = �e inside the

wire, at a distane r < a from the enter and moving with drifting veloity

~v = �jv

d

jẑ is given by:

~

F = q~v �

~

B = �

j�

o

ev

d

Irj

2�a

2

r̂ ; (25)

This radial fore pointing inwards will reate a onentration of negative

harges in the body of the ondutor. In equilibrium there will be a radial fore

generated by these harges whih will balane the magneti fore: qE = qvB.

That is, there will be inside the wire, beyond the longitudinal eletri �eld E

1

driving the urrent, a radial eletri �eld pointing inwards given by:

~

E

r

(r � a) = �

j�

o

v

d

Irj

2�a

2

r̂ : (26)

The longitudinal eletri �eld inside the wire driving the urrent is given by

E

1

= RI=`. In order to ompare it with the magnitude of the radial eletri

13



�eld E

r

due to the Hall e�et we onsider the maximum value of this last �eld

very lose to the surfae of the wire, at r ! a: E

r

! j�

o

v

d

I j=2�a. This means

that (with R = `=g�a

2

):

jE

r

j

jE

1

j

=

j�

o

v

d

gaj

2

: (27)

For a typial opper wire (v

d

� 4�10

�3

ms

�1

and g = 5:7�10

7


m) with 1mm

diameter this yields: E

r

=E

1

� 7�10

�5

. This shows that the radial eletri �eld

is negligible ompared to the longitudinal one.

By Gauss's law r � E = �="

o

we obtain that inside the wire there will be a

onstant negative harge density �

�

given by: �

�

= �jIv

d

j=�a

2



2

. The total

harge inside the wire is ompensated by a positive harge spread over the

surfae of the wire with a onstant surfae density �

+

= j�

�

a=2j = jIv

d

j=2�a

2

.

That is, the negative harge inside the wire in a small segment of length dz,

�

�

�a

2

dz, is equal and opposite to the positive harge along its surfae, �

+

2�adz.

This means that the radial Hall e�et will not generate any eletri �eld outside

the wire, only inside it. For this reason it is not relevant to the experiments

disussed here. In any event it is important to larify this e�et.

In our analysis of the radial Hall e�et we are not onsidering the motional

eletri �eld disussed above as it is not yet ompletely lear if it exists or not.

In onlusion we may say that the total surfae harge density along the

wire, not taking into aount the motional eletri �eld and the indution of

harges in the ondutor due to external harges, is given by the onstant �

+

added to the �

f

given by Eq. (11).

We now ompare all three omponents of the eletri �eld outside the wire

with one another and disuss an important experiment related to this subjet.

7 Disussion and Conlusions

Although many authors forget about the indution fore when dealing with a

urrent arrying wire interating with an external harge, there is no doubt it

exists. Comparing the three fores above, it is the only one whih diverges as

we approah the wire. If we are far away from the wire it falls as 1=r

2

, while

the radial omponent of F

1

and F

2

fall as 1=r.

We now ompare the three omponents of this fore in a partiular example:

A opper wire (g = 5:7 � 10

7


m, n = 8:5 � 10

28

m

�3

) with a length ` = 1m

and diameter 1mm (a = 5 � 10

�4

m). The resistane of the wire is then given

by R = `=g�a

2

= 0:022
. With a potential di�erene between its extremities

of �

L

� �

R

= 1V this yields a urrent of I = 44; 8A. The drifting veloity in

this ase amounts to v

d

= I=�a

2

en = 4� 10

�3

ms

�1

. We will suppose moreover

the symmetrial ase in whih �

R

= ��

L

= �0:5V . The test harge will be a

typial one generated by frition, q = 10

�9

C, at a distane of r = 10m = 0:1m

to the wire. The magnitude of eah one of the fores and their ratios are then

given by (onsidering only the radial omponent of

~

F

1

and z = r = 10m): F

o

�

10

�6

N , F

1

� 10

�10

N , F

2

� 10

�16

N (in terms of eletri �eld: E

o

� 10

3

N=C,
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E

1

� 10

�1

N=C and E

2

� 10

�7

N=C), so that F

o

=F

1

� 10

4

, F

o

=F

2

� 10

10

and

F

1

=F

2

� 10

6

. This means that in this ase F

o

� F

1

� F

2

or E

o

� E

1

� E

2

.

Despite this fat the fore

~

F

1

has already been observed in the laboratory

by Je�menko. He had an ingenious idea of utilizing grass seeds as test partiles

near urrent arrying wires. They are eletrially neutral in normal state, so

that they do not indue any harges in the ondutor. On the other hand, they

are easily polarized in the presene of an eletri �eld, aligning themselves with

it. The lines of eletri �eld are then observed in analogy with iron �llings

generating the lines of magneti �eld. What we onsider here is the result of

his experiment as presented in Plate 6 of [2℄ (see also his Setion 9-6: Eletri

�eld outside a urrent-arrying ondutor, pages 299-305) and Figure 1 of [25℄.

The urrent was owing in a iruit like that of our Figure 3, with symmetrial

potentials: �

R

= ��

L

. He performed the experiment but did not make the

alulations for this ase. These alulations have been presented here. In order

to ompare our results with his experiments, we need to obtain the lines of

eletri �eld. We obtain this in the plane xz (y = 0). Any plane ontaining the

z axis will yield a similar solution. We are looking for a funtion �(r; z) suh

that

r�(r; z) � r�(r; z) = 0 : (28)

For r < a we have � as a linear funtion of z, suh that � an be found

proportional to r. We write it as �(r < a; z) = �A`r, with A as a onstant.

The equipotential lines �(r; z) = onstant an be written as z

1

(r) = K

1

, where

K

1

is a onstant (for eah onstant we have a di�erent equipotential line).

Analogously the lines of eletri fore will be given by z

2

(r) = K

2

, where K

2

is

another onstant (for eah K

2

we have a di�erent line of eletri fore). From

Eq. (28) we get dz

2

=dr = �1=(dz

1

=dr) = (��=�z)=(��=�r). Integrating this

equation we an obtain �(r; z). With Eq. (7) this yields the solution for r > a.

We are then led to:

�(r; z) = �A`r if r < a ; (29)

�(r; z) = Ar

2

ln

r

`

�A

r

2

2

�Az

2

� 2Bz if r > a ; (30)

where A = (�

R

��

L

)=` = �I=�ga

2

and B = (�

R

+�

L

)=2. From these equations

we an easily verify Eq. (28).

In order to ompare these results with Je�menko's experiment we need es-

sentially the value of `=a. From his plate 6 we get `=a � 40=3. The plot of the

equipotentials between z = �`=2 and `=2 given by Eqs. (6) and (7) is given

in Figure 5. A plot of the lines of eletri fore given by Eqs. (29) and (30) is

given in Figure 6. This is extremely similar to Je�menko's experiment (Plate 6

of [2℄ or Figure 1 of [25℄), showing the orretness of our approah.

The example disussed here is important to show learly the existene of the

eletri �eld outside a resistive wire arrying a onstant urrent. It does not

depend on a variable urrent (longitudinal aeleration of the eletrons along
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the wire) nor on a entripetal aeleration of the eletrons (due to any urvature

in the wire). That is, this eletri �eld will be there even if there were not any

aeleration of the ondution eletrons. In the ase of a oaxial able disussed

by Sommerfeld and many others (see above), they have found an eletri �eld

only in the region between the ables, but not outside the return ondutor.

The reason for this is that they were onsidering a return ondutor of in�nite

area (Sommerfeld) or of zero resistivity (Marus, GriÆths and Jakson). For

this reason it may not have been lear to many people that usually any urrent

arrying resistive wire should generate an eletri �eld outside it. We hope the

alulations presented in this paper, oupled with Je�menko's experiments, will

make people aware of this eletri �eld.

As regards those who onsider magnetism as a relativisti e�et, we have

shown here that a resistive urrent arrying wire generates not only a magneti

�eld but also an eletri �eld. As Jakson has shown, it is impossible to derive

magneti �elds from Coulomb's law and the kinematis of speial relativity

without additional assumptions, [4, pp. 578-581℄ and [26℄.

It should also be mentioned that the magneti �eld in this ase is the usual

poloidal �eld in the diretion '̂, proportional to r for r � a and to 1=r for

r � a. It is orthogonal to

~

E

1

at all points in spae. This means that Poynting's

vetor

~

S =

~

E �

~

B=�

o

will follow the equipotential lines represented in Figure 5

when �

R

= ��

L

. This general behaviour of the lines of Poynting's vetor was

pointed out by Heald, [19℄. As we an see from Figure 5, just outside the wire

~

S is orthogonal to it only at z = 0. At all other points it is inlined relative

to the z axis, at an angle � with a tangent given by the ratio of the radial

and longitudinal omponents of

~

E

1

. As we have seen, just outside the wire this

is given by: tan � = z=(a ln(`=a)). Many textbooks only onsider an eletri

�eld outside the urrent arrying wire when disussing boundary onditions.

As the longitudinal omponent of

~

E is ontinuous at a boundary and must exist

inside a resistive wire arrying a urrent, it must also exist just outside the

wire. These authors then present Poynting's vetor pointing radially inwards

towards the wire (see, for instane, [27, pp. 180-181℄ and [10, p. 27-8℄). There

are two main things to omment here. In the �rst plae, these drawings and

statements suggest that this eletri �eld should exist only lose to the wire. In

the seond plae, they indiate that these authors are not aware of the surfae

harges generating the �eld. As we have seen, it is only at one point that

~

S will

be orthogonal to the wire just outside it. This point is an exeption and not

the rule. The rule is that there will be a radial omponent whih may be larger

than the longitudinal one, pointing towards the wire or away from it. One of

the e�ets of this radial omponent is that

~

S will usually be inlined just outside

the wire and not orthogonal to it.

The veri�ation of the existene or not of the seond order eletri �eld is

muh more diÆult due to its small order of magnitude (as ompared with E

o

and E

1

). However, if the resistane of the wire goes to zero, �

A

also goes to

zero. This means that in a superondutor there should not be the external

eletri �eld proportional to the urrent. Avoiding also the indution fore,
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there remains in this ase only the seond order eletri �eld. This was the

approah utilized by Edwards, Kenyon and Lemon in their experiment, [6℄,

whih is the best one known to us analysing this e�et. They found an eletri

�eld proportional to I

2

, independent of the diretion of the urrent, pointing

towards the wire and with an order of magnitude ompatible with that predited

by Weber's law. Despite this positive evidene more researh is neessary before

a �nal onlusion may be drawn related to this seond order eletri �eld, [9,

Setion 6.6, pages 161-168℄.

As we have seen, usually F

0

� F

1

� F

2

. Moreover, F

0

and F

1

have been

shown to exist experimentally. We an then disregard the ritiisms of Maxwell,

Whittaker and Skinner presented above against Weber's eletrodynamis. That

is, there is a fore between the wire and q proportional to the urrent I , ontrary

to their statements. It is muh more diÆult to know if there is or not a seond

order omponent of this fore proportional to v

2

d

=

2

. Only future experiments

taking all of these e�ets as F

0

and F

1

into aount an deide the matter in

this ase.

In onlusion we may say that despite the widespread belief that a stationary

resistive wire arrying a onstant urrent exerts no fore on a stationary harge,

there will ertainly be a omponent of this fore due to the indued harges

and another one proportional to the urrent in the wire, as omproved by these

alulations and Je�menko's experiment. The existene or not of a seond order

fore still needs to be on�rmed.
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Appendix

We now show how to alulate the integrals (4) and (5).

Applying approximation (1) in the limits of integration of I

1

and integrating

it in u yields a zero value (as it is an odd funtion integrated between symmetri

limits).

Integrating I

2

in u yields, applying (1) in its limits of integration:

I

2

=

Z

2�

0

d'

2

ln

p

s

2

+ (`=2a)

2

+ (`=2a)

p

s

2

+ (`=2a)

2

� (`=2a)

: (31)

One more with approximation (1) this an be written as
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I

2

=

Z

2�

0

d'

2

ln

(`=a)

2

s

2

= 4� ln

`

a

�

Z

2�

0

�

ln

�

1� 2

r

a

os'

2

+

r

2

a

2

��

d'

2

: (32)

This last integral is equal to zero if r � a. If r > a we an put r

2

=a

2

in

evidene and utilize one more this result to solve the last integral, namely:

Z

2�

0

�

ln

�

1� 2

r

a

os'

2

+

r

2

a

2

��

d'

2

= 0 if r � a ; (33)

Z

2�

0

�

ln

�

1� 2

r

a

os'

2

+

r

2

a

2

��

d'

2

= 2� ln

r

2

a

2

if r � a : (34)

This means that the �nal value of I

2

is found to be

I

2

= 4� ln

`

a

if r � a ; (35)

I

2

= 4� ln

`

r

if r � a : (36)
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Figure Captions

1. A resistive stationary wire onneted to a battery and arrying a d urrent

I , with a stationary point harge q nearby.

2. A onstant urrent ows in the losed wire and there is a point harge at

P .

3. A ylindrial wire of length ` and radius a� ` arrying a onstant urrent

I . A point harge q is at a distane r to the axis of the wire, with a

longitudinal omponent z relative to the enter of the wire.

4. Square iruit of side ` made of a ylindrial wire of radius a� `, with a

point harge lose to the middle of one of its sides.

5. Equipotentials as given by Eqs. (6) and (7) with Je�menko's value `=a �

40=3 and with �

B

= 0 (or �

R

= ��

L

).

6. Lines of eletri fore as given by Eqs. (29) and (30) with �

R

= ��

L

.
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