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D. Gomes and E. Capelas de Oliveira
Departamento de Matemdtica Aplicada
IMECC-UNICAMP
19081-970 - Campinas (SP) Brasil

Abstract

We present and discuss the so called Ef(p) and G%(p) polyno-
mials which appear in the study of the generalized Laplace differential equa-
tion in the de Sitter universe.

1. INTRODUCTION

It is known that the special relativity, based on the Poincaré group, can
be perfected in an unique way and we obtain the special projective relativity, based
on the Fantappié group with ten parameters. In this theory, the de Sitter universe
of radius R, is studied using its geodetic representation with the Beltrami metrict’).

The generalized Laplace differential equation which appear in this theory
can be study in several ways, €.g., Arcidiacono!® studied the projective Laplace
equation with spherical symmetry; Buzzancal® discuss the laplacian on tensors;
Kovalyovl®) discuss the d’alembertian in a hyperbolic space and recently, Arcidi
acono and Rizzi® solved the generalized Laplace equation with a static spherical
symmetric field, where the so called An(z) and By(z) ultraspherical polynomials
appear and more recently Arcidiacono and Capelas de Oliveira(® solved this gener-
alized Laplace equation where they discussed an eigenvalue equation.

. Here we discuss the tridimensional generalized Laplace equation in spher-
ical cc?ord'ma.tes. Using the method of separation of variables we reduce the original
equa.t.llon in an angular equation and a radial equation. In the study of the radial
equ-a.hon- appears a new class of non classical polynomials. The name “non classical
pohnor‘mals” is because the coeficients of the differential equation depends not only
of the independent variable but also of the parameters.
5 There are many papers where the study of the non classical polynomi-
w:xi:}lipi:a:i‘ifgg' Littejohn and Shore!™ fO}xnd a second order diferential equation
rent from the so called classical second order equation for Laguerre



type and Jacobi type polynomials; Li‘ttejohn and Krall® developed the eig.enfl.mc.
tion expansion theory of a self adjoint operator gcncratf)d l')y a“soyml:netnc sixth
order differential equation; Littejohn!® and Krall and Littejohn'® discussed the
classification of differential equations having orthogonal polynomial solutions.

Recently two papers(11? discussed the continuous Hahn polynomials us-
ing the method of finite elements and converts the operator Heisenberg equations
that arise from the hamiltonian in a set of operators difference equations on a lat-
tice; the properties and connection with quantum mechanics are presented in terms
of Hermite polynomials and, more recently, Micu® discuss the continuous Hahn
polynomials.

This paper is organized as follow: in section II, we present and discuss
the gencralized Laplace differential equation in spherical coordinates and we ob-
tain the angular and radial equations; in section III, we present a new class of non
classical polynomial, the so called E§(p) and G%(p) which generalizes the An(z)
and By(z) ultraspherical polynomials, respectively, which are solutions of the radial
Laplace equation, we also present in this section the connection with the hypergeo-
metric functions; in section IV we obtain as a particular case the Ax(z) and Bn(z)
polynomials and present the properties of these polynomials and discuss the recur-
rence relation, the generating functions and the connection with the hypergeometric

function completing thus the study of these polynomials. Finally we present our
comments.

II. GENERALIZED LAPLACE EQUATION

In this section we present and discuss the generalized Laplace equation in
spherical coordinates and we obtain the angular and radial differential equations.
The generalized Laplace differential equation is given by("

{Az(Rza.? + 2;2,;0,0; + 22;8;) + N(N + 2)}n(zi) =0 (2.1)

where A? = 1 4 z?/R? with i,j = 1,2,3 and N is the so called the degree of
homogeneity of the function yn(z) and R is the radius of the de Sitter universe.
Introducing spherical coordinates,

z, = Rpcos@, z,= Rpcoslfsing, z3= Rpsinfdsing

in the above equation, we obtain

|
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where % = ¥n(p, 0, 9)- ‘

Introducing the function

11«’N(P, 81 45) = RIN (p)Tlm(g)Sm(¢)

parating the variables we obtain the following ordinary

in the above equation and se
differential equations

. = 2.3.a)
aSn(8) + M7 5n(8) =0 (23
2
_‘{I_T,'"(B) + cot 8;5’1}“(9) +[e(e+1) - ;i':—za]’_r,"(a) =0 (2.3.5)
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N(N+2) {t+1) 3
1+ p’)g—,ﬁ‘w(p) + %(1 + p’)aRfv(p) + [—(——— - —}—]R.lv(i’) =0 (2.3.¢)

1+ p2
wherem = 0,+1,%2,... and ¢ <m < ¢witht¢=0,1,2,... th? parameters m ablLd
¢ are the same as the quantum numbers representing the magnetic quantum number

and the angular quantum number, respectively. ' ——
Then, the solution of the above equation, angular equations, can be Wrl

ten in terms of the Y™ (8, ¢) harmonic sphericals, as follows
S ($)TT(8) = Ce*™* P (cos8) = CY{"(6,9)

where C is a constant and PJ"(cos 8) are the Legendre polynomials®.

* See ref. 15 for the notation of the special functions.



[ THE E4(s) AND Gi(p) POLYNOMIALS

In this section we present the so called E§(p) and G4 (p) polynomial
which are the solutions of the radial Laplace differential equation and we Obtais
the relation with the hypergeometric function. Firstly, we consider the solutjop :f
the radial equation using a Frobenius type expansion and secondly we introduce an
independent change of variable.

Introducing a function defined by

Ry (p) = %(1 + ") Fy(p) (3.1)

in eq. 2.3.c we obtain the following differential equation:
1+ 2SR o) - 2N o F (o) + NN +1) - 2D e
Fraly v )= T]FN(P) =0 (3.2)

This equation, for £ = 0 is the same obtained by Arcidiacono and Rizzi®).
To solve this equation we use an expansion of Frobenius type as follows

FR(p) = Y aptt
k=0

(3.3)
and we obtain for polynomial solutions the following expression for aj
_ N - (¢ +3/2)
ay = (1)t ( ao _
(N — €= 2k)ID(k + £ + 3/2) 22%k! ko= 0,052, . (3.4)
where ag is an arbitrary parameter. Making ag = N — £ 4+ 1 we obtain
(454
Eip) = Fip) = o' 3 (—1)t N L+ DIT(E+3/2)  (p\* 05)
= (N—€-2k)T(k + £+ 3/2)kI\2 '

with N > ¢,

For the another polynomial solutjon we get

- i
Gile) = F(p) = ;1; Y (-1)f

k=0

(N+e+1)IN(—£+1/2)  1/p\*
(N+z+1—2k)!I‘(k—f+)1/2)E(§) @

\
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Finally, we have for the eq. 2.3.c

Bilp) = 51+ )" Fip)Fi (P (5.1

where F&(p)[Ff(p)] are given above. .
Secondly, we introduce in eq. 2.3.c an independent change of variables

defined by
14p% =

N |-

(3.8)

and we obtain ,

N(N+2) t+1)
4 T 41 -1z)

2(1 _z)g;ﬁgv(zn (% —Zr)%R‘N(r)+ [ ]R‘N(z) =0 (3.9)

Now, another change of variables as follow

R (z) = (1 — z)/*F(2) (3.10)

and finally we have

1
4
which is an hypergeometric differential equation. The general solution of the above
equation is discussed in ref. 14.

We are interested in polynomial solutions and then we introduce 2z = t+1
and we obtain for eq. 2.3.c the following expressions

1(1-1);;2-1?(:” [% —(£+2):]Ed;F(a:)+ [N(N+2)—l(t+2)]F(z) —0 (3.11)

2 : —-p?
= l—-p
( p )2P(li—lﬂ. ll’zl( _) 3.12
Ry(p) = 1+ p2 ot 1+ p? ( )
and ¢4 -
. 2 = 1 o
( P ) 7 (-t-llz.—m)(_._P_) 1
R’N(p)— 1+ 7 fzf_gmz 1+ 2 (3.13)

where P{*9)(z) is a Jacobi polynomial.

Using the relation of the Jacobi polynomial and properties of the
gama function the above expressions can be done in terms of the Gegenbauer
polynomials(4),

. The relations among the above expressions and the eq. 3.7 furnish our
EN(p) and G4 (p) polynomials as follow



=t DN — €+ 2)T(€ +3/2) prer1/2.84172) 1
EY(p)=p"'(1 47 ) = T(N +3/2) Fu- (m) (3.19)

with N =£=0,1,2... and

1 7y HfEL F(N +£+ 2)1-‘(—( + 1/2) P(—l—l/?,—(-]f;) (_]*‘
Gf"i(P)= ?(1+P ) F(N+3/2) N+£41 m)
(3.15)

with N +£=1,2,... the few first E4(p) and Giy(p) are done in ref. 14.

IV. PARTICULAR CASE

In this section we consider a particular case of the E}(p) and G (p)
polynomials when we have { = 0 and we obtain exactly the An(p) and By(p)

Arcidiacono and Rizzi polynomial solutions(®),
Taking £ = 0 in the eq. 3.14 -we get

DN +2)T(3/2) I
O = Bl 4 i e n/z.:m(_)

N(p) P( , ) F(N + 3/2) N \/H_Pf (4.1)

where N = 0,1,2,.... Using a relation(**) among the Jacobi and Gegenbauer poly-

nomials we obtain

Eﬂ = 1+ 2 N/2Cl( l )
.N(P) p(1+p%) N J1tp? (4.2)
where Cx(z) is a Gegenbauer polynomial. Finally, we obtain
R =1 4P ()
N(p) P( +p ) N \/1—+? (43)

where N = 0.,1,2,... and Upn(z) are the Tchebischef polynomials of second kind.
The eq. 4.3 gives exactly the By(p) Arcidiacono-Rizzi polynomials(®).
In the same way we obtain :

Ghlp) =1+ pz)i;lTNn (_T\/le—p) (4.4)

:gwre N'= 0’,1’2* #1 and Ty(z) are the Tchebischef polynomials of first kind. The
ove expression gives exactly the An(p) Arcidiacono-Rizzi polynomials®.
the s To compl.ete the study of' the above polynomials we present and discuss
ecurn;;lc.e relations a.EuEl generating functions for Anx(p) and By(p) polynomials.
equatio smbg the definition for An(p) polynomials and the respective differential
0 we obtain the so called pure recurrence relation, as follows

6

Ans2(p) = 2An+1(p) + (1 + ) An(p) = 0 (4.5)

where N =0,1,2....
Now, differe

ntiating the above relation and using the differential equation
for An(p) we have a relation involving the first derivative as follows

(N + 2)An(p) + pANs1(p) — (N + 2)An4i(p) =0 (4.6)
d +
where Ay (p) = EFAN('O) and N=0,1,2....
Finally, we introduce a generating functtion of the type
o0
Galp,t) = 2 t" An(p) (4.7)

N=0

and using the recurrence relations we get

Galp.t) = (—i%jg—lj—;’% (4.8)

and using the Cauchy theorem we have that: the Ax(p) polynomials can be generate

using the follow expression

An(p) = %%GA(p,t)fM (4.9)

where G4(p, 1) is given above.
In the same way we obtain for the By(p) polynomials the following results:

1 v

Bn(p) = 'N—_,Etwaa(ﬂ,f) (4.10)

=0

where
(4.11)

Gslo) = T v g

We note that the eq. 4.5 and eq. 4.6 are the same for An(p) and Bn(p) because
the differential equation is the same.



V. COMMENTS

ed the so called EY(p) and va(p) Polynomials
which are the polynomial solutions of the generalized Laplace differential equation
s a particular case we obtained the An(p) and

written in spherical coordinates. A : .
W appear when we study galaxies with

Bn(p) Arcidiacono-Rizzi polynomials whicl
spiral orbits('® and quark confinement(171®). We also presented the recurrence re-

lations and generating function for the An(p) and Bn{p) polynomials.

For ours E4(p) and G%(p) polynomials we can obtain the recurrence rela-

tions and a generating functions and we recall that these polynomials can be applied
gular moment is not zero. This will discussed

In this paper we discuss

when studying problems where the an
in a forthcoming paper!'?.
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