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Abstra
t

In the present paper we study the dynami
s of a 
lass of reversible ve
tor �elds having

eigenvalues (0; �i;��i) around their symmetri
 equilibria. We give a 
omplete list of all normal

forms for su
h ve
tor �elds, their versal unfoldings, and the 
orresponding bifur
ation diagrams

of 
odimensional one 
ase. We also obtain some important 
on
lusions on the existen
e of

homo
lini
 and hetero
lini
 orbits, invariant tori and symmetri
 periodi
 orbits.
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1 Introdu
tion

In this paper we study a 
lass of time-reversible ve
tor �elds having the form

_x = F (x); x 2 R

n

; (1)

where F (x) is a smooth fun
tion, F (0) = 0. The ve
tor �eld (1) is 
alled time-reversible if there

is a germ of a smooth involution � : R

n

; 0! R

n

; 0 (� Æ � = id:) satisfying the relation

F (�(x)) = ��

0

(x) � F (x); x 2 R

n

; 0: (2)

In parti
ular, if the dimension of the �xed point set of �, S = Fixf�g, is equal to k, then (1) is

said to be of (n; k)-type reversibility. It is 
lear that 0 � k � n.

The paper is primarily devoted to studying topologi
al 
lassi�
ation of (3; 1)-type time-reversible

ve
tor �elds around their symmetri
 singular points. A singular point of a reversible ve
tor �eld

is 
alled symmetri
 if it lies on the �xed point set S of the involution. In the present 
ase S 
an

be put into the form S = fx = 0; y = 0g, this is be
ause any involution of a (3,1)-type reversible

ve
tor �eld is smoothly 
onjugated to �

0

(x; y; z) = (�x;�y; z), a

ording to [11℄.

Sin
e the 1-jet of a �

0

�reversible ve
tor �eld takes the form (�

1

+ az)�=�x+ (�

2

+ bz)�=�y+

(
x + dy)�=�z where �

1

; �

2

, a; b; 
 and d are parameters, it follows that generi
ally (3,1)-type

reversible ve
tor �elds do not have symmetri
 singularities. Indeed one 
an see that the o

uren
e

of a symmetri
 singularity is in itself a 
odimension one phenomenon. In this paper, we shall

restri
t to those ve
tor �elds whi
h have a symmetri
 singularity at the origin, i.e., �

1

= �

2

= 0,

and 
onsider the 
orresponding unfolded systems (for a study of families of ve
tor �elds depending

on 
ertain parameters, see [7, 8℄). It is easy to see that the eigenvalues of these ve
tor �elds around

the origin are either (0;��) or (0;��i) where � is a nonzero real parameter. We here treat the

latter 
ase only, justifying the term Hopf-zero shown in the title of the paper .
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We noti
e that some study on bifur
ation and 
lassi�
ation for general (not ne
essarily re-

versible) ve
tor �elds having eigenvalues (0;��i) was given in [7, 13℄ among others. Systems

having su
h eigenvalues but in other settings, say, divergent free systems, also attra
t attentions

(see [2℄). In parti
ular, one sees easily that divergent free systems in R

3

in generi
 
ase are topo-

logi
ally orbitally equivalent to one spe
ial type of reversible system (see X

4

in equation (11)). In

[3℄ there is a brief exposition on the relations between various 
ategories.

Even within the world of reversible ve
tor �elds, various types of reversible systems have been

investigated, too. For example, in [15℄ all (2; 1)-type reversible systems are 
lassi�ed, in [4℄ (2; 0)-

type, and in [10℄ (3; 2)-type. In [6℄, there is an exploration on (3,1)-type reversible ve
tor �elds

having nilpotent linear part.

The basi
 motivation of the present paper 
omes from the study of the lo
al dynami
s of

reversible ve
tor �elds around a 
riti
al point with a pair of purely imaginary eigenvalues and a

zero one. Su
h kind of ve
tor �elds are very often en
ountered in appli
ations. For detailed models

from physi
s and hydrodynami
s, please refer to [12℄.

The methods used in the paper 
ome from [7, 5, 1, 9, 15, 10℄. More pre
isely, the methods

used in [15, 10℄ are to perform spe
ial 
hanges of 
oordinates around the singularity. Thus the

analysis of the full system 
an be transfered to a study of the 
onta
t between a general system

and a 
odimension one submanifold in R

n

. These te
hniques 
an be generalized to the (n; n� 1)-

type. To make use of these te
hniques to the (3,1)-type reversible ve
tor �elds, we perform the S

1

redu
tion to 
hange the original ve
tor �eld to a ve
tor �eld in the 
ylindri
al polar 
oordinates in

whi
h the azimuthal 
oordinate takes the form

_

� = �1. It follows that the topologi
al 
lassi�
ation

of the original ve
tor �eld 
an be redu
ed to the 
orresponding 
lassi�
ation of the restri
ted planar

systems to whi
h the blow-up te
hniques 
an be applied (be
ause the polar 
oordinates and the

azimuthal one are de
oupled). Moreover, sin
e the redu
ed ve
tor �eld is of the (2,1)-type, this

makes possible to apply the te
hniques developed in [15℄.

On the other hand, sin
e the planar system satis�es an inequality of the Lojasiewi
z type,

therefore by [5℄ the above 2-dimensional 
lassi�
ation holds not only in C

0

equivalen
e but also

in C

0


onjuga
y 
ategory. We shall take this observation into a

ount when 
onsidering the 3-

dimensional pull-ba
k 
lassi�
ation.

To obtain the topologi
al 
lassi�
ation of the redu
ed system and 
onsequently to re
over the

dynami
al properties of the original system, however, 
ertain diÆ
ulties and obsta
les arise, either

due to the reversibility or due to the redu
tion pro
edure. Firstly, the reversibility assumption

generally imposes some 
onstraints on the original system, that in turn results in a degenera
y of

the redu
ed planar ve
tor �eld. For example, the redu
ed system typi
ally ex
ludes all the 
ubi


terms, that 
auses 
ertain diÆ
ulties to obtain the redu
ed normal forms and to perform \blowing-

ups". Another diÆ
ulty is more mathemati
al. In studying the redu
ed planar ve
tor �eld, we

have to take the reversibility of the original system into 
onsideration in order to determine the

dynami
s patterns. For example, we have to fa
e the 
enter-fo
us problem in the unfolded planar

system (see for instan
e 
ase X

+

3;�;

1

4

in Figure 2), and in su
h 
ases, we pro
eed as follows. Note

that a pair of singularities in the unfolded system in fa
t exa
tly give rise to a symmetri
 periodi


solution of the original system therefore the orbit 
annot be an attra
tor or a repellor. It follows

that the singularities must be of 
enter type. This implies that the original system has a family of

invariant tori. In a similar way, when the unfolded planar systems admit symmetri
 singularities

of saddle type, we 
an draw 
on
lusion that the original systems have homo
lini
 orbits (see, for

instan
e, the 
ase X

�

3;+;

1

4

in Figure 2) or hetero
lini
 orbits (see, for instan
e, the 
ase X

�

5;+

in
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Figure 3). We emphasize that the phenomena des
ribed above are due to the reversibility of the

original system. In other words, a general ve
tor �eld (not ne
essarily reversible) with the same

linear approximation may not enjoy su
h properties. Therefore the approa
h employed in the

paper is not a simple appli
ation of [7, 2℄.

We remark that there is still another obsta
le to go ba
k to the original system from the planar

one, i.e., the possible existen
e of 
at terms. Indeed, 
at terms generally may break the formal S

1

normal form symmetry. In this regard, in the present paper we shall depart from the normalized

3-dimensional ve
tor �elds, assuming that the obje
ts under 
onsiderations take the normal forms

as spe
i�ed in the 
ontext.

The main results of this paper in
lude a 
lassi�
ation and a qualitative des
ription of symmetri


singularities o

urring generi
ally for 1-parameter families of (3,1)-type ve
tor �elds (the study on

2-parameter families of (3,1)-type ve
tor �elds are essentially related to the present 
ase, due to

the spe
ial unfolded forms, see Appendix). From the 
lassi�
ation one draws some interesting


on
lusions on the existen
e of invariant tori, periodi
 orbits, homo
lini
 and hetero
lini
 orbits

for ve
tor �elds 
onsidered. We also give a 
omplete list of bifur
ation diagrams.

The rest of the paper is arranged as follows: In se
tion 2 we re
all some preliminaries of

reversible ve
tor �elds. We also give the normal forms on whi
h our dis
ussion relies. Se
tion 3

in
ludes the results of the generi
 
ase and the 
odimensional one 
ase in the spa
e of all (3,1)-type

reversible ve
tor �elds having (0;��i) eigenvalues at the symmetri
 singular point. The main part

of this se
tion lies in the 
hara
terization of the sets �

0

and �

1

(see Se
tion 3) and in showing how

useful a former result of Dumortier is (its appli
ation was not 
onsidered anywhere until now, as far

as we know). We point out that the study of the bifur
ation diagram of �

1

is hard and is essential,

sin
e the 2-parameter unfolding a
tually is nothing more than an addition of a 
onstant in the

�rst 
omponent of the ve
tor �elds. In se
tion 4 we shall give a brief dis
ussion on the generi
ity


onditions as well as the proof of the results. Se
tion 5 
ontains an analysis and a dis
ussion on the

existen
e of invariant tori and homo
lini
 orbits, whereas the bifur
ation diagrams are illustrated

in the last part of the paper. We remark that in these diagrams the arrows indi
ating the dire
tion

of the 
ow of the ve
tor �elds do not ne
essarily re
e
t the dire
tion of that of the original system.

This is be
ause in deriving the orbital C

0

normal form we may multiply by a nonvanishing negative

fun
tion. We also in
lude an appendix 
ommenting on the unfoldings where the singular point

disappears.

A
knowledgement: We are grateful to the referees for helpful suggestions and 
omments.

The third author also gratefully a
knowledges the �nan
ial support from Fapesp-Brazil and the

hospitality of IMECC-Uni
amp during his stay there.

2 Preliminaries

In this se
tion we re
all some basi
 properties of reversible ve
tor �elds and introdu
e 
ertain

notations and de�nitions. In this part we shall also normalize the obje
ts under 
onsiderations to

some 
onvenient forms from whi
h our further study departs.

Let X be a �-reversible system on R

n

. Then the following statements hold.

� The phase portrait of X is symmetri
 with respe
t to S, the �xed point set of the involution.

� Any periodi
 orbit 
 is symmetri
 if and only if S

T


 6= 0. If 
(t) is a solution of X then so

is �
(�t).
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� Any symmetri
 singular point or symmetri
 periodi
 orbit 
annot be an attra
tor or a repellor.

The topologi
al 
lassi�
ation of the obje
ts is based on the following de�nition.

De�nition 2.1 Two ve
tor �elds X and Y at their singularities are said to be C

0


onjugated in

neighborhoods of the singular points if there is a homeomorphism 
arrying one singular point into

the other and 
onjugating the lo
al phase 
ows of the systems at these singular points. They are


alled orbitally C

0

equivalent if there is a homeomorphism mapping the lo
al phase 
urves of X

into that of Y .

De�nition 2.2 We say that ve
tor �eld X de�ned on R

n

; 0 satis�es an inequality of Lojasiewi
z

type if there exists an integer k > 0 and 
 > 0 su
h that jjX(x)jj � 
jjxjj

k

for all x in a neighborhood

of the singular point.

The following statements 
an be dedu
ed from [5℄.

Theorem 1 The singularity of any smooth ve
tor �eld de�ned on R

2

; 0 satisfying an inequality of

Lojasiewi
z type and having a 
hara
teristi
 orbit is �nitely determined in C

0


onjuga
y. More-

over, if two �nitely determined singularities on the plane are C

0

-equivalent, then they are also C

0


onjugated.

In what follows we shall 
onsider the normalization of the (3,1)-type ve
tor �elds. Let X be a

(3,1)-type reversible ve
tor �eld having the eigenvalues (0;��i). Assume that it takes the form.

X :

8

<

:

_x = a

0

z + a

1

x

2

+ a

2

y

2

+ a

3

z

2

+ a

4

xy + � � �

_y = b

0

z + b

1

x

2

+ b

2

y

2

+ b

3

z

2

+ b

4

xy + � � �

_z = 


0

x+ d

0

y + 


1

xz + 


2

yz + � � � ;

(3)

where a

0

; b

0

; 


0

and d

0

are parameters satisfying a

0




0

+ b

0

d

0

< 0. It is easy to see that under a

linear 
hange of 
oordinates (together with a multipli
ation of a 
onstant, if ne
essary), one 
an

always redu
e the linear part of the ve
tor �eld (3) to the form

j

1

X = z

�

�y

� y

�

�z

;

therefore throughout the paper, we assume that the linear part of (3) has been normalized to the

above form.

System (3) 
an be put into resonant normal form (see [16℄). To realize so, we rewrite the

involution �

0

in the form �

0

(x; �) = (�x;�

�

�), where � = y+ iz. The resonant normal form means

that X takes the form

_x = f(x; r

2

);

_

� = �g(x; r

2

); (4)

where r

2

= �

�

�, f is a real fun
tion and g a fun
tion having 
omplex 
oeÆ
ients. It is easy to see

that the reversibility of X leads to the following equalities:

f(x; r

2

) = f(�x; r

2

); �g(x; r

2

) = �

�

�g(�x; r

2

): (5)
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It follows from these relations that f is even in x and g 
an be de
omposed into the form g(x; r

2

) =

xg

1

(x

2

; r

2

) + i(�+ g

2

(x

2

; r

2

)), where � 6= 0. In other words, X has the following form.

8

<

:

_x = f(x

2

; r

2

)

_y = z(�+ g

2

(x

2

; r

2

)) + yxg

1

(x

2

; r

2

)

_z = �y(�+ g

2

(x

2

; r

2

)) + zxg

1

(x

2

; r

2

):

(6)

In the following we shall use the symbol -x to denote the spa
e the germs of C

r

ve
tor �elds

having the form (6) and endowed with the C

r

-topology, r > 3.

To further simplify (6), we �rst multiply it by a fun
tion h = 1=(�+g

2

(x

2

; r

2

)) and then put the

multiplied system into 
ylindri
al polar system _x =

~

f(x

2

; r

2

), _r = xrg(x

2

; r

2

),

_

� = �1. Namely,

we have the following expansion.

X :

8

<

:

_x = Æ

1

x

2

+ Æ

2

r

2

+ Æ

3

x

4

+ Æ

4

r

4

+ �x

2

r

2

+ � � �

_r = 
xr + �x

3

r + 
xr

3

+ � � �

_

� = �1;

(7)

where Æ

1

= f0; 1g; Æ

2

= f0;�1g, Æ

3

; Æ

4

; �; �; 
 and 
 are parameters depending on a

i

; b

i

; 


i

; d

i

of

(3). Note that this normal form 
ontains no �-dependent terms. Thus by treating the azimuthal


oordinate as time, we arrive at the redu
ed form

~

X :

�

_x = Æ

1

x

2

+ Æ

2

r

2

+ Æ

3

x

4

+ Æ

4

r

4

+ �x

2

r

2

+ � � �

_r = 
xr + �x

3

r + 
xr

3

+ � � � :

(8)

Convention: In the paper by saying a 3-dimensional X 2 -x is C

0

orbitally equivalent to

~

X

of the form (8), we mean that X has been pro
essed in the above way to (7) where the azimuthal


oordinate is omitted. Namely, given a ve
tor �eld X 2 -x we denote by

~

X the 
orresponding

planar normal form of X. We denote by

~

-x the set of

~

X with the asso
iated X 2 -x. Therefore

there is a 1-1 
orresponden
e between -x and

~

-x via (7) and (8).

3 Statement of the Results

In terms of (8), we introdu
e the following notation.

�

1

0

= fX 2 -x : Æ

1

6= 0; Æ

2

= 1; 
 6= 1g;

�

2

0

= fX 2 -x : Æ

1

6= 0; Æ

2

= �1; 
 6= 0; 1g;

�

0

= �

1

0

S

�

2

0

:

(9)

Then the algebrai
 relations in �

0


hara
terize the generi
ity 
onditions whose derivation will be

given in the 
oming se
tion. We have the following statement.

Theorem 2 Ve
tor �elds orbitally equivalent to those of �

0

form an open and dense set in -x.

In generi
 
ase, the 
lassi�
ation and the normal forms of su
h systems are known, see, for

example, [14, 7℄. For the sake of 
ompleteness, here we re
all these results.
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Theorem 3 The set �

0


an be divided into the following �ve subsets �

0

(i), (i = 1; 2; 3; 4; 5), su
h

that any two ve
tor �elds belonging to the same subset are C

0

orbitally equivalent:

�

0

(1) = fX 2 -x : Æ

1

= 1; Æ

2

= �1; 
 > 1g;

�

0

(2) = fX 2 -x : Æ

1

= 1; Æ

2

= 1; 
 < 1g;

�

0

(3) = fX 2 -x : Æ

1

= 1; Æ

2

= �1; 0 < 
 < 1g;

�

0

(4) = fX 2 -x : Æ

1

= 1; Æ

2

= �1; 
 < 0g;

�

0

(5) = fX 2 -x : Æ

1

= 1; Æ

2

= 1; 
 > 1g:

(10)

Moreover, in ea
h set, a representative ve
tor �eld Y 2 -x is C

0

orbitally equivalent to one of the

normal forms

~

X

1

:

~

X = (x

2

� r

2

; 2xr),

~

X

2

:

~

X = (x

2

+ r

2

;

1

2

xr),

~

X

3

:

~

X = (x

2

� r

2

;

1

2

xr),

~

X

4

:

~

X = (x

2

� r

2

;�xr),

~

X

5

:

~

X = (x

2

+ r

2

; 2xr):

(11)

The 
orresponding 3-dimensional normal forms 
an be given by X

i

= (

~

X

i

;�1). On the other

hand, due to Theorem 1, the C

0

orbital equivalen
e in the above theorem 
an be improved to C

0


onjuga
y when only planar singularities are involved.

When the generi
ity 
onditions are violated we obtain degenerated ve
tor �elds. In parti
ular,

if one (and only one) of the following 
onditions

Æ

1

= 0; Æ

2

= 0; 
 = 0; Æ

1

= 
 = 1; (12)

is satis�ed and at the same time the higher order terms are generi
, then we have the 
odimensional

1 singularity of X whose 
lassi�
ation, as a rule, depends on the higher order terms. In fa
t, we

shall show that its 
lassi�
ation is related to the parameters Æ

3

; Æ

4

; �; �; 
 and 
.

We introdu
e the following sets to des
ribe the topologi
al types of the singularities of the

3-dimensional systems. The topologi
al invarian
e of the algebrai
 
onditions 
hara
terizing these

sets will be explained in the 
oming se
tion.

�

1

(1:1) = fX 2 -x : Æ

1

= 0; Æ

2

= 1; Æ

3

= 1; 
 < 0g;

�

1

(1:2) = fX 2 -x : Æ

1

= 0; Æ

2

= 1; Æ

3

= �1; 
 < 0g;

�

1

(2:1) = fX 2 -x : Æ

1

= 0; Æ

2

= 1; Æ

3

= 1; 
 > 0g;

�

1

(2:2) = fX 2 -x : Æ

1

= 0; Æ

2

= 1; Æ

3

= �1; 
 > 0g;

�

1

(3:1) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= 1; 
 < 0g;

�

1

(3:2) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= �1; 
 < 0g;

�

1

(3:3) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= 1; 0 < 
 <

1

2

g;

�

1

(3:4) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= �1; 0 < 
 <

1

2

g;

�

1

(3:5) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= 1;

1

2

< 
 < 1g;

�

1

(3:6) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= �1;

1

2

< 
 < 1g;

�

1

(3:7) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= 1; 
 > 1g;

�

1

(3:8) = fX 2 -x : Æ

2

= 0; Æ

1

= 1; Æ

4

= �1; 
 > 1g;

�

1

(4:1) = fX 2 -x : Æ

1

= 
 = 1; Æ

2

= 1g;

�

1

(4:2) = fX 2 -x : Æ

1

= 
 = 1; Æ

2

= �1g;

�

1

(5:1) = fX 2 -x : 
 = 0; Æ

1

= 1; Æ

2

= �1; � + 
 > 0g;

�

1

(5:2) = fX 2 -x : 
 = 0; Æ

1

= 1; Æ

2

= �1; � + 
 < 0g:

(13)
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We let -x

1

= -x� �

0

and denote by �

1

the union of the above 16 sets, i.e.,

�

1

:=

[

�

1

(i; j): (14)

In this paper we prove the following

Theorem 4 Ve
tor �elds whi
h are orbitally equivalent to those of �

1

form an open and dense

set in -x

1

. �

1

is a 
odimensional 1 embedded submanifold of -x.

As to the singularities of generi
 1-parameter families of reversible ve
tor �elds of -x we have

the following results.

Theorem 5 1) Two ve
tor �elds X and Y in -x

1

are C

0

orbitally equivalent if and only if they

belong to the same subset �

1

(i; j) of (13).

2) Any one-parameter family

~

X

�

, with X

0

2 �

1

, in generi
 
ase (transversal to �

1

) is C

0

orbitally equivalent to one of the following 16 normal forms.

~

X

�

1;�

: (�x

2

+ r

2

� x

4

;�xr),

~

X

�

2;�

: (�x

2

+ r

2

� x

4

; xr),

~

X

�

3;�;


: (x

2

+ �r

2

� r

4

; 
xr),

~

X

�

4;�

: ((1 + �)x

2

� r

2

; xr),

~

X

�

5;�

: (x

2

� r

2

; �xr � xr

3

),

(15)

where 
 takes one of the following values f�1;

1

4

;

3

4

; 2g, and � is the unfolding parameter.

The above theorem together with Theorem 1 lead to the following

Corollary 3.1 Any planar singularity

~

X 2

~

-x, where X 2 �

1

, in generi
 
ase is C

0


onjugated

to one of the normal form (15) where � = 0.

Note that the normal form

~

X

�

is not ne
essarily 
ontinuous with respe
t to the parameter.

Note also that the se
ond statement of the theorem does not imply that the 
orresponding 3-

dimensional unfoldings X

�

= (

~

X

�

; 1) are C

0

stable in the spa
e of all one-parameter families of

ve
tor �elds of -x. In other words, the normal forms X

0

= (

~

X

0

;�1), where

~

X

0

is from (15)

with � = 0, only give a topologi
al 
lassi�
ation of singularities of 3-dimensional systems, not the


lassi�
ation of the unfolded systems.

4 Proof of The Main Theorem

4.1 Comments on the generi
 
ase

It is known from [14℄ that the planar ve
tor �eld (8) in generi
 
ase is jet-2 determined with

respe
t to C

0


onjuga
y. In what follows we shall verify that the algebrai
 
onditions in (9)


oin
ide with the generi
ity 
onditions of this system in our terminology. In other words, if one

of the 
onditions in (12) is violated then (8) is not generi
. To this regard, 
onsider the 2-jet of

7



~

X: _x = Æ

1

x

2

+ Æ

2

r

2

, _r = 
xr, where Æ

1

= 0; 1, and Æ

2

= 0;�1. This system, after on
e blowing-up

under x = � 
os �; r = � sin �, 
an be put into the following form

�

_� = �(Æ

1


os

3

� + (Æ

2

+ 
) 
os � sin

2

�)

_

� = �Æ

2

sin

3

� + (
� Æ

1

) sin � 
os

2

�:

(16)

Note that generi
ally Æ

2

(
 � Æ

1

) 6= 0. If Æ

2

(
 � Æ

1

) < 0 then system (16) has only one singular

point (0; 0). In this 
ase it is easy to see that the blown-up system is hyperboli
 if and only if

Æ

1

6= 0. If Æ

2

(
� Æ

1

) > 0 then system (16) has three singular points (0; 0), (0;�ar
tan

q


�Æ

1

Æ

2

). A

little 
al
ulation shows that in this 
ase system (16) is hyperboli
 at all these singular points if

and only if 
 6= 0. Thus we veri�ed the generi
ity 
onditions spe
i�ed in (9).

4.2 Codimension 1 
ase

From the previous dis
ussion we know that if one of the 
onditions (12) is broken then the ve
tor

�eld is degenerated. In this part we �rst pre
ise the 
onditions under whi
h the system is of


odimension 1. This means that 
ertain generi
ity 
onditions should be imposed on the 
oeÆ
ients

of other terms. Obviously, we need only to 
onsider the following four 
ases.

(1). Æ

1

= 0; Æ

2

6= 0; 
 6= 0;

(2). Æ

2

= 0; Æ

1

6= 0; 
 6= 0; 1;

(3). Æ

1

= 
 = 1; Æ

2

6= 0;

(4). 
 = 0; Æ

1

6= 0; Æ

2

6= 0;

In what follows we only treat 
ase (1) in more details. In the remaining 
ases we shall only point

out the main di�eren
es.

Taking 
ase (1), i.e., Æ

1

= 0, Æ

2

= �1; 
 6= 0, we are interested in the following points: the

generi
ity 
onditions imposed on the higher order terms, the unfolding of the system, and the

bifur
ation of the unfolded system. Note that in this 
ase we 
an put Æ

2

= 1 and Æ

3

2 f0; 1;�1g.

This 
an be done by s
aling x, and thus time is preserved (re
all that in all the 2-dimensional


ases, the dis
ussion should be in the C

0


onjuga
y setting, not the orbital equivalen
e setting,

be
ause the azimuthal 
oordinate has been taken as time). We put (8) into the form

�

_x = r

2

+ Æ

3

x

4

+ Æ

4

r

4

+ �x

2

r

2

+ � � �

_r = 
xr + �x

3

r + 
xr

3

+ � � � ;

(17)

where 
 6= 0 and the dots denote the terms of degrees higher than 4.

It is straightforward to 
he
k that (17) is of 
odimension 1 in

~

-x if and only if Æ

3

6= 0. If Æ

3

6= 0

then a

ording to signs of Æ

3

and 
 we 
an divide (17) into four di�erent 
ases: 
 > 0; Æ

3

= �1;


 < 0; Æ

3

= �1. By performing blowing-ups, one 
an show that these four 
ases are topologi
ally

di�erent from ea
h other.

Below we prove that we 
an 
hoose

~

X

�

1;�

and

~

X

�

2;�

(see (15)) as the 
orresponding unfoldings.

First we 
larify the equivalen
e of two 1-parameter families of ve
tor �elds. We say X

�

� Y

�

,

if there exists a fun
tion h: (��; �) ! (��; �), where � is small and h(�) = �, su
h that X

�

is


onjugated to Y

�

.
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Figure 1: Blow-ups of 
ases

~

X

0

3;�;

1

4

and

~

X

0

3;�;

3

4

Let

~

X

�

be an unfolding su
h that

~

X

0

is in one of the �rst four sets of (13). Assume that, say,

~

X

�

0

2 �

1

(1; 1). Then Æ

1

(�

0

) = 0, and for any �

1

and �

2

su
h that (�

1

� �

0

)(mu

2

� �

0

) < 0,

one has

~

X

�

1

;

~

X

�

2

2 �

0

, and

~

X

�

1

is topologi
ally di�erent from

~

X

�

2

. This fa
t implies that for

�

1

> �

0

(resp. �

1

< �

0

) there are only two possibilities: Æ

1

> 0 (resp. Æ

1

< 0), or Æ

1

< 0 (resp.

Æ

1

> 0). Take the �rst 
ase (the other possibility 
an be treated exa
tly in the same way). Then

for any � > �

0

one has

~

X

�

2 �

0

(i) and � < �

0

one has

~

X

�

2 �

0

(j), where i 6= j. Considering

�(�) = �� �

0

we get the unfolding

~

X

�

1;+

.

As to the validity of Theorem 4 it is suÆ
ient to noti
e that �

1

given by (14) is a submanifold

of 
odimensional 1 of -x. The proof of this fa
t is omitted here.

Now let us brie
y dis
uss the remaining 
ases. In 
ase (2), i.e., Æ

2

= 0; Æ

1

= 1; 
 6= 0; 1, we


an res
ale x and r su
h that Æ

4

takes one of the values 0;�1. In this 
ase, when blowing-up

the 
orresponding system, one 
an see that if 
 =

1

2

then the ve
tor �eld 
onsidered shall have

higher 
odimension. Correspondingly, we have eight sub
ases due to all the possible 
ombinations

between Æ

4

= �1 and 
 lies in (�1; 0), (0;

1

2

), (

1

2

; 1) and (1;1). Sin
e 
 takes values from these

four sets, 
onsequently, there is no modality in the 
lassi�
ation. The unfolding is given by

~

X

�

3;�;


(see (15)).

Remark 4.1 The phase portraits of the 
ases

~

X

�

3;�;

1

4

and

~

X

�

3;�;

3

4

seem to be identi
al in the

bifur
ation �gures at the end of the paper. Their blowing-ups at � = 0, however, show that these

two 
ases are topologi
ally di�erent. The two blow-ups are shown in �gure 1.

Case (3), i.e., Æ

1

= 
 = 1; Æ

2

6= 0, 
an be treated in a similar way. The unfoldings are given by

~

X

�

4;�

(see (15)).

In 
ase (4), i.e., 
 = 0; Æ

1

6= 0; Æ

2

6= 0, we 
an only 
onsider the higher order terms of _r. The

essential di�eren
e from the previous 
ases lies only in showing the invarian
e of (� + 
), and this


an be proved by blowing-up the system. Consequently, there are two sub
ases, a

ording to the

signs of (� + 
) The 
orresponding unfoldings are given by

~

X

�

5;�

(see (15)).
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5 Symmetri
 periodi
 orbits, invariant tori, homo
lini
 and

hetero
lini
 orbits

With the help of the 
lassi�
ation of the planar systems obtained in the previous se
tions, we


an give an analysis of the 3-dimensional systems. In this part of the paper, we shall dis
uss the

related dynami
al properties of the 3-dimensional ve
tor �elds, with the emphasis on the existen
e

of symmetri
 periodi
 orbits, homo
lini
 orbits, invariant tori and other important properties.

5.1 Symmetri
 periodi
 orbits and invariant tori

From the bifur
ation diagrams we see that in the unfolded systems

~

X

�

3;+;�1

,

~

X

+

3;�;

1

4

,

~

X

+

3;�;

3

4

, and

~

X

+

3;�;

3

2

the 
orresponding blown-up systems are of 
enter-fo
us type. In ea
h 
ase, there are a

pair of singularities in the unfolded system, and we fa
e the 
enter-fo
us problem. Sin
e these two

symmetri
 singularities of the planar ve
tor �eld in fa
t 
orrespond to a symmetri
 periodi
 orbit

of the original system. Consequently, the orbit 
annot be an attra
tor or a repellor (see Se
tion

2.1). This implies that the type of the planar unfolded system is a 
enter. In other words, we have

two families of 
ir
les 
entered around the singularities. Therefore the 
orresponding 3-dimensional

system has a family of invariant tori whi
h link these two families of tori. It is 
lear that the 3-

dimensional unfolded system has no singularities on these invariant tori, and the pull-ba
k system

X = (

~

X

:

:

;�1), where

~

X

:

:

takes the 2-dimensional normal form with � = 0, only gives a 
lassi�
ation

of 3-dimensional singularities of the systems, not the 3-dimensional unfoldings.

The following 
ases also admit symmetri
 periodi
 orbits:

~

X

�

3;+;

1

4

,

~

X

�

3;+;

3

4

,

~

X

�

3;+;

3

2

~

X

+

3;�;�1

,

~

X

�

5;+

and

~

X

+

5;�

.

5.2 Homo
lini
 and Hetero
lini
 orbits

From the bifur
ation diagram we see that in the 
ases

~

X

�

3;+;

1

4

,

~

X

�

3;+;

3

4

,

~

X

�

3;+;

3

2

and

~

X

+

3;�;�1

the

unfolded systems also have a pair of symmetri
 singularities. These singularities, however, are

of saddle type. Moreover, one 
an see that ex
ept the 
ase

~

X

+

3;�;�1

in all the other 
ases in a

neighborhood of 
 there exist a family of homo
lini
 orbits tending to 0.

The other 
ases where homo
lini
 orbits exist are

~

X

+

1;+

,

~

X

0

1;�

,

~

X

+

1;�

,

~

X

�

3;�;

1

4

,

~

X

0

3;�;

1

4

,

~

X

�

3;�;

3

4

,

~

X

0

3;�;

3

4

,

~

X

�

3;�;

3

2

,

~

X

�

4;�

,

~

X

�

5;+

and

~

X

0

5;+

In a similar way, we know that in the 
ases

~

X

�

5;+

and

~

X

+

5;�

the unfolded planar problem has

two pairs of symmetri
 singularities. For example, from the 
ase

~

X

+

5;�

we dedu
e that for positive

�, the unfolding parameter,

~

X

�

5;�

2

~

-x has a loop 
onne
ting the two periodi
 orbits and the

symmetri
 equilibrium point P

�

. Moreover, there is at P

�

a 1-parameter family of hetero
lini


orbits.

In the 
ase

~

X

�

1;�

there are also a family of hetero
lini
 orbits.

The 3-dimensional systems 
orresponding to

~

X

+

5;�

possess homo
lini
 as well as hetero
lini


orbits.
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Figure 2: Bifur
ation Diagrams I
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X
λ

3
2

X
λ

X
λ

X
λ

3
4
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X
λ

X
λ

X
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λ

4
1
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4,-3,-, -

Case

Case Case

Case

Figure 3: Bifur
ation Diagrams II
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6 Appendix

In this appendix, we give a brief dis
ussion on the unfoldings of (3,1)-type reversible ve
tor �elds

where the singular point disappears. To illustrate the main ideas, we shall 
onsider, in form of

examples, one possibility in ea
h 
ase. The other possibilities 
an be treated in a similar way. For

the terminology we use here, please refer to [15℄.

Example A.1 Let X

�

be a (3,1)-type reversible ve
tor �eld given by

X

�

= (�+ x

2

� (y

2

+ z

2

);�z + xy; y + xz):

Then in the 
ylindri
al polar 
oordinates it takes the form

X

�

= (�+ x

2

� r

2

; xr; 1); r � 0:

Thus the asso
iated planar ve
tor �eld is

~

X

�

= (�+ x

2

� r

2

; xr); r � 0;

whi
h is (2,1)-type reversible with respe
t to '(x; r) = (�x; r). By [15℄ we perform the 
oordinate


hange u = x

2

, v = r in the region fx � 0g to transform

~

X

�

to the auxiliary ve
tor �eld

F

�

(u; v) = (�+ u� v

2

;

v

2

); u � 0; v � 0:

Denote f(u; v) = u: Then the following fa
ts about F

�

hold.

The 
riti
al points of F

�

: If � > 0; then F has no 
riti
al point; If � � 0; then F has one


riti
al point P

0

= (��; 0) whi
h is symmetri
 i�. � = 0:

The boundary singularities of F

�

: The boundary singularities are given by u = 0 and

v

2

= �, observing that F

�

f = 0 i�. �+ u� v

2

= 0: Thus we have the following two 
ases.

(i) � > 0: In this 
ase there is one external quadrati
 tangen
y point P = (0;

p

�) between F

�

and u = 0: Therefore

~

X

�

has a symmetri
 
riti
al point of 
enter type, whi
h pre
isely means that

X

�

has a periodi
 orbit of 
enter type (this ve
tor �eld has no 
riti
al points).

(ii) � < 0: In this 
ase there is no tangen
y point between the ve
tor �eld and u = 0: Thus

~

X

�

has an asymmetri
 
riti
al point of nodal type, whi
h equivalently means that X

�

has two 
riti
al

points of nodal type (an atra
tor and a repeller).

Example A.2 Let X

�;�

be a (3,1)-type reversible ve
tor �eld given by

X

�;�

= (�+ �x

2

� (y

2

+ z

2

) + x

4

;�z � xy; y � xz)

Then in the 
ylindri
al polar 
oordinates it takes the form

X

�;�

= (�+ �x

2

� r

2

+ x

4

;�xr; 1); r � 0:

Thus the asso
iated planar ve
tor �eld is

~

X

�;�

= (�+ �x

2

� r

2

+ x

4

;�xr); r � 0:

As in Example A.1, we denote f(u; v) = u and perform the same 
hange of 
oordinates to obtain

the 
orresponding auxiliar ve
tor �eld

F

�;�

(u; v) = (�+ �u� v

2

+ u

2

;�

v

2

); u � 0; v � 0:
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Per.Orb.

< 0 > 0

invariant torus

cod. 0

cod. 1

cod. 0

periodic orbit

heteroclinic "cylinder"

homoclinic "cylinder"

Figure 4: Bifur
ation diagram of X

0

= (x

2

� (y

2

+ z

2

);�z + xy; y + xz)

Below we des
ribe the singularity distribution of F

�;�

, a

ording to all possible values of � and

�. These 
ases 
an be easily lo
ated in Fig. 5, where the horizontal axis is � = 0, the verti
al axis

is � = 0, and the 
urve stands for � := �

2

� 4� = 0.

The 
riti
al points of F

�;�

:

(i) If � < 0, then F

�;�

has no 
riti
al points in the region 
 := fu � 0; v � 0g.

(ii) Let � � 0:

(a) If � < 0, then F

�;�

has one saddle 
riti
al point in 
: P

�;�

= ((��+

p

�)=2; 0);

(b) If � > 0 and � < 0, then F

�;�

has two 
riti
al points in 
: P

�;�

= ((�� �

p

�)=2; 0) (one

is saddle and the other is attra
tor node);

(
) If � > 0 and � > 0, then F

�;�

has no 
riti
al point in the region;

(d) If � = 0, then F

�;�

has two 
riti
al points in 
: P

0;�

= (��; 0) and P

0

= (0; 0) provided

� < 0; if � > 0, then P

0

is the unique 
riti
al point of F

�;�

:

(e) If � = 0 and � < 0, then F

�;�

has a unique 
riti
al point P

�;�

= (��=2; 0) in 
, whi
h is a

degenerate saddle-node (see Figure 5).

The boundary singularities of F

�;�

Note that F

�;�

f = 0 i�. �+�u�v

2

+u

2

= 0: Therefore the boundary singularity 
hara
terized

by u = 0 and v

2

= � o

urs only when � > 0 (the 
ase � = 0 is not 
onsidered here) and is given

by Q

�;�

= (0;

p

�). It follows that F

2

�;�

f(Q

�;�

) = (�+1)� > 0: Thus if � > 0; then Q

�;�

= (0;

p

�)

is an external quadrati
 tangen
y point between F

�;�

and u = 0, whereas if � < 0; then there is

no tangen
y point between the ve
tor �eld and u = 0:

Remark 6.2 All the eigenspa
es of all 
riti
al points treated here are transverse to the lines fu =

0g and fv = 0g:

Now, as above, we 
an derive the bifur
ation diagram of X

�;�

whi
h it is illustrated in Figure

5.
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Figure 5: Bifur
ation diagram of X

0
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2

+ z

2

) + x

4

;�z � xy; y � xz)
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