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Abstrat

In the present paper we study the dynamis of a lass of reversible vetor �elds having

eigenvalues (0; �i;��i) around their symmetri equilibria. We give a omplete list of all normal

forms for suh vetor �elds, their versal unfoldings, and the orresponding bifuration diagrams

of odimensional one ase. We also obtain some important onlusions on the existene of

homolini and heterolini orbits, invariant tori and symmetri periodi orbits.
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1 Introdution

In this paper we study a lass of time-reversible vetor �elds having the form

_x = F (x); x 2 R

n

; (1)

where F (x) is a smooth funtion, F (0) = 0. The vetor �eld (1) is alled time-reversible if there

is a germ of a smooth involution � : R

n

; 0! R

n

; 0 (� Æ � = id:) satisfying the relation

F (�(x)) = ��

0

(x) � F (x); x 2 R

n

; 0: (2)

In partiular, if the dimension of the �xed point set of �, S = Fixf�g, is equal to k, then (1) is

said to be of (n; k)-type reversibility. It is lear that 0 � k � n.

The paper is primarily devoted to studying topologial lassi�ation of (3; 1)-type time-reversible

vetor �elds around their symmetri singular points. A singular point of a reversible vetor �eld

is alled symmetri if it lies on the �xed point set S of the involution. In the present ase S an

be put into the form S = fx = 0; y = 0g, this is beause any involution of a (3,1)-type reversible

vetor �eld is smoothly onjugated to �

0

(x; y; z) = (�x;�y; z), aording to [11℄.

Sine the 1-jet of a �

0

�reversible vetor �eld takes the form (�

1

+ az)�=�x+ (�

2

+ bz)�=�y+

(x + dy)�=�z where �

1

; �

2

, a; b;  and d are parameters, it follows that generially (3,1)-type

reversible vetor �elds do not have symmetri singularities. Indeed one an see that the ourene

of a symmetri singularity is in itself a odimension one phenomenon. In this paper, we shall

restrit to those vetor �elds whih have a symmetri singularity at the origin, i.e., �

1

= �

2

= 0,

and onsider the orresponding unfolded systems (for a study of families of vetor �elds depending

on ertain parameters, see [7, 8℄). It is easy to see that the eigenvalues of these vetor �elds around

the origin are either (0;��) or (0;��i) where � is a nonzero real parameter. We here treat the

latter ase only, justifying the term Hopf-zero shown in the title of the paper .
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We notie that some study on bifuration and lassi�ation for general (not neessarily re-

versible) vetor �elds having eigenvalues (0;��i) was given in [7, 13℄ among others. Systems

having suh eigenvalues but in other settings, say, divergent free systems, also attrat attentions

(see [2℄). In partiular, one sees easily that divergent free systems in R

3

in generi ase are topo-

logially orbitally equivalent to one speial type of reversible system (see X

4

in equation (11)). In

[3℄ there is a brief exposition on the relations between various ategories.

Even within the world of reversible vetor �elds, various types of reversible systems have been

investigated, too. For example, in [15℄ all (2; 1)-type reversible systems are lassi�ed, in [4℄ (2; 0)-

type, and in [10℄ (3; 2)-type. In [6℄, there is an exploration on (3,1)-type reversible vetor �elds

having nilpotent linear part.

The basi motivation of the present paper omes from the study of the loal dynamis of

reversible vetor �elds around a ritial point with a pair of purely imaginary eigenvalues and a

zero one. Suh kind of vetor �elds are very often enountered in appliations. For detailed models

from physis and hydrodynamis, please refer to [12℄.

The methods used in the paper ome from [7, 5, 1, 9, 15, 10℄. More preisely, the methods

used in [15, 10℄ are to perform speial hanges of oordinates around the singularity. Thus the

analysis of the full system an be transfered to a study of the ontat between a general system

and a odimension one submanifold in R

n

. These tehniques an be generalized to the (n; n� 1)-

type. To make use of these tehniques to the (3,1)-type reversible vetor �elds, we perform the S

1

redution to hange the original vetor �eld to a vetor �eld in the ylindrial polar oordinates in

whih the azimuthal oordinate takes the form

_

� = �1. It follows that the topologial lassi�ation

of the original vetor �eld an be redued to the orresponding lassi�ation of the restrited planar

systems to whih the blow-up tehniques an be applied (beause the polar oordinates and the

azimuthal one are deoupled). Moreover, sine the redued vetor �eld is of the (2,1)-type, this

makes possible to apply the tehniques developed in [15℄.

On the other hand, sine the planar system satis�es an inequality of the Lojasiewiz type,

therefore by [5℄ the above 2-dimensional lassi�ation holds not only in C

0

equivalene but also

in C

0

onjugay ategory. We shall take this observation into aount when onsidering the 3-

dimensional pull-bak lassi�ation.

To obtain the topologial lassi�ation of the redued system and onsequently to reover the

dynamial properties of the original system, however, ertain diÆulties and obstales arise, either

due to the reversibility or due to the redution proedure. Firstly, the reversibility assumption

generally imposes some onstraints on the original system, that in turn results in a degeneray of

the redued planar vetor �eld. For example, the redued system typially exludes all the ubi

terms, that auses ertain diÆulties to obtain the redued normal forms and to perform \blowing-

ups". Another diÆulty is more mathematial. In studying the redued planar vetor �eld, we

have to take the reversibility of the original system into onsideration in order to determine the

dynamis patterns. For example, we have to fae the enter-fous problem in the unfolded planar

system (see for instane ase X

+

3;�;

1

4

in Figure 2), and in suh ases, we proeed as follows. Note

that a pair of singularities in the unfolded system in fat exatly give rise to a symmetri periodi

solution of the original system therefore the orbit annot be an attrator or a repellor. It follows

that the singularities must be of enter type. This implies that the original system has a family of

invariant tori. In a similar way, when the unfolded planar systems admit symmetri singularities

of saddle type, we an draw onlusion that the original systems have homolini orbits (see, for

instane, the ase X

�

3;+;

1

4

in Figure 2) or heterolini orbits (see, for instane, the ase X

�

5;+

in
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Figure 3). We emphasize that the phenomena desribed above are due to the reversibility of the

original system. In other words, a general vetor �eld (not neessarily reversible) with the same

linear approximation may not enjoy suh properties. Therefore the approah employed in the

paper is not a simple appliation of [7, 2℄.

We remark that there is still another obstale to go bak to the original system from the planar

one, i.e., the possible existene of at terms. Indeed, at terms generally may break the formal S

1

normal form symmetry. In this regard, in the present paper we shall depart from the normalized

3-dimensional vetor �elds, assuming that the objets under onsiderations take the normal forms

as spei�ed in the ontext.

The main results of this paper inlude a lassi�ation and a qualitative desription of symmetri

singularities ourring generially for 1-parameter families of (3,1)-type vetor �elds (the study on

2-parameter families of (3,1)-type vetor �elds are essentially related to the present ase, due to

the speial unfolded forms, see Appendix). From the lassi�ation one draws some interesting

onlusions on the existene of invariant tori, periodi orbits, homolini and heterolini orbits

for vetor �elds onsidered. We also give a omplete list of bifuration diagrams.

The rest of the paper is arranged as follows: In setion 2 we reall some preliminaries of

reversible vetor �elds. We also give the normal forms on whih our disussion relies. Setion 3

inludes the results of the generi ase and the odimensional one ase in the spae of all (3,1)-type

reversible vetor �elds having (0;��i) eigenvalues at the symmetri singular point. The main part

of this setion lies in the haraterization of the sets �

0

and �

1

(see Setion 3) and in showing how

useful a former result of Dumortier is (its appliation was not onsidered anywhere until now, as far

as we know). We point out that the study of the bifuration diagram of �

1

is hard and is essential,

sine the 2-parameter unfolding atually is nothing more than an addition of a onstant in the

�rst omponent of the vetor �elds. In setion 4 we shall give a brief disussion on the generiity

onditions as well as the proof of the results. Setion 5 ontains an analysis and a disussion on the

existene of invariant tori and homolini orbits, whereas the bifuration diagrams are illustrated

in the last part of the paper. We remark that in these diagrams the arrows indiating the diretion

of the ow of the vetor �elds do not neessarily reet the diretion of that of the original system.

This is beause in deriving the orbital C

0

normal form we may multiply by a nonvanishing negative

funtion. We also inlude an appendix ommenting on the unfoldings where the singular point

disappears.

Aknowledgement: We are grateful to the referees for helpful suggestions and omments.

The third author also gratefully aknowledges the �nanial support from Fapesp-Brazil and the

hospitality of IMECC-Uniamp during his stay there.

2 Preliminaries

In this setion we reall some basi properties of reversible vetor �elds and introdue ertain

notations and de�nitions. In this part we shall also normalize the objets under onsiderations to

some onvenient forms from whih our further study departs.

Let X be a �-reversible system on R

n

. Then the following statements hold.

� The phase portrait of X is symmetri with respet to S, the �xed point set of the involution.

� Any periodi orbit  is symmetri if and only if S

T

 6= 0. If (t) is a solution of X then so

is �(�t).
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� Any symmetri singular point or symmetri periodi orbit annot be an attrator or a repellor.

The topologial lassi�ation of the objets is based on the following de�nition.

De�nition 2.1 Two vetor �elds X and Y at their singularities are said to be C

0

onjugated in

neighborhoods of the singular points if there is a homeomorphism arrying one singular point into

the other and onjugating the loal phase ows of the systems at these singular points. They are

alled orbitally C

0

equivalent if there is a homeomorphism mapping the loal phase urves of X

into that of Y .

De�nition 2.2 We say that vetor �eld X de�ned on R

n

; 0 satis�es an inequality of Lojasiewiz

type if there exists an integer k > 0 and  > 0 suh that jjX(x)jj � jjxjj

k

for all x in a neighborhood

of the singular point.

The following statements an be dedued from [5℄.

Theorem 1 The singularity of any smooth vetor �eld de�ned on R

2

; 0 satisfying an inequality of

Lojasiewiz type and having a harateristi orbit is �nitely determined in C

0

onjugay. More-

over, if two �nitely determined singularities on the plane are C

0

-equivalent, then they are also C

0

onjugated.

In what follows we shall onsider the normalization of the (3,1)-type vetor �elds. Let X be a

(3,1)-type reversible vetor �eld having the eigenvalues (0;��i). Assume that it takes the form.

X :

8

<

:

_x = a

0

z + a

1

x

2

+ a

2

y

2

+ a

3

z

2

+ a

4

xy + � � �

_y = b

0

z + b

1

x

2

+ b

2

y

2

+ b

3

z

2

+ b

4

xy + � � �

_z = 

0

x+ d

0

y + 

1

xz + 

2

yz + � � � ;

(3)

where a

0

; b

0

; 

0

and d

0

are parameters satisfying a

0



0

+ b

0

d

0

< 0. It is easy to see that under a

linear hange of oordinates (together with a multipliation of a onstant, if neessary), one an

always redue the linear part of the vetor �eld (3) to the form

j

1

X = z

�

�y

� y

�

�z

;

therefore throughout the paper, we assume that the linear part of (3) has been normalized to the

above form.

System (3) an be put into resonant normal form (see [16℄). To realize so, we rewrite the

involution �

0

in the form �

0

(x; �) = (�x;�

�

�), where � = y+ iz. The resonant normal form means

that X takes the form

_x = f(x; r

2

);

_

� = �g(x; r

2

); (4)

where r

2

= �

�

�, f is a real funtion and g a funtion having omplex oeÆients. It is easy to see

that the reversibility of X leads to the following equalities:

f(x; r

2

) = f(�x; r

2

); �g(x; r

2

) = �

�

�g(�x; r

2

): (5)

4



It follows from these relations that f is even in x and g an be deomposed into the form g(x; r

2

) =

xg

1

(x

2

; r

2

) + i(�+ g

2

(x

2

; r

2

)), where � 6= 0. In other words, X has the following form.

8

<

:

_x = f(x

2

; r

2

)

_y = z(�+ g

2

(x

2

; r

2

)) + yxg

1

(x

2

; r

2

)

_z = �y(�+ g

2

(x

2

; r

2

)) + zxg

1

(x

2

; r

2

):

(6)

In the following we shall use the symbol -x to denote the spae the germs of C

r

vetor �elds

having the form (6) and endowed with the C

r

-topology, r > 3.

To further simplify (6), we �rst multiply it by a funtion h = 1=(�+g

2

(x

2

; r

2

)) and then put the

multiplied system into ylindrial polar system _x =

~

f(x

2

; r

2

), _r = xrg(x

2

; r

2

),

_

� = �1. Namely,

we have the following expansion.

X :

8

<

:

_x = Æ

1

x

2

+ Æ

2

r

2

+ Æ

3

x

4

+ Æ

4

r

4

+ �x

2

r

2

+ � � �

_r = xr + �x

3

r + xr

3

+ � � �

_

� = �1;

(7)

where Æ

1

= f0; 1g; Æ

2

= f0;�1g, Æ

3

; Æ

4

; �; �;  and  are parameters depending on a

i

; b

i

; 

i

; d

i

of

(3). Note that this normal form ontains no �-dependent terms. Thus by treating the azimuthal

oordinate as time, we arrive at the redued form

~

X :

�

_x = Æ

1

x

2

+ Æ

2

r

2

+ Æ

3

x

4

+ Æ

4

r

4

+ �x

2

r

2

+ � � �

_r = xr + �x

3

r + xr

3

+ � � � :

(8)

Convention: In the paper by saying a 3-dimensional X 2 -x is C

0

orbitally equivalent to

~

X

of the form (8), we mean that X has been proessed in the above way to (7) where the azimuthal

oordinate is omitted. Namely, given a vetor �eld X 2 -x we denote by

~

X the orresponding

planar normal form of X. We denote by

~

-x the set of

~

X with the assoiated X 2 -x. Therefore

there is a 1-1 orrespondene between -x and

~

-x via (7) and (8).

3 Statement of the Results

In terms of (8), we introdue the following notation.

�

1

0

= fX 2 -x : Æ

1

6= 0; Æ

2

= 1;  6= 1g;

�

2

0

= fX 2 -x : Æ

1

6= 0; Æ

2

= �1;  6= 0; 1g;

�

0

= �

1

0

S

�

2

0

:

(9)

Then the algebrai relations in �

0

haraterize the generiity onditions whose derivation will be

given in the oming setion. We have the following statement.

Theorem 2 Vetor �elds orbitally equivalent to those of �

0

form an open and dense set in -x.

In generi ase, the lassi�ation and the normal forms of suh systems are known, see, for

example, [14, 7℄. For the sake of ompleteness, here we reall these results.
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Theorem 3 The set �

0

an be divided into the following �ve subsets �

0

(i), (i = 1; 2; 3; 4; 5), suh

that any two vetor �elds belonging to the same subset are C

0

orbitally equivalent:

�

0

(1) = fX 2 -x : Æ

1

= 1; Æ

2

= �1;  > 1g;

�

0

(2) = fX 2 -x : Æ

1

= 1; Æ

2

= 1;  < 1g;

�

0

(3) = fX 2 -x : Æ

1

= 1; Æ

2

= �1; 0 <  < 1g;

�

0

(4) = fX 2 -x : Æ

1

= 1; Æ

2

= �1;  < 0g;

�

0

(5) = fX 2 -x : Æ

1

= 1; Æ

2

= 1;  > 1g:

(10)

Moreover, in eah set, a representative vetor �eld Y 2 -x is C

0

orbitally equivalent to one of the

normal forms

~

X

1

:

~

X = (x

2

� r

2

; 2xr),

~

X

2

:

~

X = (x

2

+ r

2

;

1

2

xr),

~

X

3

:

~

X = (x

2

� r

2

;

1

2

xr),

~

X

4

:

~

X = (x

2

� r

2

;�xr),

~

X

5

:

~

X = (x

2

+ r

2

; 2xr):

(11)

The orresponding 3-dimensional normal forms an be given by X

i

= (

~

X

i

;�1). On the other

hand, due to Theorem 1, the C

0

orbital equivalene in the above theorem an be improved to C

0

onjugay when only planar singularities are involved.

When the generiity onditions are violated we obtain degenerated vetor �elds. In partiular,

if one (and only one) of the following onditions

Æ

1

= 0; Æ

2

= 0;  = 0; Æ

1

=  = 1; (12)

is satis�ed and at the same time the higher order terms are generi, then we have the odimensional

1 singularity of X whose lassi�ation, as a rule, depends on the higher order terms. In fat, we

shall show that its lassi�ation is related to the parameters Æ

3

; Æ

4

; �; �;  and .

We introdue the following sets to desribe the topologial types of the singularities of the

3-dimensional systems. The topologial invariane of the algebrai onditions haraterizing these

sets will be explained in the oming setion.

�

1

(1:1) = fX 2 -x : Æ

1

= 0; Æ

2

= 1; Æ

3

= 1;  < 0g;

�

1

(1:2) = fX 2 -x : Æ

1

= 0; Æ

2

= 1; Æ

3

= �1;  < 0g;

�

1

(2:1) = fX 2 -x : Æ

1

= 0; Æ

2

= 1; Æ

3

= 1;  > 0g;

�

1

(2:2) = fX 2 -x : Æ

1

= 0; Æ

2

= 1; Æ

3

= �1;  > 0g;

�

1

(3:1) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= 1;  < 0g;

�

1

(3:2) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= �1;  < 0g;

�

1

(3:3) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= 1; 0 <  <

1

2

g;

�

1

(3:4) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= �1; 0 <  <

1

2

g;

�

1

(3:5) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= 1;

1

2

<  < 1g;

�

1

(3:6) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= �1;

1

2

<  < 1g;

�

1

(3:7) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= 1;  > 1g;

�

1

(3:8) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= �1;  > 1g;

�

1

(4:1) = fX 2 -x : Æ

1

=  = 1; Æ

2

= 1g;

�

1

(4:2) = fX 2 -x : Æ

1

=  = 1; Æ

2

= �1g;

�

1

(5:1) = fX 2 -x :  = 0; Æ

1

= 1; Æ

2

= �1; � +  > 0g;

�

1

(5:2) = fX 2 -x :  = 0; Æ

1

= 1; Æ

2

= �1; � +  < 0g:

(13)
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We let -x

1

= -x� �

0

and denote by �

1

the union of the above 16 sets, i.e.,

�

1

:=

[

�

1

(i; j): (14)

In this paper we prove the following

Theorem 4 Vetor �elds whih are orbitally equivalent to those of �

1

form an open and dense

set in -x

1

. �

1

is a odimensional 1 embedded submanifold of -x.

As to the singularities of generi 1-parameter families of reversible vetor �elds of -x we have

the following results.

Theorem 5 1) Two vetor �elds X and Y in -x

1

are C

0

orbitally equivalent if and only if they

belong to the same subset �

1

(i; j) of (13).

2) Any one-parameter family

~

X

�

, with X

0

2 �

1

, in generi ase (transversal to �

1

) is C

0

orbitally equivalent to one of the following 16 normal forms.

~

X

�

1;�

: (�x

2

+ r

2

� x

4

;�xr),

~

X

�

2;�

: (�x

2

+ r

2

� x

4

; xr),

~

X

�

3;�;

: (x

2

+ �r

2

� r

4

; xr),

~

X

�

4;�

: ((1 + �)x

2

� r

2

; xr),

~

X

�

5;�

: (x

2

� r

2

; �xr � xr

3

),

(15)

where  takes one of the following values f�1;

1

4

;

3

4

; 2g, and � is the unfolding parameter.

The above theorem together with Theorem 1 lead to the following

Corollary 3.1 Any planar singularity

~

X 2

~

-x, where X 2 �

1

, in generi ase is C

0

onjugated

to one of the normal form (15) where � = 0.

Note that the normal form

~

X

�

is not neessarily ontinuous with respet to the parameter.

Note also that the seond statement of the theorem does not imply that the orresponding 3-

dimensional unfoldings X

�

= (

~

X

�

; 1) are C

0

stable in the spae of all one-parameter families of

vetor �elds of -x. In other words, the normal forms X

0

= (

~

X

0

;�1), where

~

X

0

is from (15)

with � = 0, only give a topologial lassi�ation of singularities of 3-dimensional systems, not the

lassi�ation of the unfolded systems.

4 Proof of The Main Theorem

4.1 Comments on the generi ase

It is known from [14℄ that the planar vetor �eld (8) in generi ase is jet-2 determined with

respet to C

0

onjugay. In what follows we shall verify that the algebrai onditions in (9)

oinide with the generiity onditions of this system in our terminology. In other words, if one

of the onditions in (12) is violated then (8) is not generi. To this regard, onsider the 2-jet of

7



~

X: _x = Æ

1

x

2

+ Æ

2

r

2

, _r = xr, where Æ

1

= 0; 1, and Æ

2

= 0;�1. This system, after one blowing-up

under x = � os �; r = � sin �, an be put into the following form

�

_� = �(Æ

1

os

3

� + (Æ

2

+ ) os � sin

2

�)

_

� = �Æ

2

sin

3

� + (� Æ

1

) sin � os

2

�:

(16)

Note that generially Æ

2

( � Æ

1

) 6= 0. If Æ

2

( � Æ

1

) < 0 then system (16) has only one singular

point (0; 0). In this ase it is easy to see that the blown-up system is hyperboli if and only if

Æ

1

6= 0. If Æ

2

(� Æ

1

) > 0 then system (16) has three singular points (0; 0), (0;�artan

q

�Æ

1

Æ

2

). A

little alulation shows that in this ase system (16) is hyperboli at all these singular points if

and only if  6= 0. Thus we veri�ed the generiity onditions spei�ed in (9).

4.2 Codimension 1 ase

From the previous disussion we know that if one of the onditions (12) is broken then the vetor

�eld is degenerated. In this part we �rst preise the onditions under whih the system is of

odimension 1. This means that ertain generiity onditions should be imposed on the oeÆients

of other terms. Obviously, we need only to onsider the following four ases.

(1). Æ

1

= 0; Æ

2

6= 0;  6= 0;

(2). Æ

2

= 0; Æ

1

6= 0;  6= 0; 1;

(3). Æ

1

=  = 1; Æ

2

6= 0;

(4).  = 0; Æ

1

6= 0; Æ

2

6= 0;

In what follows we only treat ase (1) in more details. In the remaining ases we shall only point

out the main di�erenes.

Taking ase (1), i.e., Æ

1

= 0, Æ

2

= �1;  6= 0, we are interested in the following points: the

generiity onditions imposed on the higher order terms, the unfolding of the system, and the

bifuration of the unfolded system. Note that in this ase we an put Æ

2

= 1 and Æ

3

2 f0; 1;�1g.

This an be done by saling x, and thus time is preserved (reall that in all the 2-dimensional

ases, the disussion should be in the C

0

onjugay setting, not the orbital equivalene setting,

beause the azimuthal oordinate has been taken as time). We put (8) into the form

�

_x = r

2

+ Æ

3

x

4

+ Æ

4

r

4

+ �x

2

r

2

+ � � �

_r = xr + �x

3

r + xr

3

+ � � � ;

(17)

where  6= 0 and the dots denote the terms of degrees higher than 4.

It is straightforward to hek that (17) is of odimension 1 in

~

-x if and only if Æ

3

6= 0. If Æ

3

6= 0

then aording to signs of Æ

3

and  we an divide (17) into four di�erent ases:  > 0; Æ

3

= �1;

 < 0; Æ

3

= �1. By performing blowing-ups, one an show that these four ases are topologially

di�erent from eah other.

Below we prove that we an hoose

~

X

�

1;�

and

~

X

�

2;�

(see (15)) as the orresponding unfoldings.

First we larify the equivalene of two 1-parameter families of vetor �elds. We say X

�

� Y

�

,

if there exists a funtion h: (��; �) ! (��; �), where � is small and h(�) = �, suh that X

�

is

onjugated to Y

�

.
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Figure 1: Blow-ups of ases

~

X

0

3;�;

1

4

and

~

X

0

3;�;

3

4

Let

~

X

�

be an unfolding suh that

~

X

0

is in one of the �rst four sets of (13). Assume that, say,

~

X

�

0

2 �

1

(1; 1). Then Æ

1

(�

0

) = 0, and for any �

1

and �

2

suh that (�

1

� �

0

)(mu

2

� �

0

) < 0,

one has

~

X

�

1

;

~

X

�

2

2 �

0

, and

~

X

�

1

is topologially di�erent from

~

X

�

2

. This fat implies that for

�

1

> �

0

(resp. �

1

< �

0

) there are only two possibilities: Æ

1

> 0 (resp. Æ

1

< 0), or Æ

1

< 0 (resp.

Æ

1

> 0). Take the �rst ase (the other possibility an be treated exatly in the same way). Then

for any � > �

0

one has

~

X

�

2 �

0

(i) and � < �

0

one has

~

X

�

2 �

0

(j), where i 6= j. Considering

�(�) = �� �

0

we get the unfolding

~

X

�

1;+

.

As to the validity of Theorem 4 it is suÆient to notie that �

1

given by (14) is a submanifold

of odimensional 1 of -x. The proof of this fat is omitted here.

Now let us briey disuss the remaining ases. In ase (2), i.e., Æ

2

= 0; Æ

1

= 1;  6= 0; 1, we

an resale x and r suh that Æ

4

takes one of the values 0;�1. In this ase, when blowing-up

the orresponding system, one an see that if  =

1

2

then the vetor �eld onsidered shall have

higher odimension. Correspondingly, we have eight subases due to all the possible ombinations

between Æ

4

= �1 and  lies in (�1; 0), (0;

1

2

), (

1

2

; 1) and (1;1). Sine  takes values from these

four sets, onsequently, there is no modality in the lassi�ation. The unfolding is given by

~

X

�

3;�;

(see (15)).

Remark 4.1 The phase portraits of the ases

~

X

�

3;�;

1

4

and

~

X

�

3;�;

3

4

seem to be idential in the

bifuration �gures at the end of the paper. Their blowing-ups at � = 0, however, show that these

two ases are topologially di�erent. The two blow-ups are shown in �gure 1.

Case (3), i.e., Æ

1

=  = 1; Æ

2

6= 0, an be treated in a similar way. The unfoldings are given by

~

X

�

4;�

(see (15)).

In ase (4), i.e.,  = 0; Æ

1

6= 0; Æ

2

6= 0, we an only onsider the higher order terms of _r. The

essential di�erene from the previous ases lies only in showing the invariane of (� + ), and this

an be proved by blowing-up the system. Consequently, there are two subases, aording to the

signs of (� + ) The orresponding unfoldings are given by

~

X

�

5;�

(see (15)).
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5 Symmetri periodi orbits, invariant tori, homolini and

heterolini orbits

With the help of the lassi�ation of the planar systems obtained in the previous setions, we

an give an analysis of the 3-dimensional systems. In this part of the paper, we shall disuss the

related dynamial properties of the 3-dimensional vetor �elds, with the emphasis on the existene

of symmetri periodi orbits, homolini orbits, invariant tori and other important properties.

5.1 Symmetri periodi orbits and invariant tori

From the bifuration diagrams we see that in the unfolded systems

~

X

�

3;+;�1

,

~

X

+

3;�;

1

4

,

~

X

+

3;�;

3

4

, and

~

X

+

3;�;

3

2

the orresponding blown-up systems are of enter-fous type. In eah ase, there are a

pair of singularities in the unfolded system, and we fae the enter-fous problem. Sine these two

symmetri singularities of the planar vetor �eld in fat orrespond to a symmetri periodi orbit

of the original system. Consequently, the orbit annot be an attrator or a repellor (see Setion

2.1). This implies that the type of the planar unfolded system is a enter. In other words, we have

two families of irles entered around the singularities. Therefore the orresponding 3-dimensional

system has a family of invariant tori whih link these two families of tori. It is lear that the 3-

dimensional unfolded system has no singularities on these invariant tori, and the pull-bak system

X = (

~

X

:

:

;�1), where

~

X

:

:

takes the 2-dimensional normal form with � = 0, only gives a lassi�ation

of 3-dimensional singularities of the systems, not the 3-dimensional unfoldings.

The following ases also admit symmetri periodi orbits:

~

X

�

3;+;

1

4

,

~

X

�

3;+;

3

4

,

~

X

�

3;+;

3

2

~

X

+

3;�;�1

,

~

X

�

5;+

and

~

X

+

5;�

.

5.2 Homolini and Heterolini orbits

From the bifuration diagram we see that in the ases

~

X

�

3;+;

1

4

,

~

X

�

3;+;

3

4

,

~

X

�

3;+;

3

2

and

~

X

+

3;�;�1

the

unfolded systems also have a pair of symmetri singularities. These singularities, however, are

of saddle type. Moreover, one an see that exept the ase

~

X

+

3;�;�1

in all the other ases in a

neighborhood of  there exist a family of homolini orbits tending to 0.

The other ases where homolini orbits exist are

~

X

+

1;+

,

~

X

0

1;�

,

~

X

+

1;�

,

~

X

�

3;�;

1

4

,

~

X

0

3;�;

1

4

,

~

X

�

3;�;

3

4

,

~

X

0

3;�;

3

4

,

~

X

�

3;�;

3

2

,

~

X

�

4;�

,

~

X

�

5;+

and

~

X

0

5;+

In a similar way, we know that in the ases

~

X

�

5;+

and

~

X

+

5;�

the unfolded planar problem has

two pairs of symmetri singularities. For example, from the ase

~

X

+

5;�

we dedue that for positive

�, the unfolding parameter,

~

X

�

5;�

2

~

-x has a loop onneting the two periodi orbits and the

symmetri equilibrium point P

�

. Moreover, there is at P

�

a 1-parameter family of heterolini

orbits.

In the ase

~

X

�

1;�

there are also a family of heterolini orbits.

The 3-dimensional systems orresponding to

~

X

+

5;�

possess homolini as well as heterolini

orbits.
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Figure 2: Bifuration Diagrams I
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Figure 3: Bifuration Diagrams II
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6 Appendix

In this appendix, we give a brief disussion on the unfoldings of (3,1)-type reversible vetor �elds

where the singular point disappears. To illustrate the main ideas, we shall onsider, in form of

examples, one possibility in eah ase. The other possibilities an be treated in a similar way. For

the terminology we use here, please refer to [15℄.

Example A.1 Let X

�

be a (3,1)-type reversible vetor �eld given by

X

�

= (�+ x

2

� (y

2

+ z

2

);�z + xy; y + xz):

Then in the ylindrial polar oordinates it takes the form

X

�

= (�+ x

2

� r

2

; xr; 1); r � 0:

Thus the assoiated planar vetor �eld is

~

X

�

= (�+ x

2

� r

2

; xr); r � 0;

whih is (2,1)-type reversible with respet to '(x; r) = (�x; r). By [15℄ we perform the oordinate

hange u = x

2

, v = r in the region fx � 0g to transform

~

X

�

to the auxiliary vetor �eld

F

�

(u; v) = (�+ u� v

2

;

v

2

); u � 0; v � 0:

Denote f(u; v) = u: Then the following fats about F

�

hold.

The ritial points of F

�

: If � > 0; then F has no ritial point; If � � 0; then F has one

ritial point P

0

= (��; 0) whih is symmetri i�. � = 0:

The boundary singularities of F

�

: The boundary singularities are given by u = 0 and

v

2

= �, observing that F

�

f = 0 i�. �+ u� v

2

= 0: Thus we have the following two ases.

(i) � > 0: In this ase there is one external quadrati tangeny point P = (0;

p

�) between F

�

and u = 0: Therefore

~

X

�

has a symmetri ritial point of enter type, whih preisely means that

X

�

has a periodi orbit of enter type (this vetor �eld has no ritial points).

(ii) � < 0: In this ase there is no tangeny point between the vetor �eld and u = 0: Thus

~

X

�

has an asymmetri ritial point of nodal type, whih equivalently means that X

�

has two ritial

points of nodal type (an atrator and a repeller).

Example A.2 Let X

�;�

be a (3,1)-type reversible vetor �eld given by

X

�;�

= (�+ �x

2

� (y

2

+ z

2

) + x

4

;�z � xy; y � xz)

Then in the ylindrial polar oordinates it takes the form

X

�;�

= (�+ �x

2

� r

2

+ x

4

;�xr; 1); r � 0:

Thus the assoiated planar vetor �eld is

~

X

�;�

= (�+ �x

2

� r

2

+ x

4

;�xr); r � 0:

As in Example A.1, we denote f(u; v) = u and perform the same hange of oordinates to obtain

the orresponding auxiliar vetor �eld

F

�;�

(u; v) = (�+ �u� v

2

+ u

2

;�

v

2

); u � 0; v � 0:
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Per.Orb.

< 0 > 0

invariant torus

cod. 0

cod. 1

cod. 0

periodic orbit

heteroclinic "cylinder"

homoclinic "cylinder"

Figure 4: Bifuration diagram of X

0

= (x

2

� (y

2

+ z

2

);�z + xy; y + xz)

Below we desribe the singularity distribution of F

�;�

, aording to all possible values of � and

�. These ases an be easily loated in Fig. 5, where the horizontal axis is � = 0, the vertial axis

is � = 0, and the urve stands for � := �

2

� 4� = 0.

The ritial points of F

�;�

:

(i) If � < 0, then F

�;�

has no ritial points in the region 
 := fu � 0; v � 0g.

(ii) Let � � 0:

(a) If � < 0, then F

�;�

has one saddle ritial point in 
: P

�;�

= ((��+

p

�)=2; 0);

(b) If � > 0 and � < 0, then F

�;�

has two ritial points in 
: P

�;�

= ((�� �

p

�)=2; 0) (one

is saddle and the other is attrator node);

() If � > 0 and � > 0, then F

�;�

has no ritial point in the region;

(d) If � = 0, then F

�;�

has two ritial points in 
: P

0;�

= (��; 0) and P

0

= (0; 0) provided

� < 0; if � > 0, then P

0

is the unique ritial point of F

�;�

:

(e) If � = 0 and � < 0, then F

�;�

has a unique ritial point P

�;�

= (��=2; 0) in 
, whih is a

degenerate saddle-node (see Figure 5).

The boundary singularities of F

�;�

Note that F

�;�

f = 0 i�. �+�u�v

2

+u

2

= 0: Therefore the boundary singularity haraterized

by u = 0 and v

2

= � ours only when � > 0 (the ase � = 0 is not onsidered here) and is given

by Q

�;�

= (0;

p

�). It follows that F

2

�;�

f(Q

�;�

) = (�+1)� > 0: Thus if � > 0; then Q

�;�

= (0;

p

�)

is an external quadrati tangeny point between F

�;�

and u = 0, whereas if � < 0; then there is

no tangeny point between the vetor �eld and u = 0:

Remark 6.2 All the eigenspaes of all ritial points treated here are transverse to the lines fu =

0g and fv = 0g:

Now, as above, we an derive the bifuration diagram of X

�;�

whih it is illustrated in Figure

5.
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