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ABSTRACT -In this paper we define the level-convergence of positive,
measurable functions on a fuzzy measure space. We study some of the
properties of this convergence and its connections with other classic
kinds of convergence, and give conditions for the continuity of fuzzy
integral with respect to the level-convergence.
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1. INTRODUCTION

The fuzzy integral is a mathematical tool that has been shown highly effi-
cient in the treatment of certain problems of non-deterministic nature, like prediction
and decision in processes with presence of diffuse (fuzzy) information. Some of these
applications are described with detail in (7).

"Thus, it is important to study the properties of those integrals, and, in
particular, the continuity of the fuzzy integral has been exhaustly studied in the

last years.
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Ralescu and Adam (3] proved theorems of continuity of fuzzy integral with
respect to measure convergence and pointwise convergence for a continuous and
subadditive fuzzy measure.

Wang [8] used the concepts of autocontinuity and null-additivity for a con-
tinuous fuzzy measure, improving the Ralescu - Adams results.

Finally, Greco and Bassanezi [2] and Flores, Roman and Bassanezi [1], by
using the concept of F-additivity and autocontinuity, respectively, of a fuzzy measure
# with respect to another fuzzy measure v, removed the continuity condition and
improve the Wang results. '

In [3] we essentially prove that:

(fo = f=> J[f,.d,u — ]‘:fd,u) & p is autocontinuous respect to v.

Recently in [4], we studied different kinds of multivalued convergences for
fuzzy sets on JR" and their relationships.

The aims of this paper is to analize the continuity of fuzzy integral with
respect to multivalued convergences; more precisely we introduce the concept of
level-convergence (L-convergence) on a fuzzy measure space, and we give conditions

for the continuity of the fuzzy integral with respect to the L-convergence.
2. PRELIMINARIES

Definition 2.1. Let X be a set and A be a a’-algebfa of subsets of X. By a fuzzy
measure we mean a positive, extended real-valued set function px : 4 — [0, co‘] with
the properties: -
(FM2) A,Be Aand AC B = p(A) < u(B).

Furthermgre, if the following property is true

pEA oo h
(FM3) A1 C 4, C...,A,C A= p(U A,.) = "li.rglop(/l,.), we say that the fuzzy
n=1

measure g is upper continuous.

Analogously, we say that y is lower continuous if it has the following property

(FM4) A1 2 A; D ... A, € A and there exists ng such that #(An,) < 0o, then
o(0)4) = st

n=1

If p satisfies (FM3) and (FM4) we say that y is continuous.

Throughout this paper (X, A, ) will be a fuzzy measure space and M(X)
the family of all measurable functions f: X — [0, 00). ’

If f € M(X), the fuzzy integral of f is defined in [6] as:

Frds=Vieawan{sza)), Aea,

a>0
where V, A denote respectively the operations of taking the supremum and infimum
in [0, o).
Also, let us define by L'(u) = {f € M(X) / ]Lfdp < oo}.

The following results are well-known:

Theorem 2.4. [3]. If f: X — [0,00) is a measurable function, then

Fran= [ wif 2 a}de, (1)
where the integral in the right-side of (1) is the fuzzy integral of F(a) = u{f > a}

with respect to the Lebesgue measure in [0,00). g

Theorem 2.5. [3]. If 4 is subadditive (i.e. u(AU B) < p(A)+ u#(B)) and f, — f
in measure, then )[-f,.dp — ffdp. -

Theorem 2.6. [3]. If x4 is subadditive, u(X) < co and f, — f pointwise, then
Frudu— fran.

Other interesting properties and applications of this integral were discussed
in (5, 6, 7).



3. LEVEL-CONVERGENCE

Definition 3.1. A sequence of sets (A,), A, € A is said to converge to

A€ A if A= liminfA, = limsupA,, where limsup A, = ﬂ[UAk] and
n=1"k=n
liminf A, = U [ﬂ Ak]. In this case we denoted A = lim A, (shortly: A, — A).
n=1 "k=n

Remark 3.2. 1t is clear that limsup A consists of all z which are in infinitely many
of the A, and liminf A, consists of all £ which are in all but finitely many of the
An. m

Remark 3.3. If (A,) is an increasing sequence in A, then lim A, exists and it is

equal to UA,,. Analogously, if (B,)'is a decreasing sequence in A, then lim B,

n=1
exists and is equal to (| Ba. m
n=1
Definition 3.4. Let f € M(X) and a € (0,00). Then, the a-level of f is defined
by Lo = {z € X / f(z) 2 a). |
The support of f is defined by: supp(f) = Lof = {z / f(z) > 0} = ULaf

a>0

Definition 3.5. We say that a sequence of functions (fa), fa € M(X), L-converges
to f € M(X) (shortly: fn —= f)if, for every a > 0, Lofn — La /.

The next proposition shows that L-convergence is stronger than pointwise

convergence.
Propositition 3.6. If f, Ly f, then f, — f pointwisely.

Proof. Suppose that f, —= f and let zp € X with f(zo) = ao. Then,
2 € Lyof = limLyfa = liminf Ly, fo. Consequently, 3ng € N such that

20 € Lagfn = {fa > @}, ¥n > no (see Remark 3.2). Hence, fu(z0) 2 ao,
V¥n > ng. Thus, liminf [,(zo) 2 ao.

Now suppose that fp = limsup fa(zo) > o and let € > 0 such that
Bo — € > ag. Then, fu(zo) 2 Po—¢ for infinite values of n. Hence, zo € Lgy-cfa
for infinite values of n. Consequently, zo € limsup Lg,—.fn = Lpy-of- Thus
f(z) > Bo — € > ap. But this is impossible since f(z0) = ao. This implies that
ao < liminf fo(zo) < limsup fa(zo) < a0 Consequently, nli_rgof,,(zo) = f(=zo), i-e.
fo — f pointwisely. g ‘

Corollary 3.7. Il [, L, 1, and u finite, then f, L S

The next examples shows that pointwise (even uniform) convergence does
not imply L-convergence and also that L-convergence or pointwise convergence does

not imply measure convergence.

Example 3.8. Let X = R and A a Lebesgue o-algebra of measurable sets on X,

: 1 1
- —-— 1 <z<
and fn(1)={n+l p i 0szsd

0 elsewhere.

1 f 0<<z<1
0 elsewhere

)=
Clearly f, — f uniformly, but (f,) does not converges levelwise to f.

Example 3.9. Let (X, A) be as in example 3.8 and x the usually Lebesgue measure
on X. Let us define f,, f by

= iﬂ if —n<z<n _
falz) =1 n and  f(z)=0, Vr.

1 elsewhere

Clearly f. — f pointwise. Moreover f, L. J, nevertheless (f.) does

not converges in measure to f. g



4. ENDOGRAPHIC CHARACTERIZATION OF L-CONVERGENCE Proof. The classical proof works [7,8]. g

If f € M(X) then the endograph of f, denoted by End(f), is the subset of
X x [0,00) defined by End(f) = {(z,a) / f(z) 2 al.

n=1

Theorem 5.2. If f,, f € M(X) with y[U supp(f,.)] < oo, and p continuous.

Then
i ' 2 L, [ = ffudpy — ffd;l..
Definition 4.1. If f.,f € M(X) then we say that (f,) [-converge to f if 4 ]L
End(fs) — End(f). | Proof. If f, iy f then, by definition of L-convergence, it follows that
Lofa = Laf , Ya>0. '
Proposition 4.2. Let f,, f € M(X), then f, Ly fas . 2y
P furf (el s fel / Hence, by Lemma 5.1, u(Lafn) = p#(Laf) , Ya2>0.
» i h 2.5 we obtain that [u(Lafa)da — [u(Laf)da.
Proof. Suppose f, L, f and £ € X such that f(z) > a. Then (z,a) € S6, making nse:of Thearen weobtain Hha f,u( J) #(Laf)
End(f) = liminf End(f,) = U [ﬂEnd(fk)], and hence, dng € N such that Thus, by Theorem 2.4, we conclude that ff"d“ - ][fd“' -
=1 — .
(z,a) € [\End(fx), i.e. f(z) > a, ¥k > no. This implies that z € {fy > The hypothesis ;.L[U supp(f,.)] < oo in Theorem 5.2 is essencial, as show
k=n n=1

a}, Yk > no, therefore z € liminf{f, > a},i.e. {f > a} C liminf{f, > a}. the following example:

On the other hand, if £ € limsup{f, > a}, then z € {f, > a)} for infinite
values of n (see Remark 3.2), i.e.(z,a) € End(f,) for infinite values of n, conse- Example 5.3. Let f,, f be as in example 3.9. Then supp(f.) = R — {0}, Vn. So,

3 o

quently (z.a) € limsup End(f,) = End(f). Hence limsup{f > a} C {fa > a}. U supp(f,,)] = co. '
Consequently, f, =N f. = L h d 0

Conversely, let (z,a) € limsup End(f,). Then, (z,a) € End(f,) for infinite O i wther Jsnd, Jfy *= 1 ol ff"d'u =1} ", whersas )[f p==s o a
values of n, therefore (z, @) € limsup{f, > a} C {f > a}. Thus, (z,a) € End(f). ) . L
This implies that limsup End(f,) C End(f). Now, let (z,a) € End(f). Then Lemma 5.5. Let Ay, A € A, then: A, — Aifand only if Xay = Xa.
f(z) 2 o and, by hypothesis z € liminf{f, > a}. Hence (z,a) € liminf End(f,). . -

Consequently, End(f,) — End(f) and f, B 7 5 Proof. fI'hls result is direct consequence of fact that L, X,, = Ax. g
5. L.CONVERGENCE AND FUZZY INTEGRAL .+ Theorem 5.4. Let (X, A, y) a finite fuzzy measure space. Then the following

oo properties are equivalent:
Lemma 5.1. If A, — A, u continuous, and there exist ng such that p( U S,) <

oo i) p is continuous
o0, then u(A,) — u(A). :

i) fo 0 S fhadu— fran



Proof.

i — ii) By Theorem 5.2.

ii = i) Let A, a monotone sequence in A and A = limA,. Then, by Lemma 5.3,
A, — A implies X4, L, X4 Thus, by hypothesis, fXA_d,u — J[‘XAd#;
that is p(A,) — ,u(A); and therefore, 4 is continuous. g
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