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Abstract. We use the spacetime algebra to discuss the Barut-Zanghi model and we show
that it is in fact a hamiltonian system.
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The Barut-Zanghi (BZ) model (Barut and Zanghi 1984) is a classical
model for the Dirac electron. This fact by itself justify its importance, but
BZ model has many interesting properties and its study is fundamental for
those who wants to understand what is an electron. BZ exhibits the helical
motion as the classical analogue of Zitterbewegung and provides a classical
action for which one can define a path integral giving the Dirac propagator
(Barut and Duru 1984).

The key point of the BZ model consists in recognizing that the pair of
conjugated variables (z,p) do not suffice to characterize a Dirac particle; an
additional pair of conjugate classical spinor variables (z,iz) is required. The
model consists in the lagrangian (2 = z(7), z = z(7))

L= %(Ez = Z2) + pu(3” - 27%2) + eA 37"z (1)

One sees that p, is introduced here as a Lagrange multiplier, implying that
the velocity z# = z9#z, with y# being Dirac matrices.

In spite of BZ model being formulated as a lagrangian one, Rawnsley
(1992) showed that the theory is actually a hamiltonian one by constructing
an exact symplectic form on the total space of the spin bundle
time. However, in spite of its beauty,
methods used by Rawnsle
The fact that BZ

over space-
it is our opinion that the mathematical
Y are not very appropriate to the problem at issue.
model is a hamiltonian system is easily recognized when
one formulates it in terms of the spacetime algebra (STA) (Hestenes 1966).
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Indeed, the use of STA has many advantages over the traditional tensor and
spinor calculus (Hestenes 1966, Hestenes and Sobczyk 1984; see (Vaz and
Rodrigues, 1993) as an illustration of how pages of calculus can be performed
in few lines by using STA). Our objective in this letter is to show by means
of STA that BZ model is a hamiltonian system. Besides being an alternative
proof of it, our analysis is useful also as an illustration of how powerful is
our method: we shall discuss some aspects of BZ model and show how to
give a symplectic structure to phase space using Clifford algebras (Hestenes
1992).

In the following we adopt the notation: Ry 3 is STA and R;"'3 its even
subalgebra; the Clifford (or geometrical) product is denoted by justaposition,
while the interior and exterior products are denoted by - and A, respectively;
tilde denotes reversion, i.e., (AB) = BA with A = A for A scalar or vector.
We remark that in STA {y#} are interpreted as vectors of TM (the tangent
bundle over Minkowski spacetime), in contrast to those {y*} in eq.(1) which

~ are matrices (it is well-known that any Clifford algebra can be represented
. by an appropriate matrix algebra).

~ First of all, let us clarify the presence of Dirac spinor z € C* in BZ
lagrangian (Pavsic et al. 1992). One can define 2 as an element of the minimal
left ideal (C ® Ry3)f, where f is the idempotent f = %(1 + ’yo)%(l + m172);
but, as discussed in (Figueiredo ét al. 1990, Rodrigues and Oliveira 1990,
Lounesto 1993), an element of R1,3%(1 + 7o) contains the same information
as z (this element was called mother spinor by Lounesto (1993)). Moreover,
since Ry 33(1+70) =~ Rtaé(l +70), one can define a spinor as an element of
Rt:,. These kind of spinors are called operator spinors, and for the case in
question we call it Dirac-Hestenes spinors.(Hestenes 1967). A non-singular

Dirac-Hestenes spinor 4 has a beautiful geometrical interpretation in terms
of the canonical decomposition:

P = \/ﬁe‘y"’ﬂlzR, . (2)

that is: R represents a Lorentz rotation, ,/p a dilatation and e78/2 3 duality
rotation by the Takabayasi (1957) angle § (we shall assume 8 = 0). Now
one can understand the presence of z in eq.(1), for a spinning particle must
be individuated, besides by (z,p), by the Frenet tetrad {e,} given by e, =
Ry, R (Hestenes and Sobczyk 1984), or:

pen = P (3)
for ¥ = ¢(7), and 7 being a parameter that defines the particle’s world-line
(if 7 is identified with proper time then p = 1),

BZ lagrangian in terms of STA reads (Gull 1991, Pavsit et al. 1992)
L=< 1'7)%;”72‘71 + p(z - ‘1'701/’) + €AoY >0 (4)



CLIFFORD ALGEBRA APPROACH TO THE BARUT-ZANGHI MODEL K|

where by <>, we mean “the a-part of”. Euler-Lagrange equations dx [, —
8:(84L) = 0, where Jx is multivector derivative (Hestenes and Sobczyk
1984, Doran et al. 1992), give:

¥m72 + P70 =0, (5)
= Y709, (6)
#=eF-i, (7)

where 7 = p — eA. One can extract several informations by analysing this
system. Let 2 = 2RR and § = %R-n-nfi. Then, using eq.(2) (with 8 = 0)
into eq.(5) and after splitting the resulting equation into its scalar, bivector
and pseudo-scalar parts we get (h = 1):

p=0, (8)
Q= —4#-(60/\3), (9)
mAegAe Aeg =0. (10)

Eq.(8) says that p = constant, as expected, which we take p = 1 for 7 being
the proper time. In this case v = & = g, and eq.(10) says that = is a linear
combination of {eop, €1,€2}, from which we see that we can have solutions of
eq.(5) for which v and p are not parallel — which is indeed the case for the
solution given by Barut and Zanghi (1984), which in terms of STA is

¥ = cos mTY(0) + sin mTyo¥(0) 7011 Y2- (11)

The parameter m, identified with mass, comes from kinetic energy of rota-
tion (see also Hestenes 1990, 1991). In fact, from eq.(9) we can show that

N.-S=mr-e=m. : (12)

Another interesting conclusion can be obtained from eq.(5) after multi-
plying it on the right by % and subtracting from the result the reverse of
eq.(5) multiplied on the left by 4, which gives

S—7hep=0. (13)
Now, from Dirac theory one can show (Hestenes 1973) that
—plS =7 Aeo) =7, AN* -9, M", (14)

where N, describes the flow of energy-momentum normal to the velocity
streamline and M, describes the flow of angular momentum normal to that
streamline (we note the presence of a misprint in (Hestenes 1973) that leads
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to a wrong sign for $ in that equation in this reference). But for a Weyssen-
hoff fluid (Weyssenhoff and Raabe 1947) the net flux of energy-momentum
and angular momentum through the walls of a comoving volume element
vanishes, i.e. (Hestenes 1973):

BN* =0, . AN*=3,M", (15)

and in this case eq.(14) reduces to eq.(13). We conclude therefore that a BZ
fluid is an example of a Weyssenhoff fluid.

Now, let us show that BZ model is a hamiltonian system. First, look at
the lagrangian given by eq.(4); it is a first-order lagrangian. It is well-known
(Sudarshan and Mukunda 1974) that non-standard lagrangians exhibit some
problems to pass to the correspondent hamiltonian; but a first-order la-
grangian like our one has a natural hamiltonian structure. In fact, since
< AB >o=< BA >, we can write from eq.(4):

<(p - eA)drod >0 = <Ph >0 — <p >0 L, (16)
where we defined
% =12m9. (17)

Eq.(16) looks like a Legendre transformation; we have p and 9 as the mo-
mentum canonically conjugate to z and , respectively, and the hamiltonian

H _— H(z’p’ ¢7 10[_)) is
H =<(p—eA)prod>o = <(p— eA)pron129 >0 - (18)
Hamilton equations are:

t=0,H, p=-0:H, (19)

P = 0z, IZ) = —0yH. (20)

It is trivial to verify that eq.(19-20) with the hamiltonian (18) give eq.(5-7)
of BZ model.

Let us show how to give a symplectic structure to the phase space of BZ
model - illustrating therefore the general method given by Hestenes (1992).
First, note that an equation like 2 = 9,H implies v*z, = y*0,uH, or
Z, = O H. Now take a basis { Ep, £, Eq, E3} of R? such that £, - Ey = 0,
(6 =0,...,3) and define X = ¥, 2, E,; take another copy of R* and a basis
{Eg, By, Ej, E5} with E} - B} = &, and define P’ = 3~ p, £, Finally, take
R* @ R with a basis {Ey, ..., E3; Eb, ..., E3} such that E, - Ef = 0 (Va,b).
We can give a symplectic structure to RY @ R* by defining the symplectic
bivector J (Hestenes 1992)

J=Y Jo=Y E AE. To(21)
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Note that E, = E,-J = —~J -E, and E, = —E/-J = J . E!. Then
X'=X-J=-J-X,P=J.P =—P'.J,and we can define

Q=X'+P=X.J+P, (22)

0Q = c?X: + aP, (23)
from which we can write Hamilton equations (19) as

Q=04H (24)
where 3 = —J - 8g = 0 - 9.

In order to do the same with eq.(20) remember that R, 3 ¥ =< % >¢

+ <Y>2 + <P>4 an equatlon like ¢ = Oz H gives <1/)>o = Ogpp H,
<P>y = 0.ys, H and <Ph>4 = Oy H — where the second one gives

(<¥>3)w = OgouvH. Now, take a basis {Fp, F1,..., Fr} of R® such that
Fo - Fy = 6mn (myn=0,1,...,7) and define

¥ = <9>¢ Fp + (<¢>2)01F1 + o+ (KY>2)aFs+ <>, Fr (25)

take another copy of R® with a basis {F}, F{, ..., Fy} such that F',-F!, = §,,,
and define

U =<P> Fg+ (<P>2)oF + -+ (<P>2)ssFat <h>4 FL. (26)

Take R® @ R® with a basis {Fy,...,Fr; F},..., F}} such that F,, -Fl =0
(Vm,n), and define the symplectic bnvector K:

m m :
with F}, = F,, - K, etc., just like the previous case. If we define
S=V+V=U.-K+9 (28)
O¢ = 8y + 0y (29)

then Hamilton equations (20) can be written as
$=dH, (30)

where 03 = - K - 60—3:,—&
The final step is to take the space (R*® R®) @ (R* & R®) with a basis
{Eo,...,Es; Fo,...,Fi; El, ... oy Py} with By - Fy = By - I, =

E, - F,. = E,-F, =0 (VYa, m) I‘he symplectic structure is given by the
aymplectic b:vector J:

IJ=J+K= ZL.AF’+ZF AF (31)
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After defining

I=Q+9¢ (32)
we write Hamilton equations (24) and (30) as

=04 H (33)

where 9 = 8 + 0.
We observe (Hestenes 1992) that the Poisson brackets are given by

{F,G} = J - (6nG,dF) (34)
in terms of which Hamilton equation (33) can be written as
= {H,1}. (35)

We hope this proof that BZ model is a hamiltonian system has also
illustrated the power of Clifford algebras.
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