
Dynamic choice of the leaving–face criterion in

bound–constrained quadratic minimization ∗

Maria A. Diniz–Ehrhardt † Márcia A. Gomes–Ruggiero ‡
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Abstract

In this work we focus our attention on the quadratic subproblem of trust–region al-
gorithms for bound–constrained minimization, proposing and testing dynamic choices
for the parameter in charge of the decision of leaving or not the current face of the
feasible set. The practical consequences of an appropriate decision of such parameter
have shown to be crucial, particularly when dual degenerate and ill-conditioned prob-
lems are solved.
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1 Introduction

In a previous work [8] we compared the numerical performance of the software BOX-QUACAN
[13] with the package LANCELOT [7] for the solution of large–scale bound–constrained min-
imization problems:

Minimize f(x)
s.t. ℓ ≤ x ≤ u ,

(1)

where f : IRn → IR is differentiable on the feasible set and any component of the bounds
ℓ, u may be infinite. Both algorithms are based on the trust–region approach: at the j-th
iteration, a quadratic model for the decrease of the objective function is built around the
current point xj:

f(xj + s)− f(xj) ≈ qj(s) ≡
1

2
sTBjs+ gTj s (2)

where gj ≡ ∇f(xj), Bj ∈ IRn×n and Bj = BT
j .

Since the quadratic model (2) becomes less representative as the step s increases in
size, we can trust in approximating f(xj + s) − f(xj) by qj(s) in a neighborhood of xj,
that is, in the set

Ω = {s ∈ IRn | ℓ ≤ xj + s ≤ u, ‖s‖ ≤ ∆}

where ∆ > 0 and ‖ · ‖ is an arbitrary norm in IRn. Thus, an approximate minimizer ŝ of
qj(s) in the region Ω is a good candidate for step. In other words, xj + ŝ is accepted and
defined as xj+1 as long as there is a sufficient decrease from f(xj) to f(xj+ ŝ). Otherwise,
the step ŝ is rejected, the size of set Ω is decreased by reducing the trust–region radius
∆ and a new quadratic subproblem is defined. In the comparison made in [8] the norm
‖ · ‖ was the ℓ∞ norm so that the step ŝ remains bound constrained. BOX-QUACAN and
LANCELOT turned out to be competitive, with a superior performance of the former for
quadratic problems.

BOX-QUACAN requires Fortran routines for computing the objective function value, its
gradient, its Hessian times a vector and a driver for setting the data and the parameters.
LANCELOT demands the problem to be coded in SIF (Standard Input Format), so that
its interface generates the necessary Fortran routines. If the user is already familiar with
coding in SIF, both BOX-QUACAN and LANCELOT can be used. BOX-QUACAN and its interface
for decoding SIF are available under request to the authors.

The quadratic solver QUACAN [3, 13] was developed for dealing with the whole feasible
set and approximately solving the quadratic subproblem by combining conjugate gradi-
ents with projected gradients and a mild active set strategy. We observed that in a few
quadratic problems, the number of iterations of QUACAN was rather large, and we concluded
that this behavior was due to a specific parameter η ∈ (0, 1), set by the user, which defines
the leaving–face criterion. If η is close to 1, the current face is fully exploited and if η
is close to 0 the current face can be abandoned prematurely. Through some tests with
the fixed choices η ≡ 0.1 and η ≡ 0.9 we became aware of the potential improvement of
adopting a dynamic choice for the leaving face criterion.

In this work we propose two heuristics for deciding to stay in the current face or to
leave it. In both of them the decision is based on the values of the Euclidean norm of the
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projected gradient and its orthogonal components: the chopped and the internal gradient.
The chopped and internal gradients give measures of progress of the quadratic function
outside and inside the current face, respectively.

This paper is organized as follows: in Section 2 we summarize the comparative nu-
merical performance of BOX-QUACAN and LANCELOT [8]. In Section 3 we review the main
ingredients for bound-constrained quadratic minimization, including the statement of the
algorithm implemented in the solver QUACAN. Two heuristics for the leaving-face criterion
are described in Section 4. Numerical results are presented and analyzed in Section 5, in
which the two heuristics are compared with the performances of keeping η fixed at the
values 0.1 and 0.9 and also of solving the problems using LANCELOT. Finally, in Section 6
some conclusions and ideas for future research are presented.

2 Comparative numerical performance of BOX-QUACAN and

LANCELOT

In [8] the numerical performance of the algorithm BOX-QUACAN is compared with the pack-
age LANCELOT, developed by Conn, Gould and Toint [7]. BOX-QUACAN was put in a context
by the solution of a set of 220 problems of minimizing a general nonlinear function subject
to simple bounds. These problems were extracted from the CUTE collection [4], so that
specific features of both approaches could be compared and analyzed into the same envi-
ronment. Due to their trust–region nature, both algorithms have many similarities, but
no doubt the philosophy behind the quadratic solver is the main difference between them.
In fact, the two of them only require matrix–vector products for dealing with the box
constrained subproblems, but BOX-QUACAN was developed for exploiting the subproblems
to a great extent, dealing with the whole feasible set by combining conjugate gradients
(or another iterative solver [12]) with projected gradients and an active set strategy spe-
cially designed so that many constraints can be added or dropped in a single iteration. In
LANCELOT, on the other hand, conjugate gradients are applied just in a convenient portion
of the feasible set, defined by the generalized Cauchy point [7].

Figures 1 and 2 summarize the average computational effort of algorithms BOX-QUACAN
and LANCELOT. It is shown the geometric means of the number of iterations performed by
each quadratic solver (inner iterations) and of the gradient evaluations, which represent the
distinct points generated by each algorithm (outer iterations). Figure 1 stresses the value
of using a specially designed solver for simple bounded quadratic problems that exploits
the whole feasible set, instead of relying on the identification information provided by the
generalized Cauchy point. With a convenient setting of parameters, for quadratic prob-
lems, BOX-QUACAN performs a single outer iteration. Figure 2 points out that BOX-QUACAN
and LANCELOT are competitive as far as non-quadratic problems are concerned.

An interesting aspect of the quadratic solver QUACAN was detected through the real
bound-constrained quadratic problem ODNAMUR, with dimension 11130. To uniformize the
choices for the whole set of tests, we defined very loosely the parameter in charge of
deciding to abandon the current face, setting η ≡ 0.1, as suggested by the authors [3].
For problem ODNAMUR, however, such choice showed to be rather poor. Probably due to
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Inner iterations Gradient evaluations

Figure 1: Computational effort of quadratic problems

Inner iterations Gradient evaluations

Figure 2: Computational effort of non-quadratic problems
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dual degeneracy, for this problem the best policy was to investigate better the current
face before abandoning it, to avoid wastes in premature leaving and having to go back to
it. With η ≡ 0.9 the number of QUACAN iterations was reduced by 68%, a very expressive
improvement, as shown in Table 1.

Software Inner iterations Gradient evaluations

BOX-QUACAN (η = 0.1) 117902 1
BOX-QUACAN (η = 0.9) 37846 1

LANCELOT 51556 10

Table 1: The bound–constrained quadratic problem ODNAMUR

It is worth mentioning that BOX-QUACAN performed better than LANCELOT for the
quadratic problems (total of 53, 17 of which unconstrained and 36 simple–bounded) with
the loose choice η ≡ 0.1, being problem ODNAMUR the only exception. Anyway, the degen-
erated feature of this problem motivated us to investigate dynamic strategies for selecting
η, since the behavior of QUACAN has shown to be sensitive to the choice of this parameter.

3 Bound–constrained quadratic minimization

From now on we focus our attention on the problem

Minimize q(s) ≡ 1
2s

TBs+ gT s
s.t. ℓ ≤ s ≤ u ,

(3)

where B = BT ∈ IRn×n, g, ℓ, u ∈ IRn and in general n is large. There are efficient
techniques for solving (3) based on gradient projections [2] and conjugate gradients [15], in
which the feasible box is split into disjoint faces, the conjugate gradient method is applied
within the faces (where the problem is essentially unconstrained) and the polygonal path
obtained by the projections of the half-lines defined by suitable descent directions is used
for leaving the current face whenever necessary (see [11, 16]). The convergence results
for methods of this type are as follows: in [16] convergence is proved in the case of a
strictly convex quadratic and finite convergence is proved when the limit point is not
dual degenerate. The properties of the chopped gradient, introduced in [10], allowed the
authors to prove in [11] finite convergence in the convex case even for a singular Hessian
and in the presence of dual degeneracy. In [12], convergence is proved for (not necessarily
strictly) convex bound-constrained quadratic minimization, using the Barzilai-Borwein
method [1, 17] within the faces. In [3], where general quadratics are considered, the
bound of the norm of the quadratic Hessian, essential ingredient in the finite convergence
of degenerate problems, present in [11], is replaced by another condition which ensures
global convergence even in the presence of dual degeneracy and finite identification in the
nondegenerate case.

For completeness, in the following some definitions and notations will be introduced.
Denoting by Ω = {s ∈ IRn | ℓ ≤ s ≤ u} the feasible set of problem (3), an open face of Ω
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is a set FI ⊂ Ω such that I is a (possibly empty) subset of {1, 2, . . . , 2n} such that i and
n+ i cannot belong simultaneously to I for any i ∈ {1, 2, . . . , n} and such that

FI = {s ∈ Ω | si = ℓi if i ∈ I, si = ui if n+ i ∈ I, ℓi < si < ui otherwise}.

The closure of each open face will be denoted by F I , [FI ] is the smallest linear manifold
that contains FI , S(FI) is the parallel subspace to [FI ] and dim FI is the dimension of
S(FI). Clearly, dim FI = n− |I|, where |I| denotes the number of elements of the set I.

For each s ∈ Ω, the (negative) projected gradient gP (s) ∈ IRn is defined component-
wise by

gP (s)i =





0 if si = ℓi and ∂q
∂si

(s) > 0

0 if si = ui and ∂q
∂si

(s) < 0

− ∂q
∂si

(s) otherwise .

A necessary condition for s being a global solution of (3) (sufficient in the convex case) is
that gP (s) = 0.

For each s ∈ F I , the internal gradient gI(s) ∈ IRn and the chopped gradient gCI (s) ∈
IRn are defined componentwise, respectively, by

gI(s)i =

{
0 if i ∈ I or n+ i ∈ I

− ∂q
∂si

(s) otherwise

and

gCI (s)i =





0 if i 6∈ I or n+ i 6∈ I

0 if i ∈ I and ∂q
∂si

(s) > 0

0 if n+ i ∈ I and ∂q
∂si

(s) < 0

− ∂q
∂si

(s) otherwise .

It is worthwhile noticing that gI(s) is the orthogonal projection of −∇q(s) on S(FI) and
gP (s) = gI(s) + gCI (s).

The method for solving bound-constrained quadratic minimization which is consid-
ered in this paper, implemented in the subroutine QUACAN, is described in [3], together with
its convergence properties. In [9] a similar approach independently developed is presented.
Previous work with related ideas can be found in [10, 11, 12, 13, 16].

The algorithm implemented in the subroutine QUACAN produces a sequence {sk} of
approximations to the solution of (3) based on a partial minimization of the quadratic
in the different visited faces. As sk belongs to a face FI , an “internal algorithm” for
minimizing unconstrained quadratics is activated, working with the variables that are free
in FI . The main assumption on this internal algorithm is to be convergent in the sense
of either finding, in a finite number of steps, a point outside Ω (but, naturally, in [FI ]) or
that any limit point is stationary to

Minimize q(s)
s.t. s ∈ [FI ] .

(4)
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In other words, such algorithm either finds a stationary point which belongs to FI or
violates the bounds that are inactive in face FI . In order to verify at each step of the
internal algorithm how close the generated sequence is of a stationary point, the norms
of the chopped and of the projected gradients are compared. If the ratio between them(

‖gC
I
(s)‖

‖gP (s)‖

)
is large (the maximum value is 1), it means that the internal gradient is small

compared with the chopped gradient, and so it seems of little value to remain in the
current face, being worth leaving the active set FI . This change of face is made by means
of the chopped gradient direction. A sequence generated in this fashion has proved to be
convergent to a stationary point of (3) ([3]), solution of the problem in the convex case.

Since the internal algorithm plays an essential role in the performance of the method
used for solving (3), we state its main features. An algorithm for (4)(essentially an un-
constrained problem) has good properties for bound-constrained minimization whenever it
produces a sequence (maybe finite) z0, z1, z2, . . . ∈ [FI ], z0 ∈ FI , satisfying:

(a) If zν and zν+1 are defined then q(zν+1) < q(zν).

(b) If zν+1 is not defined (i.e. the sequence ends in zν) then either zν is a stationary
point of (4) or a direction d has been found such that limλ→∞ q(zν + λd) = −∞. In
this case, if zν + λd ∈ Ω for all λ, then (3) does not have a solution. Otherwise, if
zν + λd 6∈ Ω for large λ it is chosen a breakpoint λ and set zν+1 = zν + λd ∈ Ω such
that q(zν+1) < q(zν), and the sequence generated by the internal algorithm stops in
zν+1.

(c) If {zν} is an infinite sequence, then every limit point is stationary of (4). If it does
not have limit points (‖zν‖ → ∞) then limν→∞ q(zν) = −∞ holds.

Since the conjugate gradient method for minimizing unconstrained quadratics either
achieves a stationary point in a finite number of steps or generates a direction along of
which the quadratic goes to minus infinity, it satisfies (a), (b) or (c) above. In other
words, conjugate gradient has good properties for bound-constrained minimization and is
actually used in the implementation of subroutine QUACAN. In [3] other iterative methods
are studied that satisfy these properties under certain circumstances.

In the following the algorithm implemented in the subroutine QUACAN is stated. The
notation P [x, S] for the orthogonal projection of x on the set S is used. The computational
way of detecting that problem (3) does not have a solution is by means of a safeguard in
the number of iterations.

3.1 The algorithm for bound constrained quadratic minimization

Let η ∈ (0, 1) be given independently of k, let s0 ∈ Ω be an arbitrary initial point and let
I = I(s0) be such that s0 ∈ FI . Starting with k = 0 and ν = 0, the steps of the algorithm
are:

Step 1. (Stopping criterion)

If ‖gP (sk)‖ = 0, stop.
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Step 2. (Test if current face must be left or not)

If

‖gCI (sk)‖ > η‖gP (sk)‖ (5)

then dν = gCI (sk) and go to Step 4.

Step 3. (Direction dν is obtained by one CG-iteration applied to (4))

If ν = 0 then

dν = gI(sk)

else

obtain β from CG-algorithm

dν = gI(sk) + βdν−1.

Step 4. (Search along the polygonal path P [sk + λdν ,Ω], λ ≥ 0)

Obtain λ so that q(P [sk + λdν ,Ω]) < q(sk).

Step 5. (Prepare to the next iteration)

sk+1 = P [sk + λdν ,Ω]

If I(sk+1) 6= I(sk) then

I = I(sk+1)

ν = 0

else

ν = ν + 1.

Step 6. (Updates)

Set k = k + 1, update gP (sk), gI(sk), g
C
I (sk) and go to Step 1.

4 Heuristics for Leaving the Current Face

We observe that the test (5) of Step 2 of Algorithm 3.1, which decides between leaving
or not the current active set, strongly determines the behavior of the algorithm. In order
to improve the performance of the subroutine QUACAN, we consider convenient choices of
the parameter η, allowing its modification during the process of (approximately) solving
(3). We propose two heuristics for leaving the current face. Both of them are based on
the norms of the projected gradient and its orthogonal components: the chopped and the
internal gradients.
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4.1 Heuristic Hα

Our first idea is to perform the test (5) of Algorithm 3.1 defining η according to

η = 1−
(‖gP (sk)‖

‖gPT
‖

)α

, η ∈ [0.1, 0.9] , (6)

where α is a positive real number and gPT
is a typical value for gP (e.g. for a chosen

integer ν, gPT
≡ gP (sν) if k > ν and η ≡ 0.1 if k ≤ ν).

Figure 3: Heuristic Hα

Figure 3 shows the curves (6) in terms of ‖gP (sk)‖, with α = 0.5, α = 1.0 and α = 2.0.
Combining condition (5) with the formula (6) for η, we can see that using α = 0.5 the
tendency to abandon the face is more frequent than using α = 2.0.
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4.2 Piecewise linear heuristic

Another idea to decide between staying in the actual face or leaving it is based on the
evaluation of the following piecewise linear function:

p(t) =





0.90t if 0 ≤ t ≤ a
0.75t + 0.15a if a ≤ t ≤ b
0.50t + 0.25b+ 0.15a if b ≤ t ≤ c
0.10t + 0.40c + 0.25b+ 0.15a if t ≥ c ,

(7)

where a = K1‖gPT
‖, b = ‖gPT

‖ and c = K2‖gPT
‖. Taking t = ‖gP (sk)‖, the algorithm

leaves the face when ‖gCI (sk)‖ > p(t) and stays in it otherwise. The typical value gPT
can

be modified during the process at each ξ iterations, ξ > 0, whenever ‖gP (sk)‖ < ‖gPT
‖.

Figure 4: Piecewise linear heuristic

Figure 4 shows the piecewise linear function p(t) and the straight lines associated with
condition (5) for η = 0.9 (r1), 0.7 (r2), 0.5 (r3) and 0.1 (r4). In the figure it is specified
the region for which the algorithm leaves the current face or stays in it (above and below
the piecewise linear function p(t), respectively). It is worth noticing that the value of η
which characterizes a tie in the decision of leaving the current face or staying in it is 1/

√
2

and not 1/2. In fact, since Euclidean norms are being used, if ‖gCI (sk)‖ = ‖gI(sk)‖ then
‖gP (sk)‖ =

√
2‖gCI (sk)‖.

If we compare this piecewise linear heuristic with condition (5) for η ≡ 0.1, we can
observe that the former has a greater tendency to stay in the current face when ‖gP (sk)‖
is close to zero. On the other hand, comparing the heuristic with condition (5) using
η ≡ 0.9, we note that, if ‖gP (sk)‖ is still sufficiently large, the algorithm is going to leave
the face more frequently when the piecewise linear heuristic is used.
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5 Numerical Results

To analyze the performance of the subroutine QUACAN with the two heuristics proposed
in Section 4, we ran a set of 26 bound–constrained quadratic problems from the CUTE

collection. All of them have more than 1000 variables, since we are interested in large–scale
problems. They are distributed in three sets, according to their origin: academic problems
(that are proposed by researchers to test their algorithms); real problems (that result of
practical applications); and modelling problems (that are part of modelling exercises).

The tests were developed in Fortran 77 double precision with the -O compiler option
and run in a SUN Ultra 1 Creator. We used an interface [14] to run BOX-QUACAN with
CUTE.

In Tables 3–5 we report the number of iterations performed by QUACAN with the
different criteria to leave the current face of the feasible set. The first column has the
name of the problem, according to CUTE, and its dimension N . The second column shows
the total number of inner iterations performed by LANCELOT. The next columns show the
number of QUACAN iterations when we used: condition (5) with η ≡ 0.1 and η ≡ 0.9; the
heuristic Hα with ν = 5 and α = 1.0 (Hα1), α = 0.5 (Hα2) and α = 2.0 (Hα3); and
the piecewise linear heuristic, represented by PLH1 , PLH2 , PLH3 and PLH4. In this
latter heuristic we used gPT

= gP (s0) and the choices defined in Table 2.

K1 K2 ξ

PLH1 0.1 10 10

PLH2 0.1 10 50

PLH3 0.1 10 ∞
PLH4 0.01 10 10

Table 2: Parameter choices for the piecewise linear heuristics

With these different parameters we observe that in heuristics PLH2 and PLH3,
we kept gPT

≡ gP (s0) during many iterations; since ‖gP (s0)‖ is, in general, larger than
‖gP (sk)‖, for all k > 0, these heuristics give a tendency to the algorithm to remain in
some faces. On the other hand, with the heuristic PLH4, the tendency of the algorithm
is to abandon the current face more frequently. The heuristic PLH1 has an intermediate
behavior.

For all the problems, the sequence {sk} generated by QUACAN converged to a station-
ary point (we considered sk a stationary point if ‖gP (sk)‖ < 10−5), and for each problem
the same solution was obtained for each different heuristic, except Chenhark. For this
problem, using condition (5) with η ≡ 0.1, the subroutine QUACAN achieved a local mini-
mizer different from the one obtained with the other choices for η (the same obtained by
LANCELOT.
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PROBLEM

(N)
LANCELOT η ≡ 0.1 η ≡ 0.9 Hα1 Hα2 Hα3 PLH1 PLH2 PLH3 PLH4

BIGGSB1

(1000)
66509 3545 3610 3713 3745 3713 3978 3499 3609 4342

BQPGAUSS

(2003)
9511 7442 6363 6507 6252 6345 6038 6225 6350 6096

CHENHARK

(1000)
136276 3730 17 20 20 20 17 17 17 16

JNLBRNG1

(15625)
2556 1142 973 1354 1438 1188 1491 1262 1303 1408

JNLBRNG2

(15625)
2673 1106 935 888 837 917 872 904 935 771

JNLBRNGA

(15625)
2135 1179 483 631 732 613 453 454 485 436

JNLBRNGB

(15625)
4439 2661 3554 3724 3506 3752 2755 2749 2933 2742

NOBNDTOR

(14884)
1539 884 431 403 448 420 499 405 418 387

OBSTCLAE

(15625)
7608 759 386 602 648 602 590 398 386 614

OBSTCLAL

(15625)
805 305 251 252 298 273 261 254 247 270

OBSTCLBL

(15625)
3259 366 375 322 378 352 410 375 404 381

OBSTCLBM

(15625)
1483 242 199 204 202 225 212 181 198 205

OBSTCLBU

(15625)
1102 443 313 307 341 319 338 300 281 345

Table 3: Academic bound–constrained quadratic problems

PROBLEM

(N)
LANCELOT η ≡ 0.1 η ≡ 0.9 Hα1 Hα2 Hα3 PLH1 PLH2 PLH3 PLH4

TORSION1

(14884)
1347 803 363 386 377 367 380 355 335 399

TORSION2

(14884)
5053 765 435 565 654 603 495 510 571 415

TORSION3

(14884)
390 270 164 170 192 184 179 175 187 177

TORSION4

(14884)
5954 225 165 170 183 200 186 185 181 168

TORSION5

(14884)
114 84 76 83 71 82 78 76 76 73

TORSION6

(14884)
7355 78 79 77 76 83 78 79 79 78

TORSIONA

(14884)
1339 858 349 386 401 393 397 351 402 355

TORSIONB

(14884)
5000 588 443 573 548 436 528 465 474 479

TORSIONC

(14884)
390 273 183 181 176 164 184 196 193 168

TORSIOND

(14884)
9430 227 178 183 180 168 175 194 183 176

TORSIONE

(14884)
114 82 79 75 75 78 73 72 72 73

TORSIONF

(14884)
5343 90 79 73 77 75 78 73 73 73

Table 4: Modelling bound–constrained quadratic problems
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PROBLEM

(N)
LANCELOT η ≡ 0.1 η ≡ 0.9 Hα1 Hα2 Hα3 PLH1 PLH2 PLH3 PLH4

ODNAMUR

(11130)
51556 117902 37846 37846 37370 37846 38359 40530 37846 37964

Table 5: Real bound–constrained quadratic problems

Table 6 summarizes the geometric means of the number of QUACAN iterations. This
average was chosen to accomodate the very different and problem depending order of
magnitude of the results. The notation used for the different criteria is similar to the
previous tables. The numbers show that, except for LANCELOT and η ≡ 0.1, which demand
larger effort, all the other choices have practically similar performances.

LANCELOT η ≡ 0.1 η ≡ 0.9 Hα1 Hα2 Hα3 PLH1 PLH2 PLH3 PLH4

3014.088 660.604 386.261 412.926 425.807 415.268 409.709 392.873 394.526 392.260

Table 6: Geometric means of the number of QUACAN iterations

With the aim of analyzing the behavior of QUACAN with the different criteria for leaving
the current face, we had registered when the algorithm QUACAN performed the smallest and
the largest number of iterations with a certain criterion. Each column of Table 7 shows
the number of problems in which the smallest (second row) and the largest (third row)
number of QUACAN iterations were achieved with the criterion indicated at the first row of
the table. The last row represents the difference between second and third rows, that is,
the balance between the best and the worst performance of the algorithm QUACAN, with
each criterion, in terms of its number of iterations. In this table, the results of LANCELOT
and QUACAN with condition (5) and η ≡ 0.1 were not included because, in general, they
were the worst.

CRITERION η ≡ 0.9 Hα1 Hα2 Hα3 PLH1 PLH2 PLH3 PLH4

THE “BEST” 5 2 3 3 1 4 6 7
THE “WORST” 3 4 6 5 3 3 2 3

BALANCE +2 −2 −3 −2 −2 +1 +4 +4

Table 7: Performance of QUACAN for each heuristic

In Figure 5, for each problem, numbered according to their order of appearance in
Tables 3, 4 and 5, we plot the ratio between the number of QUACAN iterations of the best
heuristic and of the one that keeps η ≡ 0.9. For 20 out of the 26 solved problems (77%)
the ratio is smaller than one, mostly concentrated between 0.8 and 1.0. This shows the
value of investigating other heuristics instead of simply using η ≡ 0.9.

To illustrate part of the results of Table 7, in Figure 6 we plot the ratio between the
number of QUACAN iterations of PLH4 and η ≡ 0.9. For 14 out of the 26 solved problems
(54%) the ratio is smaller than one. For problems BIGGSB1, JNLBRBG1 and OBSTCLAE,
however, this ratio is around 1.2,1.4 and 1.6, respectively.

Problem ODNAMUR, which motivated this work, attained its best results with heuristic
Hα2, although not expressively better than using η ≡ 0.9. In Figure 7 the comparative
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Figure 5: Ratios between the number of QUACAN iterations of the best heuristic (smallest
value) and of η ≡ 0.9.

results among all heuristics can be visualized, by plotting the ratio between the number
of iterations of the quadratic solver with the strategy indicated and the one that keeps
η ≡ 0.9.

6 Final Remarks

Tables 3-7 and Figures 5-7 confirmed the results shown in the bar charts of Section 2,
that is, for any chosen criterion for leaving the face of the current feasible set, BOX-QUACAN
performs better than LANCELOT in the solution of bound-constrained quadratic problems.
This reinforces the value of exploiting the whole feasible set instead of resting upon the
face identified by the generalized Cauchy point. Another evident conclusion among the
proposed heuristics is that setting η ≡ 0.1, as suggested by the authors ([3]), is not a
recommended policy for quadratic problems. In fact, according to Tables 3-5, 21 out of 26
problems (i.e. 81%) had the worst performance with η ≡ 0.1 in terms of QUACAN iterations
compared with the other choices for η. Moreover, although by Table 6 the conservative
choice η ≡ 0.9 produces best average results, the analysis of the behavior of the heuristics
for each problem, as in Table 7, shows that it is worth investing in the family of piecewise
linear ones.

A natural next step for this work is to investigate the performance of the algorithm
BOX-QUACAN for minimizing a general nonlinear function with simple bounded variables
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Figure 6: Ratios between the number of QUACAN iterations of the heuristic PLH4 and
η ≡ 0.9.

when dynamic choices for the parameter η are allowed.
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